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Abstract 

Extensions of the traditional atomic transaction 
model are needed to support the development of 
multi-system applications or workflows that ac- 
ce~18 heterogeneous databases and legacy applica- 
tion systems. Most extended transaction model- 
s use conditions involving events or dependencies 
between transactions. Iniertosk dependencies can 
serve as a uniform framework for defining extend- 
ed transaction models. In this paper, we introduce 
event attributes needed to determine whether a 
dependency is enforceable and to properly sched- 
ule events in extended transaction models. Using 
these attributes and a formalization of a dependen- 
cy into the temporal logic CTL, we can automat- 
ically synthesize an automaton that captures the 
computations that satisfy the given dependency. 
We show how a set of such automata can be com- 
bined into a scheduler that produces global com- 
putations satisfying all relevant dependencies. We 
show how dependencies required to implement re- 
laxed transactions such as Sagas can be enforced 
and discuss briefly the issues of concurrency con- 
trol, safety, and recoverability. 

1 Introduction 

One of the main objectives of the Carnot project at M- 
CC is to provide an environment for the development of 
applications that access related information stored in 
multiple existing systems [Ca91]. An important com- 
ponent of this effort is a facility for relaxed task man- 
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agemeni. A task is any unit of computation that per- 
forms some useful function in a system. The tasks that 
are of particular interest are database transactions. To 
efficiently develop such multi-system applications ac-’ 
cessing existing heterogeneous and closed’ systems, we 
must be able to modularly capture the execution con- 
straints of various applications. This can be achieved 
by modeling them as relaxed transactions consisting of 
related tasks executed on different systems. 

The requirements of the traditional transaction mod- 
el based on full isolation, atomic commitment and glob- 
al serializability may be either too strong, or not suf- 
ficient for a particular multi-system application. For 
example, an application may need to ensure that two 
tasks commit only in a certain temporal order. An ex- 
ample is a banking application in which deposits made 
into an account over a certain period may have to be 
processed before debits are made from the account over 
the same period. Therefore, we may need to selective- 
ly relax the ACID properties [G&l, HR83] for multi- 
system transactions to capture precisely the synchrony 
and coupling requirements based on the true applicrt- 
tion semantics. The semantic constraints may be spec- 
ified as inter-task dependencies, which are constraints 
over significant task events, such as commit and abort. 

The concomitant reduction in semantic constraints 
across tasks enables the generation of scripts that can 
be efficiently executed with a high level of parallelis- 
m. This, in turn, may result in a higher availability of 
data, better response times, and a higher throughput. 
The modeling of complex telecommunication applica- 
tions is discussed in [ANHS92], where it is argued that 
many multi-system applications can be efficiently mod- 
eled and executed as relaxed transactions. 

To illustrate these concepts, let us consider the 
following scenario. A travel agency maintains two 
databases: one containing detailed information about 
the bookings made by different agents and another 

‘In many such systems, the data can be accessed only 
through the existing interfaces, even if it is internally stored 
under the control of a general purpose DBMS. Such systems 
are frequently referred to as legacy systems and the appli- 
cations that access several of them are called workflows. 
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containing a summary of the information in the first 
database with the number of bookings per agent. When 
the summary changes, a task is run that sets off an 
alarm if the summary falls below a preset threshold. 
An obvious integrity constraint is that for each travel 
agent, the number of rows in the bookings database 
should be equal to the number of bookings stored for 
that agent in the summary database. 

If it holds initially, this constraint can be assured by 
executing all the updates to both databases as atom- 
ic multidatabase transactions that are globally seri- 
alizable [BSSS]. This, however, may be inefficient or 
even impossible, if the database interfaces do not pre 
vide visible twephase commit facilities. Instead, we 
may assume that the interdatabase integrity is main- 
tained by executing separate tasks that obey the ap- 
propriate intertask dependencies. These dependencies 
state that if a delete task on the bookings database 
commits, then a decrement-summary task should al- 
so commit. Furthermore, if a delete task aborts, 
while its associated decrement-summary task commit- 
s, then we must restore consistency by compensat- 
ing for the spurious decrement. We do this by exe- 
cuting an increment-summary task. Figure 1 shows 
the tasks involved in this example; dB, dS, is, and 
u?a denote the delete-booking, decrement-summary, 
increment-summary, and update-alarm tasks, respec- 
tively. 

be stated modularly as constraints across tasks. We 
also present a scheduler that enforces all stated depen- 
dencies, provided they are jointly enforceable, and a.+ 
sures that a dynamically changing collection of tasks is 
executed in accordance with the dependencies. It does 
this by appropriately accepting, rejecting, or delaying 
significant events. 

The rest of the paper is organized as follows. Sec- 
tion 2 provides the technical and methodological back- 
ground for our work and gives an example of its ap- 
plication. Section 3 describes how we formally spec- 
ify dependencies, discusses event attributes and their 
impact on the enforceability of dependencies, and con- 
siders how dependencies can be added or removed at 
run-time. Section 4 gives a formal definition of a de- 
pendency automaton, which we use to represent each 
dependency; it also shows how dependency automata 
operate and enforce their corresponding dependencies. 
Section 5 presents our execution model as well as the 
notion of viable pathsets, which we use as a correct- 
ness criterion. It formalizes these definitions and uses 
them in the definition of a scheduling algorithm.2 It al- 
so shows how a relaxed transa&on model such as the 
Sagas (GS871 can be described (and hence enforced) as 
a set of dependencies. Section 6 briefly discusses the 
concurrency control, safety and recovery issues in the 
context. of flexible transactions [JNRSSl]. Some con- 
clusions are presented in Section 7. 

DELETE I I BOOKING 

1 
decrement cause u date 
summary 9 l aarm 

(dS) (u?a) 
1 

Figure 1: Task Graph for the Delete Booking Example 

We model each intertask dependency as a dependen- 
cy automaton, which is a finite state automaton whose 
paths represent the computations that satisfy the de- 
pendency. Each such automaton ensures that its cor- 
responding dependency is not violated, by permitting 
only those events whose execution would not lead to 
the violation of the dependency. The scheduler receive3 
events corresponding to a possible task execution. It 
queries the applicable dependency automata to deter- 
mine whether they all allow the event to be executed. 
If so, the event is executed; otherwise, it is delayed (if 
delayable) and reattempted later. 

We present a framework in which dependencies can 
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2 Background 

The specification and enforcement of intertask depen- 
dencies has recently received much attention [CR90, 
DHLSO, E192, ELLRSO, Kl91]. Following [Kl91] and 
[CR92], we specify intertask dependencies as con- 
straints on the occurrence and temporal order of certain 
significant events. Klein has proposed the following two 
primitives [Klgl]: 

1. el + es: If el occurs, then es must also occur. There 
is no implied ordering on the occurrences of el and 
e2. 

2. el < es: If el and ez both occur, then el must pre- 
cede e2. 

Well-known examples of dependencies include: 

Commit Dependency [CR92]: Transaction A is 
commit-dependent on transaction B, iff if both 
transactions commit, then A commits before B com- 
mits. Let the relevant significant events be denot- 
ed as cmA and CmB. This can be expressed as 
cmA < cmB. 

Abort Dependency [CR92]: Transaction A is abort- 
dependent on transaction B, iff if B aborts, then A 

2This paper is a revised and abbreviated version of the 
report [ASRS92] available from the authors. The report 
contains proofs of all theorems. 



must also abort. Let the significant events here be 
abA and abg, so this can be written abB -+ ab,,. 

l Conditional Existence Dependency [Klgl]: If event 
ei occurs, then if event es also occurs, then event 
ea must occur. That is, the existence dependency 
between es and es cornea into force if ei occurs. This 
can be written ei -, (ez + es). 

Note that we allow dependencies of the form El ---, 
El, where El and Ez me general exprtzmions. An ex- 
pression E can be formally treated as an event by iden- 
tifying it with the iirst event occurrences that makes it 
definitely true. For example, es + es is made true as 
soon as es or the complement of er occurs. 

The above primitives can capture many of the e 
mantic constraints encountered in practice; any useful 
framework for intertask dependencies should be at least 
88 powerfuI. Our approach meets this criterion: -+ and 
< are special case3 of our formal&l. committed 

st A Not executing 

Figure 2: An Example Task State Transition Diagram 

The relationships between the significant events of a 
task can be represented by a state transition diagram, 
which serves as an abstraction for the actual task by 
hiding irrelevant details of its internal computations. 
The execution of an event causes a transition of the 
task to another state. Figure 2 shows an example task 
state transition diagram taken from [Klgl]. From its 
initial state (at the bottom of the diagram), the task 
fust executes a start event (St). Once the task has 
started, it will eventually either abort, as represented 
by the ab transition, or finish, as represented by the 
pr transition (for “done”). When a task is done, it can 
either commit, i.e., make the cm transition, or abort, 
i.e., make the ab transition. 

Using the state transition diagrams and significant 
events defined above, we can represent the travel 8- 
gent application described in the previous section as 
shown in Figure 3. The intertask dependencies are 
shown as “links” between states that result after the 
corresponding significant events of the different tasks 
are performed (& denotes conjunction). 
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iS u?a 

Figure 3: Dependencies Between Significant Events in 
the Delete Rooking Example 

3 Intertask Dependency Declarations 

As discussed in Section 2, we specify intertask depen- 
dencies as constraints on the occurrence and temporal 
order of events. The SigniIlcant events and transition- 
s of a task depend on the characteristics of the local 
system where it executes. Our theory and implemen- 
tation applies on tasks with an arbitrary set of task 
states and significant events. We assume that an event 
can occur at most once in any possible execution of the 
system. This is not a restriction in real terms. If a task 
aborts and must be m-executed, a new id may be gen- 
erated for it (and for its events). The dependencies can 
be appropriately modified and everything can proceed 
normally. 

Let e, ei, ej, etc. denote any significant event and 
D(el,..., e,) denote an unspecified dependency over 
el,..., en. 

3.1 Formal Specifbtion of Dependencies 

We adopt the language of Computation ‘De Logic 
(CTL) as the language of our dependencies [EmgO]. 
CTL is a powerful language, well-known from distribut- 
ed computing. A brief description of CTL and model- 
ing of various dependencies is given in Appendix A. 
The primitives < and -* are useful macros that yield 
CTL formulae. CTL can uniformly express differen- 
t dependencies. And, since it is a formal language, 
it helps reduce ambiguity in communication. It also 
makes it possible to formally determine the relation- 
ships among different dependencies, e.g., whether they 
are consistent, or whether one entails another. 

We would like our dependencies to be easily specifi- 



able by users or database administrators. For this rea- 
son, it is essential that the automata that enforce those 
dependencies be synthesized automatically from those 
dependencies. CTL formulae can be used to automat- 
ically synthesize dependency automata: this process is 
hidden from the dependency specifier. Thus we retain 
the flexibility of Klein’s approach, while using a formal, 
more expressive and general representation. 

3.2 Enforceable Dependencies 

The scheduler enforces a dependency by variously al- 
lowing, delaying, rejecting, or forcing events to occur, 
so that the resulting computation satisfies the given 
dependency. Some syntactically well-formed dependen- 
cies may not be enforceable at run-time. For example, 
the dependency ab(Tl) + cm(Ta) is not enforceable, 
because a scheduler can neither prevent ab(Tl) from 
occurring nor in general guarantee the occurrence of 
cm(Tz). This is because, in general, a scheduler can- 
not prevent tasks from unilaterally deciding to abort. 
Thus both Ti and T2 can abort. 

We associate the following attributes with significant 
events that meet the given conditions: 

l Forcible, whose execution can be forced; 

l Rejectable, whose execution can be prevented; 

l Delayable, whose execution can be delayed. 

We assume below that local systems on which the 
tasks are executed provide a prepared-tecommit state 
so that a task can issue a prepare-lo-commii (pr) event. 
The prepared-to-commit state is visible if the scheduler 
can decide whether the prepared task should commit 
or abort. Table 1 below shows the attributes of the 
significant events of transactions commonly found in 
database applications and DBMSs. Therein, an 4 in- 
dicates that the given attribute always holds, whereas 
a x indicates that the given attribute may not always 
hold. 

Table 1: Attribute Tables for Significant Events 

We can characterize the enforceability of dependency 
D(el,..., e,) in terms of the attributes of ei, . . . , e,. 
For example, ei + e2 is run-time enforceable if 
rejectable and delayable hold, since we can then 
delay ei until e2 is submitted, and reject el if we see 
that the task that issues ez has terminated (or timed 
out: see below) without issuing es. Alternatively, if ez 
is forcible, then we can enforce er -+ ez at run-time 
by forcing the execution of ez when ei is accepted for 
execution. Yet another (although somewhat vacuous) 

strategy would be to unconditionally reject ei. This 
strategy is available if rejectable holds. 

As another example, consider ei < ez, for which 
there are two possible strategies. The first, which can 
be applied if delayable holds, is to delay ez until 
either ei has been accepted for execution, or task 1 has 
terminated without issuing el. The second, which can 
be applied if rejectable holds, is to let ez be execut- 
ed when it is submitted and thereafter reject er if it is 
submitted. 

One way to extend our approach to real-time de- 
pendencies is by considering real-time events, such as 
clock times (e.g., 5:00 p.m.), as regular events that lack 
the attribute of delayability. Consider er < 5:00 p.m.. 
This dependency is enforceable only if ei is rejectable. 
The scheduler can enforce er < 5:00 p.m. by accepting 
er if 5:00 p.m. has not already occurred (i.e., if it is 
before 5:00 p.m.) and by rejecting ei otherwise. 

3.3 Dynamic Addition and Removal of De- 
pendencies 

The preceding exposition assumed that all dependen- 
cies are initially given, i.e., at compile-time. However, 
dependencies may be added or deleted dynamically at 
run-time. The removal of a dependency is achieved 
simply by removing its corresponding automaton. The 
addition of a dependency requires that an automaton 
be synthesized for it and used in further scheduling. A 
dependency may be added too late to be enforced. Sup- 
poseD= el + e2 is added after ei occurs. If ez is not 
forcible and is never submitted, D cannot be enforced. 
This is unavoidable in general, since the addition of de- 
pendencies cannot be predicted. At best we can report 
a violation when such a dependency is added. 

4 Dependency Automata: Enforcing a 
Single Dependency 

For each dependency D, we create a finite state ma- 
chine AD that is responsible for enforcing D. AD cap- 
tures all possible orders of event on which D is satisfied. 
This can be done either manually, or by using an exten- 
sion of the CTL synthesis technique of [EC82, Em901 
that we have developed [ASRS92]. Our procedure re- 
quires only the specification of the dependencies, not 
of the tasks over which those dependences are defined. 
That is, the precise transitions for a task’s state transi- 
tion diagram do not affect the representations of the d- 
ifferent dependencies. As a result, our procedure gener- 
ates an open system. By contrast, traditional temporal 
logic synthesis methods [EC82, MW84] require a speci- 
fication of the entire system. Thus their results have to 
be recomputed whenever the system is modified. The 
details of the synthesis procedure are omitted for brevi- 
ty, but can be found in [ASRS92]. In the worst case, 
the size of AD is exponential in the number of events 
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in D. This number is often small (in our experience, 
2-4), so the complexity is not a major impediment in 
practice. 

AD is a tuple (SO, S, C, p), where S is a set of states, 
SO is the distinguished initial state, C is the alphabet, 
and p C S x C x S is the transition relation. We use ti 
to indicate the specific termination event of task i, and 
E to denote any event which can either be a significan- 
t event (notated with e) or a termination event. We 
discuss the generation and usage of termination events 
below. The elements of C are notated as u, u’, etc. u 
can be of any of the forms described below. 

4&l,..., c,,,): This indicates that AD accepts the 
events ~1 through cm. If this transition is taken by 
AD, then each &i is accepted and, if ei is a significant 
event, it is then forwarded to the event monitor for 
execution. 

r(el , . . . , e,): This indicates that AD rejects the 
events ei through e, because the execution of any 
of them would violate the dependency D. 

mlll * -. Ill%, where the Ui E C: This indicates the 
interleaving of the accept operations corresponding 
to ur through u,,. 

u1;...;u,, where the Ui E C: This indicates the 
accept operations of Ui occur before the accept op- 
erations Of Ui+l (for 1 5 i 5 (n - 1)). 

Example Dependency Automata 

We represent AD as a labeled graph, whose nodes are 
states, and whose edges are transitions. Each edge is 
labeled with an element u of C. u denotes the actions, 
such as accept or reject, that are taken by the scheduler 
when that transition is executed. 

In Figures 4 and 5 below, we give example dependen- 
cy automata for the dependencies ei < ez, and ei * ez, 
respectively. The symbol I indicates choice: an edge 
labeled UIU may be followed if the scheduler permits 
either u or a’. 

Figure 4: Dependency Automaton for order depen- 
dency ei < es assuming that #rejectable and 
delayable both hold 

n 

Figure 5: Dependency Automaton for existence depen- 
dency ei --+ e2 assuming rejectable A delayable 

The Operation of an Automaton 

We assume for simplicity that each task can have at 
most one event in a given dependency, i.e., only in- 
tertask dependencies are explicitly considered. Thus 
the input alphabet for AD, where D is of the form 
D(el , . . .,e,), is {ei,. . .,e,,tl,. . .,t,.,}. That is, the 
size of the input alphabet for AD is 2n. 

AD operates as follows. At any time, it is in some 
state, say, s. Initially, s = SO. Events arrive sequen- 
tially. Let & be the current event. Ifs has an outgoing 
edge labeled a(e) and incident on state s’, then the 
given transition is enabled. This means that, as far as 
its local state is concerned, AD can change its state to 
s’. However, AD cannot actually make the transition 
unless the scheduler permits it (see Section 5). 

If the scheduler permits a certain transition, then 
the automaton can execute it, thereby changing its lo 
cal state to keep in synchronization with respect to the 
events executed so far. The behavior of the scheduler 
is such that it accepts an event only if it can find an 
event ordering that is consistent with all of the depen- 
dency automata that contain that event in their input 
alphabet. So if it accepts an event, all the relevant au- 
tomata must be in agreement. Therefore, each of them 
must execute the given accepting transition. This en- 
sures that acceptance of the event does not violate any 
of the dependencies in which the event is mentioned. 
Similarly, the scheduler can reject an event only if all of 
the relevant automata reject it, i.e., only if it can find an 
event ordering that is consistent with all of the relevant 
dependency automata executing a rejecting transition 
for the event. The same reasoning as for accepting an 
event applies here, since the rejection of an event can 
also cause the violation of a dependency in which the 
event is mentioned. Section 5 discusses the operation 
of the scheduler in detail. 

The following observations concern how a dependen- 
cy automaton enforces a dependency. A ti indicates 
the termination or timing out of task i. A dependency 
automaton cannot reject a ti event, since it cannot u- 
nilaterally prevent such an event. The importance of ti 
events is that their submission tells the automaton that 
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events that may have been submitted by the given task 
will definitely not be submitted. This can significantly 
affect the automaton’s behavior. Knowledge that the 
given task has terminated may allow the scheduler to 
accept for execution a previously delayed event ej, as 
the knowledge that ei will never occur may enable the 
scheduler to infer that the execution of ej now will not 
violate certain dependencies that it might have violat- 
ed before. This happens, for example, if a dependency 
ei < ej is to be enforced and ej has been submitted, 
but is being delayed. In such a case, the arrival of ti 
ensures that the dependency ei < ej cannot be violat- 
ed; consequently, ej can be scheduled (unless doing so 
would violate some other dependencies). 

Dealing with Failures using Timeouts 

We have so far interpreted the ti events to indicate the 
termination of task i. Ordinarily, tasks terminate by 
committing or aborting. However, system problems, 
such as disk crashes and communication failures, may 
cause indefinite waits. For example, the automaton for 
ei < ez, shown in Figure 4, delays accepting ez until tl 
or er is submitted. Thus, this automaton could possi- 
bly hang forever, if neither tl nor ei is forthcoming. 

One policy is to have the automaton accept ez when 
ez arrives and reject er if er arrives later. In general, 
this policy speeds up ez’s task at the cost of aborting 
ei’s task and, possibly, delaying or aborting the glob- 
al task. In cases where both policies, namely, one in 
which an event is indefinitely delayed and the other in 
which an event is eagerly rejected, are unacceptable, 
a policy based on timeouts may be preferred. This 
would require tasks to wait, but would allow timeouts 
to be generated when expected events are not received 
within a reasonable time. This is an improvement in 
practical terms, but does not require any significant 
change in our approach. We support timeouts by mod- 
ifying the interpretation of the ti events in the above 
and associate them with either the normal termination 
of a task or a timeout on the corresponding event, ei. 
We assume that ei is not submitted after ti has been 
submitted. This is easy enough to implement. 

5 The Scheduler: Enforcing Multiple 
Dependencies 

A system must enforce several dependencies at the 
same time. A naive approach would generate a product 
of the individual automata (AD’S) that each enforce a 
single dependency. However, if there are m individual 
automata each roughly of size N, then the product au- 
tomaton has size of the order of Nm. This is intractable 
for all but the smallest m. We avoid this “state ex- 
plosion problem” [CG87J, by coordinating the relevant 
individual automata at run-time rather than building 
a static (and exponentially large) product at compile- 
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time, using techniques similar to those of [AE89]. Al- 
though the worst case time complexity is still exponen- 
tial, we have reason to believe that in many interest- 
ing csses, e.g., certain workflows in telecommunications 
applications [ANRS92], the time complexity is polyno- 
mial. Also, the space complexity of our technique is 
polynomial versus the exponential complexity of build- 
ing the product automaton. 

5.1 The Execution Model 

Figure 6 shows the execution model. Events are sub- 
mitted to the scheduler as tasks execute. We intro- 
duce the correctness criterion of viable pathsets, which 
is used to check whether all dependencies can be sat- 
isfied if a given event is executed. Computing a viable 
pathset requires looking at all relevant dependency au- 
tomata. If an event can be accepted based on the viable 
pathset criterion, it is given to the event dispatcher for 
execution. If an event cannot be accepted immediately, 
then it still may be possible to execute it after other 
events occur, provided that the event is delayable. In 
that case, the event is put in the pending set and a 
decision taken on it later. If the scheduler ever permits 
the execution of an r(e) transition by some automata, 
then e is rejected, and a rejed(e) message is sent to 
the task that submitted e to the scheduler. 

5.2 Pathsets 

We now discuss pathsets, present an algorithm to com- 
pute them, and discuss event execution in more detail. 
When an event c is submitted, the scheduler search- 
es for a pathset, i.e., a set of paths with one path 
from each relevant dependency automaton. The de- 
sired pathset must 

1. accept c; 

2. begin in the current global state of the scheduler; 

3. be order-consistent; 

4. be a-closed and r-closed; and 

5. be executable. 

A pathset accepts E iff all its member paths mention- 
ing E should accept it and there should be no paths ac- 
cepting the termination event associated with r. Order- 
consistency means that different paths in the set must 
agree on the order of execution of each pair of events. 
The requirements of a-closure and r-closure mean that 
for any event that is accepted or rejected, paths from 
each automaton referring to that event must be includ- 
ed and must agree on whether to accept or reject it. 
Executable means that all rejected events must have 
been submitted and all accepted events must have been 
submitted or be forcible. A pathset that meets criteri- 
a 2-5 is called viable. After some technical definitions, 
we give further intuitions and present an algorithm to 
compute pathsets. 
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Figure 6: The Execution Model 

Definition 1 (Global Sfafc). 
A global state s is a tuple (8~~ , . . . , sgi, . . . , SD,) 

where 8~)~ is the local state of ADS, and Di, . . . 0, are 
all the dependencies in the system. 

The global state is simply the aggregation of the local 
states of every individual dependency automaton. 

Definition 2 (Path). 
oa 

A path TD in AD is a sequence s1 2 s2 - . . . such 
fhd (Vj 1 1 : (d, ui, d+‘) E PO) where PD is the 
iransition relation of AD. 

A global computation is a sequence of events as execut- 
ed by the event dispatcher. Recall that AD is meant 
to encode all the computations that satisfy dependen- 
cy D. Thus, each path of AD represents computations 
that satisfy D. Furthermore, AD is maximal in the 
sense that every possible computation whose prefix- 
es satisfy D is represented by some path in AD. By 
definition, a global computation must consist solely of 
events accepted by the scheduler. Our scheduler has 
the property that, for each dependency D, the projec- 
tion of any global computation onto the events in D 
is represented by-a path in AD. This means that our 
scheduler enforces ‘each dependency. 

Definition 3 (Pathsef). 
A pathset is a set, II, of pafhs such that: 

1. Each element of II is a pafh in some AD. 
2. Each AD coniribtdes at most one path to II. 

As mentioned in Section 5.1, when an event E is sub- 
mitted to the scheduler, the scheduler attempts to ex- 
ecute E by finding a viable pathset II that accepts E. 
If such a pathset is found, then all events that are ac- 
cepted by the pathset are executed in an order that 
is consistent with that imposed by the pathset. This 
results in the global state of the scheduler being updat- 
ed appropriately. If such a pathset is not found, then 

event 6 is placed in the pending set. Another attempt 
at finding a suitable pathset is made when other events 
affecting the acceptability oft- are submitted. Event t 
remains in the pending set until a viable pathset is exe- 
cuted that either accepts or rejects it. In any case, the 
task that submitted c is informed of this decision. 

5.3 The Pathset Search Algorithm 

In Figure 7, we present a (recursive) procedure 
sear&II that searches for viable pathsets. The pro- 
cedure is initially called as searcUI(0). The event to 
be executed, E, and other necessary data structures are 
assumed to be globals for simplicity (they are passed as 
parameters in the actual implementation). The search 
procedure attempts to construct a viable pathset by s- 
electing paths (from each relevant automaton) that are 
order-consistent with II and are executable. If these 
paths contain a(e) or r(c) events that occur in automa- 
ta outside the set of automata being considered, those 
automata are also considered to ensure a-closure and 
r-closure of the eventual solution. 

The function getxandidatepaths(A, II) returns 
a set of executable paths from automaton A that are 
order-consistent with all paths in II. Some of the re- 
turned paths may be extensions of paths already in II. 
We now establish some correctness properties of the 
pathset search algorithm. Most proofs are not includ- 
ed here for brevity, but appear in [ASRS92]. 

Lemma 1 For any event, E, and global state s, if 
searchI terminates with II # 8, then II is viable 
(w.r.L global slate s) and accepts E. 

Proof sketch. 
We show that each of the clauses of the definition of 
viable pathsets is satisfied. The search for a pathset 
always begins in the current global state. New paths 
that are added to the candidate pathset (II,) are ex- 
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search-II@) 
if r-closed@) and a-close@) and II accepts c then 

return( 
else 

Let A be an automaton needed to close off II; 
II c := getxandidatepaths(A, II); 
for each 3r E II, 

nr := searcha(II u {x}); 
if IIt # 0 then 
/* IIt is viable; end all recursive calls */ 

return(&); 
endfor 
/* all paths in II, failed, so return 0 */ 
return(Q); 

Figure 7: Pathset Search Algorithm 

ecutable and order-consistent with II, by definition of 
the get-candidate-paths function. The search termi- 
nates when either II is empty or is a-closed and r-closed. 

Lemma 2 sear&II(Q) always terminafes. 

Proof sketch. 
The essential idea is that because the number of au- 
tomata is finite and each automaton has finitely many 
paths, only finitely many candidate pathsets need to 
be considered. Thus the algorithm terminates. 

5.4 The Scheduler 

The scheduler is a nonterminating loop, which on each 
iteration attempts to execute an event E that has just 
been submitted or is in the pending set (Figure 6). 
It does this by invoking searchJI(0). If this invocation 
returns a nonempty II, then II is immediately executed. 
Otherwise, c is placed in the pending set. II is executed 
by (a) accepting the events that II accepts in a partial 
order that is consistent with II and (b) rejecting all 
events rejected by lI. 

Definition 4 (P&h Projection). 
The projection qtD of global computation ‘1 onto a 

dependency automaton D is the path obtained from 7 
by removing all transitions E such that e # CD. 

Lemma 3 Let v be a global computaiion generafed by 
the scheduler. Then, for every dependency D, qtD is a 
path in AD. 

Proof sketch. By construction of the scheduler. 
The paths in II, returned by get-candidate-paths are 

examined in arbitrary order. The quality of the gen- 
erated pathset could be improved if the paths in II, 
were examined according to some appropriate criteri- 
on, such as minimal length or maximal acceptance. We 
are currently experimenting with such criteria. 
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5.5 Example of Scheduler Operation 

We now give an example of how relaxed transactions 
expressed with < and + can be scheduled using our 
algorithm. For simplicity, let the only dependencies in 
force be el < ez and el + es, where both el and es 
are rejectable and delayable. Let A< and A, be the 
corresponding automata as shown in Figures 4 and 5. 
Assume that el is submitted first. We find o(el) in A<. 
However, since no path in A, begins with a(el), the 
empty pathset is returned and er added to the pending 
set. When ez is submitted, two executable paths can 
be found in A +: a(ez);a(el) and o(ez)llla(el). The a- 
closure requirement now forces the scheduler to search 
A< for a path that accepts el and es. The only such 
path is a(el); a(e2). Since a(el); a(e2) and a(ez); a(el) 
are not mutually order-consistent, the only viable path- 
set is {a(el);a(ez), o(e2)lllo(el)}. This is finally re- 
turned. The partial order consistent with it is: el and 
then ez. 

Table 2 shows how the axioms for the Saga trans- 
action model [GS871, that were formulated in [CR921 
using the ACTA formalism, can be expressed using the 
< and + primitives A Saga, S, is a sequence of sub- 
transactions, Ti, i = 1, . . . , n. The term ‘post’ denotes 
the postcondition of the given event. The Saga com- 
mits iff all subtransactions are successfully executed in 
the specified order; otherwise, if one of the subtrank 
actions aborts, the Saga aborts and the compensating 
transactions CTi are executed in the reverse order. S 
ince the specifications use only the < and --) primitives, 
our scheduler can be used to execute relaxed transac- 
tions with Sagas semantics. 

6 Executing Multidatabase Transac- 
tions 

Three issues in executing multidatabase transactions 
are: concurrency control, safety, and recoverability. 

6.1 Concurrency Control 

Our scheduler is a part of a multidatabase environmen- 
t in which local database systems (LDBS) cooperate 
in the execution of global transactions. Each LDBS 
will, in general, contain a concurrency control mod- 
ule, which enforces local concurrency control (typically 
ensuring local serializability). We may assume that a 
task executing at each of the local systems has a seri- 
alization event that determines its position in the local 
serialization order. For example, if the local system us- 
es two-phase locking (2PL), the serialization order of a 
local transaction is determined by its lock point-the 
point when the last lock of the transaction is granted. 

A problem arises if local concurrency control modules 
impose an inconsistent ordering on serialization events 
of tasks belonging to a given multidatabase application. 
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st(Cx) + ah(S)- A ah(S) < st(CTi) 
post(begin(T,)) ] SSC’D T n cmT, --rcmS 

Table 2: Expressing SAGA Dependencies in ACTA and the <, + Notation 

We resolve this problem by transferring the responsi- 
bility for global concurrency control to the scheduler. 
This is achieved by restating the concurrency control 
obligations as a set of dependencies, which are then 
treated like other dependencies. However, unlike other 
scheduling dependencies, concurrency control depen- 
dencies arise at run-time, when a serialization prece- 
dence between tasks in different applications is estab- 
lished at some site. However, once these dependen- 
cies are added, there is no difference in how they are 
treated. Thus we have a uniform mechanism for both 
dependency enforcement and concurrency control. 

The main difficulty in this approach is that the seri- 
alization events are neither reported by the local con- 
currency controllers, nor can they be deduced from the 
temporal order of other significant events controlled by 
the global scheduler (start, commit, terminate). It is 
possible for a local concurrency controller to completely 
execute task ‘I;: before task Tj has even begun, yet seri- 
alize them in such a way that that Tj precedes z. This 
problem can be overcome by using the idea of l&Lets 
introduced in [GRSSl]. As in [GRSSl], we may add a 
ticket read and ticket write operation to each task of a 
global application. These ticket read/write operations 
can be regarded as significant events, and so their exe- 
cution can be controlled by declaring dependencies that 
refer to them. Thus the required concurrency control 
is then obtained simply by declaring an appropriate set 
of ticket access dependencies. 

6.2 Flexible Transaction Safety 

A fletible iransociion [ELLR90] is defined as a set of 
subtransactions and their scheduling preconditions a- 
long with a set of conditions over their final states 
[ELLRSO]. These conditions specify the accepfoble ter- 
mination states of the flexible transaction; it completes 
successfully iff it terminates in such a state. 

Consider the following example, adapted from 
[JNRSSl]. W e h ave a travel agent flexible transaction, 
consisting of reserve-flight (F) and reservecar (C) sub- 
transactions. If we fail to secure a car reservation, we 
wish to cancel the plane resqvation. This cancellation 
is achieved by a subtransaction F-, which is a com- 
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pensating transaction for F. Thus the set of acceptable 
termination states for the overall transaction is given 
in Table 3, where iu, cm, and ab indicate that the sub- 
transaction is in its initial state, is committed, and is 
aborted, respectively. The set of acceptable states is 
a constraint on the execution of a flexible transaction. 
This constraint can also be expressed as the set of de- 
pendencies given in Table 3. 

Table 3: Acceptable States of a Flexible Transaction 

6.3 Recoverability 

We will not deal extensively with the issue of recovery 
from failure in this paper. Suffice it to say that the 
following data must be checkpointed in order to enable 
recovery of the scheduler from a failure: 

1. The current state of every dependency automaton. 

2. Any (partially executed) pathset (see Section 5), plus 
the current state along every path in the pathset. 

3. The set of pending events. 

The above data is subject to concurrent updates that 
must be executed atomically with respect to the check- 
pointing mechanism. For example, when an event & 
is executed, the current state of every dependency au- 
tomaton AD where c occurs in D must be updated. We 
do not wish a checkpoint to reflect only some of these 
updates. It should either reflect none of them (corre- 
sponding to a state before E is executed), or reflect all 
of them (corresponding to a state after E is executed). 

In addition, the communication mechanism between 
the scheduler and the tasks must be persistent, so that 
no messages are lost while the scheduler is down (i.e., 
after a failure and before recovery from that failure). 



Mailboxes or persistent pipes may be used to provide 
this functionality. 

7 Conclusions and Future Work 

We addressed the problem of specifying and enforc- 
ing intertask dependencies. Our framework allows de- 
pendencies to be stated modularly and succinctly as 
constraints across tasks. The actual set of significan- 
t events is not predetermined, but can vary with the 
application. Our framework can be extended to ac- 
commodate the issues of concurrency control, flexible 
transaction safety, recoverability, and the enforcement 
of other dependencies that are introduced dynamically 
at run-time. 

We showed how a dependency can be expressed as an 
automaton that captures all the computations that sat- 
isfy the dependency. We presented a scheduling algo 
rithm that enforces multiple dependencies at the same 
time. This algorithm uses the automata corresponding 
to each dependency. We showed that every global com- 
putation generated by the scheduler satisfies all of the 
dependencies. We also showed how relaxed transac- 
tion models such as the Saga model can be captured in 
our framework. The desiderata for a task scheduler for 
multidatabase transaction processing include correct- 
ness (no dependencies are violated), safety (transaction 
terminates only in an acceptable state), recoverability, 
and optimality and quality. We have established the 
correctness, safety and recoverability of the scheduler; 
we are currently studying issues concerning the quality 
of the schedules generated and the optimality of gen- 
erating them. 

An implementation of this work has been complet- 
ed as part of the distribution services of the Carnot 
project [Ca91] at MCC. Our implementation is in the 
concurrent actor language Rosette, whose asynchrony 
and other features make for a natural realization of 
our execution model. Carnot enables the development 
of open applications that use information stored under 
the control of existing closed systems. The specifica- 
tion and run-time enforcement of data and intertask 
dependencies is an important component of this effort. 
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A CTL Syntax and Semantics 

We have the following syntax for CTL (where p denotes 
an atomic proposition, and f, g denote (sub-) formu- 
lae): 

1. 

2. 

3. 

4. 

Each of p, f A g and -f is a formula (where the lat- 
ter two constructs indicate conjunction and negation, 
respectively). 
EXj f is a formula that intuitively means that there is 
an immediate successor state reachable by executing 
one step of process Pi in which formula f holds. 
A[f Ug] is a formula that intuitively means that for 
every computation path, there is some state along 
the path where g holds, and f holds at every state 
along the path until that state. 
E[fUg] is a formula that intuitively means that for 
some computation path, there is some state along 
the path where g holds, and f holds at every state 
along the path until that state. 
Formally, we give the semantics of CTL formulae 

with respect to a structure M = (S, Al,. . . ,Ak, L) 
that consists of: 
S - a countable set of states 
Ai - C_S x S, a binary relation on S giving the possible 

transitions by process i, and 
L - a labeling of each state with the set of atomic 

propositions true in the state. 
Let A = A1 U---U&. We require that A be 

total, i.e., that Vz E S, 3y : (2, y) E A. A fullpath 
is an infinite sequence of states (SO, sr, sz . . .) such that 
Vi(Si, si+r) E A. To any structure M and state SO E S 
of M, there corresponds a computation tree (whose 
nodes are labeled with occurrences of states) with root 
SO such that s 5 t is an arc in the tree iff (s, t) E Ai. 

We use the usual notation to indicate truth in a 
structure: M,so b f means that f is true at state SO 
in structure M. When the structure M is understood, 
we write so b f. We define k inductively: 

so !=P iff p E L(s0) 

so I= -f iff not(s0 + f) 
sol=ffhg iffssbfaandssbg 
SO + EXjf iff for some state t, 

(SO,~) E Aj ad t k f, 
so b A[f Ug] iff for all fullpaths (so, 81,. . .), 

3i[i>OhSi~gAVtfj(O~jAj<ijSj bf)] 
SO k E[f Ug] iff for some fullpath (so, 81, . . .), 

3i[i1OA~i~gAV~(O~jAj<i~~j kf)] 
We write t= f to indicate that f is valid, i.e., true at 
all states in all structures. 

We introduce the abbreviations f V g for -(Tf A-g), 
f =$ g for -f V g, and f s g for (f =$ g) A (g * 
f) for logical disjunction, implication, and equivalence, 
respectively. We also introduce a number of additional 
modalities as abbreviations: A[fWg] for -E[- f U-g], 
E[fWg] for yA[-f&g], AFf for A[trueUfj, EFf for 
E[trueUfl, AGf for -EF-f, EGf for -AFlf, A[fU,g] 
for -E[-gU(-fA-g)], E[fU,g] for E[fUg]VEGf, AXif 
for TEXiTf, EXf for EX1 f V* * -VE& f, AXf for AXI f A 
. . . A A&f. Particularly useful modalities are AFf, 
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which means that for every path, there exists a state 
on the path where f holds, and AGf, which means that 
f holds at every state along every path. 

A formula of the form A[fUg] or E[fUg] is an euentu- 
olity formula. An eventuality corresponds to a liveness 
property in that it makes a promise that something 
does happen. This promise must be fulfilled. The even- 
tuality A[fUg] (E[fUg]) is fulfilled for 8 in M provided 
that for every (respectively, for some) path starting at 
8, there exists a finite prefix of the path in M whose 
last state satisfies g and all of whose other states sat- 
isfy f. Since AFg and EFg are special cases of A[fUg] 
and E[fUg], respectively, they are also eventualities. In 
contrast, A[fWg], E[fWgJ (and their special cases AGg 
and EGg) are invariance formulae. An invariance corre- 
sponds to a safety property since it asserts that certain 
conditions will necessarily be met. 

CTL is a propositional branching-time temporal log- 
ic. That is, it includes propositional logic and temporal 
operators. A CTL temporal operator is composed of a 
path-quantifier (either A, meaning for all possible com- 
putations, or E, meaning for some possible compute 
tion), followed by a linear temporal operator (one of X, 
F, G, or U). Xp means that p holds at the next point 
along the given computation; Fp means that p holds 
at some point along the given computation; Gp means 
that p holds at all points along the given computation; 
and pUq means that q holds at some point along the 
given computation and p holds from the current point 
until that point. 

A.1 Expressing Dependencies in CTL 

Atomic propositions naturally model the states of a 
given system: each proposition corresponds to a signif- 
icant event and holds in the state immediately following 
the occurrence of that event. 

Now we show how certain dependencies that were 
motivated and defined by other researchers can be ex- 
pressed uniformly in CTL. 
l Order Dependency [Klgl]: If both events ei and es 

occur, then ei precedes es. This was expressed as 
el < es in the above discussion. In CTL, it becomes: 

AG[ez + AGlel] 
That is, if e2 occurs, then el cannot occur subse- 
quently. 

l Existence Dependency [Klgl]: If event el occurs 
sometimes, then event e2 also occurs sometimes. 
This was expressed as err --, es in the above discus- 
sion. In CTL, it becomes: 

yE[leaU(el A EGyez)] 
That is, there is no computation such that es does 
not occur until a state 8 is reached where 8 satis- 
fies (er h EGTez), i.e., el is executed in state 8, and 
subsequently, es never occurs. 

The following instances of the above dependencies have 
also appeared in the literature. 

Commit Dependency [CR92]: Transaction A is 
commit-dependent on transaction B, iff if both 
transactions commit, then A commits before B com- 
mits. Let the relevant significant events be denoted 
as CmA and Cm&#. 

AG[cmB + AG-cmA] 

Abort Dependency [CR92]: Transaction A is abort- 
dependent on transaction B, iff if B aborts, then A 
must also abort. Let the significant events here be 
abA and abg, so this can be written abg + abA, and 
is rendered in CTL just like ei -+ es above: 

yE[yabA U (aba A EGyabA)] 

Conditional Existence Dependency [Klgl]: If event 
ei occurs, then if event es also occurs, then event 
es must occur. That is, the existence dependency 
between es and es comes into force if er occurs. This 
can be written er -+ (es + es). Translating it to 
CTL involves two applications of the translation of 
el + es given above, one nested inside the other. 
The first application, to es + es, yields the following 
“mixed” formula: 

el + lE[les U (es A EGyes)] 
The second application, which substitutes 
yE[vesU(e2 A EGles)] for es in the CTL translation 
of ei 4 es given above, gives us 

yE[ ~~E[~eJJ(e2AEG~es)] U 
(elAEG~~E[~e3U(e2/\EG~es)]) ] 

Eliminating the double negations finally yields the 
following formula: 

yE[ E[~esU(ezhEG~es)] U 
(elAEGE[~esU(e2AEG~e$]) ] 

A.2 Expressing Real-time Dependencies 
in CTL 

We use the variant of CTL called RTCTLZ (Real-Time 
Computation Tree Logic > 

L 
[EMSS93]. This is the 

same as CTL except that EF-’ means “will occur after 
t or more time units along some computation.” 

l Real-time Order Dependency: If both events ei and 
es occur, then ei precedes es, and es occurs within t 
time units of el. 

AG[(e, j AGyel) A (el =+ lEFz*e2)] 

l Real-time Existence Dependency: If event el oc- 
curs sometimes, then event es also occurs sometimes. 
Furthermore, es occurs no later than t time units af- 
ter el. 

~E[~e2U(e~ A EGyez)] A lEF[el A EFzte2] 
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