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Abstract 

While database systems provide good function for 
writing applications on structured data, computer 
system users are inundated wit.11 a flood of semi- 
structured information, such as documents, elec- 
tronic mail, programs, and images. Today, this in- 
formation is typically stored in filesystems that pro- 
vide limited support for organizing, searching, and 
operating upon this data. Current database systems 
are inappropriate for semi-structured information 
because they require that the data be translated to 
their data model, breaking all current applications 
that use the data. Although research in database 
systems has concentrated on extending them to han- 
dle more varieties of fully structured data, database 
systems provide important function that could help 
users of semi-structured informat,ion. 

The Rufus syst*em attacks the problems of 
semi-structured data. It provides searching, orga- 
nizing, and browsing for the semi-structured infor- 
mation commonly stored in computer systems. Ru- 
fus models information with an extensible object- 
oriented class hierarchy a.nd provides automatic clas- 
sification of user data within that hierarchy. Query 
access is provided to help users search for needed 
information. Various ways of structuring user infor- 
mation are provided to help users browse. Methods 
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a.ssocia.ted with Rufus classes encapsulate actions 
that users can t,ake on the data. These capabilities 
a.re pa.ckaged in a framework for use by applications. 
We have built. two demonstration applications using 
this framework: a generic search and browse appli- 
cation called xrufus and an extension to the Usenet 
news reading program trn. These applications are 
in daily use at our research laboratory. 

This paper describes the design and imple- 
mentation of our framework, our experiences using 
it, and their influence on the next version ‘of Rufus 

1 INTRODUCTION 

The volume and diversity of the information stored 
on computer systems have grown with the systems 
themselves. Current workstation users store gi- 
gabytes of information locally and have access to 
far more over local area networks. While some of 
this information is highly structured and stored in 
databases, most of it is stored in ordinary files ar- 
ranged in a directory tree. 

It is difficult for people to make effective use 
of the information that’s available to them. The 
large amount of data makes it difficult to find things 
when they are needed, while the diversity of infor- 
mation makes it difficult to use the data when it is 
found. Since computer systems offer little help lo- 
cating and using data, users are compelled to mem- 
orize the.location of data and procedures for using 
it,. The tools provided by current computer systems 
are crude and do not scale as needed. 

For example, consider the plight of an orga- 
nization with hundreds of internetworked worksta- 
tions. Users of these workstations write documents 
using any of a dozen word processing systems. Al- 
though the workstations make use of shared file sys- 
tems like NFS [17],.users must still locate documents 
of interest by filename. The system might offer a 
brute force application for searching through files, 
but the applications tend to be slow and to make 
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it difficult to find what a user needs. Once a docu- 
ment is found, the user needs to remember how to 
browse or print the document using the application 
specific for its type. While this example uses word 
processor documents, the same situation holds for 
computer programs, images, electronic mail, config- 
uration files, and so on. 

Ideally, computer systems would provide sig- 
nificantly better tools for users to manage huge 
amounts of data. This ideal system would know 
what each piece of data is and how to use it. In the 
document example above, the system would know 
what application(s) apply to each file and how to 
run them. The ideal system would also know what’s 
inside each piece of data to allow users to search for 
information about a particular subject. The search- 
ing should adapt to the data type, with different 
techniques available for searching for text, images, 
and coded data. The ideal system would use index- 
ing so that queries could be answered quickly. Fi- 
nally, the ideal system would know the relationships 
between various pieces of data. For example, in a 
document that includes figures, the system should 
understand the inclusion relationship. 

In contrast to the ideal system, today’s users 
must choose between storing their data in tradi- 
tional filesystems or in database systems. For vari- 
ous reasons, filesystems have little or no semantics 
attached to stored files. An attempt to add these 
semantics to an existing system would likely break 
all existing applications and creating a new system 
from scratch, with all new applications, is unthink- 
ably expensive. 

Alt,ernatively, users could store t,heir data in 
a database. Unfortunat,ely, database systems are 
unprepared to store the semi-struct#ured informa- 
tion inundating users. Instead, database systems 
are oriented towards providing high integrit,y stor- 
age for structured data. Database research has con- 
centrated on supporting the same type of data more, 
efficiently, with better concurrency, and with bet.- 
ter integrity. Efforts to extend the scope of data 
that database systems can handle have succeeding 
in capturing more applications with fully structured 
data, but still do not support semi-structured data. 

There are two reasons why current database 
systems are inadequate for storing semi-structured 
data. The biggest, inhibitor is that database sys- 
tems insist on “owning” t,he data. When you decide 
to use a database system, you convert, your dat,a into 
its format. a.nd access t,he dat,a exclusively through 

* the database system. Moving semi-struct,ured infor- 
mation into a database abandons a,11 the applications 
that were written against the data’s original format. 

Anot,her problem is tha.t semi-st,ructured 
data is imperfect.---comput,er programs may have 

syntax errors or be incomplete, documents may not 
format correct,ly, and electronic mail may be dam- 
aged by t#he delivery system. A database solution de- 
signed to store this information must be able to rep- 
resent imperfections. Database syst,ems are instead 
oriented towards storing perfect information and for 
providing facilities for keeping it perfect. This need 
to cope wit.11 imperfection motivates filesystems to 
maintain unintrusive byte-stream models. 

In summary, given the choice between byte- 
stream filesystems and structured databases, users 
have chosen filesystems for storing their semi- 
structured data. This is an unfortunate choice, be- 
cause database systems offer many features that 
could help users cope with information overload. 
Database systems need to step up to the problems 
of semi-structured data to make these features avail- 
able. 

The Rufus project, brings features tradition- 
ally belonging t,o database systems to bear on 
semi-structured information. An object-oriented 
database is used to store descriptive information 
about file system objects. To preserve existing ap- 
plications, Rufus does not modify the file system 
objects t,hemselves. An import process automati- 
cally categorizes each piece of user data into one of 
the Rufus classes and creates an object instance to 
represent the data. The underlying database sup- 
ports fast querying and object access. Rufus pro- 
vides various ways of stSructuring the objects to sup- 
port. browsing. This object infrastructure is made 
available through a client-server interface. We have 
built two applications to demonstrate the value of 
our infrastructure. 

While designing the Rufus system, four par- 
ticularly inberesting problems were addressed. The 
first, problem is the automatic classification of a file 
into one of the Rufus classes. Such a classifier must 
be fast,, a,ccurate, and easily ext,ended with new 
classes. The second problem is correlating file sys- 
tem objects with Rufus objects. The most obvious 
approach, using file names, fails when files are re- 
named but users expect object identity to be main- 
tained for the new file name. The third problem 
is the abilit,y to add and delete classes from the 
class hierarchy of a.n existing database. With tra- 
ditional approaches, such schema changes break the 
class hierarchy, due to the class relationships estab- 
lished by inheritance. The fourth problem is that 
of maint,aining a dynamically-extendible text index 
wit.h concurrent. readers. This problem is further 
complicat,ed by the need to be able to scale text in- 
dices t,o hundreds of thousands or millionsof objects. 

This paper describes t,he design and imple- 
mentation of t,he Rufus system. ParGcular attention 
is focused on how t.he system addresses the four key 
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problems listed above. 

2 RELATED WORK 

While existing data. management systems do not 
support, semi-st,ructured information, research in the 
areas of object-oriented database systems, informa- 
tion retrieval, classification, hypertext, and some 
specific applications contribute useful techniques. 

Semantic file systems [ll] (SFS) provide 
lransducers tl1a.t ext,ract attributes from files and 
provide them to an indexing system. Queries a.gainst 
a semantic file syst,em are issued via extensions to 
the file naming syntax of the UNIX file system and 
are presently limited to conjunctive equality tests 
with string prefix matching. Rufus and SFS share 
the goal of raising the level of abstraction of the file 
system interface. Embedding the query la.nguage in 
the file naming mecha.nism provides a.ccess to SFS 
facilities without changing applications, but ca.n be 
umlatural for some queries. As currently described, 
SFS does not associate actions with data, nor does it 
represent inter-file relationships. Users need richer 
data modeling and query capabilit,ies to cope with 
the millions of files available to them. 

Intelligent mail filtering capabilities, such as 
those found in BBN/Slate [5], t,he Andrew Message 
System [25], the Information Lens [18] and Tapestry 
[13] give users a large measure of control over their 
incoming ma.il. The term “mail” is used rather 
loosely here, as these systems purposely blur the 
distinction between traditional point-to-point elec- 
tronic ma.il and point-to-many bulletin-board mes- 
sage systems. Tapestry, in particular, advocates re- 
placing t,he notion of sender directed mail by recip- 
ient. directed cont.ent.-based retrieval. Thus the re- 
ceiver, rather than the sender, controls what the re- 
ceiver sees. Tapestry takes an active approach by 
providing user-defined intelligent agents to forage 
through various mail/message databases for items 
of interest. Collaborative retrieval is supported in 
Tapest,ry by associating user annot,ations with mes- 
sa.ges . These a.nnotations can be used by others to 
select messages to read. 

In many ways Tapestry is an information 
retrieval system a.pplied to a limited interactive 
mail/message domain. In contrast, full-text infor- 
mation retrieval systems such as RUBRIC [19] and 
WAIS [15] provide users with the a.bi1it.y to retrieve 
files as the result, of queries posed against, the docu- 
ment text. To faci1itat.e retrieval across a wide vari- 
et,y of document formats, t#hese syst,ems treat their 
da.ta as unformatted text. Information retrieval sys- 
tems and specialized systems such as ma.il handlers 
ca.n be thought of as at opposite ends of the “domain 
specificity” spectrum. Rufus supports both kinds 

of use. A general purpose application can provide 
access across all data. types, while special purpose 
applications can be written to exploit the semantics 
of specific data types. We describe both kinds of 
applications later in this paper. 

Object-oriented data.base systems, such as 
ObjectStore [21] and 02 [8], provide explicit frame- 
works for describing the structure of data types. 
These systems provide powerful query languages 
that, allow users to express retrievals based on the 
structures defined in t.he schema. Object-oriented 
systems also provide a simple framework for encap- 
sulating an object’s structure together with its se- 
mantics, or behavior. As with other database sys- 
tems, use of an OODBMS requires that a user’s data 
reside in the database. 

Dat,a.base systems do not really concern 
themselves with modeling and importing existing file 
t.ypes and files. Mechanisms are usually provided for 
the one-time import of users’ files, but the expecta- 
tion is tha.t they will then “live” in the database 
world: applications t,hat were used to manipulate 
the original data are not applicable to the propri- 
etary, internal dat,abase formats. Additionally, lit- 
tle or no support is provided for refreshing the im- 
port,ed data from native files that may have changed 
(through the use of external applications). Users ei- 
ther step fully into the dat,abase world or are left to 
manage the consistency of the two worlds on their 
own. 

Hypermedia systems [6], which are based on 
a browsing metaphor rather than one of retrieval, 
also use proprietary internal data formats. Systems 
such as Intermedia [29] provide no avenues for inte- 
grating existing structured data into a hypermedia 
document other tha.n as flat text. Once a hyperme- 
dia document or web is created, the systems offer 
only limited access paths to the underlying data. 
For example, a.lthough Int,ermedia is built on top of 
a relational database, t,he relational query capabil- 
ities are not available to Intermedia users. Hyper- 
media systems require that the data they operate 
upon be brought into the system, as is the case with 
database systems. Most of the value is derived from 
careful construction of links, which must be added 
by hand. Finally, hypermedia systems do not encode 
information about how to operate on data once it is 
found. 

3 RUFUS 

This section describes the Rufus approach to sup- 
porting semi-structured information. We describe 
how each aspect of the design is implemented in our 
current prototype, our experiences with the design 
choices, and modifications we are making to Ru- 
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fus based on these experiences. To avoid confusion, 
“Rufus” refers to our general approach, “Rufus 1” 
refers to our current prototype, and “Rufus 2” refers 
to the version that we are in the process of building 
based on our experiences. 

Rufus augments the file system representa- 
tion of user data with persist,ent objects that retain 
information extracted from the original data. The 
original data is not modified and remains t,he author- 
it,ative copy so that existing applications are not af- 
fected. Rufus provides a set of classes that describe 
types of user files; examples include mail messages, 
C language source code, and various image file for- 
mats. Rufus includes a classifier that automatieally 
determines the Rufus class of a file. 

The struct,ured objects t(l1a.t Rufus extracts 
are used for querying, organizing, and operating 
upon the data. In addition to extracting struc- 
tured information about user data, Rufus indexes 
the data’s contents. Rufus 1 supports a full-text in- 
dex for textual data; other types of ihdexing could 
be added for non-textual data. Queries on Rufus 
data combine search opera1,or.s on the contents of 
data (full-text in Rufus 1) with predicates on the ex- 
tracted objects. Rufus uses collections, sub-classing, 
composite objects, and hypertext liuks to represent 
structure between objects. Some examples: 1) a 
mail folder is modeled as a collection of mail message 
objects; 2) a C program is modeled as a compos- 
ite object including collections of source and object 
code, compilation instructions, and documentat,ion; 
and 3) the structure of questions and answers in 
bullet,in board articles is represented with hypertext 
links. 

Rufus 1 is implemented on a client/server 
model to mimic the location transparency provided 
by distributed file systems. Rufus applications are 
written using a client library that provides program 
access t*o queries and Rufus da.ta.. Rufus 1 includes 
a cat(alog server t,o locate a.ctive Rufus servers. We 
have written two applications, one general purpose 
and one data-specific, as R.ufus client*s. These appli- 
ca,tions are in daily use at our labora.tory. 

Figure 1 shows the general st*ructure of the 
Rufus system. 

3.1 Classifier 

The classifier examines a. file aad guesses what its 
Rufus class is, providing the first piece of informa.- 
tion that a user needs about, a, piece of da.ta. Given 
the volumes of seini-st,ructured tlat,a, it, is unreason- 
able to expect, people t.o classify information ma.nu- 
ally. Thus, aut,oma.tic classifica.tiou is needed. Suc- 
cessful classification permits Rufus t.o dispatch t.he 
correct import method to extra,cb a.tt,ributes from 
user data. 

The classifier uses the presence of keywords, 
file name patterns and file type (directory or nor- 
mal file), and the presence of constant bit patterns 
near the beginning of the file (“magic numbers”). 
For efficiency, the classifier scans the file once to 
prepa.re an a.bst,ract of sampled keywords from the 
beginning, middle. and end of the file. The keyword 
samples include the t,oken to the left of the keyword 
to pick up punct,uation in examples like \section 
in UTEX. 

Each class supplies an evaluation function 
that. returns a weight from 0 to 10 according to how 
likely the data is a member of the class. For suffi- 
c.iently nondescript data, the classifier will likely re- 
turn TEXT (plain ordinary text) for files that have 
mostly printable characters or BINARY for anything 
else. In case of error, the user may manually reclas- 
sify an object. 

For the set of classes we have defined, the 
classifier is reasonably accurate and fast. To test 
it, we classified 847 examples of various file types. 
90% were classified correctly, 8% were editor backup 
files that a,re given unusual names and were classi- 
fied as “Text” inst,ead of their actual type (mostly 
C language source code), and 2% were more signif- 
icant errors (most1 were telephone directories clas- 
sified as “Text”). A similar test on 100 randomly- 
selected user files revealed 4 significant misclassifica- 
tions. Two were text formatter documents general- 
ized to “Text,” one was an extremely short text ed- 
itor command script misclassified as “Binary,” and 
the last was a command script misclassified as a spe- 
cific kind of script. On these tests, the classifier av- 
eraged 55 milliseconds of CPU time per file on an 
IBM RISC System/6000, model 350. 

The la.rger problem is that the classifier must 
carefully ba.lance the weights returned by the eval- 
uation functions t,o make the right decision in most 
cases. It would be difficult or impossible to add 
many more cla.sses without upsetting this balance. 

To address these limitations, we are building 
a new classifier based on a different model. In this 
new classifier, the programmer describes salient fea- 
t,ures of a new t,ype, such as binary numbers that 
should appear near the beginning or regular expres- 
sions tl1a.t should be found in text#ual formats and 
provides examples of object,s of the given type. A 
classifier training program collects all the unique 
features into a global ffntvre ~ertor and computes 
t.he cent.roids of the feat.ure vect,or for each type for 
which samples are available. 

The act,ual classification of an object is per- 
formed by const,ructing it,s feature vector and match- 
ing it, t.o t,he class with the nearest centroid. We 
are currently using t(lie cosine coefficient similarity 
measure,. a. dab-product of t,wo feat,ure vectors nor- 

100 



Applications 1 xnlfus rufustm rufiubld ) 

RPC Interface IA 

Schema 

Schema 
Compiler 

- Schema 
Source 

&abase OODB [ J pzJ 

Figure 1: St,ructure of Rufus System 

malized to remove biases towards classes with many 
features. 

To date, we have t,ried this new classifier tech- 
nique on a set of about 45 types, including those 
tha.t Rufus 1 supports. The results are encouraging: 
t,he new classifier is about as accurate as the pre- 
vious version and the process of adding new types 
is simple to it is simple. We now need to improve 
t,he performance of t,he new classifier (it can take it 
severa. seconds to classify a file) by combining the 
regular expression fea,tures into a single finite au- 
t,omaton wit,h a.n algorithm like that suggested in 
[l] and to build the fea.ture vectors for each class in 
a. single pass through the file. 

3.2 Importing Data 

Once a piece of user data has been classified as class 
C, it can be imported into R.ufus. Importing simply 
mea.ns that a.ttribut.es are extra.ct.ed from the under- 
lying data. and stored as an object,. If the underlying 
dat,a. is not perfectly formatted, values may be left 
out. of the ext(racted object. If t,he class of the object, 
is text,-orient,ed, the textual cont,eut,s of the da,ta are 
added to t,he t.ext. index. 

Each Rufus cla,ss provides an import, method 
t.hat’s responsible for performing extraction. Al- 
though the writers of classes arp free to choose any 
formalism they wish to a.nalyze t,he underlying data, 
Rufus neither supplies nor dictates the use of any 
such formalism. We ha.ve used pla,in C code for ex- 
traction in the classes we have implemented so far. 

When a file is imported into Rufus for the 
first time, a. new object, ident,ifier is created for it. If 
t,he file is modified and re-imported, its object iden- 
tity is ret.ained. When files are renamed, it can be 
difficult to maint*ain object identity. To cope with 
this problem, Rufus uses a type-specific unique iden- 

tifier to track file identity, rather than the file name. 
For example, mail messages have unique “message 
identifiers” associated with them. Plain Unix files 
can be identified by their “inode” and “device” num- 
bers. When a file is imported, its unique identifier 
is discovered by its class’s const,ructor. A persis- 
tent mapping from unique identifier to object iden- 
tifier is consulted; if the unique identifier is already 
known to Rufus, then the existing object identifier 
is reused. Rufus convert8s the varying-length unique 
identifiers to fixed-size object identifiers for conve- 
nience. 

The Rufus strategy for unique identifiers 
works well for data t,hat, has an intrinsic unique iden- 
tifier. For cases where Rufus must rely on the Unix 
file identification, our scheme works as long as file 
identity and object identity remain in sync. 

Rufus includes a ut,ility for importing data 
called rufwbld. Rufusbld reads a user-written spec- 
ification tl1a.t describes the files to be imported, clas- 
sifies the files, and imports them into Rufus. Rufus- 
bld does lit,tle work for files that are already “cur- 
rent” in the Rufus da.tabase, so an affordable way to 
keep Rufus current is to periodically run rufusbld. 
We decided against, a strategy of hooking Rufus into 
the operating system’s file system interface to avoid 
non-port,abie, system-dependent programming. 

We tested rufusbld on a sample of 1,000 
USENET articles. On our IBM RISC/System 6000 
model 350, it takes about 130 milliseconds of CPU 
time per article imported, exclusive of classification. 
The real time to import, is about 2.5 times the CPU 
time, due to waiting for dat,abase disk l/O’s, 

3.3 Data Model 

The Rufus data model represents structured infor- 
mation observed about user data. The structured 
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view describes what the da.ta is, interesting values 
determined about the data, and wha.t operations can 
be performed on it. We chose an object,-oriented 
(00) model [12]. The classes in the hierarchy are 
recognizable to users as types of information t,hat 
they use. Rufus creates an object, to represent each 
piece of information tha.t a user might t.hink of as 
distinct. For example, Rufus creates an object for 
each file of C source code, as well as an object for 
the makef ile (compilation instructions) and an en- 
compassing object for the entire program that refers 
to the constituent source code, makef ile, documen- 
tation, etc. 

A Rufus class is defined by a set of attributes 
associated with each instance of the class and a set 
of methods that can be applied to any instance of 
the class. Rufus supports substitutability, where 
instances of a class can be used in places that ex- 
pect instances of a superclass. This capability allows 
users to take a specific or general view of a piece of 
data. For instance, one might seek a document that 
contains a particu1a.r phrase, without regard to the 
type of formatter used to compose it. 

Attributes of type con2exf define parts of the 
underlying real data for text indexing, similar to lo- 
cation restrictions in information retrieval systems 
like STAIRS [14]. F or example, a. document class 
might define the cont*ext abstract to refer to the 
words in the up-front summary of a paper. Con- 
texts allow users t,o restrict the locations that words 
or phrases must appear in so that, more accura.te 
results are possible. For convenience, a class may 
indicate that particular string-valued attributes are 
to be indexed as contextas. 

Every Rufus class includes a set of standard 
attributes and methods. The standard attribut,es in- 
clude the object identifier, t.he document ident.ifier 
(used to cope wit,h new versions of the object in t*he 
text index), a unique identifier derived from the un- 
derlying object for correla.tion, the object’s class, the 
date the object was last refreshed, and a string de- 
scription of the object for browsing. Standard meth- 
ods display an object, import an object into Rufus, 
and print an object. The standard methods pro- 
vide the set of basic services that any Rufus object 
is expected to support. 

Although met,hods defined for a Rufus class 
may choose to modify t(he underlying data, Rufus 
provides no built-in mechanism for mapping mod- 
ifications to Rufus objects t,o the underlying data. 
Such a mapping would be difficult to provide, given 
that, Rufus objects do not typically model all the 
informa.tion in t.he underlying data.. 

Our prototype currently has 34 classes, in- 
cluding a few formats of electronic mail, several 
formats of documents, C language source code, a 
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Figure 2: Subset of Rufus class hierarchy 

few image types, bibtex citations [16], and employee 
records from IBM telephone books. Figure 2 shows 
a subset of the supported classes. 

We chose the object-oriented (00) model 
because its features closely follow a user’s mental 
model of data. For example, 00 dat,a models fea- 
ture a strong notion of object identity, while other 
dat.a models are oriented around values. Object 
identity gives us an easy way to refer to objects in 
different, contexts; in particular, it allows us to or- 
ganize the same objects in different ways. Object 
identity is also useful for modeling complex objects 
made up of simpler ones. Rufus uses the attributes 
of objects to describe features extracted from the 
underlying dat,a. (e.g., author, title, and date writ- 
t,en). Rufus uses t,he methods of an object to de- 
scribe hot,11 user-visible operat,ions that can be per- 
formed, as well as opera.tions needed by the Rufus 
infrastructure, such as display and import. 

Effective exploitation of the class system re- 
quires high quality, det,ailed class definitions. For ex- 
ample, R.ufus 1 extracts the sender, newsgroup, sub- 
ject, line count, summary, and organization fields 
from USENET articles, as well as creating links that 
show the “question and answer” relationship be- 
tween articles. In contrast, the C source code class 
does not provide the same level of detail: it only 
dist,inguishes between string and comment contexts 
and does not distinguish between function defini- 
tions and references. As a result,, Rufus 1 is more 
helpful for manipulat8ing USENET articles than for C 
source. 

While t.he object-oriented model has served 
our purposes well, some t,hings are difficult to de- 
scribe in a single-inheritance hierarchy. For exam- 
ple, in Rufus, embedded PostScript is a sub-class 
of IMAGE, which in turn is a subclass of BINARY. 
PostScript is textual rat,her than binary, though. In 
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arldit,ion, while most people probably t.hink of em- 
bedded PostScript. as an image format,, others see 
it as a programming language, requiring different 
treat.ment. 

Schema changes in our prototype are discour- 
a.ged because they invalidat,e exist.ing da.tabases. We 
not,e that schema evolution is a common problem in 
object-orieut,ed database systems. 

We are adopting a significantly different, 00 
data model to address t.he above problems. Our new 
system uses the conformity data model of Emerald 
[3] and Melampus [22]. In this data model, only the 
methods of a.11 object are visible outside its class defi- 
nition. For convenience, an attri1~ut.e can be marked 
so a method will be generated to return it,s value. 
In Bhe conformity model, the suitabilit,y of an object. 
for a purpose is dictated by whether it. implements 
the necessary method names wit,11 the right param- 
eter 1ist.s. For example, a user might be looking for 
objects tha.t ha.ve an A~fhor and a Tifle. In bhe 
system, objects of t,ype I4TpY? TROFF -MM, and 
SGML might conform to this specification by im- 
plementing these two methods. 

In the conformity model, inheritance is de- 
coupled from subtyping. Schema evolution is sim- 
plified by the resulting indepeudence between class 
definitions. Inheritance is not used to structure the 
class hierarchy, but rather as a modularity and reuse 
aid. When a class definition changes, the old defi- 
nition of the class will be retained as long as there 
are object inst,ances of the old class. All new object 
instances will use the new class definition. 

In the new data model, class definitions are 
machine independent, so that client. applications can 
retrieve class definitions from servers t(o interpret ob- 
jects, even on different architecture ho&s. 

We have a working class compiler for the new 
da.ta model and modifications to Rufus that fetch 
and st.ore t.he new types of objects, keep t5rack of t,he 
types of collections, dispat,ch methods on objects, 
and execute simple queries. We have so far imple- 
mented a few types in the conformity model, includ- 
ing FILE, TEXT, and RFc822 (mail messages). 

3.4 Example of a Class Definition 

This se&ion presents an example of a Rufus class 
definition. The definition of the R.Fc822 class (elec- 
tronic ma,il as passed over the Internet,) is used. 
R~c822 is a subclass of MAIL. The table below 
1ist.s some of t.he at,tributes ext,ra.ct,ed from R.Fc822 
format, methods: 

Attribute Data Type Meaning 
lengt,li integer 
filename 

Lengt(h of message 
string File message stored in 

messageid string Unique identifier 
post,ed date Date written 
subject st,ring Subject of message 
to string list. List of recipients 
from string Message sender 

In addition, R~C(322 supports contexts that 
contaiu t,he header fields of the message, the “Sub- 
ject:” field of the message, the sender of the mes- 
sage, and the body of the message. 

The RFc822 class supports several methods, 
among them : 

Method Mea,ning 
display Format. message for display 
edit Edit, the file containing-the message 
reply Compose a reply to the message 
forward Forward message to someone else 

The “reply” and “forward” methods bring up 
parts of a. pre-existing a.pplication to perform these 
tasks. Users like to locate a message with Rufus, 
t.heu apply their usual ma.il-reading tools to it. 

In the original R.ufus classifier, R~c822 for- 
mat, messages were recoguized by the existence of 
“Received” aud “To” fields in the header of the mes- 
sage. In t,he new classifier, R~c822 format mes- 
sages are required t,o have a line beginning with “Re- 
ceived:” or “Delivery-Date:“; other features indica- 
tive of the format are lines beginning with “From:” 
“To:” and “Message-Id.” We currently use about 
30 samples of R~c822 format messages to train the 
classifier. 

3.5 Structuring Concepts 

While it is important for users to be able to under- 
stand facts about an individual object, it is also im- 
portant to understand the relationships between ob- 
jects. By making these relationships explicit, users 
are freed from having t,o know or discover them. 
St.ructure information is particularly helpful to ap- 
plications that support browsing. 

Rufus provides collections, object composi- 
tion, subclassing, and hypertext links [6] to repre- 
sent inter-object, structure. Collections are sets of 
objects. An object can be in several collections at 
once. Collections themselves are objects and can be 
stored in collections as well. For each class, Rufus 
maintains a collection of all instances of the class, 
called the class eztenli. Collections are also used to 
store the results of queries. The objects in a collec- 
t.ion can be from arbitrary classes. 

Rufus uses object composition to represent 
complex things made up of other objects. For ex- 
ample, a C program is modeled as the composition 
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of a makef ile, C source code, a.nd tlocunlt~ntat.ion. 
Rufus complex ohject,s are represented by dlowing 
the use of object ident,ifiers as object attributes. 

Subclassing is used in Rufus to indicat,e the 
specialization of object types. For example, an im- 
plementation might mode1 filesyst,em directories a3 
a subclass of collections. A filesystem dir&ory 
does everything that a collection does, in addition 
to which it has file system attributes like filename, 
owner, modification date, etc. 

Finally, hypertext links model system- 
discovered and user-specified connections between 
ot,herwise unrelated objects. For example, entries in 
the traditional Unix manual refer to other entries. 
The import method for Unix manual entries can 
create links to represent the cross-references. Like- 
wise, a user writing a textual annotation of an image 
might establish a link to represent the relationship. 
In Rufus, links are separate objects that point to the 
linked objects. Fine granula.rity of link endpoints 
is achieved using type-specific selection. identifiers, 
which are fixed lengt,h bit st,rings that an object’s 
class can convert into a specific part of the underly- 
ing nativ6 data. In contrast with traditional hyper- 
media systems, Rufus does not modify the original 
data to represent, links. 

3.6 Query Language 

The Rufus query language extends content-based ac- 
cess to semi-structured data. Rufus queries combine 
predicates on the objects extra&d from the under- 
lying d&a. wit,h predica.tes on the underlying dat,a. 
cont,ent. Rufus 1 supports simple object, predicates 
and t.ext search. 

A Rufus 1 query searches a collectSion or class 
extent a.nd returns object*s that match a predica,te. 
The predicate contains boolean combinations of con- 
ditions on the objects’ attributes and text search 
predicates on t,he underlying real data.. Att,ribut,e 
conditions are simply rela.tional tests a.ga.inst con- 
stants, such as posted > date(l2/10/92). 

More powerful query capabilities would be 
useful. For example, suppose one were looking for 
a message written during an electronic mail conver- 
sa.tion wit.11 a colleague. ,In order to find the set of 
messages that comprise the conversation, one would 
like the query language to be able to follow the links 
established by the “In-Reply-To” fields of the mes- 
sages and compute the transitive closure. We chose 
a simple subset t,o implement for expediency and t,o 
capture the most immediate needs. We a,re consider- 
ing a new query language based on t,he set-oriented 
optra.tors of the Mclampus query language [23] t.o 
address these needs. 

For t,ext, predica.tes, we implemented 9benr 
(words close to each ot,her) and ndjaccnf (words close 

t.0 each ot,her in t#he right order). The boolean com- 
binat.ions support,ed by the query language provide 
the usual an,d, or, and not. A special optimiza- 
tion is made to execute t,ext predicates like “phrusel 
and not phrase? efficiently. The proximity and 
boolean operators can be nested to pose queries like 
near(adj(San Francisco) earthquake). 

Rufus supports st,emming [27] and flexible 
capitalization. Stemming is based on a dictionary 
of 10,000 root forms and allowable stems. IJsers can 
state that they wish to ignore capitalization, want 
an exact match, or want at least the first letter cap- 
italized. 

Boolean and proximity text search have been 
thoroughly criticized [4]. We selected them as our 
initial text search capability because the results are 
easily explained to users. We are adding approx- 
imate searching based on term weighting [24] and 
relevance feedback [2G] (“find me more documents 
like these”) to Rufus. 

3.7 Text Indexing 

Rufus maintains an index on the text content of im- 
ported files t,o support fast searching on their con- 
tent. We implemented a t.ext index due to preva- 
lence of textual data. For flexibility, we selected 
inverted files with word locations. Inverted files sup- 
port both traditional boolean and proximity search- 
ing [27] and term-weighted searching [24]. We used 
fixed-size sma.ll blocks to represent the inverted file 
so tha,t it, ca.n be updated increment.ally. For our 
intended a.pplications, we find that most of t,he ob- 
jects indexed a,re unchanged from day to day, so 
incrementa. indexing makes refreshing the Rufus 
dat#abase significa.ntly faster than a complete re- 
build. The invert,ed file ca,n also be updated con- 
currently with query access. A B-t,ree is used to 
store the starting block number of the invert,ed list 
for each indexed word. 

For the sake of experience, we support, two 
large Rufus dat.abases. One covers a week’s worth 
of Usenet. articles (a.bout 35,000); the other covers 
many weeks of IBM internal bulletin board articles 
(about 130,000). We found that the text index dom- 
inated the size of the Rufus data, the time to refresh 
the Rufus databases, and query performance. We 
were able to realize significant improvements with 
some simple modifications. Further improvement is 
expected when we cliange our stored structures. 

When we measured t.he Rufus text, index, we 
found that a huge number of words were being in- 
dexed. As a test,, we selected 20,000 random arti- 
cles from t,he Usenet art.icle base. When indexed, 
t,hey yielded more t,ha.n 400,000 unique words and 
more t,ha.n $,OOO.OOO word occurreuces. We devel- 
oped a st,op list, of the 280 most common words 
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t’hat eliminat.es 44(% of the word occurrences. Ran- 
dom sampling of the vocabulary revealed that many 
t,ime-st.a.mp based identifiers and meaningless words 
derived from t,extua.l encoding of binary dat,a were 
being indexed. Refinement of the constructor for 
the USENET class t,o avoid indexing such material 
reduced the vocabulary by one half. This example 
illustrates the advantage of specializing import ac- 
cording to the dat,a.‘s class. 

We t,ook a sma.ll ra.ndom sample of t,he re- 
maining vocabula.ry and classified each word by 
hand. Here’s what. we found: 

(I’at,egory 
Proner names 

% 
20% 

Reai words 18% 
Ma,chine names, userid’s 18% 
Program symbols 13% 
Misspellings 8% 
Addresses, ZIP codes, phone numbers 7% 
OBher junk a 0 ‘7 
Acronyms 4% 
Message-ID’s 4% 
Codes 3% 

In our text dat(aba.se, we also found t.hat the 
storage scheme of using fixed size blocks suffered 
from internal fragmentation and poor locality. Due 
to the distribution of word frequencies, many words 
have few occurrences. These infrequent, words take 
up an entire small bldck, wasting space. Other 
words are more common and t,ake up many small 
blocks, requiring many seeks to resolve a query. We 
are replacing our fixed block text, inverted list imple- 
mentation with a variable length block scheme such 
as t,hat described in [9]. Briefly, this scheme uses 
small initial blocks, then scales up to larger blocks 
as the list of occurrences for a word grows. Efficient 
storage is achieved for infrequent words, while longer 
word lists are clustered better. reducing seeks. 

While textual data. is prevalent, indices ori- 
ent,ed t,owards other data types would be useful. 
For example, the QBIC (Query by Image Content) 
project [20] at IBM Almaden is working on search- 
ing medical images. Their algorithms could be pro- 
vided in Rufus for ima.ge data in addition to the text 
search capabilities a.lready supported. 

3.8 Client/Server 

Since users are provided access to much of their data 
t,hrough distributed file syst#ems, t.he Rufus capabil- 
ities described in t,he foregoing are implemented by 
servers to provide the same comiectivit,y to dat,a. 
Each Rufus server mediates access t,o a siugle Rufus 
dat.abase. Access t,o Rufus servt’r functions is pro- 
vided through a. client-callable library of routines. 
These rout,ines provide the abi1it.y to connect to Ru- 

fus servers; creat.e, dest,roy, and modify objects; it- 
era.te through collections; invoke methods; and pose 
queries. In turn, the client library routines invoke 
functions in t,he Rufus server using an RPC mecha- 
nism. 

Rufus servers provide their own concurrency 
control to a.llow queries and data import to run in 
parallel without, t,hreatening the physical integrity 
of the Rufus database. The concurrency control 
tha.t Rufus wields does not a.pply to the underly- 
ing files. Due to the asynchronous updating of the 
Rufus database wit,11 respect to the underlying data, 
it is possible to locate files via queries that should no 
longer match the query predicate. We have consid- 
ered addit,ional processing to drop query result,s that 
should not match due to changes that occurred since 
import but. have not done so. The larger problem is 
locating query results that now Aodd be included in 
the answer but do not. due to a stale Rufus database; 
for that. we have no answer without modifying the 
operat,ing syst,em. 

In Rufus 1, client applications can connect to 
a. single Rufus server at, a time. This limitation puts 
the burden on the user to figure out the correct Ru- 
fus server to use. We are removing this restriction 
in Rufus 2 so t.hat clients will be able to connect to 
several servers at once. Objects in one database will 
be able to point to objects in other databases. The 
new syst,em will also be able t,o access servers sup- 
porting other remote protocols, such as WAIS [15] 
with 239.50 [2]. Conversely, our system will export a 
239.50 protocol itself, so that its databases can also 
be searched by WAIS clients. Servers will be able 
to swap class definitions between themselves, using 
the same mechanism as is used to inform clients of 
class definitions. 

Servers will be able to publish a summary 
of the information they store to permit automatic 
routing of queries to only those servers that might 
have useful information. 

4 Applications 

We wrote two applications to demonstrate the Rufus 
capabilities. Xrufus, an X-windows [28] application, 
provides querying, browsing, and operation execu- 
tion over any of the data types known to Rufus. An 
object found by querying or browsing is displayed in 
xrufus a.ccording to the object’s class. In addition, 
a menu of operations is prepared specific to the type 
of object. For example, the menu for electronic mail 
objects contains actions like “reply” and “forward.” 

Users can create buttons that represent com- 
monly useful queries. For example, a user might 
define a. “Callup” button that looks up a name in 
the sit,e telephone book. Then, the user can select 
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a name with the mouse in most X-windows applica- 
tions, and click the button to run the query. 

With more class definitions and integration, 
xrufus could be extended into the “researcher’s 
workbench.” Activities like processing mail, read- 
ing bulletin boards, program development, docu- 
ment processing, appointment scheduling, and talk 
preparation could all be provided in a seamless envi- 
ronment. The Rufus infrastructure would help users 
find and orga.nize their information and to drop into 
the right applications at each step without ha.ving 
to think about them. 

We’ve also developed an extension of the pop- 
ular Im news reading program [7] called rufus2m. 
Rufustrn works just like trn, in addition to which 
users can define virtual n.ewsgro’ups that contain all 
the articles that match a. Rufus query. For example, 
a user might select specific a.rticles from a newsgroup 
based on content to cut down the number of art#icles 
that must be examined. Alternatively, a subject of 
interest. might appear in several :newsgroups. This 
subject can be collected into a single virtual news- 
group for convenience. Rufustrn also allows users to 
pose queries of “one time” interest, and browse the 
results. A nice feature of rufustrn is that articles 
are always displayed with the standard trn user in- 
terface. The result is a news reader enhanced with 
query capabilities, rather than a completely new ap- 
plication. The approach of rufustrn differs some- 
what from that used in Infoscope [lo]. Infoscope 
defines virtual newsgroups in a DAG structure based 
on the contents of other virtual newsgroups and of 
header fields. In contrast, rufustrn defines virtual 
newsgroups as the result of a query. Rufustrn pro- 
vides a single mechanism for both one-time queries 
and for topics of cont.iuuing interest.. 

We envision supportming further applications 
beyond rufustm. For example, a mixed database 
of text and multimedia dat,a could allow users to 
search for film clips by searching through textual 
descriptions and invoking methods t,o view related 
clips. To support such an application, Rufus only 
needs t,o have a “film clip” data type added with 
a method that invokes a video viewer on the user’s 
workstat3ion. 

5 CONCLUSIONS 

Users are inundated with semi-struct,ured informa- 
t,ion. Current, database systems do not handle such 
information well. As a result, users are forced to 
turn to specialized a.pplica.t.ions t.liat( improve access 
t,o particular kinds of data. Ea.ch specialized a.ppli- 
cation is forced t,o re-invent and re-implement basic 
infra.st,ructure t,o support flexible access. For struc- 
tured informat,ion, dat,a.ba.se syst.ems provide st,a.n- 

dard capabilities t#hat make applications easier to 
write. The same leverage must now be applied to 
semi-st,ructured information. 

The Rufus project has developed an infras- 
tructure based on object,-oriented database and text 
search principles to support a.pplications using semi- 
structured informat.ion. Applications built with the 
Rufus infrast,ructure remember key information that 
users would ot,herwise be forced to memorize, such 
as the relat#ionship between files, how to find them, 
and what to do with them when you find them. Ru- 
fus raises the level of a.bst,raction so that users no 
longer have t.o deal wit,h their data as simple se- 
quences of characters. We have built a prototype to 
demonstrate the Rufus ideas and deployed it for use 
a.t Almaden. Early experience with the prototype 
has been promising and has suggested important ar- 
eas for further work. While we built. our prototype 
on a UNIX system, we expect the Rufus concepts to 
be useful in other operating system environments as 
well. 

The extensions being made in our new Ru- 
fus protot,ype will support applica.tions on a signif- 
icantly larger scale. Improvements in the storage 
st.ructures will support databases with millions of 
object,s. The work in distributed access will free 
users from specifying where to search for informa- 
tion and will integrate users’ environment with in- 
formation available in external information servers 
and libraries. The new conformity data model will 
allow new classes to be written and refined to sup- 
port new kinds of data. 
Acknowledgemen,ts Eli Messinger wrote both ver- 
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