
Versions
of Simple and Composite Objects

G. Talens and C. Oussalah
E.E.R.1.E / L.E.R.1

Part Scientifique Georges Besse
30000 Nlmes

Phone : (33) 66 38 70 00
Fax : (33) 66 84 05 06

E-mail : oussalah@eerie.eerie.fr

Abstract

In this paper, we propose a model of versions which
manages simple and composite objects.
In our model, we have identified two types of versions :
- class versions [101 [24]
- and instance versions [6] [8].
These different versions are linked to each other by different
relationships.
A mechanism for the automatic propagation of versions
[13] [24] for composite objects is proposed in order to
propagate the creation of versions only in certain cases.

1 Introduction

In design, the objects have properties which are from time-
dependent or otherwise parameterized data. In most cases,
only the objects containing the most recent information are
used but we can use the “old’ information. One solution
which is advocated is the use of versions. Generally,
several versions of a same object must be kept. The
versioning of objects helps not only to keep track of the
evolution of the objects to be designed but also to store the
data corresponding to a context.

. Permission to copy without fee all or part of this material is
granded provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, ot to republish, requires
a fee and/or special permission from the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993.

M.F. Colinas
C.N.E.T.

384 me general Leclerc
92131 Issy les Moulineaux

Tel : 45 29 45 51
Fax : 45 29 60 69

Mail : marie-francoise.colinas@issy.cnet.fr

However, a crucial question comes to mind concerning the
definition of a version. Does the modification of a property
of an object always imply the creation of a new version of
the object or are there some properties which can be
updated within a version without a new version being
created ? We often say that versioning is generally
associated with a change in the state of an object but
firstly, we have to define what the state [5] [8] [K!] of an
object is.
Moreover, the objects often have complex structures [lo]
Ill], that is to say, they are composed of other objects.
Whenever a version of one of the component objects is
created, must this creation be propagated [13] [24] on the
composite object ?
There are therefore many problems inherent in version
management, hence the importance of having a model of
versions which allows a rich semantics based on an object
structure to be used.
In this paper, we propose an object version model the
characteristics of which are discussed in the following
points :
- we have identified two types of versions related to two
categories of users :

* class versions, in order to take into account the
evolution of the classes, i.e. the properties and operations
that a class contains can be modified or deleted or new
properties can be added.

* instance versions, in order to take into account the
modifications of the properties inside the instances.
- the successive versions (class or instance versions) of a
versionable class are linked in order to follow more easily
the modifications made to one version when compared with
its previous version. The history of the development is
easier to follow, the information redundancy between
successive versions is avoided and also the storage of
versions is facilitated (delta method [161 [22] or binary
coded table [91).

62

- the composite versions are also taken into account and
therefore, the propagation of versions is managed. In order
to avoid the creation of infinite versions, we have identified
two concepts which involve the propagation of versions :

* sensitive version : propagation is performed only if
the user has designated this version as sensitive for
propagation.

* sensitive composite attribute : if a component
version has a “permanent” state and if the composite
attribute which links it to the composite version is
sensitive, the propagation of versions takes place.
This model is generic. It is more particularly adapted for
hierarchical/multi-view modeling [141 which is used as the
basis for our modeling. This model has been implemented
in the Presage system [3] [17] which is a tool for network
planning1 .
Section 2 of this paper presents the concepts of simple
object versions. In section 3 the representation of
composite object versions is explained. Section 4 describes
the implementation of these versions in an object-oriented
approach. In section 5, we give an example of an
application, in order to illustrate the different concepts seen
previously.

2 Representation of simple object
versions

2.1 Taxonomy of versions

Our model of versions is based on an object-oriented
approach2, so we use the concept of class and instance.
Two types of users can use our model :
- the application builder : who is a domain specialist who
supplies the specific knowledge required to accomplish a
certain class of applications. His role is to define
appropriate models for the class of applications, specify
appropriate processing tools and establish problem
resolution strategies adapted to his class of applications.
- the final user : he instantiates the model of applications
built by the application builder in order to create his own
application. His role is to give the initial data for a given
problem and to use the tools necessary for the execution of
this problem.
In our model, the class can evolve, i.e the properties and
operations that it contains can be modified or deleted and
new properties can be added. In order to take into account

’ Developed by the L.E.R.I. (Laboratoire d’Etude et Recherche
en Informatique), C.N.E.T. (Centre National d’Etudes des
T&zommunications) and ITECA (Informatique et TEChniques
AvancBes).
2 We consider the reader to be familiar with the concepts and
terminology of the object-oriented languages [20] [21].

this evolution without questioning the existence of the
class previously defined, we need class versions which will
be used by the application builders. We also need instance
versions so that we can take into account the evolution of
instances, i.e the modification of properties contained in
the instances. The instance versions will be used by the
final users.
Therefore, two types of versions are necessary :
- versions of classes
- versions of instances.
The following models have versions of classes and
version; of instances : Orion [5] [lo], Encore [I91 [24],
Avance [23, Iris[l] and Charly 1161. Most of the other
models have only versions of instances.

A class can be defined as being versionable or not.
Defining a class as being versionable causes the creation of
the class “generic class version”. The class “generic class
version” allows the version history of the versionable class
to be managed and the current version of the versionable
class to be known. The relationship between the
versionable class and the class “generic class version” is
the “is-version-of” relationship. The versions defined from
the versionable class are linked to each other by the “inter-
version” relationships which we will describe in paragraph
2.3. These different class versions are linked to the class
“generic class version” by the “ISA” inheritance
relationship.
The class “generic instance version” is created when the
first instance version of the versionable class is created.
“Generic instance version” allows the history of all the
instance versions of the versionable class to be managed.
The class “generic instance version” is linked to the
versionable class by the “is-version-OF relationship.
We have distinguished the “generic-class-version” and the
“generic-instance-version” in order to :
- separate the operations which can be used by the
application builder (operations available for the class
versions) and those used by the final user (operations
available for the instance versions).
- facilitate access to the set of class versions or instance
versions of a versionable class, because in the version
history of “generic-class-version”, we find all the class
versions of the versionable class and in that of “generic-
instance-version”, we find all the instance versions of the
versionable class.

Each instance version of the versionable class will be
linked to the “generic instance version” by the “ISA”
inheritance relationship. Each instance version is also
linked to the versionable class or the class version from
which it was created by the “ISA” inheritance relationship.
This requires the use of a multiple inheritance model. The
different instance versions are also linked to each other by
“inter-version” relationships.
Our minimal model is composed of the versionable class
and the “generic-class-version”. With this model, it is

63

possible to create instance versions from the versionable
ciass.

The example in Figure 1 allows the concept of class
versions and instance versions to be clarified. The class
“classl” was built at the time t and this class became
versionable at a time t+ 1. Making the class “classl”
versionable involved the creation of the class “generic class
version classl”. This class is associated with “classl” by
the “is-version-of’ relationship. The class versions, ver0,
verl, ver2 and ver5 are derived from the class “classl”.
These different class versions are linked to each other by
“inter-version” relationships. They are all linked to the
class “generic class version classl” by the “ISA”
inheritance relationship.
By creating the first instance version of the class “class I”,
we create the class “generic instance version class 1 I’. This
class is linked to “classl” by the “is-version-of”
relationship. This first instance version is created from the
class version verl. It is linked to the class “generic
instance version classl” and to the class version verl by
the “ISA” inheritance relationship. Bringing about the
evolution of this instance version involves the creation of
the instance version verl.1 which is linked to the instance
version verl.0 by the “inter-version” relationship and to
the “generic instance version classl” by the “ISA”
inheritance relationship.

The instance “instancel” is not versionable because it was
created before the class “classl” was versionable. When a
class becomes versionable, all the existing instances are
kept but they do not inherit versioned properties. These
instances are therefore not versionable.

Figure 1 : Class versions and instance versions

2.2 States of versions

We must also take into account the state of the stability of
the data contained in the versions [4] [5] [6] 181 because the
versions which contain unstable data cannot be referenced.
These have the status of temporary versions unlike
permanent versions which contain stable data. In our
model, we therefore define two states :
- permanent
- temporary.
These states are used either by the class versions or by the
instance versions.

We use the term permanent version for a version which :
- is stable, therefore updating is forbidden,
- can be deleted.
A temporary version can be derived from a permanent
version.
A temporary version can be promoted to a permanent
version. This promotion can be explicit (made by the user)
or implicit (made by the model). We distinguish two types
of promotion:
- the promotion is explicit, that is to say, the user decides
that he wants to transform a temporary version into a
permanent version.
- the promotion is implicit, that is to say, the user wants
to derive a version from a temporary version. In this case,
the model transforms the temporary version into a
permanent version and the user can then create its
derivation.

We use the term temporary version for a version for which:
- updating is possible,
- deletion is possible.
A temporary version cannot be derived from a temporary
version and a permanent version cannot be derived from a
temporary version. The temporary versions are leaves.

When a version is created, its state is temporary by default.
Its state can become permanent, either because the user has
decided this (after verification he thinks that his version is
stable therefore permanent) or because he wanted to derive a
version from a temporary version (this transformation is
performed by the model).
A permanent version can become a temporary version
(transformation performed by the user) if this version does
not have versions which are its derivatives and, in the case
of a class version, if no instance version has been created
from it.

The other models have :
* two states [63 [163 :
- m-progress (or working) which corresponds to an
unstable version
- frozen (or released) which corresponds to a stable version
* three states [1] [12] :
- transient (deletion and updating are possible)

64

- working (only deletion is possible)
- released (deletion and updating are impossible)
* or four states [S] :
- in-progress
- effective
- released
- archived
In some models [241, the date is the criterion for the
stability of the versions.

2.3 Version evolution

Class versions are derived from the versionable class or
existing class versions. During the derivation of a class
version, we do not copy the information from one class
version to another because we have dynamic inheritance
and not static inheritance.

The different versions derived from the versionable class are
linked to each other by the “is-derived-from-with-*”
relationship where * can represent different relationships :
- except (which represents the inheritance relationship and
expresses the notion of exception concerning the
properties) specifies the attributes to be removed from the
new version.
- plus (which represents the inheritance relationship and
expresses the notion of specialization concerning the
properties) specifies the attributes to be added to the new
version.
- mod (which represents the inheritance relationship and
expresses the notion of masking concerning the properties)
specifies the attributes the values of which will be
modified in the new version.
- refer (which represents the inheritance relationship and
expresses a notion of priority). This relationship allows
the conflicts generated by the merging of versions to be
avoided. When a version has several predecessor versions,
this relationship allows a version to be designated, for
which all the properties and values will be inherited in the
case of conflict.
These different relationships allow the differences between
two successive versions to be identified. Therefore, the
users can follow the evolution of the different versions
better.

In Figure 2, we take another look at the example in Figure
1. The class version verl is derived from the class version
ver0. We suppose that the class version ver0 has the
properties Pl, P2 and P3. In the version verl, we want to
modify the property P2 of the version ver0 and for this,
the “is-derived-from-with-mod” relationship is positioned.
We also want to add the property P4 to the version verl,
using the “is-derived-from-with-plus” relationship.
Therefore, verl has, in addition to P4, all the properties
contained in ver0, with a new value for P2.

A
den

eneri venlon

lnstence class1

version =

ciess
g

X.
g

= =

f&J$$2j

W F
Cl%SSl

VerO Verl vtr2

x vet.5

+ +c ia-derlved-from-with-plus

Ht ia-derived-from-with-mod

mre L : cxamme or inter-version retationshms

The inter-version relationships which exist between the
instance versions are the “is-derived-from-wit-mod” and
“is-derived-from-with-refer” relationships, in order to
respect the rules which state that an instance belongs to its
class. These relationships are the same relationships as
those defined previously between the class versions.

Different operations can be executed on these versions [15]:
- derivation,
- moditication
- and deletion.

In most of the models, when a new version is created, it is
related only to its predecessor by the predecessor/successor
relationship [ll 1131 [16] [241 or by the is-derived-from
relationship [71 1121. Each version is related to a version
set object or a generic object by the member-of-version-set
relationship [241 or by the version-of relationship [11 [161.

We will now describe how classes which have a complex
structure are taken into account and managed in our model.

3 Representation of composite
object versions

Most of the objects have complex structures, that is to
say, they are composed of other objects which can
themselves-b composed of other objects. These objects
constitute a hierarchy. They are composed of objects of the
lowest level which may themselves be composed of
component objects. The highest object in the hierarchy is
called the composite object [111. In a similar way, we have

65

composite versions (class versions or instance versions)
which are composed of component versions (respectively
class versions or instance versions). One of the main
objectives is to set up relationships between the versions
of objects of each node of this hierarchy.

The composite versions can be created in two ways [l] :
- explicitly
- or implicitly.
Explicit generation of versions means that the versions
have been created by the user himself.
Implicit generation of versions means that these versions
have been created because of modifications made to their
component versions. The ’ modifications made to
component versions have brought about version
propagation and consequently, the creation of composite
versions.

3.1 Explicit creation

When the creation of a version is requested by a user, the
creation of this version is explicit. The explicit creation of
composite versions can take place in three ways :
- bottom-up,
- top-down
- or mixed
Whatever the method of creation used (bottom-up, top-
down or mixed), consistency between the composite
versions and the component versions is verified.

In order to carry out bottom-up creation, we must first
create the versions of the component objects of the lowest
level in the hierarchy and step by step, we climb the
composition hierarchy to the version of the composite
object at the highest level in the composition hierarchy.
For top-down creation, the opposite action is taken.
We do not have to respect any order for the creation of
versions of a composite object, i.e a version of a
component object can be created, after the creation of a
version of a composite object and a version of a
component object has taken place. Furthermore, all the
versions which constitute the composition do not have to
be created, that is, an “old” version can be a component or
a composite of a version that we have just created. This
method of creation is called mixed creation, that is, both
top-down and bottom-up creation.

3.2 Implicit creation : Propagation

Version propagation is an important mechanism for the
control of the evolution of objects. It is more commonly
used for the control of the evolution of a composite object.
Version propagation is the process which automatically
incorporates new versions of the composite objects each

time a version of one of its component objects is created
@I.
The propagation of the creation of versions is not always
desirable from the lowest level of the hierarchy up to the
highest level [24]. Version propagation always has an
objective but it is not always necessary for it to take place
because it can cause a considerable proliferation of
versions. On the other hand, if propagation is not
performed, information is lost. One needs to know when
propagation is necessary and when it is not necessary.
A solution is to mark the components which bring about
version propagation. In order to do this, the property of the
composite object containing the component is defined as
being sensitive or significant [13] [24]. Therefore, each
time the component object is modified, deleted or created a
version of the composite object is modified, deleted or
created.

In our model, the creation of versions can be propagated :
- either by the designation of a sensitive composite
attribute,
- or by the designation of a sensitive version.

During propagation, the composition relationships
between component versions and composite versions
which are not affected by the propagation are maintained.
These relationships can then be modified by the user as
long as the composite version is temporary. In fact, during
propagation, only the mother and/or daughter versions of
the version which has caused the propagation, are affected
by the propagation. The sister versions are not affected by
the propagation because they are not linked directly to the
version which has caused the propagation.

3.2.1 Sensitive composite attribute

In our model, we can designate a sensitive composite
attribute as Zdonik proposed. However, the creation of a
component version associated with the sensitive composite
attribute does not cause version propagation (class versions
or instance versions) to occur because our versions have
states (temporary or permanent). Version propagation is
performed only when a component version is designated as
being permanent by the user.

The class “class0” is composed of two components
“componentl” and “component2 (see Figure 3). The
attribute “Lcomponentl” of “class0” has the value
“componentl”. This attribute has been designated as a
sensitive composite attribute by the user. The attribute
“Lcomponent2” has the value “component2”. This
attribute is not a sensitive composite attribute. Therefore,
the creation of versions derived from “component2” will
not cause the creation of versions from the class “classO”.
On the contrary, the creation of versions derived from

66

“component1 ” will cause the creation of versions from
“class0”.

Cla.wO :
Lcomponentl -> sensitive attribute: true
Lcomponent2 -> sensitive attribute : nil

Figure 3 : Sensitive comnosite attribute

The version verO.0 of “class0” is composed of the version
verl.O of “componentl” and the version ver2.0 of
“component2”. The creation of the version verl. 1 from the
version verl.0 does not bring about version propagation,
although the attribute “Lcomponentl” is designated as a
sensitive composite attribute. On the other hand, the fact
that verl.1 becomes permanent (see Figure 4) causes
version propagation as the attribute “Lcomponentl” is a
sensitive composite attribute. Therefore, the version verO.1
of “class0” is created (see Figure 4). The version verO.1 of
“class0” is composed of version verl. 1 of “componentl”
and the version ver2.0 of “component2”. The composition
relationship between ver2.0 and the version verO.0 is not
affected by the propagation. It is therefore maintained in
the version verO.1.

Lcomponenll -> sensilive altribule: true
LcompoaentZ -r sensitive altribute : nil

Figure 4 : Version nrmon caused bv a sensitive
comnosite attribute

3.2.2 Sensitive version

Another way to propagate the creation of versions (class
versions or instance versions) is to designate a permanent
version as being sensitive for propagation. When the user

thinks a version is stable, he designates this version as
permanent. He can also designate it as sensitive and
therefore, composite and/or component versions of this
version will be created. Bottom-up, top-down or mixed
propagation will be activated.

\\’ the rl~le d this versba is permanent - oompdtbn nbtbnrhlp
- - Inter-vcnba rd~tbnshlp

Figure 5 : Comnosite versions

In this example (see Figure 5), the class “class0” is
composed of the classes “component2” and “componentl”.
The latter is itself composed of two classes “component1 1”
and “componentl2”. All these classes are versionable. The
composite attributes “Lcomponentl” and “Lcomponent2”
of the object “class0” are not sensitive composite
attributes. The composite attributes “Lcomponentl 1” and
“Lcomponentl2” of “componentl” are also not sensitive.
The version verO.0 of the class “class0” is composed of the
version ver2.0 of “component2” and of the version verl.0
of “componentl”. The latter is composed of the version
verll.0 of “componentl1.0” and the version verl2.0 of
“componentl2”.
The evolution of the version verl .O of “component1 ’ in
the version verl.1 does not bring about version
propagation. On the other hand, the fact that verl.1
becomes a sensitive version causes version propagation
(see Figure 6). Firstly, bottom-up propagation of versions
is performed and the version verO.1 of “classO” is created. It
is composed of the version ver2.0 of “component2” which
is not affected by the propagation and the version verl.1 of
“componentl”. Secondly, top-down propagation is
executed. The version verll.1 of “component1 1” and the
version ver12.1 of “componentl2” are created and become
component versions of the version verl. 1. This version
has caused mixed propagation to occur.

Having described the different concepts of version modeling
and management, we will now explain the implementation
of these concepts in an object-oriented environment.

67

:

: I

Top-down

:
propagation

: mm- :

\\y the state of this version is permanent

this version is pemmnent and
sensitive and causes propagation

- composition relationship
- - inter-version rtlationship

Fieure 6 : Pro~qgi n ti v .

4 Implementation

We have chosen the object-oriented approach as a modeling
support because we think that it is more adapted to support
a hierarchical structure containing complex objects. The
object-oriented approach also allows an important property
of objects to be used : inheritance.
Our objects have a frame structure. The inheritance
relationship between two classes is the “AKO” [19]
inheritance relationship.

The set of concepts associated with the class “generic class
version” are, in the case of an object approach, represented
by the following attributes :
- the next-number allows us to know the number of the
next version
- the default-version allows the current version to be
kllOWIl
- the State allows us to know if a version is permanent or
tenwl=Y
- the sensitive allows us to propagate or not the creation of
versions
- the derivative contains the nameS of the versions which
have been derived from the version under consideration
- the derivation allows the derivation hierarchy of this
version to be known
- the composed-of attribute is used only by composite
versions. It contains the versions of which the version
under consideration is composed
- the instances-finked-to allows the names of instance
versions which have been instantiated from this class
version to be known.

The class “generic instance version” from which each
instance version is created, is a sub-class of the class

“generic class version”, for which the instances-linked-to
attribute has been masked.

The next-number, default-version and derivation attributes
are contained only in the sub-classes of the “generic class
version” and “generic instance version” classes. The other
attributes are in all the class and instance versions because
these attributes are specific to each version.

re 7 : Example of the creation of class very

We will present in detail the representation of the class
versions VerO, Verl and Ver2 which appears in Figure 7.
In this figure, we have the class “classl” which is
versionable. It has the properties Pl, P2 and P3. Since the

68

class “classl” is versionable, a class “generic class version
classl” is associated with it. This class is a sub-class of
the “generic class version” class. “Generic class version
classl” is linked to “classl” by the “is-version-of
relationship (see Figure 8). The version ver0 which is
permanent (hachured in Figure 7) is derived from the
versionable class “classl” and the version verl is derived
from the version ver0. The versions ver2 and ved are
derived from the version ver 1.

Generic-class-version-
class1
AK0 : Generic-class-version
Is-version-0f:Classl
Next-number : 6
Default-version :
Classl.Ver5

Derivation :
((Classl.VerO

(ClassLVerl
(Classl.Ver2
Classl.VerS))))

Classl.VerO
ISA (Class1 Generic-class-
version-class 1)
State : permanent
Derivative:Classl.Verl
Is-derived-from-with-
mod : (class1 Pl)
PI : v1.2

CIassl.Verl Classl.Verf
ISA(Classl.VerO Generic- ISA (Class 1 .VerO
class-version-class 1) Class 1 .Verl
State : permanent Generic-class-version-classl)
Derivative : State : permanent
(Classl.Ver2 ClassLVer5) Is-derived-from-with-
Is-derived-from-with- refere : Classl.VerO
plus : (VerO P4) Is-derived-from-with-
P4 : v4.1 plus: (verl p5)
Is-derived-from-with- p5 : vs.1
mod : (VerO P2)
P2 : v2.2

Fjpure 8 : Examnle of class versions

The version ver0 is created from the class “classl” with
modifications to the property Pl. The version Verl is
created from the version VerO with the addition of the
property P4, the value of which is V4.1, and with the
updating of the property P2, which will have the new
value V2.2 (see Figure 8).
The version Ver2 is created from the version Verl. An “is-
derived-from-with-refer” relationship has been established
with the version VerO in order to have all the properties
and values of the version VerO. With this link, Ver2 has
the property P2 of value V2.1. Without this link, Ver2
will have the property P2 but its value will be V2.2. The
“is-derived-from-with-plus” relationship has been set up in
order to add to the version Ver2 the property P5, the value
of which is V5.1.

Creating an instance version from the version verl
involves the creation of the instance version verl.0 (see
Figure 9). This instance version is linked to the class
“generic instance version classl” and to the class version
verl by the “ISA” relationship. The evolution of this
instance version means that the instance version verl.1 is
Created.

c
&ure 9 : Examnle of the creation of instance versions

5 Example of application

We will now give an example of application in order to
explain the different concepts of versions that we have
defined. Our example is based on the telecommunications
networks which are modeled thanks to hierarchical/multi-
view modeling [13]. We will briefly describe the concepts
of this modeling. Finally, we will present in detail the
notion of version associated with an abstraction level of
this modeling.

5.1 Hierarchical/multi-view modeling

An advantage of this modeling is the structuring of the
model. This modeling represents both the element
hierarchy of which the model is composed, and the way
this has been created, that is to say, its history.
This modeling enables us to have several representations of
a same real system. These representations correspond to
different views of a real system and each of these views
may have any number of hierarchical levels.
I-Iierarchica~multi-view modeling allows the models to be
structured [131 according to :
- views which reflect the different aspects of the model
during the successive stages of a given application
- and abstraction levels which include the data structure of
the model.

69

The building of an abstraction hierarchy has the advantage
of reducing a complex system into a series of easily
processed sub-problems. These levels make it possible to
have a progressive approach to the difficulties.

5.2 Example of versions associated with
an abstraction level

In order to explain the different inter-version relationships,
we will take as an example an abstraction level which is
called the “system-level” and we will make it evolve (see
Figure 12) and therefore, create class versions and instance
versions from this abstraction level.
The class “System-level”, with which we are concerned, is
composed of the node “STMl” and of the edge “Ring-
STMl”. This class becomes versionable and therefore, the
class “generic-class-version-system-level” is created. Class
versions can now be created from the class “system-level”.
The class version “system-level-VerO” is created from this
class with the addition of the edges “RingSTM4” and
“system” and of the node “STM4”. It is the “is-derived-
from-with-plus” relationship which allows this addition of
edges and nodes to be taken into account (see Figure 10).

I System-level
Versionable : true
Nodes-STMl : reauim MIE
STMl
Edges-RSTMl : require Ring
STMl

AKO: Generic-class-version
Is-version-ofxystem-level
Next-number : 1
Default-version :
system-level.VerO

Derivation :

System-level.VerO
ISA(system-level Generic-
class-version-system-level)
State : permanent

Is-derived-from-with-plus

i(system-level “Edges RSTM4”)
(system-level “Nodes-STM4”)
(system-level “Edges-system”))
Edges-RSTM4 : require Ring
sTh34
Nodes-STM4 : require MIE
sTM4
Edges-system : require. edges
system

Fiare 10 : Creation of class versions

From this class version, instance versions are created; the
first is called “system-level-verO.0”. This instance version
is the first instance version of the versionable class
“system-level” and thus, the class “generic-instance
version-system-level” is created (see Figure 11). The
version “system-level-verO.0” represents communication
routes of a urban network. With this representation, we
quickly notice that the demand for the two rings on the

right of Figure 12 is saturated. In order to solve this
problem, we need to replace the two rings of type STMl
(on the right of Figure 12) with a ring of type STM4
which allows four times more information to flow than a
ring of type STMl.
In order to carry this out, we derive the version “system-
level-verO.1” from the version “system-level-verO.0” (see
Figure 11). In this new version, we eliminate the two
rings of type STMl in the attribute “Edges-RSTMl”, as
well as the five nodes of type STMl in the attribute
“Nodes-STMl” thanks to the “mod” relationship. We
obtain a new version which we test in order to verify that
the problem of saturation has been resolved and that no
other problems have appeared.

Generic-instance-
version-system-level
AK0 : Generic-instance-
version
Is-version-ofisystem-level
Next-number : 2
Default-version :

system-level.VerO.O
Derivation :
((system-level.VerO.O) (system-
IsveI.vero. II\

System-level.VerO.0
ISA(systcm-level-VerO
Generic-instance-version-
system-level)
State : permanent
Derivative : (system-
level.ver0.1)
Nodes-STMl : (rtml.1
stml.2 stml.3 stml.4 stml.5
stml.6 stml.7 stml.8 ~11.9
stml.lO)
Edges-RSTMl : (rstml. 1
(stml.1 stml.2 stml.3)
rstml.2 (stml.4 stml.5)
rstml.3 (stml.6 stml.7
stml.8) rstml.4 (stml.9
stml.10))
Nodes-STM4 : ()
Edges-RSTM4 : 0
Edges-system : (system.1
(stml.2 stml.6) system.2
(siml.3 stm1.9))

I

Fipure 11 : Great:

ISA(system-level-Ver.0
Generic-instance-version-

State : permanent
Is-derived-from-with-mod

verO.0 Edges-RSTMl) (system-
level.verO.0 Nodes-STMl)
(system-level.verO.0 Edges-
&tern) (system-level.vkxO.0
Nodes-STM4) (svstem-
level.verO.O Edges-sRSTM4))
Node&TM1 : (stml.1
stml.2 stml.3 stml.4 stml.5)
Edges-RSTMl : (rstml.1
(stml.1 stml.2 stml.3)
rstml.2 (stml.4 stml.5))
NodesSTM4 : (sun4.1
stm4.2 stm4.3 stm4.4)
Edges-RSTM4 : (rstm4.1
(stm4.1 stm4.2 stm4.3
stm4.4))
~ Edges-system : (system. 1
~ (stml.2 stm4.1) system.2
(stm 1.3 stm4.3))

of instance versions

After some time, new communication requirements appear.
In order to take them into account, we create the instance
version “system-level-verO.2” from the instance version
“system-level-verO.1”. We add new edges of type “system”
to this new version in order to accept the new demands and
we test this new version to verify that it corresponds to the
initial needs and does not involve other problems. It is the
“is-derived-from-with-mod” relationship which allows the
attribute “Edges-system” to be modified.

70

I

System levd VerO.0
*********************************.

I
:

system level vero.1
I .************************* “““““““““““““i

6

ire 12 : Class and instance versions associated with
I, svstem-level”

At a time t, we decide to derive a class version from the
abstraction level “system-level-ver0. We create this new
version because we think that the former version will smn
be saturated. We therefore provide a new version to avoid

the possible problems that we will not be able to solve
with the only equipment which is available in the version
“system-level-ver0”. We add a new node of type “cross-
connect” to the new version in order to gain in the
flexibility of points. This is done thanks to the “plus”
relationship.
We can also make other tests from the abstraction level
“system-level-ver0” by adding a node of type “multiplexor”
and an edge “STM4” to it. In order to do this, we derive a
new version called “system-level-ved” from “system-level-
ver0” and with using the “plus” relationship, we add a new
node of type “multiplexor” and a new edge of type “STM4”
to this new version. This new version is then tested.

Most evolution (the creation of class versions or instance
versions) is due to problems of saturation, which may also
be financial or security problems of an existing network.

6 Conclusion

In this paper, we have identified the concepts of taxonomy
of versions, states of versions, version evolution,
composite versions and version propagation.
A version may be :
- a class version
- or an instance version.
The successive class or instance versions from a same
object are linked to each other so that the evolution from
one version to another can be followed more easily. The
clarification of the relationships between the different
versions allows the different users to manage the evolution
of their model better. For each version, they know the
modifications which have been made since the previous
version.
The objects we use have a complex structure because they
are composed of other objects. In order to take this into
account, we have introduced the concept of composite
version. This means that we have to deal with the
problems concerning the propagation of versions which are
components of other versions. In order to handle this, we
need the concept of sensitive version which allows the
creation of composite versions to be propagated each time
a version becomes sensitive. We also need the concept of
sensitive composite attribute which allows composite
versions to be created each time that both a version of the
component associated with this sensitive composite
attribute is created and it is designated as permanent by the
user. The propagation of versions will be performed for the
composite versions.
The model for modeling and managing versions has been
developed with the Yafool[241 object-oriented language. It
has been implemented in the Presage system [3] [171.

71

References

[l] D. Beech and B. Mahbod, “Generalized Version Control
in an Object-Oriented database”, IEEE Conference on
Data Engineering, Los Angeles, CA 1988.

PI

131

[41

[51

[61

m

I?3

PI

A. Bjomerstedt, C. Hulten, “Version control in an
object-oriented architecture”, Object-oriented
Concepts, Databases, and Applications, Edited by W.
Kim, F.H. Lochovky, By ACM 1989.

A. Caminada, C. Oussalah et al., “Modeling concepts
for telecommunications network planning”, Artificial
Intelligence, Expert Systems and Symbolic
Computing, , in Houstis E.N., North-Holland, 1992.

H.T. Chou and W. Kim, “A unifying framework for
versions in a CAD environment”, in Proc. Znt. Conf
Very Large Data Bases, Kyoto,.Japan, Aug. 1986.

H.T. Chou and W. Kim, “Versions and change
notification in an object-oriented database system”, in
Proc. 25th ACMIIEEE Design Automat. Co@, June
1988.

K.R. Dittrich and R.A. Lorie, “Version support for
engineering database systems”, Transactions on
Software Engineering, Vol. 14, No 4, April 1988.

R.H. Katz et al., “Design version management”,
IEEE DESIGN&TEST, pp. 12-22, February 1987.

R.H. Katz, “Toward a unified framework for version
modelling in engineering databases”, A CM
Computing Surveys, Vol. 22, No 4, pp 375-408,
1990.

W. Kim, D. Batory, “A model and storage technique
for versions of VLSI CAD Objects”, Conference on
foundations of Data Organization, Kyoto, May 1985.

[lo] W. Kim, H.T. Chou, “Versions of schema for object-
oriented databases”, Proceedings of the 14th VLDB
Conference, Los Angeles, California, 1988.

[ll] W. Kim, E. Bertino, J.F. Garza, “Composite objects
revisited”, in Proc.ACM SIGMOD Intl. Conf. on
Management of Data Portland, OR Vol. 18, No2,
June 1989.

[121 W. Kim, “Introduction to Object-oriented databases”,
MIT Press, Cambridge Massachusetts, 1990.

[14] C. Oussalah, “Modeles hi&archis& / Multi-vues pour
le support de raisonnement dans les domaines
techniques”, These de Docteur d’Universiti, Universite
d’Aix-Marseille, 1988.

[15] C. Oussalah, G. Talens and N. Giambiasi, “Version
management for the modelling of complex systems”,
International Conference on Economics I Management
and Information Technology 92, August 31-
September 4, 1992 Tokyo.

[16] C. Palisser, “Le modele de versions du systbmes
Charly”, 6emes journees Bases de Donnees Avanckes,
INRIA, Montpellier, Septembre 1990.

[17] Rapport inteme C.N.E.T. - L.E.R.I., PRESAGE : Un
atelier pour la planification de reseaux, Avril 199 1.

[18] R. B. Roberts and I. P. Goldstein : The FRL Manual;
AI Laboratory; MIT, Al Memo 409, Cambridge,
Massachusetts, 1977.

[19] A.H. Skarra, S.B. Zdonik, “The management of
changing types in an object-oriented database”,
OOPSLA Conference, Portland, September 1986.

[20] A. Snyder, “Encapsulation and Inheritance in Object-
Oriented Programming Languages”, Proceedings of
the 1st OOPSLA, Portland, Oregon, pp. 3845, 1986.

[21] M. Stefik and D. G. Bobrow, “Object-oriented
Programming : Themes and Variations. The AI
Magazine, Vol. 6, no. 4, pp. 40-62, 1986.

[22] W.F. Tichy, “Design, Implementation and Evaluation
of a Revision Control System, Proceedings of the 6th
Conference on Software Engineering, pp. 58-67,
Japan 1982.

[23] YAFOOL, “Manuel d’utilisation “, SEMA Group,
Mai 1991.

[24] S, B. Zdonik, “Version management in an object-
oriented database”, International Workshop,
Trondheim, Ed Reidar Conradi et al., Lecture Notes in
Computer Science, No244, June 1986.

[13] G.S. Landis, “Design Evolution and History in an
Object-Oriented CAD/CAM Database”, IEEE
COMPCON, San Francisco, CA 1986.

72

