
An Object Data Model with Roles 

A. Albano, R. Bergamini, G. Ghelli, R. Orsini * 

Dipartimento di Informatica UnivcrsiG di Pisa - Corso ItaIia 40,561OO piss, Italy 
* Corso di Laurea in Scienze deII’Informazionc Univcrsit& di Vcnczia - Via Torino 153.30170 Mesue, Italy 

Abstract 

Fibonacci is a strongly typed, object-oricntcd database 
programming language with a new mechanism to model 
objects with roles. Traditional object-oriented programming 
languages do not have the possibility of changing 
dynamically the type of an object to model the bchaviour of 
real world entities which change their status over time. This 
is a severe limitation in the context of a database 
programming language. Moreover, traditional object-oricntcd 
languages do not model the fact that the bchaviour of real 
world entities may depend on the role that they play. WC 
propose a mechanism to face both problems in the context 
of a statically strongly typed object-oriented database 
programming language. We show that the two problems arc 
strictly related and can be solved without giving up the most 
useful features of object-oriented programming, namely: 
inheritance, late binding and encapsulation. Examples will 
be given referring to the prototype implcmcntalion of’ the 
language. 1 

1 Background 

One of the major problems encountered in the maintcnancc 
of a database application is how to manage changes. WC 
share completely the opinion of Richardson and Schwarz 
expressed in [7]: “Most object-oriented database systems 
display serious shortcoming in their ability to model both 
the dynamic nature and the many-faceted nature of common 
real-world entities. The most obvious example of this kind 
of entity is a person. While existing OODBSs may capt urc 
the notion that a student is a person, they do not support the 
notion that a given person may become a student. Af’tcr 
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graduation, that person ceases to be a student, and becomes 
an alumnus in the meantime, he or she may also be an 
cmployce, a customer, a club member, etc. Throughout his 
or her life, a person gains and loses many roles”. 

This problem has been investigated in the object- 
oriented database community by several authors, and we will 
comment on related works later on. The main contribution 
of this paper is the extension of an object-oriented data 
model with the notion of objects with roles, such that an 
object can have several roles and is always accessed through 
one of its roles. The behaviour of an object depends on the 
role used to access it. Moreover this mechanism is supported 
by a strongly typed programming language Fibonacci which 
also offers other features such as: a) the separation between 
the object interface, or type, and its implementation, to 
allow the evolution of the implementation without affecting 
the rest of the system which is only aware of the object 
interface; b) the possibility of having different 
implcmcntations for a unique object type; c) the use of an 
inclusion hierarchy with multiple inheritance to organize 
object types. Besides objects, the data model provides also a 
class and association mechanism to model databases, but the 
prcscntation of these mechanisms is outside the scope of 
this paper and can be found in [21. 

The paper is organized as follows. Section 2 describes 
the features of the proposed mechanism for objects with 
roles in a language independent fashion. Section 3 presents 
an overview of the Fibonacci type system to give the 
prcrcquisite to understand in Section 4 the constructs of the 
language to define objects with roles according to the 
rcquircments in Section 2. Section 5 compares the proposed 
solution with related works. 

2 The features of the Fibonacci object 
mechanism 

Real-world entities with roles. When constructing a 
computcrizcd information system, adopting a simplified 
point of view, we will assume that the reality consists of 
cntitics, with certain behaviours, which evolve over time. 
Entities can play several roles during their life, i.e. they 
can belong to several conceptual categories. For example a 
human being may be classified as a person, an employee, a 
tcachcr, a department chairman, a tennis player, a retired 
cmployce, etc. In general an entity can have at same time 
several roles, although there are cases where some roles 
cannot co-exists (e.g., a person cannot be an employee and 
uncmploycd at the same time). However, any interaction 
with an entity always takes place through one specific role 
of the entity, and the bchaviour of the entity may depend on 
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the role it is playing. The set of roles possessed by an entity 
can change over time, so that its behaviour changes over 
time too. 

Objects and messages. An object is the computer 
representation of a real-world entity. An object is a software 
entity which has an internal state equipped with a set of 
local operations (methods) to manipulate that state. The 
request to an object to execute an operation is called a 
message to which the object can reply. The state of an 
object can only be accessed and modified through operations 
associated with that object (state encapsulation). Each 
object can send messages to itself (self-reference) and so it 
is able to activate his own methods (self-recursion). The 
message interpretation (i.e. choosing the method to activate 
to reply a message) always depends on the object that 
receives the message. 

Each object is distinct from all other objects and has an 
identity that persists over time, independently of changes to 
the value of its state. For instance, the object representing 
the person John is different from any other object 
representing another person, but will remain the same even 
if his address or some other attribute changes. 

Roles. Each objects has a set of roles. An object is 
not manipulated directly, but always through one of its 
roles, so that we either say that a message is sent to an 
object through one of its roles or, more simply, that 
messages are sent to roles. The answer of an object to a 
message may depend on the role which receives it. For 
example, an object with role Graduate will answer to the 
message Introduce with “I am John Smith, graduate in 
Computer Science at the University of Toronto”, but in 
another context it may be used with the role Manager and 
then the answer at the same message will be “I am John 
Smith, manager of the marketing division”. In traditional 
object-oriented languages an object cannot show this kind of 
bchaviour. 

Since messages are sent to roles, the set of messages 
which an object can answer to, is not described by its object 
type but by the role types of the roles of the object. In this 
sense, role types are very similar to object types of other 
object-oriented languages. 

Finally, roles (i.e. objects accessed through a role) are 
dcnotable and expressible values of the language (first-class 
values). They can be assigned to variables, used as data 
structure components and as parameters or results of 
functions. 

Modeling roles and behaviour evolution. 
Many kinds of entities throughout their life change their role 
and behaviour. An unemployed can become an cmploycc, 
and then a manager. Conse@tently, to model naturally 
entities that evolve dynamically, they must be represented 
by objects that can change their set of roles without 
affecting their identity. In traditional object-oriented 
languages an object cannot show this kind of bchaviour 
because objects have an immutable type throughout their 
life. 

Role type hierarchies. A subtyping relation is 
defined on role types (we say either that R, is a supertype 
of R, or that RI is a subtype of R2). This relation is 
asymmetric, reflexive and transitive. A role subtype can 
have several role supertypes, from which inherits all 

propertics (multiple inheritance), unless they are explicitly 
redefined in the subtype (overriding); besides, a role 
subtype can add new properties. Properties of the supertype 
can only be redefined in a controlled fashion so that a value 
of the subtype R, can be used in all contexts in which a 
value of the supertype R2 is expected (inclusion 
polymorphism). 

In figure 1 a role type hierarchy is represented, where 
Student, Graduate and Employee are all subtypes of Person. 
Associated to each type are some specific (i.e. not inherited) 
properties of the type. The Department property in Student 
and Employee has a different meaning: it is the student’s 
major department and the department where the employee 
works. 

Figure 1. A hierarchy of role types. 

Separation between object interface and object 
implementations. A role type describes only the 
interface for objects with that type, i.e. the signatures of 
their methods. The implementation of the objects is given 
separately and objects with the same role type can have 
different implementations. This distinction between 
interfaces and implementations allows the creation of 
instances of the same type with different structure and 
behaviour. Other advantages of this approach will be 
discussed later on. 

Norma! interpretation of messages. Objects can 
acquire new roles during their lifetime and therefore new 
methods. Consequently, in general, an object X, in a certain 
point of its lifetime, may have several versions available for 
the method M to use in answering the message M (e.g. the 
Department as a Student and the Department as an 
Employee), and so it must decide which version of M it 
must use. In Fibonacci the decision is made by the role 
which receives the message. A detailed description of this 
decision process will be given in section 4; here we will 
only describe the basic ideas: 
- the behaviours depend on the role which receives the 

message; 
- there are no interferences between “cousin” roles2: 

the method to reply a message is chosen between the 
methods of the addressed role, including those inherited 
from its ancestors, or between the methods of the present 
subroles: no overriding is possible between cousin roles; 

- the most specialized behaviours prevuil3: for 
example, between Introduce of Person and Introduce of 
Employee the last property is prevailing; this corresponds 
to the classical lute binding mechanism; 

- the behuviours become more specialized when time 

2 With respect to a fixed role, all the other roles in an object 
are either ancestors or descendants or cousins. 
3 A metod M defined in the type Tl is a specialization of the 
method M in the type T2 if Tl is a subtype of T2. 
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goes on: when among the methods to choose there is not 
a most specialized one, the most recently acquired one is 
chosen; e.g. let us suppose that the Introduce message is 
sent to a person which is both Student and Graduate, then 
between Introduce of Student and Introduce of Graduate the 
last method is chosen. 

Strict interpretation of messages. Fibonacci 
provides an alternative binding mechanism (strict bind&), 
to observe the behaviour of an object in a certain role 
without taking into account possible specializations of that 
role. For example, we may send the message Introduce to a 
Person which is a Student too. With the normal binding 
mechanism, this causes the activation of the method 
Introduce of Student; whereas, with the strict binding 
mechanism, the invoked method will be that of Person. 
Strict binding allows to simulate the classical send-to- 
super mechanism of object-oriented languages, but it is a 
more general and flexible tool because it allows the 
activation of any method of any role.4 

Roles visibility. As we can ask to an individual if 
he is a medical doctor and if so to behave as such, so in 
Fibonacci it is possible to query an object to know its 
current roles (role inspection) and to change the role 
through the object is accessed (role casting). 

It is important to say that, despite of the richness of the 
model, if object extension and role casting are never used, 
the Fibonacci objects behave exactly the same as classical 
Smalltalk objects, and strict interpretation of messages 
coincides with normal interpretation. 

Objects can be created but not destroyed. 
Objects are not destroyed explicitly, but they are eliminated 
automatically when they become garbage, that is they are 
no longer reachable from any variable or parent object in the 
programming environment. 

A graphical representation of objects. Objects 
are seen by their users as a black box accessible by a set of 
roles (see fig. 2). Messages are sent to a role. Intcmally an 
object is made of two components (see fig. 3): a) a set of 
blocks where data and methods are stored, and b) a dispatcher 
in charge of directing the messages to the appropriate 
method that produces the answer (the dispatcher implcmcnts 
the dynamic binding of methods to messages). The blocks 
structure is not accessible to the users. The object identity is 
independent of its roles, of the content of the internal blocks 
(data and methods) and of the dispatcher structure. Finally, 
figure 3 shows that an object can send messages to itself as 
to any other object. 

Figure 2. External view of an object. 

4 About strict vs. slatic binding see further sec. 4.1. 

L em----- J 

Figure 3. Internal view of an object. 

Figure 4 shows the internal structure of a simple object with 
the only role Person. The dispatcher structure changes when 
a new role is acquired by the object. 

Figure 4. An object with the role Person. 

For example figure 5 shows how the object in figure 4 
changes when it acquires the role Employee. In particular a 
new binding is created for the message Introduce of the role 
Person. The choice between the old and the new link depends 
on which kind of binding is required: the old link (the one 
with thinner dashes) is for strict binding, whereas the new 
one is for normal binding (for all the other messages. 
normal and strict binding coincide). 

Figure 5. An object with the roles Person and Employee. 

3 An overview of Fibonacci 

Fibonacci is an object-oriented database programming 
language descendent of the language Galileo [l]. 

Fibonacci is an expression-based, statically-scoped, 
functional (functions are first-class values), interactive and 
persistent language. The last property means that all data 
transitively accessible from the global environment (top- 
level), survive automatically between different work- 
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sessions, independently of their type. Data are removed by a 
garbage collector when they are no longer reachable from 
any identifier in the global environment. 

Fibonacci is a strongly-typed language. Each legal 
expression has (at least) a type which is statically checked. 
Each type is related to a set of operators which can be 
applied to values of such type (e.g. the field selectors of a 
tuple type). The basic types are Bool. String, Int, Real, 
Any, None, and Null. Each basic type is different from other 
basic types and from all the user defined types. The instances 
of basic types are all disjoint. with a notable exception: the 
value unknown (of type None), whichbelongs to any type 
whatsoever. 

A set of type constructors is provided to define new 
types: tuples, labe-lled variants, sequences, functions. These 
type constructors take types as parameters. and produce other 
types on which the equality is structural (i.e. two types are 
equal if they are built with the same constructor applied to 
types recursively equal). Basic and constructed types will bc 
referred, in the sequel, as concrete types to distinguish 
them from object and role types. 

The type constructor Var applied 10 a type T return the 
type of variables of type T. On such type are dcfincd the 
usual assignment operator (:=), and an explicit dercfcrcncing 
operator (at). The value constructor var applied to a value v 
of type T, return a variable cell containing the v value. 

Values of concrete types share the following important 
properties: 
- the equality on them is structural (two values are equal if 

they are of the same type and have recursively equal 
components), except for functions and modifiable values, 
on which equality is defined as identity (sameness); 

- they are used directly, and not by copying them, when 
they are passed as parameters to functions, bound to 
identifiers in declarations. and used in constructing 
complex values. 

An implicit subtype relation is defined on concrclc lypcs. 
This relation allows the so called inclusion polymorphism 
to be exploited: if Tl is a subtype of T2 (also, T2 is a 
superfype of Tl), then a value of Tl is also a value of T2, 
consequently, it can be used in every context whcrc a value 
of T2 is expected. A subtype relation holds also among role 
types when it is explicitly declared. None and in y arc 
respectively the bottom and the top of the type hierarchy. 

4 The Fibonacci object mechanism 

In this section we will present the constructs which rcalizc 
the model informally described in section 2. 

4.1 Object and role types definition 

The most peculiar feature of Fibonacci’s object model is the 
distinction between object and role values. In Fibonacci 
objects are not directly manipulated. but are always acccsscd 
through Dne of their roles. Hence, role values and role types 
are used in Fibonacci to accomplish all the operations 
usually related to objects and object types. For this reason, 
we will often say “the object r” instead of “the role r of the 
object 0”. 

At the value level, roles answer to messages while 
objects, essentially, retain the identity of a set of roles. 
Referring to fig. 2, the object is the box while the roles are 
the entry points for the object. In fact the only operators 
available on objects are equality, extension with new roles, 
role inspection and role casting (see sec. 4.7 and 4.8). For 
these operations, the involved object is denoted by 
specifying one of its roles (the specific role chosen is 
irrelevant). 

Nmrob jr& is the constructor for a new object type 
which is the supertype of all its role types, i.e. its role 
type family. Since messages are always sent to roles, and 
not directly to objects, the set of messages which an object 
can answer to is not specified in the object type but in the 
role types of the corresponding role type family. 

For example, a definition of a new object type 
PersonObject is: 

Let PersonOb ject = lfruObjrct; 

NrwOb jrat is a generative type definition: every time it is 
used a new object type, different from any other, is defined. 

A role type is defined with the constructor 18A . . . 
With . . . End as a subtype of an object type or as a subtype 
of olher role types. A role type is defined by a set of 
properties which defines the method signature for its 
values. ISA - With ~. End is a generative operator, it 
produces a new type, different from any other type, each 
time is used. 

ht Person = Iti PersonObject With 
Name: String; 
BirthYear: Int; 
Age: Int; 
Address: String; 
modAddress (newAddress: String): Null; 
Introduce: String; 
End: 

>>> Let Person <: PersonObject = <Role> 

Figure 6. The Person role type. 

Figure 6 shows the definition of the role type Person, 
entered interactively at the top-level, and the system answer. 

The I& keyword precedes a type declaration. Fibonacci 
adopts the lexical convention by which all type constructs 
and predefined type names are capitalized. 18A <Type> 
With <properties list> Endisthe typeconstructorfor 
role types. The semicolon terminates a phrase (declaration or 
expression). The symbol >>> precedes the system answer to 
the type definition. The symbol <: denotes the subtype 
relation. 

4.2 Object construction 

A role type T defines the interface of the objects with such a 
type, but doesn’t give information about their internal 
structure. An object with a role type T is created with the 
construct role T <implementation> l d, where the 
implementation specifies the private state of the object and 
the body for all the methods specified in the interface. 

Figure 7 shows the implementation for an object named 
j or n with a role type Person. 
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let john = rolr Person 
private 

lot Name = "John Daniels"; 
lot BirthYear = 1967: 
1-t Address = VU 

("123, Darwin road - London"): 
mrthoda 

Name = Name; 
BirthYear = BirthYear: 
Age = currentYear - BirthYear; 
Address = at (Address): 
modAddress (newAddress: String) = 

Address := newAddress; 
Introduce = "My name is " & Name & 

n and I was born in 0 & 
intToString(BirthYear); 

and: 
>>> let john : Person = <role> 

Figure 7. Single object construction. 

The lrt keyword precedes a value declaration, which 
bounds a role of a newly created object to j oh n. The 
evaluation of the expression rolr T private <private 
env> m&ho& <methods env> md creates a new object 
and returns a role of type T for that object; WC say, more 
simply, that it creates a role. <private env> is a 
sequence of declarations or expressions, evaluated once 
when the object is constructed. Each declaration or 
expression has visibility of the preceding ones. <mt?r. i!o:ls 
env> is a set of method specifications, i.e. all method 
names are different and their order is not significant. A 
method is specified by giving its name, its signature 
(compatible with the expected signature) and its body (the 
expression following the = symbol). All methods declared in 
the interface must be specified. 

The evaluation of the expression role T private 
<private env> r&hods <methods env> endinvolvcs 
the following steps: 
- the declarations in <private env> are sequentially 

evaluated to create a private environment on top of the 
current external environment (in the example, the top- 
level environment); 

- this private environment is extended with the code of 
methods defined in <methods env>; even paramctcrlcss 
methods are not evaluated at object construction but only 
when they are called; methods may refer private or ex tcmal 
data and also the whole object being built, through the .~e 
identifier (see further); 

- a new object is created which contains the methods, the 
private environment and the interface for role T (now WC 
can say that the object has the role T); 

- the interface is connected to the appropriate methods; 
- the specified role of the newly crcatcd object is returned. 
Figure 8 shows the structure of the object j ohr! resulting 
from the evaluation of the declaration shown in figure 7. 

Once an object is created, its methods can be sclectcd 
with the dot notation. Method call causes the evaluation of 
an expression in the private environment with possible sidc- 
effects; this is the only way to ask an object to modify its 
internal state. Examples of method call are: 

john.Address: 
>>> ‘123, Darwin road - London" : String 

john.modAddress(‘Beagle - Pacific Ocean"); 
>>> nil : Null 

john.Address; 
>>> "Beagle - Pacific Ocean" : String 

Figure 8. Inside the j ohn object. 

4.3 \\ const “ and “mod” properties 

In object-oriented database applications, most messages are 
used only to retrieve and update the value of a variable 
hidden in the state of the object. It is important to give a 
special status to these messages for three reasons: 
- documentation: giving a declarative way to specify in 

the interface of an object that some methods are meant to 
bc used as specified above improves program readability, 
like any information about the expected behaviour of a 
method does; 

- usability: giving an easier way to implement this 
common class of methods helps the programmer. 

- implementation: if the system knows that, for all objects 
in a type, a given message just accesses a variable in the 
state, it may exploit this kind of information to build an 
index over that component of object state, to improve the 
response time of queries involving that message. 

Many languages face this issue by giving direct visibility to 
object state, or to a part of it. In Fibonacci, when messages 
arc meant to be used just to access an object state, this 
information can be specified, without breaking 
encapsulation, as follows. 

A property of an object role type can be defined aonat 
to mean that the value retumed by the corresponding method 
is always the same, as long as the object is not extended 
into a subtype; a aonet property does not have parameters. 
Moreover when two properties M: Type and modM (newM: 
Type) : NU 11 are related by the fact that the second property 
is used to modify the va!ue returned by the first one, the 
abbreviation mod M: Type can be used to define both of 
them. This declaration also asserts that the value returned by 
the M method is always the same until a modM method is 
called. According to these abbreviations the definition in 
figure 9 is equivalent to that in figure 6. 

Let Person = ImA PersonObject With 
aonmt Name: String; 
con& BirthYear: Int; 
Age: Int; 
mod Address: String: 
Introduce: String; 
End: 

Figure 9. An alternative Person role type. 

More precisely, both definitions produce the same method 
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signature, but only the second one imposes some constraints 
on the behaviour of methods Name, BirthYear and Address. 

The implementation of a role type with conat and 
mod properties is simplified since the system provides a 
standard implementation for these properties. For a 
property aonnt P : TP it is sufficient to declare in the 
private environment a value P of type TP’ C: TP. Then, if a 
method named P is not declared, the standard implementation 
is automatically defined as: P = P. For a property mod 
v : TV, a private variable V of type TV must be declared in 
the private environment; then, the standard methods are: v = 
at V and modV(newV:TV) = V:=newV.With thestandard 
implementation, the example 7 can be rewritten as shown in 
fig. 10. 

lot john = role Person 
private 

lot Name = "John Daniels"; 
let BirthYear = 1967; 
1-t Address = var ("123, Darwin roa:: 

London"); 
mathode 

Age = currentYear - BirthYear; 
Introduce = "My name is W & Name & 

W and I was born in u & 
intToStrincj(BirthYear); 

end; 

Figure 10. Another constructor for j oh n. 

The standard implementation is just a facility for the 
programmer, which can always provide its own 
implementation for the messages, typically to cheek some 
constraints or to perform additional side-effects. But also 
when the implementation is explicitly defined, the system 
enforces the constraints implied by the conat and mod 
declarations. 

4.4 Definition of an object constructor 

In the previous examples single objects have been built 
from scratch, but usually we are interested in creating, for 
each role type, many instances with the same internal 
structure and method bodies. The problem is solved by 
defining a constructor, that is a function which returns 
new objects with a certain role. An example is shown in 
figure 11.5 

Theexpression fun (<arguments>):<type> ie 
<e x p > defines a function, with type F u n 
(<arguments>):<type> andbody <exp>.6 Whcnthc 
function is applied, a new instance of Person is created. 
While the private data are different for each instance, the 
method bodies are shared by all instances. 

In the body of the Introduce method the special idcntificr 
me denotes the constructed object. The formal type 1 OT 

5 This approach to the specificiltion of object constructors 
is similar to the one adopted in Emerald [6]. 

6 A function definition has a syntax different from that of a 
method to reflect the fact there are differences between functions 
and methods: a function is a first class value, and so can be 
passed as parameter or returned as value by a function; a method 
is not a value, and it can only be evaluated by the object IO 
which belongs for side effects or to return a value. 
7 Because of subtyping. the type of an expression is 
generally just a supertype of the type of the values which will 

re is the type of the role expression where me is used (in 
this example Person); me can be used only in the method 
bodies and in the init expression. intToString is a 
predefined function to convert an integer into a string. The 
infix operator & is the concatenation operator on strings. 

let createperson = fun (name, address: String; 
oirthyear: Int) : Person L 

role Person 
private 

.let Name = name; 
let BirthYear = birthyear; 
if stringLength(address) < 2 then 

failwith "incorrect address" end; 
let Address = VW (address); 

methods 
Age = currentYear - me.BirthYear; 
modAddress (newAddress: String) = 

if stringLength(newAddress) < 2 
then failwith "incorrect address" 
else Address := newAddress rrrd; 

Introduce = ‘Name' M & Name & W - . Age: “ 
& intToString(me.Age); 

init 
if me.Age < 0 or me.Age > 150 
then failwith "incorrect birth year" md 

end: 

Figure 1 I. A Person constructor. 

The clause init <exp> defines an expression which is 
evaluated when the object is built before returning it. In the 
expression the identifier me can be used as in a method body; 
as a matter of fact, the clause hit may be seen as a special 
method evaluated once before returning the object. If the 
expression fails, the object construction fails and the effects 
are undone, since object creation is atomic. 

Lets us see some examples. 

let paul = createPerson("Horace De Saussure"; 
"Geneva"; 1960); 
>>> let paul : Person = <role> 

oacL.Introduce; 
'>>> "Name: Horace De Saussure - Age: 33": String 

ier 

uacL.nodAddress (“'). 
>>> failure: "incorkect address" 

let dante = createperson (‘Dante Aligh 
"Ravenna"; 1265); 
>>> failure: "incorrect birth year“ 

4.5 R,ole type hierarchies and inheritance 

in. 
I 

An object role family can be extended dynamically by 
defining a new role type T as a subrype of others, called its 
supertypes. The subtype inherits all properties of its 
supertypes, unless they are explicitly redefined in the 
subtype (overriding). In case of multiple inheritance, if a 
property is present in more supertypes, and there is not an 
explicit redefinition in the subtype, then the property of the 
last specified supertype is inherited, but only if that 
property has been defined in a common ancestor. 

correspond to that expression at run time. For example, if the x 
parameter of a function has type Person, then it may be bound, 
at run time, to values belonging to any subtype of Person: in 
this case we say that Person is theformal type of x. 
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Figure 12 shows the definition of Student and 
Employee, both subtypes of Person. 

In a subtype definition S, for any property P of S 
(inherited, redefined or added), if P is also defined in the 
supertype T then the following conditions hold: 
- the signature of P in T is a subsignature of that in S 

(contravariance); 8 
the output type of P in S is subtype of that in T 

- (covariunce); 
- if P is neither aonst nor mod in T, then P in S may be 

declared as aonst or mod; 
- if P is declared as conmt in T then the same must bc in 

s; 
- if P in T is declared as mod P: TP, then P must bc 

declared as mod P : TP also in S. 
The rule that a mod property cannot be rcdcfincd by 
specializing its type is a consequence of the fact that the 
signature of a redefmed method must be contravariant. In fact 
the declaration mod P : TP introduces a method mod!-' ( '!.? I : 
Null and the redefinition mod P: TP', with TP’ subtype of 
TP, introduces a method modP (TP' 1 : Null which violalcs 
the contravariance rule for functional components. 

Let Student = IaA Person With 
mod Faculty: String; 
conk StudentNumber: Int; 
Introduce: String; 
End: 

Let Employee = ISA Person With 
mod Department: String; 
conat EmployeeNumber: Int; 
Introduce: String: 
End; 

Figure 12. Student and Employee role types. 

4.6 Subtype object construction 

When a role type is defined by inheritance, a constructor for 
objects belonging to that role may be either dcfincd from 
scratch or by inheritance, i.e. by extending a constructor 
defined for a supertype. In this section we cxcmplify the first 
approach, while the second, which is more standard, is 
described in section 4.8. Figure 13 shows the direct (no 
inheritance) definition of the Student constructor. 

To construct an object with role type T from scratch, 
the method for each property must be spccificd. The 
constructed object will have the role type T and all the 
supertypes of T. For example, with the following 
declaration: 

let spinoza = createStudent("Bento d'Espino;/,:"; 
"Cordoba": "Philosophy"; 1966); 

is created the object spinoza, shown in figure 14. 

8 A signature is a list of zero or more pairs I den t. I f i c: ~ : 
T ype separated by semicolons. We say that Sl is a 
subsignnture of S2 if Sl extends S2 with new pairs or 
redefines (in the same order) the S2 pairs with more specialixd 
types. 

let createstudent = fun (name, address, 
taculty: String; birthyear: Int) : Student L 

rolr Student 
privatm 

lrt Name = name; 
let BirthYear = birthyear; 
let Address = v- (address); 
lrt Faculty = var faculty; 
lot StudentNumber = newStudentNumber(): 

mrthods 
Age = currentYear - me.BirthYear; 
Introduce = "Name: W & Name & * - Age: m 

& intToString(me.Age) & 
a\ - Faculty: v 6 me.Faculty; 

init 
if me.Age < 18 or me.Aqe > 70 
then failwith "incorrect birth year" md 

end; 

Figure 13. A Student constructor. 

Figure 14. An object with two roles which share the 
same implementation . 

4.7 Other operators: object comparison, role 
inspection, role casting and strict binding 

The language provides the following operators on objects: 

- the equality operator (=) to test if two objects are the 
same, independently of their current role tTpe, for example 

john = spinoza; 
>>> false : 3001 

- the infix predicate im~lmo to test if an object has a 
certain role; for example: 

spinoza i8Almo Person; 
>>> true: Boo1 

john isXtso Student; 
>>> false: Boo1 

- the infix operator as to coerce an object to one of its 
possible roles (role casting). The operator will fail if the 
object dots not have the specified role: 
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let baruch = spinoza a8 Person; 
>>> let baruch : Person ='<role> 

baruch = spinoza; 
>>> true : Boo1 

lot johnAsStudent = john ae Student; 
>>> failure: was" 

The expression x a* T is well typed if T and the type of 
x belong to the same role type family. 

The following operators are on role values: 

- the infix predicate isExactly to test the actual type of 
a role value: 

spinoza idxaatly Student; 
>>> true : Boo1 

- the infix operator ‘!’ to request an object role to cvaluatc a 
method without considering the possible redefinitions of 
the method in its subroles (strict binding). This operator 
is useful, for example, to see the behaviour of a Person 
independently of the fact that he may also be an Employee 
or a Student (examples will be given in sec. 4.8). 

Strict binding should not be confused with static binding: 
static binding takes place at compilation time and the 
method to activate is chosen on the base of the formal type 
of the expression which denotes the receiver of the message. 
Strict binding, which is a kind of dynamic binding, takes 
place at run-time and the method to activate is chosen 
depending on the actual type of the receiver. The type 
checker will guarantee that the actual type is a subtype of 
the formal type. 

The combination of strict binding with role casting 
(e.g. (x u T) ! P ) is a useful feature of Fibonacci, in that: 
a) it allows to simulate static binding, b) it allows to 
simulate the traditional send-to-super mechanism of 
object-oriented languages (see sec. 4.8), c) in extension 
operators, it allows the programmer to specify cxpliclly 
from which ancestor a method implementation is inhcritcd. 

4.8 Dynamic object extension 

To model the role and behaviour evolution of cntitics, 
Fibonacci provides an exfension operator, which allows 
an object to be extended dynamically with new subrolcs. 
Figure 15 shows the extension of john from Person to 
Student. 

lrt johnAsStudent = l xt john to Student 
privatr 

I& Faculty = var "Science"; 
let StudentNumber = newStudentNumber0: 

nrthode 
Introduce = (me ae Person1 ! Introcucc 6 

". I am a Science student"; 
and; 

>>> let johnAsStudent : Student = <role> 

john = johnAsStudent; 
>>> true : Boo1 

Figure 15. john becomes a student. 

The object j ohn acquires the role Student without changing 
its identity (as results from the test john = 
johnAsStudent). Note the combination of role Casting With 

strict interpretation to call the method Introduce defined in 
Person. The object johnAsStudent is represented in figure 
16 (compare it with the representation of j ohn given in 
figure 8). Note the twofold link for Introduce: the old link is 
chosen for strict binding, whereas the new one for normal 
binding. For example, let us see how the behaviour of john 
has changed after the extension: 

john.Introduce; 
>>> ‘My name is John Daniels and I was born in 
1967. I am a Science student" : String 

johnAsStudent.Introduce; 
>>> "My name is John Daniels and I was born in 
1967. I am a Science student" : String 

(johnAsStudent a8 Person) !Introduce: 
>>> "My name is John Daniels and I was born in 
1967” : String 

Figure 16. The internal structure of j ohn after the extension. 

To explain the difference between the creation of an object 
from the scratch and by extension, it is useful to compare 
graphical representation in figure 16 with that in figure 14. 

The construct rxt has an header (art <object> to 
<target types>) and an implementation (privatr . . . 
mrthodn ~ init . ). The implementation part is 
identical to that of the role operator (see sec. 4.2), while the 
following differences appear in the header part: 

- < ob j ec t > is an expression which denotes the object to be 
cxtendcd. 

- <target types> are therole types that must be acquired 
by the object. The order in which are listed determines the 
order in which the roles are acquired. The last specified 
(called target-type of the extension) must be a subtype of 
all the previous ones. All the target types must belong to 
the same role family to which the type of <object> also 
belongs. 

- the methods defined in the methoda section must be at 
least those explicitly specified in the interfaces of the 
target types. 



Let Rl and R2 be role types such that Rl <: R2, the object 
X is called complete if x f8Al80 R1 implies x i8Al80 
R2. Static and dynamic tests ensure that the extension 
operation always produces complete objects without 
duplicate roles. Figure 17 shows the definition of an 
ext’ension operator to obtain an Employee from a Person. 

lot toEmployee = fun (aPerson: Person; dept.: 
String) : Employee i.8 

l act aPerson to Employee 
ptivatr 

lot Department = var (dept); 
let EmployeeNumber =newEmployeeNumberO; 

methods 
Introduce = (me as Person) ! Intrbduk & 
n. I am an employee"; 

end: 
Figure 17. An extension operator. 

The behaviour of john changes once it has acquired the role 
type Employee: 

toEmployee(john; "Quality Management"); 

john.Introduce; 
>>> "My name is John Daniels and I was born ir: 
1967. I am an employee" : String 

But the behaviour of johnAsStudent does not change: 

johnAsStudent.Introduce; 
>>> "My name is John Daniels and I was born in 
1967. I am a Science student" : String 

Implementing constructors by inheritance 

Using the constructor createperson and the operator 
toEmployee it is possible to define a constructor 
createEmployee which makes use only of prcdcfincd 
implementations: 

lot createEmployee = 
fun (name, address, dept: String; 

birthyear: Int) : Employee ia 
toEmployee(createPerson(name; address; 

birthyear); dept); 

Another way to reuse the implementation of creatcPcrson is 
shown in figure 18. 

let createStudent = fun (name, address, 
faculty: String; birthyear: Int) : Student. ir 

Urr createPerson(name; address; birthycac) 
to Student 
privatr 

lot Faculty = var tfaculty): 
lmt StudentNumber = newStudentN~n3erO: 

mrthodm 
Introduce = (me (u Person) ! Intrcai:c-c 5 
". I am a student of W & me.Fac::lty: 

end 

Figure 18. Reusing a Person constructor to crcatc students. 

Note that a role type can have multiple constructors, and 
that in defining a constructor for a role subtype it is possible 
to choose which super-role constructor is extcndcd. 

Object extension and multiple inheritance 

Let us define the type TeachingFellow to show other 
examples of multiple inheritance and object extension. 

L& TeachingFellow = 
Ifi Student, Employee With 

mn8t Cbursd: String; 
Introduce: String; 

End: 

Figure 19 shows an operator to make a TeachingFellow 
from a Student: 

lrt fromStudentToTeachingFellow = 
fun (astudent: Student; dept, 

course: String) : TeachingFellow L 
rxt astudent to Employee, TeachingFellow 
private 

lmt Department = var (dept); 
lmt EmployeeNumber =NewEmployeeNumber(); 
let Course = course; 

mrthod8 
Introduce = (me M Student) !Introduce & 

_- Course: " & course: 
end: 

Figure 19. An operator to make a TeachingFellow from a Student 

The interesting aspect in the example is that there are two 
roles to be acquired: the first (Employee) is not a subtype of 
Student, while the second role is a subtype of Student, and 
so the condition is satisfied that the target-type must be 
subtype of those which precede it. Let us show how the 
extension operation changes the behaviour of the object to 
be extended: 

fromStudentToTeachingFellow(spinoza: "Hermetic 
Philosophy"; "Ethica"); 

spinoza.Introduce; 
>>> "Name: Bento d'Espinoza - Age: 27 - Faculty: 
Philosophy - Course: Ethica" : String 

(spinoza (u Employee).Introduce: 
>>> "Name: Bento d*Espinoza - Age: 27 - Faculty: 
Philosophy - Course: Ethica" : String 

4.9 Object contraction (role dropping) 

In order to meet the need for modelling roles and behaviour 
evolution, Fibonacci would also have to provide a 
contraclion operator, i.e. a mechanism to allow the 
objects to drop some roles (e.g. drop ~1, ~2 from x). 
With such an operator one could model, for instance, the fact 
that when a student takes a degree he drops his Student role 
and acquires the role of Graduate, or the fact that a worker at 
the end of his career drops the Employee role and hecomes 
Rctircd. 

Fibonacci’s contraction mechanism should have the 
following features: 
- when a role is dropped from an object, all its subroles are 

lost too; 
- the objects are not destroyed (there are nd dangling 

rcfcrcnccs); 
- casting toward a dropped role (e.g. x as R) causes a 
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uappable failure, thus no new reference to it can bc crcu~! 
after a role has been dropped; 

- sending a message to a dropped role causes a uappahlc 
failure (message passing failure); 

- role inspection and equality still work on a dropped role, 
since these operators refer to the object, rather than the 
roles; 

- when a role is dropped from an object, previously hidden 
behaviours are brought into the foreground; e.g. if ;ohn 
drops the Employee role, his answer to ( john a a 
Person) . Introduce will be again that of a Student; 

- role dropping is an important event in the lift of an 
object; then admissible state transitions should be declared 
through preconditions given in the implcmcntation (such 
as the init clause). 

Note that the message passing failure in Fibonacci is 
different from that of other object-oriented languages (firstly 
Smalltalk): in Fibonacci the failure informs the scndcr that 
the receiver has dropped a role; whereas, in languages with 
dynamic type checking, this failure only reprcscnts a misuse 
of an object. 

Role dropping is an operation similar to object 
removal, thus the well known problem of the referenliul 
infegrity should also be taken in account [7]. 

To model the fact that not every sequcncc of role 
acquisitions or role dropping is admissible, it should be 
possible to specify admissible hisfories or migrufion 
paths in a role type hierarchy (sequences of ext/drop) 
[lOI. 

These problems are not dealt with in the currrcnt 
implementation of Fibonacci, but we are working on them 
to provide the language with a contraction operator. 

4.10 Message interpretation 

The role mechanism is essential when objects can bc 
extended with indepcndcnt subroles. In this case, classical 
late binding without roles creates a problem. Suppose that a 
type Person has two different subtypes Student and 
Employee. and that both of them add a property 
PcrsonalCode to the supertype. The two personal codes have 
unrelated semantics, and maybe even a diffcrcnt type. Let 
john be created as a Person and later on extended, firs1 to 
Student with code 100200 and then to Employee with code 
“jhn698”. In a language with late binding and without roles, 
johnAsStudent answers “jhn698” to a mcssagc 
PersonalCode, or j o hnAs Emp loyee answers 1()(~2()0, 
because the objects always exhibit a uniform bchaviour. 
This is both a semantic error anU a type-level error. Since it 
is not known statically whether an object of type Student 
has also been extended to Employee, we can conclude that 
the system can never be sure that any object of type Student 
answers the message PcrsonalCode with an intcgcr. Marc 
generally, if it is always possible to add new object types to 
the system,.the type checker can never be sure of lhc type or 
the result of any message passing operation. 

This problem may be faced by imposing constraints on 
methods appearing with the same name in cousin object 
types. This contrasts with the typical usage of objcct- 
oriented languages. In these languages, if some programmers 

work at the same time at the same project, any programmer 
is fret to take general-purpose object types from libraries and 
spccializc them, regardless of the fact that other 
programmers are producing cousin object types by 
specializing the same library for different purposes. 
Forbidding name duplications in all the possible 
specializations of a library object type would damage one 
essential abstraction mechanism of object-oriented 
programming. It could be likened to forbidding the usage of 
the same name for a local variable in two different unrelated 
functions. Preventing undesired interactions between cousin 
roles, to attain full “cousin role independence”, is one of the 
primary design choices of the message interpretation rules. 

Message interpretation can be described as follows. 
When a role receives a message it first checks whether any 
of its descendants has its own method (not inherited) to reply 
to the massage. If such descendant is found, then it is 
delegated to answer the message. The descendants are tried 
in reversal temporal order, i.e. the last acquired descendant 
is tried first. Subtyping ensures that the delegated role can 
safely substitute the receiving one. If no delegate is found, 
the receiver searches an implementation for the message 
inside itself. If this is not found, then the receiver looks for 
an implementation for the message in the ancestor role from 
which the corresponding property is inherited. The typing 
rules ensure that this last search is always successful. Note 
that this is just a way to describe the meaning of message 
passing; altcmativcly, the same semantics can be described 
by specifying, with reference to Figures 3,4 and 5, how the 
dispatching structure of an object is set up and how it is 
modified when an object is extended. 

For example, the message Introduce sent to john (see 
figure 18) causes the activation of the Introduce method of 
Employee, because Employee is the last acquired subrole of 
the object, hence the method will be executed by 
delegation. The message Introduce sent to johnAsStudent 
will bc answered by the method of Student, because there is 
no descendant of Student in j o hn. Instead, if 
; o hnAs s t uden t receives the message Name the answering 
method will be that of Person, hence it will be executed by 
inherilance. 

Self-reference semantic 

The distinction ‘between delegation and inheritance is 
essential to understand the meaning of self-references in the 
method body. The following rules apply: a) when a method 
M, belonging to the role R, is activated by delegation (in 
other words the receiving role is a superrole of R), the actual 
type of me in that activation of M will be just R (i.e. its 
formal type); b) when the same method is executed by 
inheritance (the receiving role is subrole of R) the actual 
type of me will be that of the role which originally received 
the message M. 

Rule a) is essential to the type safety of the language. 
Let, indeed, RR be the receiving role of the message, let DR 
bc the role delegated to answer (then DR <: RR); the formal 
type of me in DR’s method is DR. then to ensure a type-safe 
execution the actual type of me must be DR or a subtype of 
DR. 

Rule b) is the classical rule adopted by object-oriented 
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languages. Suppose for example that in a graphical editor an 
object type Picture is defined with a method Draw taking a 
color as a parameter. Squares and Circles are subtype of 
Picture, and contain the actual code for the Draw method. 
However, a method DrawBlack can be implcmcnted once for 
all for the object type Picture, as me. Draw (black). When a 
Square executes by inheritance the DrawBlack method, the 
Draw(black) message is sent to me seen as a Square. 

It can be interesting to note that the rule b), besides 
being useful, is a consequence of the principle of non- 
interference between cousins. If me in a method which is 
activated by inheritance were bound to the role whcrc the 
method is defined. then self-reference would allow methods 
of cousin roles to be activated. Let us consider the example 
in figure 20, where each method is associated with the 
corresponding body. 

Rl 
- P=me.Q 
- Q=“RI” 

R2 - Q = ‘w” Q = “R3” 
1 8 , 

Figure 20. A role type hierarchy. 

Let us assume that the object X has been created with roles 
Rl and R2 and then extended with role R3. Adopting the 
correct rule to solve self-reference, when the mcssagc P is 
sent to X seen through the role R2, the answer is “R2”. If 
we had adopted the other rule (self-reference bound to lhc role 
which owns the method activated by inheritance), the answer 
would have been “R3”, and therefore the method of a 
receiving role (R2) would be covered by a method of a 
cousin role. 

Final remarks 

In traditional object-oriented languages all methods arc 
executed either by the receiving role or by inhcritancc. This 
happens because the only role accessible of an object is the 
bottom role, which has no descendant. So we can affirm that 
both binding mechanisms of Fibonacci are a gcncralization 
of the classical late binding mechanism. 

With respect to a fixed role. all the other roles in a 
Fibonacci object are either ancestors or descendants or 
cousins. The message interpretation mechanism cnsurcs, in 
a word, that there is neither interference nor inhcritancc 
between cousins. This is very important, since in gcncral 
when an object is extended with two cousin roles (e.g. a 
Person with Student and Employee), if the same method is 
defined in all the three roles, the two cousins can spccializc 
it with two subtypes T’ and T” of the type T assigned by 
the father to that method, but there is no subtype relation 
between T’ and T”, which implies that inhcritancc bctwccn 
cousins would be unsound not only with rcspcct to the 
modelling principles, but also with respect to the language 
typing rules. 

5 Previous works 

In the last fifteen years the need for data modeling features 
capable of capturing the evolving and multifaceted nature of 
real world entities has been pointed out by many researchers. 
The first attempt in this direction was the role model of 
Bachman and Daya [4], aimed to enhance the expressive 
power of network data model. In more recent years, the 
Galileo language provides a mechanism to allow instances 
of a class to become, dynamically, instances of a subclass 
and, at the same time, to acquire new behavioral aspects 
without losing their identity [ 11. This mechanism was found 
useful to model the behavioral specialization of world 
entities over their lifetime, but it has limitations because of 
the assumption that every object always belongs to a unique 
most specialized class (type). In what follows we review 
some of the more relevant recent proposals in the context of 
object-oriented database programming languages. 

Iris 

Iris [5] is an OODBMS equipped with explicit features to 
model behavioral evolution of entities. Iris objects may 
acquire or lose types during their life, retaining their 
identity; but is not possible to observe an object from 
diffcrcnt perspectives, indeed, despite type multiplicity, an 
object, in a fixed instant of its life, always exhibits a 
uniform bchaviour, no matter the context from which is 
obscrvcd. For instance, suppose a property P is differently 
defined in types Tl and T2; then an object X, belonging to 
both of them, will always answer to the message P with the 
method of the most specialized type between Tl and T2. But 
if there is no such type the answer will depend on ad hoc 
rules which the user must establish to resolve such 
ambiguities. This approach is unsatisfactory because the 
type multiplicity cannot be used to model role multiplicity, 
and the objects show the behavioral uniformity typical of 
traditional object-oriented languages (i.e. Smalltalk). In 
addition, the resolution of ambiguities in message 
dispatching is left to the programmer, whereas, we believe it 
should bc an important concern of the supported data model. 

Clovers 

Stein and Zdonik (91 propose a mechanism called clovers 
which allows to model entities with multiple and 
indcpendcnt roles. The language which supports this 
mechanism has provision for strong type-checking and 
subtyping. With clovers an object created in a type T may 
bccomc an instance of T’ subtype of T, acquiring methods 
and data specific of T’. The object behaviour depends strictly 
on the type through which the object is observed, and there 
is no late binding. Clovers provides also an operator for 
type inspection and two operators for type coercion: one to 
go up and one to go down in the type hierarchy, but without 
explicit mention of the target type. The main differences 
from Fibonacci are the lack of support for late binding, and 
the impossibility of explicitly referring the types to which 
one is intercstcd. 
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Views Summary 

All proposals share the following features, found also in 
Fibonacci: 
- objects may acquire new types and new behaviours; 
- objects retain their identity during their life, no matter 

which extensions are operated and independently of the 
point of view through they are observed; 

- encapsulation is preserved, because the extensions have no 
direct access to private data of the existing object. 

A novel aspect of Fibonacci is, instead, the coexistence of 
late-binding and multiple inheritance with role multiplicity 
and dynamic object extension, in a framework with strong 
type-checking and subtyping. Moreover, the combination of 
such complex features is obtained neither to detriment of 
semantic clarity, neither relying on specification ambiguities 
which introduce implementation dependent or ad hoc 
semantics. Indeed, the full meaning of the various 
mechanisms is established at first in the data model and then 
substantiated in the constructs of the language. 

Significantly, the proposals which support late-binding 
(Galileo, Iris and Nuovo Galileo), always assume the 
existence of a most specialized method in order to resolve 
the message dispatching ambiguities that can arise from type 
multiplicity. Vice versa, when the previous assumption is 
abandoned and objects are allowed to have multiple minimal 
types (Clovers, Views and Aspects), late-binding is never 
provided . 

6 Conclusions 

Shilling and Sweeney [8] present an extension of the object 
data model based on the concept of view. In that model, an 
object is equipped with multiple interfaces (views). Every 
interface has its own set of methods and the intcrfaccs of an 
object are separated and indcpendcnt each of the others; the 
object is always referred through one of them, so thcrc is no 
conflict between methods with same name belonging to 
different views. Every interface has a distinct 
implementation and a distinct set of variables acccssiblc 
only to its methods. The object behaviour dcpcnds on the 
interface used to access it, and the object identity is prcscrvcd 
across the various views; that allows one to model multiple 
and independent roles. That mechanism, on other hand, has 
no provision for late binding, inhcritancc and subtyping, 
moreover separation bctwecn interfaces and implcmcntations 
is not supported. 

Aspects 

Richardson and Schwarz [7] propose a model whose objects 
may have multiple aspects (types) and may bc cxtcndcd 
with new ones during their lifetime, without losing their 
identity. Every aspect has its own methods and private data 
and an object is always referred through one of its aspects. 
The observed bchaviour is that specific of the rcfcrrcd aspect 
and the late binding and inhcritancc mechanism arc not 
supported. Interfaces are dcfincd separately from 
implementations and the interface matching is structural, 
allowing to have more implementations for a given type, 
but also to reuse an implcmcntation for more types. The 
type system has provision for an implicit subtyping relation 
(conformance). A new aspect added to an object X or to 
another aspect A of X, may hides some property dcfincd for 
X; then there is no subtyping relation bctwccn an aspccl and 
the type of the extended object. As already noted, the aspects 
proposal has no support for inheritance, ncithcr single 
neither multiple. To overcome this limitation, an aspect I3 
extending another aspect A, must explicitly rcplicatc the A 
interface in its definition, and it must call the ancestor 
methods with a send-lo-super primitive. Is not possible to 
cxtcnd an object with more aspects in a unique operation. 
Due to the structural matching bctwccn types, the aspcc~s 
mechanism dots not have operators for role inspection and 
role coercion. 

Nuovo Galileo 

In the data model proposed in [3] the objects can bc 
dynamically extcndcd with new types and arc not constrained 
to have only one minima1 type, but the role mechanism is 
not provided. T’hcrcfore in order to support late-binding, for 
each method a most spccializcd version of it is always 
assumed to exist. Thus, the objects always exhibit a 
uniform bchaviour, no matter what type they arc acccsscd 
through. This object mechanism was been the I’irst step in 
the dcvclopmcnt of the object mechanism of Fibonacci. 

An object mechanism for a strongly typed database 
programming language has been presented. The object 
mechanism, besides the usual properties of state 
encapsulation, unchangeable identity, separate definition of 
intcrfacc and implementation, and late binding, has a role 
mechanism characterized by the following features: 
- plurality of behaviours: a unique object can be accessed 

through different roles, which have different types and can 
answer in different ways to a message. Plurality of 
bchaviours allows to model situations where a unique 
entity of the domain of discourse can play different roles 
and bchavcs in a different way according to its role. That 
rclatcs roles to a view mechanism. 

- independence of extensions: it is possible to perform 
two independent extension of a unique role with two 
cousin roles, without interference between them. 
Indcpcndcnce of extensions is especially helpful in the 
dcvclopment of applications structured as independent 
modules. 

- strict and late binding: the sender can choose between the 
two binding mechanisms, thus, it can decide whether 
dclcgation is allowed. The distinction between strict and 
late binding is most useful in implementing methods by 
cxtcnding or reusing existing implementations, and it is 
rclatcd to the super of most traditional object-oriented 
languages. 

- role casting and role inspection: these are crucial 
fcaturcs to fully exploit the richness of the object model; 
they allow one to navigate freely in the role graph of an 
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object, and to obscrvc all its possible aspects and 
bchaviours. These capabilities arc very important in 
languages with strong typing, since they give, inl’ormally, 
the ability of dynamically changing the type of an object. 

It is important to note that if a programmer dots not USC 
extension operators, but always builds objects in the 
subtypes using constructors, then there is no need to 
distinguish objects from roles, ncithcr strict from late 
binding, and all the usual rules of object-oricntcd languages 
apply. So the complexity of the role mechanism comes into 
play only when really n&cd. 

The object mechanism is one of the Fibonacci fcaturcs 
designed to model object-oriented databases. The language 
provides also (a) a class mechanism to model a modifiable 
collection of values, on which it is possible to dcfinc an 
inclusion constraint, and (b) an association mechanism to 
model modifiable n-ary relations among classes [ 21. All 
these features have been considered in the current 
implementation of a prototype of the language compiler. 
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