
An Object Data Model with Roles

A. Albano, R. Bergamini, G. Ghelli, R. Orsini *

Dipartimento di Informatica UnivcrsiG di Pisa - Corso ItaIia 40,561OO piss, Italy
* Corso di Laurea in Scienze deII’Informazionc Univcrsit& di Vcnczia - Via Torino 153.30170 Mesue, Italy

Abstract

Fibonacci is a strongly typed, object-oricntcd database
programming language with a new mechanism to model
objects with roles. Traditional object-oriented programming
languages do not have the possibility of changing
dynamically the type of an object to model the bchaviour of
real world entities which change their status over time. This
is a severe limitation in the context of a database
programming language. Moreover, traditional object-oricntcd
languages do not model the fact that the bchaviour of real
world entities may depend on the role that they play. WC
propose a mechanism to face both problems in the context
of a statically strongly typed object-oriented database
programming language. We show that the two problems arc
strictly related and can be solved without giving up the most
useful features of object-oriented programming, namely:
inheritance, late binding and encapsulation. Examples will
be given referring to the prototype implcmcntalion of’ the
language. 1

1 Background

One of the major problems encountered in the maintcnancc
of a database application is how to manage changes. WC
share completely the opinion of Richardson and Schwarz
expressed in [7]: “Most object-oriented database systems
display serious shortcoming in their ability to model both
the dynamic nature and the many-faceted nature of common
real-world entities. The most obvious example of this kind
of entity is a person. While existing OODBSs may capt urc
the notion that a student is a person, they do not support the
notion that a given person may become a student. Af’tcr

1 This work has been supported in part by grants from the
Minister0 dell’llniversiti e della Ricerca Scicntifica c
Tecnologica, the E.E.C. under ESPRIT BRA No.6309 (1~11>1~2:
Fully Integrated Data Environment), and the I’rogctto
Finalizzato “Sistemi informatici e calcolo paraliclo” of C.N.K.
under grant No. 92.01561.PF69.

Permission to copy without fee all or part of this material 1s
granted provided that the copies are not made or ditributed /or
direct commercial admntuge, the VLDB copyright notice nnd the
title of the pubblication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 19th VLDB Conference,
Dublin, Ireland, 1993

graduation, that person ceases to be a student, and becomes
an alumnus in the meantime, he or she may also be an
cmployce, a customer, a club member, etc. Throughout his
or her life, a person gains and loses many roles”.

This problem has been investigated in the object-
oriented database community by several authors, and we will
comment on related works later on. The main contribution
of this paper is the extension of an object-oriented data
model with the notion of objects with roles, such that an
object can have several roles and is always accessed through
one of its roles. The behaviour of an object depends on the
role used to access it. Moreover this mechanism is supported
by a strongly typed programming language Fibonacci which
also offers other features such as: a) the separation between
the object interface, or type, and its implementation, to
allow the evolution of the implementation without affecting
the rest of the system which is only aware of the object
interface; b) the possibility of having different
implcmcntations for a unique object type; c) the use of an
inclusion hierarchy with multiple inheritance to organize
object types. Besides objects, the data model provides also a
class and association mechanism to model databases, but the
prcscntation of these mechanisms is outside the scope of
this paper and can be found in [21.

The paper is organized as follows. Section 2 describes
the features of the proposed mechanism for objects with
roles in a language independent fashion. Section 3 presents
an overview of the Fibonacci type system to give the
prcrcquisite to understand in Section 4 the constructs of the
language to define objects with roles according to the
rcquircments in Section 2. Section 5 compares the proposed
solution with related works.

2 The features of the Fibonacci object
mechanism

Real-world entities with roles. When constructing a
computcrizcd information system, adopting a simplified
point of view, we will assume that the reality consists of
cntitics, with certain behaviours, which evolve over time.
Entities can play several roles during their life, i.e. they
can belong to several conceptual categories. For example a
human being may be classified as a person, an employee, a
tcachcr, a department chairman, a tennis player, a retired
cmployce, etc. In general an entity can have at same time
several roles, although there are cases where some roles
cannot co-exists (e.g., a person cannot be an employee and
uncmploycd at the same time). However, any interaction
with an entity always takes place through one specific role
of the entity, and the bchaviour of the entity may depend on

39

the role it is playing. The set of roles possessed by an entity
can change over time, so that its behaviour changes over
time too.

Objects and messages. An object is the computer
representation of a real-world entity. An object is a software
entity which has an internal state equipped with a set of
local operations (methods) to manipulate that state. The
request to an object to execute an operation is called a
message to which the object can reply. The state of an
object can only be accessed and modified through operations
associated with that object (state encapsulation). Each
object can send messages to itself (self-reference) and so it
is able to activate his own methods (self-recursion). The
message interpretation (i.e. choosing the method to activate
to reply a message) always depends on the object that
receives the message.

Each object is distinct from all other objects and has an
identity that persists over time, independently of changes to
the value of its state. For instance, the object representing
the person John is different from any other object
representing another person, but will remain the same even
if his address or some other attribute changes.

Roles. Each objects has a set of roles. An object is
not manipulated directly, but always through one of its
roles, so that we either say that a message is sent to an
object through one of its roles or, more simply, that
messages are sent to roles. The answer of an object to a
message may depend on the role which receives it. For
example, an object with role Graduate will answer to the
message Introduce with “I am John Smith, graduate in
Computer Science at the University of Toronto”, but in
another context it may be used with the role Manager and
then the answer at the same message will be “I am John
Smith, manager of the marketing division”. In traditional
object-oriented languages an object cannot show this kind of
bchaviour.

Since messages are sent to roles, the set of messages
which an object can answer to, is not described by its object
type but by the role types of the roles of the object. In this
sense, role types are very similar to object types of other
object-oriented languages.

Finally, roles (i.e. objects accessed through a role) are
dcnotable and expressible values of the language (first-class
values). They can be assigned to variables, used as data
structure components and as parameters or results of
functions.

Modeling roles and behaviour evolution.
Many kinds of entities throughout their life change their role
and behaviour. An unemployed can become an cmploycc,
and then a manager. Conse@tently, to model naturally
entities that evolve dynamically, they must be represented
by objects that can change their set of roles without
affecting their identity. In traditional object-oriented
languages an object cannot show this kind of bchaviour
because objects have an immutable type throughout their
life.

Role type hierarchies. A subtyping relation is
defined on role types (we say either that R, is a supertype
of R, or that RI is a subtype of R2). This relation is
asymmetric, reflexive and transitive. A role subtype can
have several role supertypes, from which inherits all

propertics (multiple inheritance), unless they are explicitly
redefined in the subtype (overriding); besides, a role
subtype can add new properties. Properties of the supertype
can only be redefined in a controlled fashion so that a value
of the subtype R, can be used in all contexts in which a
value of the supertype R2 is expected (inclusion
polymorphism).

In figure 1 a role type hierarchy is represented, where
Student, Graduate and Employee are all subtypes of Person.
Associated to each type are some specific (i.e. not inherited)
properties of the type. The Department property in Student
and Employee has a different meaning: it is the student’s
major department and the department where the employee
works.

Figure 1. A hierarchy of role types.

Separation between object interface and object
implementations. A role type describes only the
interface for objects with that type, i.e. the signatures of
their methods. The implementation of the objects is given
separately and objects with the same role type can have
different implementations. This distinction between
interfaces and implementations allows the creation of
instances of the same type with different structure and
behaviour. Other advantages of this approach will be
discussed later on.

Norma! interpretation of messages. Objects can
acquire new roles during their lifetime and therefore new
methods. Consequently, in general, an object X, in a certain
point of its lifetime, may have several versions available for
the method M to use in answering the message M (e.g. the
Department as a Student and the Department as an
Employee), and so it must decide which version of M it
must use. In Fibonacci the decision is made by the role
which receives the message. A detailed description of this
decision process will be given in section 4; here we will
only describe the basic ideas:
- the behaviours depend on the role which receives the

message;
- there are no interferences between “cousin” roles2:

the method to reply a message is chosen between the
methods of the addressed role, including those inherited
from its ancestors, or between the methods of the present
subroles: no overriding is possible between cousin roles;

- the most specialized behaviours prevuil3: for
example, between Introduce of Person and Introduce of
Employee the last property is prevailing; this corresponds
to the classical lute binding mechanism;

- the behuviours become more specialized when time

2 With respect to a fixed role, all the other roles in an object
are either ancestors or descendants or cousins.
3 A metod M defined in the type Tl is a specialization of the
method M in the type T2 if Tl is a subtype of T2.

40

goes on: when among the methods to choose there is not
a most specialized one, the most recently acquired one is
chosen; e.g. let us suppose that the Introduce message is
sent to a person which is both Student and Graduate, then
between Introduce of Student and Introduce of Graduate the
last method is chosen.

Strict interpretation of messages. Fibonacci
provides an alternative binding mechanism (strict bind&),
to observe the behaviour of an object in a certain role
without taking into account possible specializations of that
role. For example, we may send the message Introduce to a
Person which is a Student too. With the normal binding
mechanism, this causes the activation of the method
Introduce of Student; whereas, with the strict binding
mechanism, the invoked method will be that of Person.
Strict binding allows to simulate the classical send-to-
super mechanism of object-oriented languages, but it is a
more general and flexible tool because it allows the
activation of any method of any role.4

Roles visibility. As we can ask to an individual if
he is a medical doctor and if so to behave as such, so in
Fibonacci it is possible to query an object to know its
current roles (role inspection) and to change the role
through the object is accessed (role casting).

It is important to say that, despite of the richness of the
model, if object extension and role casting are never used,
the Fibonacci objects behave exactly the same as classical
Smalltalk objects, and strict interpretation of messages
coincides with normal interpretation.

Objects can be created but not destroyed.
Objects are not destroyed explicitly, but they are eliminated
automatically when they become garbage, that is they are
no longer reachable from any variable or parent object in the
programming environment.

A graphical representation of objects. Objects
are seen by their users as a black box accessible by a set of
roles (see fig. 2). Messages are sent to a role. Intcmally an
object is made of two components (see fig. 3): a) a set of
blocks where data and methods are stored, and b) a dispatcher
in charge of directing the messages to the appropriate
method that produces the answer (the dispatcher implcmcnts
the dynamic binding of methods to messages). The blocks
structure is not accessible to the users. The object identity is
independent of its roles, of the content of the internal blocks
(data and methods) and of the dispatcher structure. Finally,
figure 3 shows that an object can send messages to itself as
to any other object.

Figure 2. External view of an object.

4 About strict vs. slatic binding see further sec. 4.1.

L em----- J

Figure 3. Internal view of an object.

Figure 4 shows the internal structure of a simple object with
the only role Person. The dispatcher structure changes when
a new role is acquired by the object.

Figure 4. An object with the role Person.

For example figure 5 shows how the object in figure 4
changes when it acquires the role Employee. In particular a
new binding is created for the message Introduce of the role
Person. The choice between the old and the new link depends
on which kind of binding is required: the old link (the one
with thinner dashes) is for strict binding, whereas the new
one is for normal binding (for all the other messages.
normal and strict binding coincide).

Figure 5. An object with the roles Person and Employee.

3 An overview of Fibonacci

Fibonacci is an object-oriented database programming
language descendent of the language Galileo [l].

Fibonacci is an expression-based, statically-scoped,
functional (functions are first-class values), interactive and
persistent language. The last property means that all data
transitively accessible from the global environment (top-
level), survive automatically between different work-

41

sessions, independently of their type. Data are removed by a
garbage collector when they are no longer reachable from
any identifier in the global environment.

Fibonacci is a strongly-typed language. Each legal
expression has (at least) a type which is statically checked.
Each type is related to a set of operators which can be
applied to values of such type (e.g. the field selectors of a
tuple type). The basic types are Bool. String, Int, Real,
Any, None, and Null. Each basic type is different from other
basic types and from all the user defined types. The instances
of basic types are all disjoint. with a notable exception: the
value unknown (of type None), whichbelongs to any type
whatsoever.

A set of type constructors is provided to define new
types: tuples, labe-lled variants, sequences, functions. These
type constructors take types as parameters. and produce other
types on which the equality is structural (i.e. two types are
equal if they are built with the same constructor applied to
types recursively equal). Basic and constructed types will bc
referred, in the sequel, as concrete types to distinguish
them from object and role types.

The type constructor Var applied 10 a type T return the
type of variables of type T. On such type are dcfincd the
usual assignment operator (:=), and an explicit dercfcrcncing
operator (at). The value constructor var applied to a value v
of type T, return a variable cell containing the v value.

Values of concrete types share the following important
properties:
- the equality on them is structural (two values are equal if

they are of the same type and have recursively equal
components), except for functions and modifiable values,
on which equality is defined as identity (sameness);

- they are used directly, and not by copying them, when
they are passed as parameters to functions, bound to
identifiers in declarations. and used in constructing
complex values.

An implicit subtype relation is defined on concrclc lypcs.
This relation allows the so called inclusion polymorphism
to be exploited: if Tl is a subtype of T2 (also, T2 is a
superfype of Tl), then a value of Tl is also a value of T2,
consequently, it can be used in every context whcrc a value
of T2 is expected. A subtype relation holds also among role
types when it is explicitly declared. None and in y arc
respectively the bottom and the top of the type hierarchy.

4 The Fibonacci object mechanism

In this section we will present the constructs which rcalizc
the model informally described in section 2.

4.1 Object and role types definition

The most peculiar feature of Fibonacci’s object model is the
distinction between object and role values. In Fibonacci
objects are not directly manipulated. but are always acccsscd
through Dne of their roles. Hence, role values and role types
are used in Fibonacci to accomplish all the operations
usually related to objects and object types. For this reason,
we will often say “the object r” instead of “the role r of the
object 0”.

At the value level, roles answer to messages while
objects, essentially, retain the identity of a set of roles.
Referring to fig. 2, the object is the box while the roles are
the entry points for the object. In fact the only operators
available on objects are equality, extension with new roles,
role inspection and role casting (see sec. 4.7 and 4.8). For
these operations, the involved object is denoted by
specifying one of its roles (the specific role chosen is
irrelevant).

Nmrob jr& is the constructor for a new object type
which is the supertype of all its role types, i.e. its role
type family. Since messages are always sent to roles, and
not directly to objects, the set of messages which an object
can answer to is not specified in the object type but in the
role types of the corresponding role type family.

For example, a definition of a new object type
PersonObject is:

Let PersonOb ject = lfruObjrct;

NrwOb jrat is a generative type definition: every time it is
used a new object type, different from any other, is defined.

A role type is defined with the constructor 18A . . .
With . . . End as a subtype of an object type or as a subtype
of olher role types. A role type is defined by a set of
properties which defines the method signature for its
values. ISA - With ~. End is a generative operator, it
produces a new type, different from any other type, each
time is used.

ht Person = Iti PersonObject With
Name: String;
BirthYear: Int;
Age: Int;
Address: String;
modAddress (newAddress: String): Null;
Introduce: String;
End:

>>> Let Person <: PersonObject = <Role>

Figure 6. The Person role type.

Figure 6 shows the definition of the role type Person,
entered interactively at the top-level, and the system answer.

The I& keyword precedes a type declaration. Fibonacci
adopts the lexical convention by which all type constructs
and predefined type names are capitalized. 18A <Type>
With <properties list> Endisthe typeconstructorfor
role types. The semicolon terminates a phrase (declaration or
expression). The symbol >>> precedes the system answer to
the type definition. The symbol <: denotes the subtype
relation.

4.2 Object construction

A role type T defines the interface of the objects with such a
type, but doesn’t give information about their internal
structure. An object with a role type T is created with the
construct role T <implementation> l d, where the
implementation specifies the private state of the object and
the body for all the methods specified in the interface.

Figure 7 shows the implementation for an object named
j or n with a role type Person.

42

let john = rolr Person
private

lot Name = "John Daniels";
lot BirthYear = 1967:
1-t Address = VU

("123, Darwin road - London"):
mrthoda

Name = Name;
BirthYear = BirthYear:
Age = currentYear - BirthYear;
Address = at (Address):
modAddress (newAddress: String) =

Address := newAddress;
Introduce = "My name is " & Name &

n and I was born in 0 &
intToString(BirthYear);

and:
>>> let john : Person = <role>

Figure 7. Single object construction.

The lrt keyword precedes a value declaration, which
bounds a role of a newly created object to j oh n. The
evaluation of the expression rolr T private <private
env> m&ho& <methods env> md creates a new object
and returns a role of type T for that object; WC say, more
simply, that it creates a role. <private env> is a
sequence of declarations or expressions, evaluated once
when the object is constructed. Each declaration or
expression has visibility of the preceding ones. <mt?r. i!o:ls
env> is a set of method specifications, i.e. all method
names are different and their order is not significant. A
method is specified by giving its name, its signature
(compatible with the expected signature) and its body (the
expression following the = symbol). All methods declared in
the interface must be specified.

The evaluation of the expression role T private
<private env> r&hods <methods env> endinvolvcs
the following steps:
- the declarations in <private env> are sequentially

evaluated to create a private environment on top of the
current external environment (in the example, the top-
level environment);

- this private environment is extended with the code of
methods defined in <methods env>; even paramctcrlcss
methods are not evaluated at object construction but only
when they are called; methods may refer private or ex tcmal
data and also the whole object being built, through the .~e
identifier (see further);

- a new object is created which contains the methods, the
private environment and the interface for role T (now WC
can say that the object has the role T);

- the interface is connected to the appropriate methods;
- the specified role of the newly crcatcd object is returned.
Figure 8 shows the structure of the object j ohr! resulting
from the evaluation of the declaration shown in figure 7.

Once an object is created, its methods can be sclectcd
with the dot notation. Method call causes the evaluation of
an expression in the private environment with possible sidc-
effects; this is the only way to ask an object to modify its
internal state. Examples of method call are:

john.Address:
>>> ‘123, Darwin road - London" : String

john.modAddress(‘Beagle - Pacific Ocean");
>>> nil : Null

john.Address;
>>> "Beagle - Pacific Ocean" : String

Figure 8. Inside the j ohn object.

4.3 \\ const “ and “mod” properties

In object-oriented database applications, most messages are
used only to retrieve and update the value of a variable
hidden in the state of the object. It is important to give a
special status to these messages for three reasons:
- documentation: giving a declarative way to specify in

the interface of an object that some methods are meant to
bc used as specified above improves program readability,
like any information about the expected behaviour of a
method does;

- usability: giving an easier way to implement this
common class of methods helps the programmer.

- implementation: if the system knows that, for all objects
in a type, a given message just accesses a variable in the
state, it may exploit this kind of information to build an
index over that component of object state, to improve the
response time of queries involving that message.

Many languages face this issue by giving direct visibility to
object state, or to a part of it. In Fibonacci, when messages
arc meant to be used just to access an object state, this
information can be specified, without breaking
encapsulation, as follows.

A property of an object role type can be defined aonat
to mean that the value retumed by the corresponding method
is always the same, as long as the object is not extended
into a subtype; a aonet property does not have parameters.
Moreover when two properties M: Type and modM (newM:
Type) : NU 11 are related by the fact that the second property
is used to modify the va!ue returned by the first one, the
abbreviation mod M: Type can be used to define both of
them. This declaration also asserts that the value returned by
the M method is always the same until a modM method is
called. According to these abbreviations the definition in
figure 9 is equivalent to that in figure 6.

Let Person = ImA PersonObject With
aonmt Name: String;
con& BirthYear: Int;
Age: Int;
mod Address: String:
Introduce: String;
End:

Figure 9. An alternative Person role type.

More precisely, both definitions produce the same method

43

signature, but only the second one imposes some constraints
on the behaviour of methods Name, BirthYear and Address.

The implementation of a role type with conat and
mod properties is simplified since the system provides a
standard implementation for these properties. For a
property aonnt P : TP it is sufficient to declare in the
private environment a value P of type TP’ C: TP. Then, if a
method named P is not declared, the standard implementation
is automatically defined as: P = P. For a property mod
v : TV, a private variable V of type TV must be declared in
the private environment; then, the standard methods are: v =
at V and modV(newV:TV) = V:=newV.With thestandard
implementation, the example 7 can be rewritten as shown in
fig. 10.

lot john = role Person
private

lot Name = "John Daniels";
let BirthYear = 1967;
1-t Address = var ("123, Darwin roa::

London");
mathode

Age = currentYear - BirthYear;
Introduce = "My name is W & Name &

W and I was born in u &
intToStrincj(BirthYear);

end;

Figure 10. Another constructor for j oh n.

The standard implementation is just a facility for the
programmer, which can always provide its own
implementation for the messages, typically to cheek some
constraints or to perform additional side-effects. But also
when the implementation is explicitly defined, the system
enforces the constraints implied by the conat and mod
declarations.

4.4 Definition of an object constructor

In the previous examples single objects have been built
from scratch, but usually we are interested in creating, for
each role type, many instances with the same internal
structure and method bodies. The problem is solved by
defining a constructor, that is a function which returns
new objects with a certain role. An example is shown in
figure 11.5

Theexpression fun (<arguments>):<type> ie
<e x p > defines a function, with type F u n
(<arguments>):<type> andbody <exp>.6 Whcnthc
function is applied, a new instance of Person is created.
While the private data are different for each instance, the
method bodies are shared by all instances.

In the body of the Introduce method the special idcntificr
me denotes the constructed object. The formal type 1 OT

5 This approach to the specificiltion of object constructors
is similar to the one adopted in Emerald [6].

6 A function definition has a syntax different from that of a
method to reflect the fact there are differences between functions
and methods: a function is a first class value, and so can be
passed as parameter or returned as value by a function; a method
is not a value, and it can only be evaluated by the object IO
which belongs for side effects or to return a value.
7 Because of subtyping. the type of an expression is
generally just a supertype of the type of the values which will

re is the type of the role expression where me is used (in
this example Person); me can be used only in the method
bodies and in the init expression. intToString is a
predefined function to convert an integer into a string. The
infix operator & is the concatenation operator on strings.

let createperson = fun (name, address: String;
oirthyear: Int) : Person L

role Person
private

.let Name = name;
let BirthYear = birthyear;
if stringLength(address) < 2 then

failwith "incorrect address" end;
let Address = VW (address);

methods
Age = currentYear - me.BirthYear;
modAddress (newAddress: String) =

if stringLength(newAddress) < 2
then failwith "incorrect address"
else Address := newAddress rrrd;

Introduce = ‘Name' M & Name & W - . Age: “
& intToString(me.Age);

init
if me.Age < 0 or me.Age > 150
then failwith "incorrect birth year" md

end:

Figure 1 I. A Person constructor.

The clause init <exp> defines an expression which is
evaluated when the object is built before returning it. In the
expression the identifier me can be used as in a method body;
as a matter of fact, the clause hit may be seen as a special
method evaluated once before returning the object. If the
expression fails, the object construction fails and the effects
are undone, since object creation is atomic.

Lets us see some examples.

let paul = createPerson("Horace De Saussure";
"Geneva"; 1960);
>>> let paul : Person = <role>

oacL.Introduce;
'>>> "Name: Horace De Saussure - Age: 33": String

ier

uacL.nodAddress (“').
>>> failure: "incorkect address"

let dante = createperson (‘Dante Aligh
"Ravenna"; 1265);
>>> failure: "incorrect birth year“

4.5 R,ole type hierarchies and inheritance

in.
I

An object role family can be extended dynamically by
defining a new role type T as a subrype of others, called its
supertypes. The subtype inherits all properties of its
supertypes, unless they are explicitly redefined in the
subtype (overriding). In case of multiple inheritance, if a
property is present in more supertypes, and there is not an
explicit redefinition in the subtype, then the property of the
last specified supertype is inherited, but only if that
property has been defined in a common ancestor.

correspond to that expression at run time. For example, if the x
parameter of a function has type Person, then it may be bound,
at run time, to values belonging to any subtype of Person: in
this case we say that Person is theformal type of x.

44

Figure 12 shows the definition of Student and
Employee, both subtypes of Person.

In a subtype definition S, for any property P of S
(inherited, redefined or added), if P is also defined in the
supertype T then the following conditions hold:
- the signature of P in T is a subsignature of that in S

(contravariance); 8
the output type of P in S is subtype of that in T

- (covariunce);
- if P is neither aonst nor mod in T, then P in S may be

declared as aonst or mod;
- if P is declared as conmt in T then the same must bc in

s;
- if P in T is declared as mod P: TP, then P must bc

declared as mod P : TP also in S.
The rule that a mod property cannot be rcdcfincd by
specializing its type is a consequence of the fact that the
signature of a redefmed method must be contravariant. In fact
the declaration mod P : TP introduces a method mod!-' ('!.? I :
Null and the redefinition mod P: TP', with TP’ subtype of
TP, introduces a method modP (TP' 1 : Null which violalcs
the contravariance rule for functional components.

Let Student = IaA Person With
mod Faculty: String;
conk StudentNumber: Int;
Introduce: String;
End:

Let Employee = ISA Person With
mod Department: String;
conat EmployeeNumber: Int;
Introduce: String:
End;

Figure 12. Student and Employee role types.

4.6 Subtype object construction

When a role type is defined by inheritance, a constructor for
objects belonging to that role may be either dcfincd from
scratch or by inheritance, i.e. by extending a constructor
defined for a supertype. In this section we cxcmplify the first
approach, while the second, which is more standard, is
described in section 4.8. Figure 13 shows the direct (no
inheritance) definition of the Student constructor.

To construct an object with role type T from scratch,
the method for each property must be spccificd. The
constructed object will have the role type T and all the
supertypes of T. For example, with the following
declaration:

let spinoza = createStudent("Bento d'Espino;/,:";
"Cordoba": "Philosophy"; 1966);

is created the object spinoza, shown in figure 14.

8 A signature is a list of zero or more pairs I den t. I f i c: ~ :
T ype separated by semicolons. We say that Sl is a
subsignnture of S2 if Sl extends S2 with new pairs or
redefines (in the same order) the S2 pairs with more specialixd
types.

let createstudent = fun (name, address,
taculty: String; birthyear: Int) : Student L

rolr Student
privatm

lrt Name = name;
let BirthYear = birthyear;
let Address = v- (address);
lrt Faculty = var faculty;
lot StudentNumber = newStudentNumber():

mrthods
Age = currentYear - me.BirthYear;
Introduce = "Name: W & Name & * - Age: m

& intToString(me.Age) &
a\ - Faculty: v 6 me.Faculty;

init
if me.Age < 18 or me.Aqe > 70
then failwith "incorrect birth year" md

end;

Figure 13. A Student constructor.

Figure 14. An object with two roles which share the
same implementation .

4.7 Other operators: object comparison, role
inspection, role casting and strict binding

The language provides the following operators on objects:

- the equality operator (=) to test if two objects are the
same, independently of their current role tTpe, for example

john = spinoza;
>>> false : 3001

- the infix predicate im~lmo to test if an object has a
certain role; for example:

spinoza i8Almo Person;
>>> true: Boo1

john isXtso Student;
>>> false: Boo1

- the infix operator as to coerce an object to one of its
possible roles (role casting). The operator will fail if the
object dots not have the specified role:

45

let baruch = spinoza a8 Person;
>>> let baruch : Person ='<role>

baruch = spinoza;
>>> true : Boo1

lot johnAsStudent = john ae Student;
>>> failure: was"

The expression x a* T is well typed if T and the type of
x belong to the same role type family.

The following operators are on role values:

- the infix predicate isExactly to test the actual type of
a role value:

spinoza idxaatly Student;
>>> true : Boo1

- the infix operator ‘!’ to request an object role to cvaluatc a
method without considering the possible redefinitions of
the method in its subroles (strict binding). This operator
is useful, for example, to see the behaviour of a Person
independently of the fact that he may also be an Employee
or a Student (examples will be given in sec. 4.8).

Strict binding should not be confused with static binding:
static binding takes place at compilation time and the
method to activate is chosen on the base of the formal type
of the expression which denotes the receiver of the message.
Strict binding, which is a kind of dynamic binding, takes
place at run-time and the method to activate is chosen
depending on the actual type of the receiver. The type
checker will guarantee that the actual type is a subtype of
the formal type.

The combination of strict binding with role casting
(e.g. (x u T) ! P) is a useful feature of Fibonacci, in that:
a) it allows to simulate static binding, b) it allows to
simulate the traditional send-to-super mechanism of
object-oriented languages (see sec. 4.8), c) in extension
operators, it allows the programmer to specify cxpliclly
from which ancestor a method implementation is inhcritcd.

4.8 Dynamic object extension

To model the role and behaviour evolution of cntitics,
Fibonacci provides an exfension operator, which allows
an object to be extended dynamically with new subrolcs.
Figure 15 shows the extension of john from Person to
Student.

lrt johnAsStudent = l xt john to Student
privatr

I& Faculty = var "Science";
let StudentNumber = newStudentNumber0:

nrthode
Introduce = (me ae Person1 ! Introcucc 6

". I am a Science student";
and;

>>> let johnAsStudent : Student = <role>

john = johnAsStudent;
>>> true : Boo1

Figure 15. john becomes a student.

The object j ohn acquires the role Student without changing
its identity (as results from the test john =
johnAsStudent). Note the combination of role Casting With

strict interpretation to call the method Introduce defined in
Person. The object johnAsStudent is represented in figure
16 (compare it with the representation of j ohn given in
figure 8). Note the twofold link for Introduce: the old link is
chosen for strict binding, whereas the new one for normal
binding. For example, let us see how the behaviour of john
has changed after the extension:

john.Introduce;
>>> ‘My name is John Daniels and I was born in
1967. I am a Science student" : String

johnAsStudent.Introduce;
>>> "My name is John Daniels and I was born in
1967. I am a Science student" : String

(johnAsStudent a8 Person) !Introduce:
>>> "My name is John Daniels and I was born in
1967” : String

Figure 16. The internal structure of j ohn after the extension.

To explain the difference between the creation of an object
from the scratch and by extension, it is useful to compare
graphical representation in figure 16 with that in figure 14.

The construct rxt has an header (art <object> to
<target types>) and an implementation (privatr . . .
mrthodn ~ init .). The implementation part is
identical to that of the role operator (see sec. 4.2), while the
following differences appear in the header part:

- < ob j ec t > is an expression which denotes the object to be
cxtendcd.

- <target types> are therole types that must be acquired
by the object. The order in which are listed determines the
order in which the roles are acquired. The last specified
(called target-type of the extension) must be a subtype of
all the previous ones. All the target types must belong to
the same role family to which the type of <object> also
belongs.

- the methods defined in the methoda section must be at
least those explicitly specified in the interfaces of the
target types.

Let Rl and R2 be role types such that Rl <: R2, the object
X is called complete if x f8Al80 R1 implies x i8Al80
R2. Static and dynamic tests ensure that the extension
operation always produces complete objects without
duplicate roles. Figure 17 shows the definition of an
ext’ension operator to obtain an Employee from a Person.

lot toEmployee = fun (aPerson: Person; dept.:
String) : Employee i.8

l act aPerson to Employee
ptivatr

lot Department = var (dept);
let EmployeeNumber =newEmployeeNumberO;

methods
Introduce = (me as Person) ! Intrbduk &
n. I am an employee";

end:
Figure 17. An extension operator.

The behaviour of john changes once it has acquired the role
type Employee:

toEmployee(john; "Quality Management");

john.Introduce;
>>> "My name is John Daniels and I was born ir:
1967. I am an employee" : String

But the behaviour of johnAsStudent does not change:

johnAsStudent.Introduce;
>>> "My name is John Daniels and I was born in
1967. I am a Science student" : String

Implementing constructors by inheritance

Using the constructor createperson and the operator
toEmployee it is possible to define a constructor
createEmployee which makes use only of prcdcfincd
implementations:

lot createEmployee =
fun (name, address, dept: String;

birthyear: Int) : Employee ia
toEmployee(createPerson(name; address;

birthyear); dept);

Another way to reuse the implementation of creatcPcrson is
shown in figure 18.

let createStudent = fun (name, address,
faculty: String; birthyear: Int) : Student. ir

Urr createPerson(name; address; birthycac)
to Student
privatr

lot Faculty = var tfaculty):
lmt StudentNumber = newStudentN~n3erO:

mrthodm
Introduce = (me (u Person) ! Intrcai:c-c 5
". I am a student of W & me.Fac::lty:

end

Figure 18. Reusing a Person constructor to crcatc students.

Note that a role type can have multiple constructors, and
that in defining a constructor for a role subtype it is possible
to choose which super-role constructor is extcndcd.

Object extension and multiple inheritance

Let us define the type TeachingFellow to show other
examples of multiple inheritance and object extension.

L& TeachingFellow =
Ifi Student, Employee With

mn8t Cbursd: String;
Introduce: String;

End:

Figure 19 shows an operator to make a TeachingFellow
from a Student:

lrt fromStudentToTeachingFellow =
fun (astudent: Student; dept,

course: String) : TeachingFellow L
rxt astudent to Employee, TeachingFellow
private

lmt Department = var (dept);
lmt EmployeeNumber =NewEmployeeNumber();
let Course = course;

mrthod8
Introduce = (me M Student) !Introduce &

_- Course: " & course:
end:

Figure 19. An operator to make a TeachingFellow from a Student

The interesting aspect in the example is that there are two
roles to be acquired: the first (Employee) is not a subtype of
Student, while the second role is a subtype of Student, and
so the condition is satisfied that the target-type must be
subtype of those which precede it. Let us show how the
extension operation changes the behaviour of the object to
be extended:

fromStudentToTeachingFellow(spinoza: "Hermetic
Philosophy"; "Ethica");

spinoza.Introduce;
>>> "Name: Bento d'Espinoza - Age: 27 - Faculty:
Philosophy - Course: Ethica" : String

(spinoza (u Employee).Introduce:
>>> "Name: Bento d*Espinoza - Age: 27 - Faculty:
Philosophy - Course: Ethica" : String

4.9 Object contraction (role dropping)

In order to meet the need for modelling roles and behaviour
evolution, Fibonacci would also have to provide a
contraclion operator, i.e. a mechanism to allow the
objects to drop some roles (e.g. drop ~1, ~2 from x).
With such an operator one could model, for instance, the fact
that when a student takes a degree he drops his Student role
and acquires the role of Graduate, or the fact that a worker at
the end of his career drops the Employee role and hecomes
Rctircd.

Fibonacci’s contraction mechanism should have the
following features:
- when a role is dropped from an object, all its subroles are

lost too;
- the objects are not destroyed (there are nd dangling

rcfcrcnccs);
- casting toward a dropped role (e.g. x as R) causes a

47

uappable failure, thus no new reference to it can bc crcu~!
after a role has been dropped;

- sending a message to a dropped role causes a uappahlc
failure (message passing failure);

- role inspection and equality still work on a dropped role,
since these operators refer to the object, rather than the
roles;

- when a role is dropped from an object, previously hidden
behaviours are brought into the foreground; e.g. if ;ohn
drops the Employee role, his answer to (john a a
Person) . Introduce will be again that of a Student;

- role dropping is an important event in the lift of an
object; then admissible state transitions should be declared
through preconditions given in the implcmcntation (such
as the init clause).

Note that the message passing failure in Fibonacci is
different from that of other object-oriented languages (firstly
Smalltalk): in Fibonacci the failure informs the scndcr that
the receiver has dropped a role; whereas, in languages with
dynamic type checking, this failure only reprcscnts a misuse
of an object.

Role dropping is an operation similar to object
removal, thus the well known problem of the referenliul
infegrity should also be taken in account [7].

To model the fact that not every sequcncc of role
acquisitions or role dropping is admissible, it should be
possible to specify admissible hisfories or migrufion
paths in a role type hierarchy (sequences of ext/drop)
[lOI.

These problems are not dealt with in the currrcnt
implementation of Fibonacci, but we are working on them
to provide the language with a contraction operator.

4.10 Message interpretation

The role mechanism is essential when objects can bc
extended with indepcndcnt subroles. In this case, classical
late binding without roles creates a problem. Suppose that a
type Person has two different subtypes Student and
Employee. and that both of them add a property
PcrsonalCode to the supertype. The two personal codes have
unrelated semantics, and maybe even a diffcrcnt type. Let
john be created as a Person and later on extended, firs1 to
Student with code 100200 and then to Employee with code
“jhn698”. In a language with late binding and without roles,
johnAsStudent answers “jhn698” to a mcssagc
PersonalCode, or j o hnAs Emp loyee answers 1()(~2()0,
because the objects always exhibit a uniform bchaviour.
This is both a semantic error anU a type-level error. Since it
is not known statically whether an object of type Student
has also been extended to Employee, we can conclude that
the system can never be sure that any object of type Student
answers the message PcrsonalCode with an intcgcr. Marc
generally, if it is always possible to add new object types to
the system,.the type checker can never be sure of lhc type or
the result of any message passing operation.

This problem may be faced by imposing constraints on
methods appearing with the same name in cousin object
types. This contrasts with the typical usage of objcct-
oriented languages. In these languages, if some programmers

work at the same time at the same project, any programmer
is fret to take general-purpose object types from libraries and
spccializc them, regardless of the fact that other
programmers are producing cousin object types by
specializing the same library for different purposes.
Forbidding name duplications in all the possible
specializations of a library object type would damage one
essential abstraction mechanism of object-oriented
programming. It could be likened to forbidding the usage of
the same name for a local variable in two different unrelated
functions. Preventing undesired interactions between cousin
roles, to attain full “cousin role independence”, is one of the
primary design choices of the message interpretation rules.

Message interpretation can be described as follows.
When a role receives a message it first checks whether any
of its descendants has its own method (not inherited) to reply
to the massage. If such descendant is found, then it is
delegated to answer the message. The descendants are tried
in reversal temporal order, i.e. the last acquired descendant
is tried first. Subtyping ensures that the delegated role can
safely substitute the receiving one. If no delegate is found,
the receiver searches an implementation for the message
inside itself. If this is not found, then the receiver looks for
an implementation for the message in the ancestor role from
which the corresponding property is inherited. The typing
rules ensure that this last search is always successful. Note
that this is just a way to describe the meaning of message
passing; altcmativcly, the same semantics can be described
by specifying, with reference to Figures 3,4 and 5, how the
dispatching structure of an object is set up and how it is
modified when an object is extended.

For example, the message Introduce sent to john (see
figure 18) causes the activation of the Introduce method of
Employee, because Employee is the last acquired subrole of
the object, hence the method will be executed by
delegation. The message Introduce sent to johnAsStudent
will bc answered by the method of Student, because there is
no descendant of Student in j o hn. Instead, if
; o hnAs s t uden t receives the message Name the answering
method will be that of Person, hence it will be executed by
inherilance.

Self-reference semantic

The distinction ‘between delegation and inheritance is
essential to understand the meaning of self-references in the
method body. The following rules apply: a) when a method
M, belonging to the role R, is activated by delegation (in
other words the receiving role is a superrole of R), the actual
type of me in that activation of M will be just R (i.e. its
formal type); b) when the same method is executed by
inheritance (the receiving role is subrole of R) the actual
type of me will be that of the role which originally received
the message M.

Rule a) is essential to the type safety of the language.
Let, indeed, RR be the receiving role of the message, let DR
bc the role delegated to answer (then DR <: RR); the formal
type of me in DR’s method is DR. then to ensure a type-safe
execution the actual type of me must be DR or a subtype of
DR.

Rule b) is the classical rule adopted by object-oriented

48

languages. Suppose for example that in a graphical editor an
object type Picture is defined with a method Draw taking a
color as a parameter. Squares and Circles are subtype of
Picture, and contain the actual code for the Draw method.
However, a method DrawBlack can be implcmcnted once for
all for the object type Picture, as me. Draw (black). When a
Square executes by inheritance the DrawBlack method, the
Draw(black) message is sent to me seen as a Square.

It can be interesting to note that the rule b), besides
being useful, is a consequence of the principle of non-
interference between cousins. If me in a method which is
activated by inheritance were bound to the role whcrc the
method is defined. then self-reference would allow methods
of cousin roles to be activated. Let us consider the example
in figure 20, where each method is associated with the
corresponding body.

Rl
- P=me.Q
- Q=“RI”

R2 - Q = ‘w” Q = “R3”
1 8 ,

Figure 20. A role type hierarchy.

Let us assume that the object X has been created with roles
Rl and R2 and then extended with role R3. Adopting the
correct rule to solve self-reference, when the mcssagc P is
sent to X seen through the role R2, the answer is “R2”. If
we had adopted the other rule (self-reference bound to lhc role
which owns the method activated by inheritance), the answer
would have been “R3”, and therefore the method of a
receiving role (R2) would be covered by a method of a
cousin role.

Final remarks

In traditional object-oriented languages all methods arc
executed either by the receiving role or by inhcritancc. This
happens because the only role accessible of an object is the
bottom role, which has no descendant. So we can affirm that
both binding mechanisms of Fibonacci are a gcncralization
of the classical late binding mechanism.

With respect to a fixed role. all the other roles in a
Fibonacci object are either ancestors or descendants or
cousins. The message interpretation mechanism cnsurcs, in
a word, that there is neither interference nor inhcritancc
between cousins. This is very important, since in gcncral
when an object is extended with two cousin roles (e.g. a
Person with Student and Employee), if the same method is
defined in all the three roles, the two cousins can spccializc
it with two subtypes T’ and T” of the type T assigned by
the father to that method, but there is no subtype relation
between T’ and T”, which implies that inhcritancc bctwccn
cousins would be unsound not only with rcspcct to the
modelling principles, but also with respect to the language
typing rules.

5 Previous works

In the last fifteen years the need for data modeling features
capable of capturing the evolving and multifaceted nature of
real world entities has been pointed out by many researchers.
The first attempt in this direction was the role model of
Bachman and Daya [4], aimed to enhance the expressive
power of network data model. In more recent years, the
Galileo language provides a mechanism to allow instances
of a class to become, dynamically, instances of a subclass
and, at the same time, to acquire new behavioral aspects
without losing their identity [11. This mechanism was found
useful to model the behavioral specialization of world
entities over their lifetime, but it has limitations because of
the assumption that every object always belongs to a unique
most specialized class (type). In what follows we review
some of the more relevant recent proposals in the context of
object-oriented database programming languages.

Iris

Iris [5] is an OODBMS equipped with explicit features to
model behavioral evolution of entities. Iris objects may
acquire or lose types during their life, retaining their
identity; but is not possible to observe an object from
diffcrcnt perspectives, indeed, despite type multiplicity, an
object, in a fixed instant of its life, always exhibits a
uniform bchaviour, no matter the context from which is
obscrvcd. For instance, suppose a property P is differently
defined in types Tl and T2; then an object X, belonging to
both of them, will always answer to the message P with the
method of the most specialized type between Tl and T2. But
if there is no such type the answer will depend on ad hoc
rules which the user must establish to resolve such
ambiguities. This approach is unsatisfactory because the
type multiplicity cannot be used to model role multiplicity,
and the objects show the behavioral uniformity typical of
traditional object-oriented languages (i.e. Smalltalk). In
addition, the resolution of ambiguities in message
dispatching is left to the programmer, whereas, we believe it
should bc an important concern of the supported data model.

Clovers

Stein and Zdonik (91 propose a mechanism called clovers
which allows to model entities with multiple and
indcpendcnt roles. The language which supports this
mechanism has provision for strong type-checking and
subtyping. With clovers an object created in a type T may
bccomc an instance of T’ subtype of T, acquiring methods
and data specific of T’. The object behaviour depends strictly
on the type through which the object is observed, and there
is no late binding. Clovers provides also an operator for
type inspection and two operators for type coercion: one to
go up and one to go down in the type hierarchy, but without
explicit mention of the target type. The main differences
from Fibonacci are the lack of support for late binding, and
the impossibility of explicitly referring the types to which
one is intercstcd.

49

Views Summary

All proposals share the following features, found also in
Fibonacci:
- objects may acquire new types and new behaviours;
- objects retain their identity during their life, no matter

which extensions are operated and independently of the
point of view through they are observed;

- encapsulation is preserved, because the extensions have no
direct access to private data of the existing object.

A novel aspect of Fibonacci is, instead, the coexistence of
late-binding and multiple inheritance with role multiplicity
and dynamic object extension, in a framework with strong
type-checking and subtyping. Moreover, the combination of
such complex features is obtained neither to detriment of
semantic clarity, neither relying on specification ambiguities
which introduce implementation dependent or ad hoc
semantics. Indeed, the full meaning of the various
mechanisms is established at first in the data model and then
substantiated in the constructs of the language.

Significantly, the proposals which support late-binding
(Galileo, Iris and Nuovo Galileo), always assume the
existence of a most specialized method in order to resolve
the message dispatching ambiguities that can arise from type
multiplicity. Vice versa, when the previous assumption is
abandoned and objects are allowed to have multiple minimal
types (Clovers, Views and Aspects), late-binding is never
provided .

6 Conclusions

Shilling and Sweeney [8] present an extension of the object
data model based on the concept of view. In that model, an
object is equipped with multiple interfaces (views). Every
interface has its own set of methods and the intcrfaccs of an
object are separated and indcpendcnt each of the others; the
object is always referred through one of them, so thcrc is no
conflict between methods with same name belonging to
different views. Every interface has a distinct
implementation and a distinct set of variables acccssiblc
only to its methods. The object behaviour dcpcnds on the
interface used to access it, and the object identity is prcscrvcd
across the various views; that allows one to model multiple
and independent roles. That mechanism, on other hand, has
no provision for late binding, inhcritancc and subtyping,
moreover separation bctwecn interfaces and implcmcntations
is not supported.

Aspects

Richardson and Schwarz [7] propose a model whose objects
may have multiple aspects (types) and may bc cxtcndcd
with new ones during their lifetime, without losing their
identity. Every aspect has its own methods and private data
and an object is always referred through one of its aspects.
The observed bchaviour is that specific of the rcfcrrcd aspect
and the late binding and inhcritancc mechanism arc not
supported. Interfaces are dcfincd separately from
implementations and the interface matching is structural,
allowing to have more implementations for a given type,
but also to reuse an implcmcntation for more types. The
type system has provision for an implicit subtyping relation
(conformance). A new aspect added to an object X or to
another aspect A of X, may hides some property dcfincd for
X; then there is no subtyping relation bctwccn an aspccl and
the type of the extended object. As already noted, the aspects
proposal has no support for inheritance, ncithcr single
neither multiple. To overcome this limitation, an aspect I3
extending another aspect A, must explicitly rcplicatc the A
interface in its definition, and it must call the ancestor
methods with a send-lo-super primitive. Is not possible to
cxtcnd an object with more aspects in a unique operation.
Due to the structural matching bctwccn types, the aspcc~s
mechanism dots not have operators for role inspection and
role coercion.

Nuovo Galileo

In the data model proposed in [3] the objects can bc
dynamically extcndcd with new types and arc not constrained
to have only one minima1 type, but the role mechanism is
not provided. T’hcrcfore in order to support late-binding, for
each method a most spccializcd version of it is always
assumed to exist. Thus, the objects always exhibit a
uniform bchaviour, no matter what type they arc acccsscd
through. This object mechanism was been the I’irst step in
the dcvclopmcnt of the object mechanism of Fibonacci.

An object mechanism for a strongly typed database
programming language has been presented. The object
mechanism, besides the usual properties of state
encapsulation, unchangeable identity, separate definition of
intcrfacc and implementation, and late binding, has a role
mechanism characterized by the following features:
- plurality of behaviours: a unique object can be accessed

through different roles, which have different types and can
answer in different ways to a message. Plurality of
bchaviours allows to model situations where a unique
entity of the domain of discourse can play different roles
and bchavcs in a different way according to its role. That
rclatcs roles to a view mechanism.

- independence of extensions: it is possible to perform
two independent extension of a unique role with two
cousin roles, without interference between them.
Indcpcndcnce of extensions is especially helpful in the
dcvclopment of applications structured as independent
modules.

- strict and late binding: the sender can choose between the
two binding mechanisms, thus, it can decide whether
dclcgation is allowed. The distinction between strict and
late binding is most useful in implementing methods by
cxtcnding or reusing existing implementations, and it is
rclatcd to the super of most traditional object-oriented
languages.

- role casting and role inspection: these are crucial
fcaturcs to fully exploit the richness of the object model;
they allow one to navigate freely in the role graph of an

50

object, and to obscrvc all its possible aspects and
bchaviours. These capabilities arc very important in
languages with strong typing, since they give, inl’ormally,
the ability of dynamically changing the type of an object.

It is important to note that if a programmer dots not USC
extension operators, but always builds objects in the
subtypes using constructors, then there is no need to
distinguish objects from roles, ncithcr strict from late
binding, and all the usual rules of object-oricntcd languages
apply. So the complexity of the role mechanism comes into
play only when really n&cd.

The object mechanism is one of the Fibonacci fcaturcs
designed to model object-oriented databases. The language
provides also (a) a class mechanism to model a modifiable
collection of values, on which it is possible to dcfinc an
inclusion constraint, and (b) an association mechanism to
model modifiable n-ary relations among classes [21. All
these features have been considered in the current
implementation of a prototype of the language compiler.

References

[1] A. Albano, L. Cardelli and R. Orsini, “Galileo: A
Strongly Typed, Interactive Conceptual Language”,
ACM Transaction on Database Systems, Vol. 10,
No. 2, pp. 230-260, 1985. Also in: Readings in
Object-Oriented Database Systems, S.B. Zdoni k and
D. Maier (eds), Morgan Kauffman, San Marco,
California, pp.147-161, 1990.

[2] A. Albano, G. Ghelli and R. Orsini, “A Relationship
Mechanism for a Strongly Type Object-Oricntcd
Database Programming Language”, Proc. of 17th Int.
Co& on VLDB, Barcelona, 1991, pp. 565-575.

[3] A. Albano, G. Ghelli and R. Orsini, “Objects for a
Database Programming Language”, Proc. of the third
Intl. Workshop on Data Base Programming
Languages, P. Kannclakis. and J. W. Schmidt (cds),
Morgan Kauffman, San Matco, California, pp.236
256, 1992.

[4] C.W. Bachman and M. Daya, “The role concept in dala
models”, Proceedings of the Third Int. Con/: on
VLDB. pp. 464-476, 1977

[5] D.H. Fishman et al. “Iris: An Object-Oricntcd
Database Management System”, ACM Trans. on
Office Information Systems, vol. 5, n. 1, pp. 4X-69,
Jan. 1987.

[6] A. Black, N. Hutchinson, E. Jul. and H. Levy, “Object
Structure in the Emerald System”, OOPSLA ‘86,
ACM SIGPLAN Notices, pp. 76-86, Sept. 1986

[7] J. Richardson and P. Schwartz, “Aspects: Extending
objects to support multiple, indipcndcnt roles”,
Proceedings of the Int. Conf. on Managcmcnt of
Data, ACM SIGMOD Record, vol. 20, pp. 298-307,
May 1991

181 J.J. Shilling and P.F. Sweeney, “Three Steps to View:
Extending the Object-Oriented Paradigm” OOPSLA
‘89. ACM SIGPLAN Notices, vol. 24, n. 10, pp.
353-361, Oct. 1989

[9] L.A. Stein and S.B. Zdonik, “Clovers: The Dynamic
Behavior of Type and Instances” Brown University
Technical Report No. CS-89-42, Nov. 1989

I IO] J. Su, “Dynamic Constraints and Object Migration”,
Proc. of 17th Int. Conf. on VLDB, Barcelona, 1991,
pp. 233-242.

51

