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Abstract 
Recent developments in software and hardware 
changed the way database systems are built and 
operate. In this paper we present database ar- 
chitectures based on the Client-Server paradigm 
and study their performance and scalability un- 
der different query/update workloads. The ar- 
chitectures are: Standard Client-Server, Client- 
Server with Multiple Disks, and Enhanced 
Client-Server. Data replication and client query 
result caching are used as the main mechanisms 
to improve the query throughput. The role of 
the server is to maintain system-wide data con- 
sistency and in the case of Enhanced Client- 
Server to selectively propagate updates on de- 
mand. Our study shows that except for the 
case of mostly update workloads, the Standard 
Client-Server architecture is outperformed by 
the other two architectures by one or more orders 
of magnitude. The Client-Server with Multiple 
Disks architecture offers performance compara- 
ble to that achieved by the Enhanced Client- 
Server for up to 100 clients, but the latter scales 
up a lot better for higher number of clients. 

1 Introduction 
Until recently, high throughput database processing was 

undertaken by a large mainframe that was the dedicated 
machine for all the data processing (ABGMSO]. The quest 
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for even higher performance led to the investigation of mul- 
tiprocessor systems in databases and database machines 
during the past decade [DGKt86, BS88, BE89]. These ef- 
forts focused predominantly on the optimization of large 
join operations by using multiple disks and processors. 
Their major disadvantage though was their excessive cost. 
Aside from their limited commercial success they managed 
to achieve some of their objectives [BE89]. 

During the last decade we have experienced a number 
of developments that are changing the way Database Man- 
agement Systems (DBMSs) are build and operate. First, 
we have seen the spectacular introduction and wide use of 
high-end workstations with very low prices. Second, disk 
units become larger and more reliable. Finally, computer 
network technology has matured and offers reliable opera- 
tions for file transfers, remote access and message handling. 
The main point of this paper is to show that the continu- 
ous demand for even higher system throughput in DBMSs 
[ABGMSO] can be achieved by combining off-the-shelf sys- 
tems running on multiple but single-CPU hardware. Such 
generic hardware solutions coupled with the appropriate 
software systems are less costly and a lot more flexible. 
In particular, we are concerned with the performance of 
modern Client-Server (CS) database architectures. 

All CS architectures we have studied consist of a number 
of workstations (clients), one or more large workstation(s) 
or mainframe(s) which undertake the role of the server(s), 
and a local area network connecting them all together. We 
assume that multiple databases running on different servers 
are autonomous and that no inter-database transactions 
exist. The client functionality ranges from just running 
the application with no caching on either main memory 
or disk and minimal or no decoupling between the client 
and the server, all the way to having full cache manage- 
ment capability on the client and high degree of decou- 
pling and data distribution. Each server can have either 
a single or an array of disks for parallel I/O. Several CS 
database architectures can be built with the above func- 
tionalities. This paper concentrates on the following: (a) 
No caching on the clients and single disk on each server. 
This is the standard and minimal functionality configura- 
tion (SCS). (b) No caching on the clients but multiple disks 
on each server (CS-MD) for data replication and parallel 
I/O. (c) Enhanced disk cache management functionality 
on the clients for dynamic data migration and incremen- 
tal maintenance of cached data, and a single disk on the 
server (E-CS). Downloaded and cached data provides the 
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replication needed for parallel I/O. (d) As in (c) with the 
addition of a special purpose buffer manager dedicated for 
facilitating the access of the server logs for the incremental 
cache management (E-CS-LB). We chose for evaluation 
the above (b-d) configurations as they are most compara- 
ble with regard to hardware (equal number of disks and 
roughly equivalent replication overhead). The SCS is used 
as the basis for our analysis. 

There are three basic classes of application databases 
which can be facilitated by the above architectures: 

1. Mostly Read transaction (MR) databases with a lot 
of read-only clients and very infrequent updates. The 
MRT class includes typical dial-in databases such as 
CompuServe, libraries, software repositories, internet 
ftp sites, etc. 

2. Constant number of Update transaction (CU) 
databases with many read-only users and a constant 
number of updates. This class includes databases 
such as those storing stock market quotes where only 
a fixed number of privileged users perform updates 
while the rest perform look up operations. 

3. Variable number of Update transaction (VU) 
databases in which both reads and updates are pro- 
portional to the total number of clients. The VU class 
includes traditional data processing environments. 

This paper is concerned with the expected performance 
ranges of these classes. 

There is a number of studies that deal with similar is- 
sues to those we are discussing here. Hagman and Ferrari 
[HF86] are among the first who tried to split the func- 
tionality of a database system and off-load parts of it to 
dedicated back-end machines. Roussopoulos and Kang 
[RK86] proposed the coupling of a number of workstation- 
based DBMSs loosely-coupled with a mainframe DBMS. 
A similar cooperation between a server and a number of 
workstations in an engineering design environment is ex- 
amined in [KDG87]. The DBMS prototype that supports 
a multi-level communication between workstations and 
server which tries to reduce redundant work at both ends 
is described. Rubinstein et al. in [RKC87] presented the 
RAD-Unify type of DBMS architecture where the server 
executes low level database operations (locking and page 
handling) while diskless workstations perform query pro- 
cessing and use their virtual memory to improve query re- 
sponse time. 

Dewitt et al. [DMFVSO] examine the performance of 
three workstation-server architectures from the Object- 
Oriented DBMS point of view. Wilkinson and Niemat 
in [WN90] propose two concurrency control algorithms 
for maintaining consistency of workstation cached data. 
Alonso et al. in [ABGMSO] support the idea that caching 
improves performance in information retrieval systems con- 
siderably and introduce the concept of quasi-caching. Dif- 
ferent caching algorithms- allowing various degree of 
cache consistency-are discussed and studied using analyt- 
ical queuing models. Delis and Roussopoulos in [DRSlb] 
examine the performance of incremental maintenance un- 
der light updates and show that this architecture offers 
significant increase of transaction processing. In [RD91], 
we give a short description of three CS DBMSs and report 
some preliminary results on their performance. Carey et 
al. in [CFLSSI] examine the performance of five algorithms 
that maintain consistency of cached data in client-server 
DBMS architecture. The important distinction between 

this work and those mentioned above is that client cached 
data are maintained in main memory and are not disk res- 
ident. Wang and Rowe in a similar study [WR91] examine 
the performance of five concurrency control-cache consis- 
tency algorithms in a Client-Server configuration. Their 
simulation experiments indicate that either a two phase 
locking or a certification consistency algorithm offer the 
best performance in almost all cases. Some work indirectly 
related to the issues examined in this paper are the Goda 
distributed filing system project [SKK+SO] and the cache 
coherence algorithms described in [AB86]. 

In this paper, we study the trade-offs between data 
replication (CS-MD) and query result caching (E-CS) and 
the effect of updates in the CS architectures. The role of 
each server is to maintain consistency while multiple copies 
of data or cached query results facilitate parallel I/O. Our 
study shows that except for the case of update-only work- 
loads the CS-MD, E-CS (E-CS-LB) architectures outper- 
form the standard Client-Server architecture by one or 
more in some cases orders of magnitude. The CS-MD ar- 
chitecture offers performance comparable to those achieved 
by E-CS (E-CS-LB) for an rather limited number of par- 
ticipating clients. We also investigate the scale-up behav- 
ior of all these CS database architectures. To the best of 
our knowledge, neither analytical nor simulation study has 
quantified the scalability issue. 

The paper is organized as follows: in section 2 we pro- 
vide a detailed description of the examined Client-Server 
DBMS architectures. Section 3 gives the simulation closed 
network models for all the DBMS configurations. Section 
4 discusses the results of our experiments. Finally, conclu- 
sions are found in the last section. 

2 Client-Server DBMSs 
The general Client-Server model for network appli- 

cations [SteSO] can be easily extended to database sys- 
tems. Indeed, a number of DBMS suppliers and re- 
search prototypes already follow this paradigm of comput- 
ing [DBP88, KGBWSO]. 

2.1 Standard Client-Server 
In this model, a database process running on a server 

machine (seTveT process) waits to be contacted by client 
processes. If no request is issued by the clients then the 
server process goes to sleep waiting for some request to 
occur. A client process opens up a communication channel 
and connects to the specific address of the server machine. 
The server process listens to the LAN and whenever it. 
receives a message, it wakes up in order to compute the 
incoming request. 

The processing of a request is done with the spawning 
of a server (lightweight) process for every client request. 
These newly spawned service processes as also known as 
concurrent servers [SteSO]. All the concurrent servers 
have to go through the system loop-interleaved CPU and 
disk operations. As soon as a concurrent server process 
completes its computation, it passes its results and/or mes- 
sages through the open communication link with the ap 
propriate client and finishes. It is the job of the client to 
close the communication channel and to continue the re- 
maining of its computation while having the server infor- 
mation available. The same model can be applied for client 
and server processes resident in the same machine. In this 
paper, we assume that clients and concurrent servers run 
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Figure 1: SCS Architecture 
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on different hardware. 
The SCS architecture off-loads CPU processing from 

the servers to the clients. The application programs along 
with other interface utilities-such as the DBMS presen- 
tation manager-are run on the clients without affecting 
the server. The bulk of the database processing and I/O 
remains a server task. Figure 1 presents a cluster of clients 
with a single server. 

2.2 Client-Server with Multiple Disks 
Although parallel application program processing is ad- 

vantageous, server resources and especially disk accesses 
constitute a great impediment into achieving high perfor- 
mance. The I/O congestion on the servers remains as high 
as in centralized single disk DBMS architectures. Thus, 
alternative architectures utilizing I/O parallelism must be 
explored. 

The CS-MD architecture incorporates a large number 
of disks on the servers and intelligent controllers which uti- 
lize multiple heads for reading in parallel from replicated 
data (Figure 2). We aSsume that each disk has a copy of 
the database -full replication- for it provides a practical 
approach to the data allocation problem [Wo189] and does 
not depend on the quality of the allocation and striping 
methods. This configuration is very similar to RAID level 
one [PGK88]. The job management uses a locking mecha- 
nism similar to that of the SCS concurrent servers with 
the only exception that it uses the read-one/write-all pro- 
tocol, that is, an update commits only when all disks have 
finished the update, and a read is done from a single disk, 
the one which is idle or has the lightest load. This configu- 
ration favors reads at the expense of updates but avoids the 
overhead of partial replication and skewed access patterns. 

Apparently, there are methods for reducing the replica- 
tion of data on the disk, but we are not concerned with 
this issue here. Disk striping and the various levels of 
RAID architectures proposed elsewhere [SM86, PGK88] 
deal with this problem but they could impose further de- 
lays for reads. We believe that the RAID level one config- 
uration lends for direct comparison with the E-CS archi- 
tectural variations. The major advantage of the CS-MD 
architecture is that it distributes read operations over a 
number of disks yielding better response times and ulti- 
mately increased system throughput. However, write oper- 
ations may create additional conflicts, more blocking, and 
increased overhead. We will show the range in which the 
read benefits offset the replication write overhead. Per- 
haps, a more serious disadvantage for this architecture at 

Figure 2: CS-MD Architecture 

this point is its cost, but this is outside the scope of this 
paper. 

2.3 Enhanced Client-Server 
The above two architectures centralize the database op- 

erations on the servers and distribute to the clients only 
application/interface processing. The Enhanced Client- 
Server architecture goes further and distributes to the 
clients a good portion of database operations. To achieve 
this, it utilizes the local disks available on the client work- 
stations for caching query results once retrieved from the 
servers and delivered to the clients. The additional merit 
is that the clients’ disks are accessed asynchronously con- 
tributing to greater I/O parallelism -whenever this is pos- 
sible. This architecture requires a disk cache management 
functionality on the clients for dynamic data migration and 
incremental maintenance or replacement of cached data. 
This functionality is very similar to that of a DBMS except 
that a) it needs no transaction recovery and security man- 
agers (each client user runs in his/her own locally cached 
environment), and b) it is capable of handling cached query 
results which are bound to server(s) relations. The E-CS 
architecture is depicted in Figure 3. 

Each database resides on a server’. Initially, the clients 
can start with either an empty local cache or with some 
data of their interest. Queries involving server relations 
are transmitted to and processed by the server(s). Their 
results-in the format of tuples-are shipped to the appropri- 
ate clients for displaying and/or other processing. Clients 
can then cache these results in local relations on their disk 
for later use. At that time, a binding between a client 
and the server is created. The binding in the format of 
query conditions and a timestamp is stored in the catalog 
of the client. Bound cached query results are the product of 
selections/projections/joins from the server relations. Dy- 
namic caching permits the clients to define their “opera- 
tional database spacen according to their needs and con- 
stitutes a form of replication. It is reasonable to assume 
that most clients would be interested in a subset of the 
database space, therefore, the degree of replication in N 
clients would be less (or a lot less) than N copies (full 
replication) of the whole database space. 

Updates are sent for execution to the server(s) which 
acts (act) as the primary site(s). Logs are utilized for 

‘In this paper we assume that each query references re- 
lations from a single server database even though multiple 
servers can be accessed at any time. 
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Figure 3: E-CS Architecture 

the recording and the incremental propagation of updates. 
We assume that these logs are not the same with those 
used for recovery. On the one hand, this introduces addi- 
tional overhead but, on the other, update propagation logs 
record only committed updates and are smaller and far 
more accessible than recovery logs of commercial DBMSs. 
Every server relation is associated with an update propa- 
gation log which consists of timestamped inserted tuples 
and timestamped qualifying conditions for deleted tuples. 
Each client, that caches query results, associates with ev- 
ery bound relation the last time (timestamp) the client 
received pertinent modifications from the server. These 
timestamps along with the client binding information are 
used for requesting the differentials from the update prop 
agation logs. In this way, the incremental maintenance of 
the cached data is implemented. The client cache man- 
ager (catalog) is responsible for keeping track of both the 
timestamps of the last update it received for each cached 
item and the binding conditions. This releases the server 
DBMS(s) from such a bookkeeping which multiplies very 
quickly with the number of clients. 

Query processing against already cached data is pre- 
ceded by a request to the pertinent servers to propagate all 
relevant changes. The servers are required to look up the 
portion of the log that maintains timestamps greater than 
the one submitted by the client so far. From this portion, 
only the tuples that qualify the client binding conditions 
need to be transferred. Thus, only relevant increments of 
the update logs are shipped back to the clients. Deferred 
(lazy), periodic, or eager update propagation strategies can 
be employed. The set of algorithms that carry out these 
tasks are based on the Incremental Access Methods for re- 
lational operators described in [RouSl]. The transmission 
of differentials significantly reduces data transmission over 
the network as it only transmits relevant increments affect- 
ing the bound object. This is in contrast to the previous 
two CS architectures in which query results are continu- 
ously transmitted in their entirety. 

It is important to point out some of the characteristics of 
the concurrency control mechanism assumed in the E-CS 
architecture. First, since updates are done on the server, a 
2-4 locking protocol is assumed to be running by the server 
DBMS (this is also suggested by a recent study [WR91]). 
For the time being, and until commercial DBMSs reveal a 
2-4 commit protocol, we assume that updates are single 
server jobs. Second, we assume that the update propaga- 
tion logs on the servers are not locked and, therefore, the 
server can process multiple concurrent requests for incre- 

mental updates. 

Another advantage of an E-CS type of architecture is 
that the client’s DBMS functionality can be used for in- 
corporating into the downloaded database portion other 
private relations for a value-added. Finally, from a relia- 
bility point of view, the crash of a single client workstation 
has no affect on the rest of the system. When, the failed 
client comes up, then it is brought up to date from the 
server’s logs, in the same incremental fashion. Even when 
a server goes down, only the updates of that server cannot 
be performed. Reads can be performed from the dowloaded 
data and/or other servers. This is not feasible for either 
the SCS or CS-MD architecture. 

2.4 E-CS with Buffered Logs 
The distribution of database operations in the E-CS 

architecture depends on the incremental access of the 
server(s) update logs. When the number of clients becomes 
very large and the updates are of significant size, the logs 
may become hot spots. To avoid this potential bottleneck, 
some parts of the logs could be buffered and all the rel- 
evant look ups are directed through the buffer first. The 
parts of the log that can not be found in the log buffer area 
are retrieved from the server’s disk. The potential bene- 
fit of this approach is that with a very modest amount of 
buffer space we can improve the performance of the E- 
CS architecture substantially. This configuration, which 
is a slight extension of E-CS, is termed Enhanced Client 
Server with Log Buffers architecture (E-CS-LB). In the 
worst case scenario, the E-CS-LB should demonstrate ap 
proximately the same advantages with those of E-CS. This 
would occur when updates are very large or too many for 
the buffer to retain the working set. 

3 Client-Server Models 
In this section we describe the models used for the 

simulations. We build them in an stepwise manner by 
discussing first database operational parameters, network, 
buffer and log model features. Finally, we outline the de- 
veloped queueing models for measuring performance of the 
various CS architectures. 

3.1 DBMS Operational Aspects 
In order to achieve a fair comparison among the differ- 

ent variations of the Client-Server architectures, we use a 
fairly standard set of parameters for the SCS architecture 
(see Table I), and a slightly extended set to account for the 
enhanced architectures. Disk access times follow a uniform 
distribution with averages shown in Table 1. Every time a 
read from or write to the disk occurs a number of instruc- 
tions are executed by the appropriate CPU (read-a-page, 
write-a-page). We also distinguish the CPU required by 
DBMS for performing a selection, a projection, a join, and 
an update on a page that is already resident in main mem- 
ory. Issues of DBMS buffer management on the servers 
[CD851 are not considered in our models, although they 
could be incorporated with a reasonable effort. 

Database requests are submitted by the clients in the 
form of jobs. Each job consists of a DBMS operation (such 
as select, join etc.) on either base relations or cached query 
results. All these requests are enclosed in a pair of BE- 
GIN-JOB and END-JOB control statements. Every job 
can be either of read (select, project, join) or write type 
(insert, delete, or update). In [WR91], it is shown the 2-b 
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(phase) locking protocol for server transactions gives sys- 
tern performance comparable to those attained with more 
elaborate ones. Thus, we use this standard 2-d locking 
protocol for maintaining consistency on the servers. 

Deadlock detection is done by maintaining a wait-for- 
graph of all active processes during their execution. A 
time-out mechanism triggers a deadlock detection algo- 
rithm in which cycles in the graph of deadlocked processes 
are discovered and one or more processes in a cycle are 
preempted in order to allow the other(s) to continue their 
processing. Each time the deadlock detection algorithm is 
run, a &search msec per active process is charged, and if 
a deadlock is found a standard kill-time penalty is charged 
to the total CPU processing for finding and killing the least 
advanced job. The killed process is restarted after a delay 
which is proportional to the number of active jobs in the 
ready queue of the server. In order to avoid a potentially 
large number of restarted jobs, we restrict the maximum 
number of jobs that can be active at the same time on the 
server (multiprogramming level or mpl). 

[ 
IB’ 
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10 msec 
10 Mbits/set 
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3.2 Network Model 
Our network model is a rather simple means used 

predominantly for two purposes: a) to route mes- 
sages and acknowledgments between the server and the 
clients/workstations, b) to transfer to the corresponding 
client sites query results in the case of SCS and CS-MD, 
and/or incremental updates in the case of E-CS and E- 
CS-LB. The cost associated with the use of the network 
ha9 been measured in a recent experimental study [PJgl] 
approximately 3 msec for exchanging very short control 
messages between two workstations under relatively un- 
congested network. We use a higher network overhead 
to account for the more substantive messages and context 
switching cost TpC&l per message [HaI89]. In addition to 
this overhead, we charge data movement at a transfer rate 
of net-rate (Table 1). 

Figure 4: SCS Model 

3.3 Client Data Caching, Logging, and 
Log Buffer Management 

The E-CS clients usually start with no data cached 
from the base relations. As time passes, they incremen- 
tally cache on their disk query results that are of interest 
to them. In our simulations, we assume that during an ini- 
tial phase a portion of the base relations data is cached on 
the client disks. The portion of every base relation that is 
cached at this initial phase is represented by (YRel, where 
i is an index of a relation. Obviously, this factor ranges 
from zero to one and it can be specified individually for 
each client (Table 1). 

E-CS updates are charged not only with page writes 
into the base relations but also with additional page writes 
into the update propagation logs. For each committed job, 
the log write charge is a percentage of the correspond- 
ing page writes into the base relations (assuming that a 
dirty page does not have all its tuples changed). This 
percentage can be specified individually for each client 
(Write-Log-Fract). Logs are maintained in a strictly se- 
rial and append only fashion. For every log page inst-log 
instructions are required for this page to be processed. 

In the case of E-CS-LB, a buffer area in main memory 
is maintained in the server to hold exclusively log pages. 
This area is totally different from the buffer areas used by 
the server DBMS. At the very beginning all this space is 
free and gets loaded as log pages are read for the propaga- 
tion of increments. The replacement of the pages is done in 
a FIFO discipline and there is no discrimination against or 
for some specific relations of the database (global replace- 
ment strategy). The size of this buffer is buffer-size set to 
200 pages for the first part of the experiments. This buffer 
management favors relatively up to date cached query re- 
sults whose increments are still in the buffer area. Very 
outdated results whose updates fall outside the buffer win- 
dow are charged with the necessary I/O to read the log 
pages, as in the E-CS architecture. 

3.4 Simulation Queueing Models 
In Figure 4, a model for the Standard Client-Server 

architecture is shown. It consists of three parts: a) the 
client nodes (only one is depicted for brevity) b) the 
network manager and c) the server. The client nodes 
are made up of two components, its processing unit 
(ClientPRQueue, PR) which enables the client to run 
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Figure 5: CS-MD Model 

application programs, and the work-load module that is 
the element responsible for the generation of the submit- 
ted jobs. The format of the model interface allows for 
different work-loads to be formulated. The network man- 
ager model consists of two queues that forward messages 
from the clients to the server (NetlnQueue) and trans- 
fer results and messages from the server to the clients 
(NetOutQueue) [FD90]. 

The structure of the server model presented in Figure 4 
has been influenced by previous similar models such as 
those used in [ACL87, WN90]. Jobs enter the ReadyQueue 
and wait at this point until the server admits them for pro- 
cessing. A maximum number of concurrent jobs is allowed 
to avoid large number of job restarts and control data and 
resource contention. The MPL processing module over- 
sees the number of the active jobs. The additional jobs 
wait in the ReadyQueue until they become active in which 
case they advance to the CCQueue (Concurrency Control 
Queue). 

The role of the CC processing module is multiple. First, 
it handles job requests for disk pages. In order to retrieve 
them the appropriate locks need to be acquired. Locks 
are of two types: exclusive or shared. The standard lock 
compatibility matrix is being used [GLPT76]. We assume 
that the lock table is main memory resident, and there- 
fore, there is virtually no overhead for the processing of 
the locks. Once the lock requests have been processed, 
there are several paths a job may take. The first is that 
all the required locks are obtained and the job is queued 
at the DiskQueue for service by the data manager. The 
second is that the job is blocked due to a lock conflict and 
has to wait until this conflict ceases to exists. Thus, the 
job enters the BlockedQueue and after spending some time 
in there (H-delay) re-enters the CCQueue for another lock 
request trial. Every time a blocked job is redirected to 
the BlockedQueue a time out counter is incremented. As 
soon as the value of this counter reaches an upper bound, 
a deadlock detection algorithm is invoked by the CC pro- 
cessing module. If a cycle is found in the wait-for graph 
a job to be killed is selected and aborted. This decreases 
mpl by one and the killed job joins again the ReadyQueue 
of the server. If a job is about to commit (finished all the 
reading, processing and writing back to the disk) then it is 
directed into the CM module that releases all the job locks 
and queues the result into the NetOutQueue for transfer 

Figure 6: E-CS Model 

into the proper client. 
The data manager consists of the DiskQueue and the 

Disk processing unit. The Disk module “charges” time 
for the disk operations performed by the server. As soon 
as job pages have been retrieved from the disk, they are 
placed into the processing queue (PRQueue). The PR 
processing module “charges” the CPU with the appropriate 
amounts of time for the different types of DBMS processing 
(selection, projections, etc). After that point, jobs enter 
again the CCQueue to continue their lock and page request 
cycle until they finish. 

In Figure 5, the Client-Server with Multiple Disks 
model is presented. The generation of the jobs and their 
admittance into the server is done in exactly the same way 
described for the SCS model. The only difference is in 
the way the data manager has been constructed in this 
case. A number of n disks constitutes the server data man- 
ager. The disk router is the element that decides on what 
DiskQueuei a current retrieval request needs to directed 
to. Although read jobs go through one disk only, write jobs 
require to flush their results in all disks. Writes commit as 
soon as all the disk units have enforced their updates for a 
particular update job. 

Figure 6 shows the closed network model for the En- 
hanced Client Server architecture. There are two funda- 
mental differences from the model of Figure 4. The first 
is that all the workstations (clients) have been provided 
with a local disk to facilitate cached data and have a 
DBMS running locally which occasionally interacts with 
the server database. Therefore, the client model has been 
changed slightly to include a disk unit made up of a queue 
(ClientDiskQueue) and a local data manager ClDisk. 
Once all required increments are received from the server 
and written into the local disk, the processing of the query 
(initiated by the work-load module) may commence. All 
the processing time (CPU and disk time) is charged on the 
local resources. 

The second difference is that the structure of the E-CS 
server has been extended in order to reflect the incremental 
DBMS accessing. Every time a client sends a request, cer- 
tain sections of the logs need to be retrieved and processed 
in order to decide if they are relevant to the work done by 
that client. Write type of jobs follow the processing route 
at the server model as explained in the SCS model. After 
a read job enters the server “core”, it is the task of the 
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Figure 7: E-CS-LB Model 

CC processing unit to direct this job to the disk queue for 
log page retrievals. Thus, there is a differentiation in the 
type of pages the data manager retrieves: they are either 
pages required for the processing of updates or log pages. 
The former are directed through the PRQueue and finally 
via the processing PR module back to the CCQzLeue. The 
latter through the LogQzLeue are processed by the LG pro- 
cessing unit and the filtered portion of the retrieved log 
(increment) is directed via the NetOueue to the proper 
workstation. The CC module in addition to the usual pro- 
cessing has to perform an extra operation at the commit 
time of a job, that is to write the updates-in the format of 
insertions and deletions-in the appropriate log area. 

Figure 7 shows the enhanced E-CS model with log 
buffering capability for the server (E-CS-LB). As soon as 
the concurrency control mechanism determines that some 
increment is required, the buffer area is looked up in order 
to determine if a portion of the log is already there. If 
found then it is directed to the LogQvezLe for the proper 
processing. Otherwise, the log is accessed from the disk. 
Log pages are processed by the LG module (Table 1) and 
those retrieved from the disks are placed into the buffer 
area using FIFO replacement policy if required. 

The simulation packages for all four models were written 
in C and their sizes vary from 4.8K to 5.4K lines of source 
code. 

4 Simulation Results 
This section presents our evaluation methodology and 

major simulation results. 

4.1 Measurement Methodology 
Workload modeling is one of the most important as- 

pects in any evaluation study [Fer84]. During this model- 
ing the major system parameters are identified. We range 
the values of these parameters in order to reveal the opera- 
tional advantages and disadvantages of the systems under 
examination during the measurement phase. In our mod- 
els, there are four groups of such important parameters. 
Namely, those concerning with: 1) the hardware (i.e. CPU 
power, disk access time, number of disks etc.), 2) the logical 
processing system (i.e. multiprogramming degree, DBMS 
operation costs, etc.), 3) the data resources (i.e. number 
and size of server relations, data sharing, replication, per- 
centage of workstation cached server relations etc.) and 4) 

the client dynamic patterns of data access that deal with 
the system job mix. In our experiments, we have tried to 
address all of the above groups of parameters but the main 
emphasis was given to the last item. The means to specify 
the client data patterns of access is that of job streams. 
A job is either a query or an update. A job stream is a 
sequence of jobs made up by mixing queries and updates 
in a predefined proportion. In the two extreme cases, we 
can have either query or update only streams. Every client 
is assigned to execute such a stream. 

Using the stream to vary the query/update ratios and 
according to the database classification given in the first 
section, we run two families of experiments: 1) those with 
Constant number of Update jobs (CU), where a constant 
number of four streams submit updates and the remaining 
clients queries only. 2) Those with Variable Update jobs 
(VU) where each stream is a combination of both queries 
and updates-updates constitute 10% of all the jobs and 
are uniformly distributed over the queries. We also ex- 
perimented with two types of queries: Large Read jobs 
(LR) that have read page selectivity of up to 30% of the 
base relations and Small Read jobs (SR) with page selec- 
tivity up to 10%. Updates are carried out on the server 
base relations with page selectivity varying from 0% to 
8%. The update page selectivity specifies the percentage 
of the base relation pages which have to be written by an 
update. The 0% update selectivity streams corresponds to 
MRT databases. 

Four experiments were conducted using job streams cor- 
responding to: CU-LR, CU-SR, VU-LR and VU-SR. In 
the simulations, we vary two parameters : the number of 
participating clients from 10 to 250 and the update page 
selectivity from 0% to 8%. The simulators create streams 
by randomly selecting jobs from sets of query and update 
templates. The page update selectivity remains the same 
throughout all the modifications of the same job stream. 
The number of participating jobs per stream was selected 
to be long enough (80) so that the systems reach a stable 
state before finishing with confidence of more than 96%. 
The same exactly streams were submitted in all CS config- 
urations. 

The main performance criterion for our evaluation is the 
overall average job throughput of the various CS configu- 
rations. The average throughput is defined as: 

Ti = 
Number of Jobs Completed 

Average Completion Time for all Clients ’ 

(i = SCS, CS-MD, E-CS, E-CS-LB) where the comple- 
tion time for a client is the commit time of the last job of 
its stream. The average throughput is measured in jobs 
per minute (JPM). We also use log buffer hit ratio and 
network utilization to analyze some of our results. 

In the first set of experiments, client think time (which 
is the time between the completion of one job and the sub- 
mission of the next) is set to 0. The rational for this is 
that we wanted to test the CS architectures under strin- 
gent conditions. In a later subsection, we present some 
additional results as we increase the think time. We also 
examine the performance of the configurations under pure 
update loads, representative results from the network uti- 
lization and the performance of E-CS-LB under increased 
buffer sizes. 
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Figure 8: CU-LR Experiment in SCS 

Figure 9: CU-SR Experiment in SCS 
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Figure 11: VU-SR Experiment in SCS 

Figure 12: CU-LR Experiment in CS-MD 

Figure 10: VU-LR Experiment in SCS Figure 13: CU-SR Experiment in CS-MD 
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Figure 14: VU-LR Experiment in CS-MD 

4.2 Experiments and Analysis 
All simulations measure the performance of one server 

with a variable number of clients. Such a cluster pro- 
vides the basis for comparison. Figure 8 shows the average 
throughput rates for the CU-LR experiment on the SCS ar- 
chitecture. Five curves are graphed each one corresponding 
to streams with update selectivities O%, l%, 2%, 4% and 
8%. The highest throughput is obtained when a relatively 
small number of clients is involved and varies from 12.7 
JPM for the 0% curve to 8.6 JPM for the 8% curve. Over- 
all, the performance of the non-zero curves follows closely 
that of the zero curve throughout the range of the experi- 
ment. We observe a steep decline in the performances for 
the area between 10 and 35 clients. This occurs because the 
fraction of the number of relatively short lived updates over 
the number of queries in this area is significant. For more 
than 50 clients, we observe that all the curves stabilize in 
the same approximately throughput rate of 8 JPM (high 
disk utilization area). Figure 9 shows the results obtained 
by using small queries but the same updates as in Figure 8 
in the client streams (CU-SR). The achieved throughput 
rates are higher than those of Figure 8 since the size of the 
submitted queries is significantly smaller. Again beyond 
50 clients, rates stabilize around 30 JPM. 

Figures 10 and 11 show the throughput rates for the 
VU-LR and VU-SR experiments on the SCS configuration. 
For up to 100 clients, we see no significant degradation 
of JPM in the LR case contrary to Figure 8. After that 
point, the performance deteriorates faster and faster as the 
update page selectivity increases. The same phenomenon is 
observed in the SR case (Figure 11) from almost 50 clients. 
Both blocking and restarted transactions are responsible 
for the rapid configuration performance deterioration. This 
confirms the analytical results reported in [TR91]. Overall 
in the VU experiments with up to 100 SCS clients, we 
achieve somewhere between 7.5 and 8.5 JPM for the LR 
case and between 16 and 34 JPM for the SR case. 

Figure 12 presents the results of the CU-LR experiment 
on the CS-MD configuration. The 0% update selectivity 
curve provides the best performance as expected. For more 
than 30 clients, it shows a small decrease and later on a 

Figure 15: VU-SR Experiment in CS-MD 

stabilization around 98 JPM. This is somewhat surprising 
since one would expect for a linear increase in the perfor- 
mance given the non-blocking nature of these transactions 
(effectively no database modifications) and the increasing 
number of disk units. There are three major reasons for not 
showing this type of behavior. The most serious delays are 
imposed by the server CPU that reaches saturation state 
for more than 100 clients. Second, the size of the query 
answers is large and increase the network utilization dras- 
tically for more than 100 clients(ranges from .77 to .81). 
Finally, the multiprogramming degree set at I2 imposes a 
limit on the number of processes working concurrently at 
the server site (in the next section we present some exper- 
iments on this factor). 

For the non-zero update rate curves there are clearly 
three regions identified: 10-25, 30-50, and beyond 50 
clients. In the first region, the curves are distinct and we 
can see that the larger the updates are the more penalties 
are imposed on the throughput (the role of the writes is 
dominant in this region). In the second region, there is 
no clear winner and the curves are typically “mixed” as a 
result of deadlocks. In the region beyond 50 clients, the 
throughput rates tend to converge to around 90 JPM. We 
observe no more “anomalies” because the queries dominate 
the updates and the effect of the latter is being diluted in 
the cost of the former. Figure 13 shows the results of the 
CU-SR experiment. 

Figures 14 and 15 present the results for the VU-LR 
and VU-SR experiments respectively. There are two points 
to be made: the first is that the 0% curves reaches a high 
point at about 50 clients and then remain approximately 
at the same level with values similar to those of the 0% 
curves of Figures 12, 13. The 8% update curve deteriorates 
almost as rapidly as the SCS and at 250 clients drops to 
only two times higher throughput than the corresponding 
SCS. This is the result of the nature of the disk operations 
(read one-write all) and the linearly increased number of 
updates with the number of the clients. In the VU-SR 
experiment and for the region of more than 150 clients, 
the performance values of the 2%, 4%, and 8% update 
selectivity curves are either about the same as their SCS 
counterparts or sometimes worse (at 250 clients). 
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Figure 16: CU-LR Experiment in E-CS 

Figure 17: CU-SR Experiment in E-CS 

Overall for the CS-MD configuration, we observe 
roughly a lo-fold improvement over the SCS for the CU 
experiments. Because the number of updates is constant 
the use of multiple disks offers significant improvement. 
However, in the VU experiments, the linear increase of the 
updates diminishes much of the benefit to very moderate 
improvements of less than 4 times at about 100 clients and 
almost no improvement in the area of 200 clients and above. 
The increased blocking caused by the 2-4 locking dictates 
the maximum throughput and clearly demonstrates that 
no further improvement can be expected under this con- 
currency protocol. 

Figure 16 shows the E-CS performance results for the 
CU-LR experiment. The 0% update curve indicates that 
the throughput of the system increases almost linearly with 
the number of the clients attached to the server. This 
is due to two reasons: 1) the clients use their local disk 
units to answer queries based on the already cached data 
(the portion that has been cached in the initial phase of 
the experiment which is 50% of the server base relations) 
and 2) the server carries out negligible data operations (no 

updates processed at the server site), no log maintenance 
operations, and handles only request and acknowledgment 
messages routed through the network. It is worth noting 
that the 0% curve presents some decline for more than 200 
clients. This is a clear indication that the network gets 
saturated. Indeed, the network utilization increases from 
about 0.191 in the case of 50 clients to 0.758 for 200 clients 
and 0.880 for 250 clients. As the update rate of curves 
increases, the throughput increases for the l%, 2% and 
4% curves for up to 100 clients. After that point, we see 
that the performances for all obtained curves are leveled off 
and they remain at approximately the same levels through- 
out the experiment(250 clients). This happens because no 
server or client resource has reached its maximum utiliza- 
tion for the whole range of the experiment. For 100 clients, 
the E-CS achieves 334 JPM for the 8% and 1392 JPM for 
the 0% curve. Comparing with MD-CS, this represents 
a many-fold improvement that ranges from 3 to 14 times 
respectively. 

Figure 17 depicts the results for the CU-SR experiment. 
There are two major differences with the curves of Fig- 
ure 16. The 0% update rate curve “breaks” its almost 
linear growth at the point of 100 clients a lot earlier than 
before. This is due to the shorter turnaround time of the 
small queries and the lack of think time. Although shape- 
wise the non-zero update curves remain similar, the actual 
throughput rates are higher (at 100 clients 2866 JPM for 
the O%, 1054 JPM for the 2% and 367 JPM for the 8% 
curve). Note, that throughput rates for all curves increase 
with steeper slopes than those of Figure 16. 

Figure 18 shows the results for the VU-LR experiment 
on the E-CS architecture. The 0% update rate curves 
show almost the same behavior with its counterpart of Fig- 
ure 16. The non-zero curves (except that of 8%) indicate 
the achieved throughput rates increase for up to approx- 
imately 50 clients. After that point throughput rates de- 
crease and they seem to asymptotically follow the horizon- 
tal axis of the graph. The decline happens because of both 
the high server disk utilization (reaching almost 100% for 
all curves and for more than SO-70 clients), and the heavy 
use of the server CPU (utilization averaging at 82%). The 
maximum performance points for the non-zero update rate 
curves are termed “maximum throughput threshold” (r&t) 
points [DRSla] and specify the end of the regions in which 
we obtain almost linear performance with the number of 
the clients. These mtt points are dependent on the update 
selectivities as well as the query/update ratio. They fall 
in the area of 35 to 50 clients for our experiments. Ap- 
parently, the increased number of updates in the VU-LR 
case limits significantly the performance of the system in 
comparison with that of the CU-LR experiment. Even 
so, the E-CS achieves 236 JPM for the 1% curve which 
is 12 times better than the corresponding rate of the CS- 
MD configuration for 250 clients. The 8% curve at 250 
clients maintains 58 JPM or 5 times better performance 
than its corresponding MD-CS value. The E-CS gives this 
improved performance for predominantly two reasons 1) 
the off-loading of the server disk operations and 2) the 
parallel access of the client disks. 

Figures 20, 21, 22, and 23 depict the results of the four 
experiments in a E-CS-LB configuration with a server log 
buffer area of 0.4 MB (200 pages). The benefits for all the 
non-zero update curves are apparent in all graphs. In the 
CU experiments, the l%, 2% and 4% curves almost touch 
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Figure 18: VU-LR Experiment in E-CS 
Figure 21: CU-SR Experiment in E-CS-LB 

Figure 22: VU-LR Experiment in E-CS-LB 
Figure 19: VU-SR Experiment in E-CS 

Figure 20: CU-LR Experiment in E-CS-LB 

the 0% curve while the 8% curve moves up considerably 
from its previous positions. Note that in Figure 21, the l%, 
2%, and 4% for more than 150 clients behave similarly to 
the 0% curve due to the network bottleneck. The gains are 
more remarkable in the VU experiments (Figures 22 and 
23). The simulation showed that the major reason for the 
E-CS performance declination was the heavy access of the 
disk based log. Once a buffer area for the logs is provided, 
a lot of disk accesses are avoided even with a very modest 
size log buffer. In these experiments, we observe very small 
improvement for the 8% curve. This is due to the fact that 
the size of the modifications are substantial and the buffer 
size can not accommodate it. Similar behavior is observed 
in the low update rate curves for the region beyond 200 
clients. Although the modifications are relatively small, 
the increased number of clients creates a significant number 
of page faults as Figure 24 indicates. 

Figure 25 shows the utilization of the network for the 
three configurations (SCS, CS-MD, E-CS) and for two up 
date page selectivities: 0% and 8% (CU-SR). In the SCS 
case, we see some small increase in the system network uti- 
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Figure 23: VU-SR Experiment in E-CS-LB 

Figure 24: E-CS-LB Buffer Hit Ratios for VU-LR 
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Figure 25: Network Utilization Chart 

Figure 26: MD-CS with 1x1~1~48 and CPUmipsz28,lOO 

Figure 27: Update Only Streams 

lization in the area between 10 and 20 clients and then the 
utilization remains constant. For more than 20 clients, uti- 
lization remains at about 6% because the server disk bottle- 
neck does not allow faster production of query results. The 
0% curve of the CS-MD configuration increases for up to 50 
clients and then it remains stable. This is the point where 
the CPU becomes highly utilized (around 97%) and the 
network is another bottleneck (almost 80% of utilization). 
The parallelism achieved in the disk retrieval operations 
contributes to shorter turnaround transaction times and 
results are queued in the network queue in a much faster 
way than that of the SCS configuration. The blocking and 
the number of aborted transactions give a much smaller 
network utilization between 30 and 200 clients for the 8% 
update curve. The E-CS 0% update rate curve offers a net- 
work utilization increased in an almost linear manner with 
the number of clients. For the 8% E-CS update curve, we 
can see that the use of increments has significantly low- 
ered the utilization of the network if compared with the 
corresponding curve of the CS-MD configuration. 
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Figure 28: Use of Think Time Figure 29: Log BufTer Area with 2 MB 

4.3 Other Cases 
In this section we briefly describe some experiments that 

explore the behavior of the configurations under artificially 
skewed circumstances. 

Figure 26 presents the results of the CU-SR experiment 
run on a CS-MD configuration with the multiprogramming 
degree increased from the initial value of 12 to 48. This 
gives the opportunity to more processes to compete for the 
available system resources (especially the disk units which 
contribute to the longest transaction delays). In the graph 
of the Figure 26 there are two curves that correspond to 
this experiment namely those tagged “0% 28MIPS” and 
“8% 28MIPS”. The first curve shows clear improvement 
over its counterpart of the Figure 13. The second curve 
shows also some minor improvement as well and it finally 
stabilizes around the area of 405 JPM. We run the same 
experiment using multiprogramming 100 but we did not 
observe any serious improvement in the CU-SR. On the 
contrary, the non-zero update curves in the VU type of 
experiments experienced certain setbacks due to the large 
number of deadlocks that occurred. We next increased the 
server CPU power to 100 MIPS in order to alleviate one of 
the major bottlenecks and obtained the curves labeled “0% 
100MIPS” and “8% 100MIPS”. As one can observe, the 
improvement is insignificant. Thus, we ascertain that the 
central control of disks units with an extremely powerful 
CPU suffers from a scalability problem. 

We then turn our attention to pure update workloads. 
Streams were made up of update batches. Figure 27 shows 
the results of this experiment for all configurations and two 
update selectivities: 2% and 4%. The curves are falling 
very close together for the two different update rates with 
SCS having the slightly better performance. E-CS does 
not only need to commit the updates but also to write 
the appropriate log pages. This clearly indicates that all 
configurations are comparable in processing update-only 
transactions. 

Think time has been considered zero in all the exper- 
iments so far. Figure 28 shows the results of the CU-SR 
experiment with the exception that the think time between 
transactions is distributed uniformly with an average of 40 

sets. Only two curves are graphed per configuration (0% 
and 4% update rates). The experiments are shown for up 
to 45 clients since beyond that point the behavior of all 
the curves is similar to those observed in the previous sec- 
tion. It is worth noting that between one and twenty clients 
the models give very comparable results. However, beyond 
twenty clients the CS-MD and E-CS are the clear winners. 

The last experiment we present measures the effect of 
log buffer size in the E-CS-LB configuration. We com- 
pared the results of the CU-SR experiment using 1000 
buffer pages (2 MB) with those obtained with 200 pages 
(Figure 29). Only three curves are illustrated (2%, 4% 
and 8%) and have been superimposed on the correspond- 
ing curves of Figure 23. Throughput rates of the E-CS-LB 
system improve in certain high client regions. CPU uti- 
lization on the server increases as well (since more pages 
were present in the log buffer area). The biggest gain is 
observed in the 2% update rate curve whose throughput 
at 250 clients from about 1000 JPM goes up to almost 
2250 JPM. Similarly impressive gain is observed for the 
4% update curve. However, the gain for 8% update curve 
is insignificant. This points out for such large update page 
selectivity a much larger buffer is necessary. 

5 Conclusions 
In this paper we presented and evaluated three Client- 

Server architectures under multiple job streams of different 
complexity and varying update rates. Essentially, these ar- 
chitectures extend the memory hierarchy and capitalize on 
the availability of client CPUs to off-load data processing 
from the servers. Although it is possible to store very large 
volumes of data in each server, this approach does not scale 
up well. The narrow I/O bandwidth remains the stumbling 
block. The multiple level memory hierarchies examined 
here alleviate the I/O problem of a single site and create a 
greater bandwidth for data handling. The CS-MD achieves 
shorter disk seek times using multiple disks with replicas 
of data. The E-CS type of architecture offers an effective 
solution to the scalability problem. Its extended multiple 
level memory hierarchy (client main memory-client disk 
space-server main memory-log buffers-server disk space) 
can accommodate a larger number of clients. 
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Our study indicates that the standard Client-Server ar- 
chitecture has inferior performance in almost all cases un- 
less mostly updates are submitted by clients. In all other 
cases, CS-MD and EXS outperform SCS, some times by 
orders of magnitude. In the lower range of clients (lo-loo), 
the performance of CS-MD and E-CS are roughly compa- 
rable with a slight edge for the E-CS. Beyond that area 
though, the E-CS offers much better performance. This 
is mostly due to the increased I/O bandwidth attained by 
the parallel access of the cached data. The simulations 
revealed that under the presence of many clients the log 
buffer of the server further improves the performance of 
the E-CS configuration. 

Further performance enhancements for the Client- 
Server architectures can be obtained by having multiple 
servers with load balancing of client requests. However, 
the ultimate limit is the serialization dictated by the lock- 
ing protocol. Beyond such a point, performance and scala- 
bility could only be increased by more liberal concurrency 
protocols than the strictly serializable ones. 
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