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Abstract 

Process-centered software engineering environments, 
such as Arcadia, impose a variety of requirements 
on database technology that to date have not been 
well supported by available object-oriented databases. 
Some of these requirements include multi-language ac- 
cess and sharing, support for independent relations, 
and support for triggers. Triton is an object-oriented 
database management system designed to support the 
Arcadia software engineering environment. It can be 
used as a general purpose DBMS, although it has spe- 
cialized features to support the software process capa- 
bilities in Arcadia in the form of the APPL/A [SutSO] 
language. Triton was developed as prototype to ex- 
plore the requirements for software environments and 
to provide prototypical solutions. By making these re- 
quirements known it is hoped that better solutions will 
eventually be provided by the database community. 
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1 Introduction 

By now, there is a general understanding that object 
management1 is central to software engineering envi- 
ronments. It serves as one of the primary means for 
integrating components of the environment by provid- 
ing a common set of data structures (schema) and a 
shared repository for persistent objects. A sufficiently 
dynamic object manager is also important in providing 
extensibility in an environment by allowing incremen- 
tal extensions to the schema and hence to the range of 
tools that can share information. 

The Arcadia project jKad92, TBC+88] is construct- 
ing an environment that is one of the first of a new class 
of so-called software-process centered (or software- 
process driven) engineering environments. A process 
centered environment is one in which the programmer 
is guided in the task of producing software according to 
some methodology. Such an environment extends the 
more traditional tool-oriented environment by adding 
the capability to specify the process by which software 
is to be constructed. This is in contrast to a typical 
tool based environment in which the programmer is 
presented only with a collection of tools and is given 
no help in deciding how to apply those tools to produce 
a software product. 

It is assumed that a process-centered environment 
will be controlled by a model of the process written 
in some formalism. Osterweil [Ost87] has proposed 
the use of an executable programming language as 
that formalism. Such a language is called a process 
programming language (PPL). Arcadia uses a process 
programming language approach as the basis for its 
environment. 

Arcadia has been active in object management since 
its inception. As its environment has evolved, it has 
exposed a number of requirements for object man- 

‘The software engineering community tends to use terms 
such as object management rather than terms such as database 
management. But the various terms should be considered es- 
sentially interchangeable. 
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agement needed to support a process centered en- 
vironment. The Arcadia approach has consistently 
been to use existing database systems and to augment 
them with innovative features as necessary for meeting 
those requirements. We (Arcadia) have taken this ap- 
proach because we have found that database research 
prototypes2 provide many, but not all, of the capa- 
bilities needed to support a process-centered environ- 
ment. Modern database systems are very large and 
complicated pieces of software, spending tremendous 
amounts of effort to furnish reliable, secure, efficient 
storage management and concurrency control. Differ- 
ent research database prototypes provide, in addition, 
such features as schema dynamism, long transactions, 
and very large object management. Arcadia has no 
wish to duplicate these capabilities. Unfortunately, at 
the time that Arcadia needed them, no single database 
system provided a combination of these capabilities 
sufficient to support a process-centered environment. 
Even today, it is not clear if any such system exists. 
Our approach has been to augment existing systems 
in order both to provide increasingly satisfactory ob- 
ject management in Arcadia and to gain clearer under- 
standing of the requirements for object management in 
a process-centered environment. 

Triton is one of the object managers in use in Arca- 
dia. It has been our primary vehicle for exploring the 
needs of the process-related activities within the Arca- 
dia environment3. Triton may be briefly characterized 
as a general purpose object-oriented database system. 
More specifically, it is a serverized repository provid- 
ing persistent storage for typed objects, plus functions 
for manipulating those objects. 

It is important to understand that Triton is not be- 
ing held out as a serious competitor to other databases 
being developed in the database community; it has a 
number of flaws in performance, robustness, and data 
model. Rather, it is a vehicle for demonstrating pos- 
sible solutions for the needs of software environments. 
The primary thrust of this report is to describe those 
requirements and the solutions embodied in Triton 
with the hope that the database community will incor- 
porate better solutions in their next round of research 
prototypes. 

‘T’riton uses an existing system, Exodus [CDG+SO], 
to provide much of its functionality (basic type model, 
buffering, persistence, etc.). Exodus was originally 
characterized as a database toolkit [CDF+86] where a 
database implementor used the elements of Exodus to 
build a custom DBMS. In practice, Exodus is better 

2The issue of commercial systems is addressed in section 9. 
3Arcadia uses several object managers for a variety of pur- 

poses. See [WWFT88] for information about another object 
management activity within the Arcadia project. 

characterized as a persistent programming language 
system. It consists of a storage manager and a persis- 
tent programming language named E [RC87]. E may 
be considered as a persistent version of C++, and like 
C++ it has the C type system augmented by classes 
with behaviorally defined methods. The original ex- 
pectation, as with most persistent programming lan- 
guage systems, was that application programs would 
be implemented as E programs and the collection of 
such programs would constitute a customized DBMS. 
Triton adds value to Exodus by adding features needed 
in Arcadia, but not directly provided by Exodus. Some 
of these additions, such as triggers, are driven by the 
needs of process support -and some by the problem of 
ger ‘ralizing persistent programming language systems 
to support software environments. 

This report may occasionally seem to be overly crit- 
ical of Exodus, but this is misleading. In many ways, 
the Triton effort pushes Exodus in directions for which 
it was never designed. We understand that its goals 
were not our goals and so mismatches should not be 
surprising. Exodus has performed well in Triton and 
it has demonstrated a remarkable degree of flexibility 
in meeting the requirements we imposed upon it. 

In this paper, we will address the requirements for 
software environments in the context of describing the 
architecture and associated rationale for Triton. We 
will then show some of its features: heterogeneity, the 
interface, dynamic definition, process language sup- 
port, and triggers. Finally, we will describe our obser- 
vations, insights, and lessons gained in the process of 
constructing and using Triton. 

2 Requirements 

The initial design of Triton was influenced by three 
general requirements that we felt were essential to sup- 
port any process-centered environment. 

l Efficient representation for the wide variety of 
software artifacts used within Arcadia: abstract 
syntax graphs, requirements and design nodes, 
configuration management graphs, test cases, 
documentation, and so on. In practice, the soft- 
ware community believes that only some form of 
behavioral object-oriented model extended with 
relations is sufficient. 

l Support for process coding languages-especially 
APPL/A. This requires a system supporting at 
least relations and triggers, or some equivalent 
form of event notification. 

l Standard and non-standard database concurrency 
and recovery mechanisms. This issue will not be 
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addressed in this paper. 

As the Triton project progressed, our understand- 
ing of the problems of object management deepened. 
The general requirements were elaborated and addi- 
tional requirements were added to reflect our increased 
knowledge. 

Multi-language interoperability is such an additional 
requirement. This requirement has become increas- 
ingly important as Arcadia has evolved and we now 
view this requirement as one that is co-equal in impor- 
tance with process support. This requirement stems 
from a variety of constraints. For example, many DOD 
programs mandate the use of Ada as the language for 
implementing systems. Many artificial intelligence sys- 
tems, such as AP5 [Coh88], already have a heavy in- 
vestment in Lisp, but could benefit from access to a 
object base. 

Additionally, we have seen that a single persistent 
programming language interface makes too many as- 
sumptions that turn out to be invalid for one or an- 
other application. For example, Arcadia uses two 
rather different models of persistence: persistence by 
type (as in E), and persistence by instance (as in 
PGraphite [WWFT88]. Both of these models have 
good justifications in terms of the applications that 
use them, but it is rare to find a database system that 
supports more than one model of persistence. 

Multi-language interoperability covers two capabili- 
ties. First, we require the object manager to be acces- 
sible from programs written in a variety of program- 
ming languages. Currently, Arcadia has components 
written using Ada, C, C++, Lisp, and Prolog. 

Second, it must be possible for programs written in 
various languages to share data. There are two typical 
ways to achieve sharing: (1) pair-wise conversion or 
(2) use of a common data model. We rejected choice 
one as being ultimately too time consuming and chose 
instead to use the common data model approach, even 
at the expense of such problems as incomplete model 
mappings. 28 The multi-language issue is part of the 
larger issue of support for general heterogeneity. Ar- 
cadia has had to face not only language heterogeneity 
but heterogeneity of machine architectures and com- 
piler heterogeneity (same language, same machine, but 
different compilers). Many of the issues that we first 
identified with multiple languages in fact can appear 
even within a single language. To state it strongly, 
interoperability over heterogeneous systems has now 
become a driving factor in the architecture of Briton. 

Dynamic definition of schema elements (including 
object methods) is another requirement for Triton. 
It is assumed that although any one application may 
use a stable schema, new applications will be contin- 
ually added to the environment, thus requiring new 

schemas. A catalog (or meta-database, or data dic- 
tionary) is a necessary corollary of dynamic schema 
definition. The catalog is needed to define the known 
schema and to allow browsing of existing schemas. In 
many database systems, this requirement would seem 
to be automatically provided. Unfortunately, Exodus, 
like many persistent programming language systems, 
did not have (or need) this capability, and so it became 
an additional problem for us to address. 

In addition to purely technical requirements, there 
was a requirement to reuse as much existing soft- 
ware as possible. If constructed from scratch, Triton 
would have taken too many resources to be practi- 
cal. So from the outset, it was important to avoid 
m-implementation. As a consequence, niton was con- 
structed using as much existing database technology as 
possible. It was important to focus the Triton effort 
onto those features essential to Arcadia and to reuse 
those components that were properly the domain of 
the database community. 

Obviously, a number of desirable capabilities (e.g., 
versioning), are missing from this list of requirements. 
But, at the time that the Triton project started (in 
early 1989), no system that was obtainable appeared 
capable of completely satisfying even this minimal set 
of requirements. We could find systems that had, for 
example, transaction management and triggers, but 
that were only accessible through a fixed program- 
ming language, or had difficulty with dynamic type 
creation. We decided that our only recourse was ob- 
tain a database manager offering a close match to our 
needs and to modify it. 

3 Overview of the Diton Ar- 
chitecture 

Figure 1 shows the architecture of Triton. It is a client- 
server architecture in which the client communicates 
with the server using a Remote Procedure Call (RPC) 
protocol. In this case, we use Q [MS89], which is a 
variant of the Sun RPC/XDR protocol that has some 
adaptations for multi-language interoperability. This 
is indicated in the figure by the arrow labeled “Q”. 
It represents a “calls” relationship between client and 
server. Discussion of the architecture of the client 
shown in the figure will be deferred to section 7. Suf- 
fice it to say that it communicates using RPC to call 
the interface functions provided by the server. 

The server has five major components. 

1. The server interface handles the details of receiv- 
ing requests from clients (there may be more than 
one), invoking the appropriate local procedure to 
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Figure 1: Triton Architecture. 

field the request, and returning any result back to 
the client. 

The catalog component is a meta-database written 
as a collection of E types. It records the structure 
of the schema currently known to the server. 

The ftigger manager interacts closely with the 
catalog and manages the attachment of triggers 
to various schema elements and their subsequent 
invocation. 

The application interface is the collection of meth- 
ods and functions defined by client applications. 

The Exodus Storage h!anagerprovides for the per- 
sistent storage of objects from the other compo- 
nents. In particular, it will store any data objects 
defined by Triton itself: trigger references and cat- 
alog objects, for example. Additionally, the stor- 
age manager stores actual application objects. 

The Triton Interface 

The Briton server presents a procedural interface to 
its clients. That is, to a client it “looks” like a library 
of procedures for manipulating schema elements and 

objects. Triton makes significant use of handles, which 
are references to objects in the server. The client can 
only get handles from server, copy them around, and 
send them as arguments back to the server. The client 
has no knowledge of the internal structure (if any) of 
the handles. 

Manipulating and accessing the Triton catalog rep- 
resents a significant portion of the operations provided 
by the server. The ‘Xton Catalog provides two major 
capabilities. 

Schema Definition: These operations allow a client 
to dynamically define schema elements into the 
catalog. Many operations return a handle to the 
defined schema element. The definable schema 
elements are classes, methods, functions, and for- 
mal arguments to methods and functions. There 
are corresponding schema operations to destroy 
elements, but their semantics are admittedly not 
well-defined. 

Name Space: The space of schema elements in the 
catalog is almost flat. At the top level are 
uniquely named classes and functions. Classes 
‘Lcontain” named methods, and methods and 
functions “contain” named formal arguments. 
The name space operations allow clients to con- 
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vert a name of a schema element into a handle for 
that element. 

The primary actions of the interface code are to re- 
ceive requests from clients to invoke methods or func- 
tions defined in the catalog. The typical E operation 
of invoking a method (roughly speaking, results = In- 
stance.method(inpzlts)) is mirrored by specific opera- 
tions in the interface. 

5 Managing Client-Server Het- 
erogeneity 

Triton is designed to operate in a heterogeneous envi- 
ronment. Heterogeneous in this case refers to differing 
machine architectures and/or differing client side pro- 
gramming languages. Minimally, it is assumed that it 
is possible to have TCP/IP connections between the 
client and the Triton server. In order to understand 
some of the Triton interface, it is necessary to under- 
stand how Triton manages these various kinds of het- 
erogeneity. 

Managing multi-language access and sharing has 
had a pervasive influence on Triton. Multi-language 
data sharing is achieved using a common data model. 
A subset of E, the Exodus persistent programming lan- 
guage, is used as the common data model. We exam- 
ined and rejected the idea of defining a new model as 
too resource intensive. The supported E-subset model 
includes basic types such as integer and float, as well 
as constructors such as struct and class. 

The major problem in using a common data model is 
data model mapping between the languages and types 
defined in the client and the types defined in the server. 
For any given type in the client language there must be 
a mapping to some equivalent E type(s). In practice, 
we have had little difficulty finding a reasonably large 
subset of E types that can be mapped to and from the 
other language type systems (see [HeiSO]). 

Multi-language access to Triton is provided by a 
standard remote procedure call protocol (Q) on top 
of TCPJIP. Q is designed to make access between Ada 
and C as simple as possible, and defines standard map- 
pings between a subset of C types and a subset of Ada 
types. A remote procedure call operates by marshaling 
the inputs to the procedure on the client side. That 
data is sent to the server along with some handle spec- 
ifying the remote procedure to be invoked. The server 
vnmarshals that data, and calls the appropriate proce- 
dure. It then takes any result, marshals it and returns 
it to the client. Without going into details, suffice it to 
say that any marshaling mechanism must provide two 
features: (1) linearization of arbitrary data structures 
and (2) a standard intermediate data representation. 

The requirement for multi-language access was crit- 
ical in determining the final Triton architecture. Ex- 
perience shows that we could not count on being able 
to place any portion of the code for the object man- 
ager (including method code) in the client (see section 
8.2 for more on this issue). As a result, we settled on 
the client-server architecture of Figure 1 with a Triton 
server residing in one Unix process and each client re- 
siding in a separate Unix process. This architecture 
closely resembles the original Gemstone [BOS91] ar- 
chitecture and the proposed Thor [Lis92] architecture. 
This separation solves many of the multi-language 
problems by placing the Triton system in one address 
space and restricting other language programs to sep- 
arate address spaces. In principle, any language that 
can support RPC can use the Triton server. 

6 Dynamic Definition 

In E, a method (or function) schema element is defined 
behaviorally. That is, it is associated with a piece of 
code that is executed when the method is invoked via 
an interface operation of the server. Methods may be 
dynamically defined in the catalog and so Triton must 
have some means for dynamically obtaining the code 
associated with the method. 

Our approach is to dynamically load compiled E 
code into the Triton server. This is represented in 
Figure 1 by the column of objects in the upper right. 
It shows E source code for the methods as input t.o the 
E compiler, which produces E object code. This code 
is loaded into the server to define methods, functions, 
and triggers. 

For this to work, Triton requires the use of a dy- 
namic loader. For the details behind dynamic loading, 
see [HeiSO]. After the method has been loaded, sub- 
sequent invocations are direct. Additionally, it is pos- 
sible (and common) to load multiple methods at one 
time, thus speeding up the process considerably. 

Unfortunately, in Triton there are two definitions 
of the structure of, for example, a class type. One is 
the structure defined in the catalog. The other is the 
structure implicit in the compiled method code. It is 
possible to have inconsistencies between the two defi- 
nitions, and this is, of course, deprecated. When and 
if the server takes more control over the source code 
for methods, this inconsistency will be eliminated. 

7 Triton Support for Process 

The key feature of a process centered environment 
is its ability to support and enforce processes for 



constructing software. It is assumed that multi- 
ple processes may be defined using a so-called “pro- 
cess programming” (or “process coding”) language. 
APPL/A [SutSO, SHOSO] is a prototype of one such 
process programming language. It is defined as an ex- 
tension to Ada [Uni83]. 

There is some consensus in the software engineer- 
ing community that object management support for 
process (and the products produced by the process) 
entails at least the following features: relations, trig- 
gers, constraints, and non-standard transactions. All 
of these are present in some form in APPL/A, and the 
first two have direct representations in Triton. The 
last two are subjects of ongoing research in Arcadia 
and will not be discussed further4. Section 8 will pro- 
vide some rationale for relations and triggers. As an 
aside, we note that each of these features can be used 
for other purposes; none of these capabilities is only 
for supporting process. 

This section will briefly describe the Triton support 
for APPLfA relations and triggers. We do assume 
some familiarity with Ada. Note that the relation sup- 
port is built on top of the object-oriented data model 
of Triton; it represents a notational extension to the 
model. 

7.1 APPL/A Relation Support 

In APPL/A, a relation looks like a combination of an 
Ada package and an Ada task. It defines the structure 
of the relation tuple and a limited set of operations: 
insert, delete, update, and find, This last operation 
(find) is used to provide a combination of tuple-at- 
at-time access and associative retrieval. As with Ada 
packages, a relation definitions has two pieces: a spec- 
ification and a body. The body is expected to provide 
implementations for the interface operations defined in 
the specification. See [SutSO] for details. 

Referring back to Figure 1, we can now examine 
the client architecture. The client shown there reflects 
the various layers required by an APPL/A program 
to communicate with the server. The top level appli- 
cation is defined in terms of a collection of APPL/A 
relation specifications. These specifications are imple- 
mented by relation body code. These bodies use the 
APPL/A generic relation interface, which is in turn 
implemented by a generic body. This generic body is 
defined using the Briton client interface library. 

On the server side, an APPL/A relation is defined 
by a corresponding E class providing methods match- 
ing the APPL/A operations of find, insert, update, 

4The reason is that the APPL/A transaction model is more 
general than can be supported by any currently available system, 
research or commercial. 

delete, and whose is a set of tuples. The dotted ar- 
row in Figure 1 from the APPL/A generic interface to 
the E-code represents this correspondence. The Tri- 
ton reference manual [HeiSO] may be consulted for the 
details. 

7.2 APPL/A Trigger Support 

Triton has augmented the E capabilities with a sim- 
ple form of trigger. As might be expected, a trigger is 
a piece of code that is invoked whenever some event 
occurs’. In Triton, the events that can invoke triggers 
are (1) method or function invocation and (2) method 
or function completion. There are important restric- 
tions on trigger attachment. 

l Only methods or functions invoked via the eval- 
uate-method or evaluate-function interface calls 
can cause triggering. Thus, an internal call from 
one function to another will not cause triggering. 

l Instance specific triggers are not provided. If a 
trigger is associated with a method, then every 
invocation of that method for all instances will 
invoke the attached trigger. 

8 Some Lessons from the Tri- 
ton Experience 

Constructing Triton has been an enlightening experi- 
ence. It has done much to clarify the actual require- 
ments for object managers when they are expected to 
support a process-centered environment. The follow- 
ing sections elaborates on some of the lessons that we 
learned from the Triton effort and provides additional 
rationale for the architectural choices outlined in pre- 
vious sections. 

8.1 Using A Persistent Programming 
Language 

We seriously underestimated the amount of effort that 
it would take to use a persistent programming lan- 
guage system as the basis for Triton. In retrospect, 
this may not be surprising since such systems were 
never designed to operate in a client-server environ- 
ment. But in defense of this activity, it is impor- 
tant to note that in recent years in the database 
community (and in the commercial word as well), 

5A state-based approach, as in AP5 [Coh88], is also possible 
in which the trigger is invoked when some defined system state 
is reached. Triton does not support this style of trigger. 
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many new research efforts have assumed a persis- 
tent programming language as their basic architec- 
ture [RC87, TW91, D+91, LLOWSl]. The assumption 
implicit in this approach is that all the programs that 
access stored data will be written in whatever persis- 
tent programming language has been chosen. Even in 
the cases [D+91, TW91] where multiple languages are, 
in theory, supported, there is no obvious provision for 
sharing data between those language. 

In any case, this language-specific approach turns 
out to be completely incorrect for an environment such 
as Arcadia. Multiple languages sharing data is the 
norm, not the exception. As we have seen with Triton, 
converting a language specific system to a more general 
system has a number of painful consequences: 

1. One is almost compelled to use the persistent pro- 
gramming language as the basis for the common 
data model for the system. But, the problem is 
that the type system of this language may be 
much more complicated than is necessary. Ad- 
ditionally, some of the features of the language 
(such as generics) have complicated implementa- 
tions that are difficult to model in the catalog. 

2. Overgeneralizing somewhat, it is typical for lan- 
guage specific systems to assume a relatively 
static type schema. It is often assumed that 
all the schema information is compiled into pro 
grams. Converting to a dynamically defined 
schema appears to require some form of dynamic 
loading of compiled code. This in turn requires 
significant support from the compilers, loaders, 
and even possibly the operating system. Port- 
ing Triton out of a narrow range of Berkeley Unix 
class of systems, for example, would be a daunting 
task. 

8.2 Separate Client and Server Ad- 
dress Spaces 

In our experience, it is a serious mistake to assume 
that one can load any component of the object man- 
agement system in the same address space as client 
code. Especially if the client code is written in a lan- 
guage different from the language used for the object 
manager. Run-time systems often make assumptions 
about their control over such things as signals, mem- 
ory allocation, and file descriptors. Our sad conclusion 
is that mixing run-time language support systems in 
the same address space will fail more often than no?. 
Perhaps in some distant future, there will be standards 

61n fact, contention can appear even with our minimal RPC 
support in the client. This happened with Ada and caused se- 

rious problems. 

for run-time systems, but until then, code mixing is 
fraught with peril. 

This dictum also applies to loading behavioral meth- 
ods into the client address space. It has been pro- 
posed [MaiSl] that the server should keep either in- 
terpretive versions of method bodies, or per-language 
versions of compiled method bodies that can be loaded 
into the client as needed. The use of interpretive mod- 
els should work, although it might require the con- 
struction of an interpreter written in each supported 
language, which may bring back all of the issues of 
run-time contention. We are sceptical about the use 
of any form of compiled code in a client. This requires 
the inclusion of dynamic loading mechanisms into each 
client, and we believe that run-time contention will 
cause this to fail. 

The alternative used in Triton keeps the object man- 
ager code plus the method body code in a separate ad- 
dress space. We recognize some of the costs involved in 
this approach; there are significant performance hits in 
transporting method inputs to the server and retriev- 
ing the outputs. This may in some cases be offset by 
the more efficient execution of the methods since they 
are closer to the data. 

8.3 Common Data Model 

Triton achieves multi-language interoperability by us- 
ing a common data model. Client data is converted to 
the common model and stored in the server. On re- 
trieval, the data in common format is converted back 
to the client model. In spite of our problems in using 
the rather ugly E/C++ type model, we were pleas- 
antly surprised at how well this approach worked in 
practice. We hypothesize that the client-server archi- 
tecture was the “cause.” That is, inherently when a 
client sends data to the server, it must convert the 
data to a standard linear form in order to ship it over 
a thin-wire connection to the server. Adding a lit- 
tle additional complexity to convert to and from the 
common data model is not a large burden. Given a 
shared memory model of client-server communication, 
the cost of conversion might seem more onerous. 

8.4 Support for Relations 

The software products managed by processes often 
take the form of a collection of objects with a vari- 
ety of graphs superimposed over those objects. It is 
important to realize that the set of all graphs may 
not be known a-priori7. For example, the nodes of 
an abstract syntax tree may need to be annotated 

‘There is an obvious correspondence to the Schema evolution 
problem. 
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with additional information for purposes of analysis. 
As new analysis techniques are defined, new annota- 
tions may be needed. Relations, defined over node- 
types, but independent of (i.e., not known to) the node 
type have proven to be extremely useful in represent- 
ing such annotations, a fact that others have recog- 
nized [Rum87]*. 

Our concern for relations has often been dismissed 
out-of-hand by proponents of pure object-oriented lan- 
guages. The claim is usually made that the user can 
just define relations using the object-oriented type sys- 
tem, and technically that view is correct. The issue is 
more one of notation than power. Languages such as 
APPL/A rely heavily on relations as a major structur- 
ing element in their type system. Languages such as E 
make defining and using relations inconvenient at best 
because they require the programmer to build up even 
elementary support elements such as selection, index- 
ing, and cursors that are needed to support a relational 
interface. In order to aid APPL/A based process sup- 
port, the Triton interface was substantially augmented 
to provide such support elements for the definition and 
manipulation of relations. 

8.5 Support for Triggers and Event 
Management 

Experiences in defining processes makes it clear that 
some equivalent of triggers is required as a means for 
responding to unanticipated events (e.g., an emergency 
change to a software requirement) and as a means for 
unobtrusive monitoring of process activities (e.g., to 
measure the productivity of a programmer). 

The trigger system in Triton may be considered a 
failure. As described in section 7.2, the trigger capa- 
bilities in Triton had too many limitations to meet the 
original requirement to support APPL/A triggers. It 
required trigger code to be rewritten from APPL/A 
to E and, more importantly, there was no mecha- 
nism for triggers to communicate back to clients asyn- 
chronously. 

As the Arcadia environment has evolved, a more 
important problem has surfaced: it is not clear that 
triggers even represent the correct abstraction. Most 
environments are moving to use a more general no 
tion of “event” a.5 a replacement for triggers. Control 
integration via events (as in Field [ReiSO] and HP- 
SoftBench [Hew89]) is rapidly becoming the norm. 

It is important to note that event systems are dis- 
tinct from the database notions of triggers and rules. 

80ne could use other structures, such as functions, 88 long 
as independent definition was maintained. Functions, however, 
would not be as useful in bidirectional query. 

In an event system, there is an event server (or dis- 
patcher) to which programs send messages represent- 
ing postings of events. Other programs may regis- 
ter with the dispatcher to receive events that match 
some specified pattern. As events arrive the dispatcher 
forwards them to registered programs as appropriate. 
The key feature here is that the dispatcher has very lit- 
tle knowledge about the senders and receivers of events 
or about the semantics of the events themselves. This 
results in a very flexible system in which new kinds 
of events may be posted dynamically and senders and 
receivers of events may come and go quickly. It is also 
important to note that the event dispatcher system is 
independent of any-database in the system. 

Trigger systems, as represented in most databases, 
often assume that only a fixed set of actions (e.g., ob- 
ject insertions and modifications) can generate events. 
More importantly, it is assumed that the action 
to be taken on event occurrence is known to the 
database system. With the possible exception of 
HIPAC [MD89), database systems appear ill-prepared 
to export their events to an external event dispatcher 
or to receive externally generated events. 

8.6 Performance 

The performance of Triton leaves much to be desired. 
And it is almost certainly true that better applica- 
tion of techniques already known in the database com- 
munity could significantly increase the performance 
of Triton. If the strict client-server split is main- 
tained, then there are some limits on the performance. 
On a Sun3, using Q and UDP, performing an evalu- 
ate-function on a function with an empty body and 
with no input or output takes about 20 milliseconds 
for a round trip. The primary costs are for RPC over- 
head and for catalog reference overhead. Use of shared 
memory, faster networks, and better protocols could 
help reduce the RPC cost. Reducing the catalog ref- 
erence cost is also possible. 

9 Alternatives 

At the time that Triton was first conceived, there were 
only a limited set of acceptable choices on which to 
base the effort. Right from the beginning, commercial 
systems were excluded from consideration both for li- 
censing reasons as well as lack of access to source code. 
This left only research vehicles to consider. This set 
was very small: apparently only Exodus and Postgres. 
We were intrigued by Postgres, but we had concerns 
that simulating an object-oriented database over rela- 
tions (even the extended relations of Postgres) could 
have some performance problems. In fact, the issue 
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was moot because Postgres did not become available 
until well after the Triton project was underway. This 
left the Exodus system [CDG+SO] from Wisconsin as 
our choice. In retrospect, this turned out to be a good 
choice because Exodus was quite robust and support 
was reasonable (given the inevitable limits associated 
with any research effort). 

At the current time, there are a number of systems 
that, with more or less work, could serve as replace- 
ments for Triton. 02 [D+91] and the Texas Instru- 
ments OODB [TW91] are similar to Exodus in that 
they support one or more persistent programming lan- 
guages. Presumably, with some work, these systems 
could be used in Triton in place of Exodus by using 
one of their languages as a common model and adapt- 
ing the dynamic loader to work with that language. 

Postgres [RS87, SR86, SK911 is now available, and if 
we had the resources, it would be interesting to rehost 
Triton onto Postgres. It obviously supports relations 
well, it has a catalog, and it has a form of trigger. The 
simulation cost question is still open. Additionally, we 
are unsure how well Postgres can deal with various 
kinds of heterogeneity. 

We originally rejected commercial systems, and in 
revisiting the alternatives, the problems of license and 
source code still remain. But we can now see that most 
of the commercial object-oriented systems support the 
persistent programming language model, which makes 
them no better than Exodus for our purposes. 

PCTE+ [GMT861 is a often considered by the 
software community to be the first choice as object 
manager for an environment. Simplifying somewhat, 
PCTE+ can be viewed as an augmented file system in 
which files can have contents and attributes, as well as 
links to other files. A link is a unidirectional pointer 
and two of them can combine to form a binary relation. 
PCTE+ also has a notion of trigger. Both Ada and C 
interfaces are provided for PCTE+, but interestingly, 
there does not seem to be any support for heteroge- 
neous access to data across the two languages. Finally, 
PCTE+ is very coarse grained; it supports objects of 
the size of files and very small objects could suffer large 
penalties in space and speed of access. 

Gemstone [BOS91], although commercial, seem 
much more promising as an alternative to Triton. 
Gemstone is derived from Smalltalk [GR83] and its 
interpretive nature would seem to make it possible to 
augment the system with the exact event mechanisms 
required. Interpretation also allows for dynamic load- 
ing. It is not clear if Gemstone has support for full het- 
erogeneous access. Also, getting the effect of generic 
relations might be a little difficult since Smalltalk does 
not appear to support that kind of polymorphism. 

As a by-product of our examinations of various sys- 

terns, we are beginning to define some “challenge prob- 
lems” that can help us determine the utility of a system 
for our purposes. At the moment, we can articulate 
several such challenge problems. 

1. For an arbitrary imperative language, show how 
one would write a schema browser/editor for the 
given database system. 

2. For two arbitrary imperative language, show how 
one would write a program that creates a schema 
and data using one language, and then reads and 
prints (in some reasonable format) that same data 
using the other language. 

3. Given two client programs, show how one can de- 
fine a trigger after the two clients have begun, 
and then show how both clients can be made to 
activate that trigger. 

4. Show what is involved in defining APPL/A rela- 
tions to utilize the given database system. 

5. Show how the given database system can export 
events to a Field-style broadcast message server, 
and define the set of events which can be gener- 
ated. For extra credit, show how the database can 
effectively receive and use such external events. 

The point of these problems is, of course, to see what is 
involved in multi-language access and sharing, trigger 
management, and relation support. 

10 Status and Future of Triton 

At the moment, a version of Triton with limited trans- 
action features is running on Sun 3 and Spare machines 
running Sun OS 4.1.1 or later. We are investigating 
the possibility of a Mach port. 

Triton is used within Arcadia to support our current 
process programs, such as REBUS [SZH+Sl]. It has 
been exported to some external groups such as the 
STARS project. 

Triton is undergoing a number of relatively short 
term enhancements: 

l The next version of Exodus provides transaction 
management facilities and we are currently re- 
hosting Triton to use these features. 

l We are working to replace Triton triggers with 
more general event mechanisms. 

. We are exploring alternative, and simpler, com- 
mon data models to replace E. 

l We are exploring performance enhancements. 
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11 Summary 

Triton is one of the first attempts to provide com- 
prehensive object management support for process- 
centered environments. It provides a behavioral 
object-oriented type model capable of supporting pro- 
cess programming languages. Briton also provides ex- 
plicit support for heterogeneous interoperability in the 
form of multi-language access as well as shared data 
using a common type model. Implementing Briton has 
increased our understanding of the requirements for 
such object managers and we are now in a better posi- 
tion to inform the database community about those re- 
quirements. New object managers that address those 
requirements would then be appropriate candidates for 
inclusion in a process-centered environment. 
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