
An Interval Classifier for Database Mining Applications

Rakesh Agrawal Sakti Ghosh Tomasz Imielinski* Bala Iyer

IBM Almaden Research Center
650 Harry Road, San Jose, CA 95120

Arun Swami

Abstract 1 Introduction

We are given a large population database that contains
information about population instances. The popula-
tion is known to comprise of m groups, but the pop-
ulation instances are not labeled with the group iden-
tification. Also given is a population sample (much
smaller than the population but representative of it)
in which the group labels of the instances are known.
We present an interval classifier (XC) which generates
a classification function for each group that can be
used to efficiently retrieve all instances of the speci-
fied group from the population database. To allow ZC
to be embedded in interactive loops to answer adhoc
queries about attributes with missing values, ZC has
been designed to be efficient in the generation of clas-
sification functions. Preliminary experimental results
indicate that ZC not only has retrieval and classifier
generation efficiency advantages, but also compares fa-
vorably in the classification accuracy with current tree
classifiers, such as ID3, which were primarily designed
for minimizing classification errors. We also describe
some new applications that arise from encapsulating
the classification capability in database systems and
discuss extensions to ZC for it to be used in these new
application domains.

*Current address: Computer Science Department, Rutgers
University, NJ 08903

Permission to copy without fee all ot part of this material is
granted provided that the copies are not made OT distributed fOT

direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, OT to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

With the maturing of database technology and the suc-
cessful use of commercial database products in busi-
ness data processing, the market place is showing ev-
idence of increasing desire to use database technology
in new application domains. One such application do-
main that is likely to acquire considerable significance
in the near future is database mining [4] [lo] [12] [16]
[18] [17] [20]. Several organizations have created ultra
large data bases, running into several gigabytes and
more. The databases relate to various aspects of their
business and are information mines that they would
like to exploit to improve the quality of their decision
making.
One application of database mining involves the abil-
ity to do classification in the database systems. Tar-
get mailing is a prototypical application for classifica-
tion, although the same paradigm extends naturally to
other applications such as franchise location, credit ap-
proval, treatment-appropriateness determination, etc.
In a target mailing application: a history of responses
to various promotions is maintained. Based on this
response history, a classification function is developed
for identifying new candidates for future promotions.
As another application of classification, consider the
store location problem. It is assumed that the success
of the store is determined by the neighborhood charac-
teristics, and the company is interested in identifying
neighborhoods that should be the prime candidates
for further investigation for the location of next store.
The company has access to a neighborhood database.
It first categorizes its current stores into successful,
average, and unsuccessful stores. Based on the neigh-
borhood data for these stores, it then develops a clas-
sification function for each category of stores, and uses
the function for the successful stores to retrieve candi-
date neighborhoods.

The problem of inferring classification functions from
a set of examples can be formally stated as follows. Let
G be a set of m group labels {Gi, Gz, . . . , Gm}. Let A

560

be a set of n attributes (features) {Al, Aa,. . . , A,}.
Let dom(Ai) refer to the set of possible values for
attribute Ai. We are given a large database of ob-
jects V in which each object is a n-tuple of the form
< Vl)V2,...,V, > where vi E dom(Ai) and G is
not one of Ai. In other words, the group labels of
objects in 2) are not known. We are also given a
set of example objects Z in which each object is a
(n + l)-tuple of the form < ~1, ~2,. . , v,, gk > where
vi E dom(Ai) and gk E G. In other words, the ob-
jects in ,Z have the same attributes as the objects in
21, and additionally have group labels associated with
them. The problem is to obtain m classification func-
tions, one for each group Gj, using the information in
f, with the classification function fj for group Gj be-
ingfj:Al~Aa~...A, + G, for j = 1, . . , m. We
also refer to the examples set f as the training set and
the database V as the test data set.
This problem has been investigated in the AI and
Statistics literature under the topic of supervised leam-
zng (see, for example, [6] [ll] [12] [17]) I. We put the
following additional requirements, not considered in
the classical treatment of the problem, on the classifi-
cation functions:

1. Retrieval Efficiency: The classification function
should be able to exploit database indexes to
minimize the number of redundant objects re-
trieved for finding the desired objects belonging
to a group. Currently, database indexes can only
be used for queries involving predicates of the
form Ai 0 v (point predicates), or VI 01 Ai 82 2~2
(range predicates), or their conjuncts and dis-
juncts, where 8, 81, and 82 are appropriate com-
parison operators.

Retrieval efficiency has not been of concern in
current classifiers, and it differentiates classifiers
suitable for database mining applications from the
classifiers used in applications such as image pro-
cessing. In an image processing application (e.g.
character recognition), having developed a classi-
fication function, the problem usually is to classify
a given image into one of the given groups (a char-
acter in the character recognition application). It
is rare that one uses the classifier to retrieve all
images belonging to a group.

2. Generation Eficiency: The algorithm for generat-
ing the classification functions should be efficient.

1 The other major topic in classification is unsupervised learn-
ing. In unsupervised classification methods, clusters are first
located in the feature space, and then the user decides which
clusters represent which groups. See [9] for an overview of clus-
tering algorithms.

The emphasis in the current classifiers has been on
minimizing the classification error and generation
efficiency has not been an important design con-
sideration. This has been the case because usu-
ally the classifier is generated once and then is
used over and over again. If, however, classifiers
were to be embedded in an interactive system or
the training data changes frequently, generation
efficiency becomes important.

Due to the requirement for retrieval efficiency, a clas-
sifier requiring objects to be retrieved one at a time
into memory from the database before the classifica-
tion function can be applied to them is not appropri-
ate for database mining applications. Neural nets (see
[ll] for a survey) fit in this category. A neural net is a
fixed sized data structure with the output of one node
feeding into one or many other nodes. The classifi-
cation functions generated by neural nets are buried
in the weights on the inter-node links. Even artic-
ulating these functions is a problem, let alone using
them for efficient retrieval. Neural nets learn classifi-
cation functions by multiple passes over the training
set till the net converges, and have poor generation ef-
ficiency. Neural nets also do not handle non-numerical
data well.
Another important family of classifiers is based on de-
cision trees (see [7] [6] [la] for an overview). The basic
idea behind tree classifiers is as follows[l3]. Let f be a
finite collection of objects. If & contains only objects
of one group, the decision tree is just a leaf labeled
with that group. Otherwise, let T be any test on an
object with possible outcomes 01,02, . , 0, . Each
object in I will give one of these outcomes for T, so
T partitions E into {81,&, . . .&,,,} with & containing
those objects having outcome Oi. If each &i is replaced
by a decision tree for &ii, the result would be a decision
tree for all of E. As long as two or more &i’s are non-
empty, each & is smaller than E, and since E is finite,
this procedure will terminate.
ID3 (and its variants such as C4.5) [13] 1141 and CART
[2] are the best-known examples of tree classifiers.
These decision trees usually have a branch for every
value of a non-numeric attribute at a decision node.
A numeric attribute is handled by repeated binary de-
composition of its range of values. The advantage of
the binary decomposition is that it takes away the bias
in favor of attributes with large number of values at
the time of attribute selection. However, it has the dis-
advantage that it can lead to large decision trees, with
unrelated attribute values being grouped together and
with multiple tests for the same attribute [13]. Mor-
ever, binary decomposition may cause large increase
in computation, since an attribute with w values has a

561

computational requirement similar to 2w-1 - 1 binary
attributes 1131.

The essence of classification is to construct a deci-
sion tree that correctly classifies not only objects in
the training set but also the unseen objects in the
test data set[l3]. An imperfect, smaller decision tree,
rather than one that perfectly classifies all the known
objects, usually is more accurate in classifying new
objects because a decision tree that is perfect for the
known objects may be overly sensitive to statistical
idiosyncrasies of the given data set [2] 1151. To avoid
overfitting the data, both ID3 and CART first obtain a
large decision tree for the training set and then prune
the tree (usually a large portion of it) starting from the
leaves [2] [14] [15]. Developing the full tree and then
pruning it leads to more accurate trees, but makes
classifier generation expensive.
The interval classifier (ZC) we propose is also a tree
classifier. It creates a branch for every value of a non-
numeric attribute, but handles a numeric attribute by
decomposing its range of values into k intervals. The
value of k is algorithmically determined separately for
each node. Thus, for numeric attributes, ZC results
in k-ary trees, and does not suffer from the disadvan-
tages of the binary trees. ZC does dynamic pruning
as the tree is expanded to make the classifier genera-
tion phase efficient. By limiting tests at decision nodes
to point and range predicates, ZC generates decision
trees that decompose the feature space into nested R-
dimensional rectangular regions, each of which can be
specified as a conjunction of point and range pred-
icates. ZC can, therefore, generate SQL queries for
classification functions that can be optimized using the
relational query optimizers and can exploit database
indexes to realize retrieval efficiency.

The organization of the rest of the paper is as follows.
In Section 2, we present the IC classifier generation
algorithm. In Section 3, we present the results of the
empirical evaluation of the performance of ZC. We
consider the sensitivity of ZC to various algorithm pa-
rameters and the noise in the training and test data.
We also present results comparing ZC to ID3. Besides
presenting a classifier suitable for database mining ap-
plications, a secondary goal of this paper is to argue
that database mining is an important research topic
requiring attention from database perspective. In Sec-
tion 4, we describe some new problems that arise from
encapsulating the classification capability in database
systems, which have not been considered in the classi-
fication literature. We also discuss extensions that will
allow ZC to be used in these new application domains.
We conclude in Section 5.

2 TC Generation Algorithm

We assume for simplicity that the population database
2) consists of one relation. Such a relation can usually
be obtained by appropriate joins. Each tuple of this
relation has n attributes. Every tuple belongs to one
of m groups in the population: but the group label is
not known for the tuples in 2>. We also have a training
sample L: of tuples. Tuples in E are structurally identi-
cal to tuples in V, except that the training tuples have
an additional attribute specifying their group label.
Attributes can be categorical or non-categorical. Cat-
egorical attributes are those for which there are a finite
discrete set of possible values. The number of possible
values is usually small and have no natural ordering
to allow interpolation between two values. Examples
of categorical attributes include “make of car”, “zip
code”, etc. Other attributes are non-categorical. Ex-
amples of non-categorical attributes include “salary”,
“age”, etc.
We define an interval to be a range of values for a non-
categorical attribute or a single value for a categorical
attribute. Tuples having values for an attribute falling
in an interval are said to belong to that interval. Each
group can be assigned a count of the tuples belong-
ing to an interval of an attribute with that group as
the label. The function winnergrp uses the group
counts to determine the winnzng group for an inter-
val. A function called winnerstrength categorizes
each winning group as a strong winner or a weak win-
ner. The corresponding interval is then called a strong
interval or a weak interval.

ZC generation consists of two main steps. The function
make-tree creates the decision tree, leaves of which
are labeled with one group label. A tree traversal algo-
rithm then generates a classification function for each
group by starting from the root and finding all paths
to a particular group at the leaves. Each path gives
rise to a conjunction of terms, each term being a point
predicate or range predicate. Disjunction of these con-
junctions, one corresponding to each path for a group,
yields the classification function for the group. We will
only describe the function make-tree here; the gener-
ation of classification functions from the decision tree
is fairly straightforward.
The function make-tree has a recursive structure. It
works on an interval (or subdomain) of an attribute.
Initially, it is given the entire domain of each attribute.
One of the attributes is selected to be the winner at-
tribute in the classification predicate (see nextattr).
A goodness function is used for this determination. It
then uses the tuples belonging to the input subdomain
to partition the domain of the winner attribute into
strong and weak intervals (see makeintervals). De-

562

cisions regarding the winning group are made final for
the strong intervals of the winner attribute. The func-
tion then recursively processes the weak intervals of
the winner attribute. The function terminates when a
stopping criteria is satisfied.
For ease of exposition, in Figure 1, we present a ver-
sion of the function make-tree in which several de-
tails have been omitted. In the pseudo code below,
we present a more detailed version of the function
make-tree.

// Determine the best attribute to use next
// for classif ication
function next-attr(H: Histograms)
returns Attr
c
For every attribute attr do (

Compute the value of the
goodness function for attr

3

Let winner-attr = attr with the largest
value for the goodness function
// Example of a goodness function is
// the information gain; see Remarks

Return winner-attr
3

// Partition the domain of attribute into
// intervals.
procedure make-intervals(attr: Attribute,

(
For

//
//
//
//

H: Histograms)

each value v in histogram of attr (
Determine winning group for value v
using histograms in H
Example: return the group that has
the largest frequency for the value v

winner = winner-grp(H, attr, V)

// Determine if winner is strong or weak
// Example: return strong if the ratio of
// the frequency of the winning group to
// the total frequency for the value v
// is greater than a specified threshold
strength =

winner-strength(winner, H, attr, v)

Save the winner and strength information
for value v of attribute attr

3

Form intervals of domain values
by merging adjacent values that have
the same winner with the same strength

3

If the domain of attr cannot be ordered {
Each value forms an interval by itself

// i.e., the left and right endpoints
// of the interval are the same

3
3

// Procedure to build classification tree.
// Called as make-tree(training-set)
function make-tree(tuples: Tupleset)
returns TreeNode
c

If stopping criteria is satisfied
// see Remarks below
return NULL

Create a new tree node N

For each group grp and attribute attr do
make-histogram(grp, attr, tuples)

For every non-categorical attribute do
Smooth the corresponding histograms
// see Remarks for smoothing procedure

Let H be the resultant set of histograms
for all attributes

winner-attr = next-attr(H)

make-intervals(winner_attr, H)

Save in N the winner-attr and also
the strong and weak intervals
corresponding to the winner-attr
for all groups

For each weak interval WI of
the winner-attr do c

remaining-tups =
training set tuples satisfying
the predicate for WI

child of WI = make-tree(remainiug-tups)
3

return N
3

If the domain of attr can be ordered <

563

procedure make-tree (tupleset 7J

Partition T according to groups

V groups G
V attributes A

&
Obtain histogram of G tuples over domain of A

Apply goodness function to select winner attribute

&

Partition domain of A’ into strong and weak intervals

&

Each strong interval is assigned the winner group

-$ V weak intervals I of A’ having tupleset TI >

Figure 1: Procedure make-tree

REMARKS:
In the above description of the ZC generation algo-
rithm, we did not specify bodies of some of the func-
tions. Our intention was to present a generic algorithm
from which a whole family of algorithms may be ob-
tained by instantiating these functions with different
decision modules.
We now discuss the specific functions used in our im-
plementation and also suggest some alternatives.
winnergrp: The function winner-grp(H, attr, v) re-
turns the group that has the largest frequency for the
value v of the attribute attr in histograms H. It is
possible to use weighting if it is desired to bias the
selection in favor of some specific groups.
nextattr: The function next-&r(H) is greedy, and
selects the next branching attribute by considering one
attribute at a time. (The problem of computing opti-
mal decision trees has been shown to be NP-complete
[8].) We consider two goodness functions: one min-

imizes the resubstitution error rate, the other maxi-
mizes the information gain ratio. Other possibilities
for the goodness function include the cost of evaluating
a predicate.
The resubstitution error rate [2] for an attribute is
computed as

1 - C winnerfreq(w)/totalfeq
v

where winner-freq(v) is the frequency of the winning
group for the attribute value v, and total-freq is the
total frequency of all groups over all values of this at-
tribute in histograms H.
The information gain ratio is an information theoretic
measure proposed in [13]. Let the example set E of
e objects contain ek objects of group Gk. Then the
entropy E of & is given by

E = -c, ;Iog,:

564

If attribute Ai with values {ui, a:, . . . , a?} is used
as the branching attribute, it will partition E into
{E:>&f,. .,Ey} with Ei containing e{ objects of C
that have value ,a{ of Ai. If the expected entropy for
the subtree of ,$ is E!, then the expected entropy for
the tree with Ai as the root is the weighted average

The information gain by branching on Ai is therefore

gain(A;) = E - Ei

Now, the information content of the value of the at-
tribute Ai can be expressed as

I(Ai) = -cj $lopz%

The information gain ratio for attribute Ai is then
defined to be the ratio

gain(A;)/I(A)
If two attributes are equally attractive, ties are cur-
rently broken by arbitrarily picking one of them. One
could use additional criteria, such as the length of de-
scription, selectivity of attributes, etc. to break the
ties.
winnerstrength(winner, H, attr, v): The func-
tion winner-strength returns the strength as strong if
the ratio of the frequency of the winning group winner
to the total frequency for the value v of the attribute
attrin H is above a certain precision threshold. Again,
other criteria may be used to determine the strength.
For example, besides precision threshold, one may re-
quire that there be certain minimum frequency at the
value v before the winner is classified as strong.
The precision threshold may have a fixed value. For
example, a fixed precision threshold of 1 has the effect
that a winner is declared strong if instances of only
the winning group are present. The precision thresh-
old can also be an adaptive function of the current
depth of the classification tree. The adaptive preci-
sion threshold we use is given by

1 - (curr-depth/max-depth)2

This function is conservative in the beginning in
declaring a winner strong, but loosens the criteria as
the tree grows.
Smoothing: Conceptually, we handle a non-
categorical attribute by first generating a smooth fre-
quency distribution from the histogram of its val-
ues. This distribution is then sampled at equi-distant
points in its range of values. The number of sampling
points is given by

max(minimum sampling points, sampling multiplier x
number of distinct values in the histogram)
where minimum sampling points and the sampling
multiplier are algorithm parameters. The smooth
frequency distribution is not generated in practice.
Rather, the frequency at a sampling point is deter-
mined using the following procedure.
Given a histogram {(vi, fi)} of values of a non-
categorical attribute, where fi is the frequency of the
attribute for value vi, we need a way to interpolate
for frequency for values not present in the histogram.
Following the technique in [5], the frequency f for a
value v is determined by considering the contribution
of all values that occur in the histogram within an in-
terval of length h centered at v. One way to interpret
this method is to think of frequency fi of every sample
value vi as being smeared over the interval vi - h/2 to
vi + h/2 according to a weight function. If we let W(U)
be the “boxcar” weight function:

W(u) =
i

1 if abs(u) < l/2
0 otherwise

then smearing can be thought of as replacing every the
frequency fi at value vi by the function

The total area under the curve fi x W((V - v;)/h)/h

is fi. The smoothed frequency f at any value v then
is the sum of smears from all sample values:

f = l/n 2 fi X W((V - Vi)/h)/h
i=l

Instead of the “boxcar” function, we use the raised
cosine arch function:

W(u) = 0
1

1 + 2cos(2nu) if abs(u) < l/2
otherwise

This function decreases gradually from 0 to l/2 and
symmetrically from 0 to -l/2. Note that the area un-
der the raised cosine arch is 1 and that the influence
distance h represents a trade-off between smoothing
and locality in terms of how much we want to con-
strain the smearing of frequency.
Stopping condition: Further branching from a node
does not take place if all the intervals for the corre-
sponding attribute are found to be strong. Similarly,
if there are no tuples (or less than a specified num-
ber of tuples) in some range of values for the selected
attribute, the corresponding interval is not further ex-
panded. The winning group of the parent node is made
the winner group in this empty interval. Branching
may also be limited by specifying a maximum tree

565

depth, in which case all weak intervals in a leaf node
are treated as strong.
ZC also provides a dynamic tree pruning criteria. For
each node, an expansion merit is computed, and a
node is expanded only if this merit is above an accept-
able level. The expansion merit is based on the ideas
in [14]. Suppose a tree T has been generated using N
cases in the training set. Let some leaf account for K
of these cases with J of them misclassified. The ratio
J/K does not provide a reliable estimate of the error
rate of the leaf for unseen cases, since the tree has been
tailored to the training set. A more realistic error rate
is obtained by applying continuity correction for the
binomial distribution [19] in which J is repalaced by
J+ l/2. Let S be a subtree of T containing L(S) leaves
and let C J and C K be the corresponding sums over
the leaves of S. S will misclassify c J + L(S)/2 out
of C K unseen cases. Now let E be the number of
number of cases from the training set that a node mis-
classifies. This node is expanded only if E + l/2 is
beyond one standard error of C J + L(S)/2.
To avoid pruning too aggressively, ZC also supports a
lookahead procedure. The basic idea is that each node
inherits from its parent a certain number of lookahead
credits. If an expansion of a node does not result in
acceptable error reduction, the node is still expanded
if it still has credits left. Such a node passes one less
credit to its children. If an acceptable level of error
reduction takes place at a node, its credits are reset to
the maximum. Further expansion does not take place
if a node does not have any credit left and the amount
of error reduction is not acceptable.

2.1 Example

We illustrate the ZC classifier generation with a simple
example. Consider a people database in which every
tuple has only three attributes:

l age (age) - non-categorical attribute - uniformly
distributed from 20 to 80

l the zip code of the town the person lives in (zip)
- categorical attribute - uniformly distributed be-
tween 9 available zipcodes

l level of education (elvl) - categorical attribute -
uniformly distributed from 0 to 4

Group membership depends only on age and elvl, and
is independent of zip. There are only two groups in
the population:

Grp A: ((age < 40) A (elvl E [O..l])) V

((40 5 age < 60) A (elvlE [O..3]))V

((60 2 agel A ((elvl = 0)))
Grp B: otherwise

where (elvl E [l..k]) is equivalent to ((elvl = 1) v

(eIvI = 2) V . . . V (elvl = Ic)). We have a training set
of 1000 tuples that satisfy the above predicates.
ZC first generates three histograms, one each for val-
ues in age, zip, and elvl. It smooths the histogram
for the non-categorical attribute age, and chooses 100
equi-distant sampling values (an algorithm parame-
ter) from the range of values for age. For each at-
tribute value, it finds the winning group using the
function winner-grp. The winning group for an at-
tribute value is simply the group that has the largest
frequency for that attribute value. We assume that
the next attribute selection is based on the minimiza-
tion of resubstitution error rate. The resubstitution
error rate for an attribute is determined by adding for
every value of the attribute the frequency of the win-
ning group, dividing this sum by the total frequency,
and subtracting this ratio from 1. The following are
the values obtained for the resubstitution error rate
for the three attributes:

Attribute Error Rate

age .227306

zip .432000

elvl .254000

Therefore, the function nextattr selects age, which
has the minimum resubstitution error rate, as the next
branching attribute.
ZC uses the function winnerstrength for each sam-
ple value of age to determine whether the winning
group is strong or weak for that value. For a winner
to be strong, the ratio of the frequency of the winning
group to the total frequency at that value should be at
least equal to a precision threshold. We used adaptive
precision to dynamically adjust this threshold. For
level 0 node, the value of this threshold is 1. For any
of the values of age, the winner group is not found to
be strong.
The function makeinterval partitions the domain of
age into intervals by merging adjacent values that have
the same winner. The following three intervals are
formed:

Attribute: age
IntervaI Winner Strength

[20.00, 39.59) Group B Weak
[39.59, 59.79) Group A Weak
[59.79, 80.61) Group A Weak

Since all the three intervals are weak, the tree is fur-
ther developed for them. ZC partitions the original
training set into three sets corresponding to the above
three range of values for age, and the algorithm re-
peats for each set of training tuples. Let US consider
the processing for the first set.

First, histograms of attribute values are developed for
the tuples belonging to the reduced set. The resubsti-
tution error rates are computed for the selection of the
next attribute and the following values are obtained:

Attribute Error Rate

age .024345
zip .340176
elvl 0

Therefore, elvl is selected as the next branching
attribute. The precision threshold is reduced to
0.75 by the adaptive precision algorithm, and win-
ner-strength finds the winning group to be strong
for every value of elvl. Since elvl is a categorical at-
tribute, each of its values is considered to be an interval
and we have the following intervals:

Attribute: elvl
Interval Winner Strength

WI Group A Strong

PI Group A Strong

PI Group B Strong

PI Group B Strong

PI Group B Strong

Since all the intervals are strong, the tree is not grown
further. If all or some of the intervals were weak, the
algorithm would develop the tree further for those in-
tervals. Figure 2 shows the decision tree generated
by ZC. It is a coincindence that the next attribute

[20, 39.59) [39.59, 59.79) p9.79, 80.61)

I I I

elevel elevel elevel

ITT-l-l rlTTl l-n-T-l
01234 01234 01234

AABBB AAAAB ABBBB

Figure 2: Example Decision Tree Generated by ZC

selected for each of the three intervals of age turned
out to be elvl. In general, the siblings may not be
the same attribute and different attributes may be se-
lected for each of the intervals. Also, the tree need

not be balanced - different branches could grow to
different depth.
Thus, ZC infers the following classification functions

Grp A: ((20 5 age < 39.6) A (elvl E [O..l])) v
((39.6 _< age < 59.8) A (elvl E [0..3])) v

((59.8 5 age < 80.6) A ((elvl = 0)))

Grp B: ((20 5 age < 39.6) A (elvl E [2..4])) v

((39.6 5 age < 59.8) A (elvl = 4)) V

((59.8 5 age < 80.6) A (elvl t [1..4]))

which is very close to the original rules. Note that the
actual age range in the training set was from 20 to 80.
It is easy for someone familiar with SQL to see how
ZC can generate SQL queries from the decision tree it
synthesizes.
Let us remark on two termination conditions that are
not illustrated in the above example. Firstly, suppose
we had limited the classifier depth to 1. Since the al-
gorithm treats all weak intervals in the leaf node as
strong, we would have obtained the following classifi-
cation functions:

Grp A: ((39.6 < age < 59.8))

Grp B: ((20 5 age < 39.6) V (59.8 5 age < 80.6))

The other case arises when there are less than a c 1 t,ain
specified number of tuples in some range of values for
the selected attribute. For example, having selected
elvl as the next attribute as above, we may find that
there is no tuple for elvl = 0. Then, the winning group
of the parent node is made the winner group in this
empty interval.

3 Performance

The goodness of a classifier has several dimensions:
1. Generation Efficiency: How efficient is the classifier
generation process.
2. Retrieval Efficiency: How efficient is the classifier
in retrieving all instances of a specified group.
3. Classification Accuracy: How correct is the classi-
fication of instances into groups.
Compared to ID3 and CART, the generation efficiency
in ZC stems from doing k-ary decomposition, instead of
binary decomposition, of the range of a non-categorical
attribute, and from using dynamic pruning, rather
than back-tracking. Since ZC develops k-ary trees, in-
stead of binary trees, the trees in ZC should be smaller
and shallower. This should result in smaller queries,
leading to better retrieval performance.

567

The classification error, that is, the fraction of in-
stances in the test data that are incorrectly classi-
fied, is the classical measure of the quality of a classi-
fier. We performed several experiments to empirically
determine the accuracy of the classification functions
generated by ZC. We first describe the experimen-
tal set up and the evaluation methodology, and then
present some results, including comparison with ID3.

3.1 Methodology

We developed synthetic data to empirically evaluate
the classification errors produced by ZC. The synthetic
data is for a person database in which each person
has the nine attributes given in Table 1. Attributes
elvl, car, and zip are categorical attributes, all other
are non-categorical attributes. Attribute values were
randomly generated. There is also a derived attribute
called eqty, defined as follows:

hyrs < 20 =+ 0
hyrs >_ 20 * 0.1 x hval x (hyrs - 20)

We developed a series of classification functions of in-
creasing complexity that used the above attributes to
classify people into different groups. There are 5 func-
tions, labeled 1 through 5, involving 2 groups. Func-
tions 1, 2, and 3 involve predicates with ranges on one,
two, and three attribute values respectively. Function
4 is a linear function and Function 5 is a non-linear
function of attribute values. These functions are listed
in Appendix A.
For every experiment, we generated a training set and
a test data set. Tuples in the training set were assigned
the group label by first generating the tuple and then
applying the classification function on the tuple to de-
termine the group to which the tuple belongs. Labels
were also generated for tuples in the test data set as
per the classification function to determine whether
the classifier correctly identified the group for the tu-
ple or not.
It is rarely the case that the boundaries between the
groups are very sharp. To model fuzzy boundaries, the
data generation program takes a perturbation factor
p as an additional argument. After determining the
values of different attributes of a tuple and assigning it
a group label, the values for non-categorical attributes
are perturbed. If the value of an attribute Ai for a
tuple t is zi and the range of values of Ai is a, then the
value of A; fort after perturbation becomes v+rxpxa,
where T is a uniform random variable between -0.5 and
$0.5.
For each experimental run, the errors for all the groups
are summed to obtain the classification error. For each
classification function, 100 replications were done with

new training sets being generated. The replications
were then used to calculate the mean error with 95%
confidence intervals. Errors are reported as percent-
ages of the total test data set. In cases where the test
data was perturbed, the intrinsic error in the test data
was subtracted from the total error to arrive at the
error due to misclassification.
We used training sets of 2500 tuples and test data sets
of 10000 tuples. Before settling on these sizes, we stud-
ied the sensitivity of ZC to these sizes. The training set
was reduced from 2500 tuples to 1000 tuples in steps
of 500. As expected, the classification error increased
with decreasing training set size, but the increase in
mean error was small. In database mining applications
involving databases in gigabytes, the training sets are
likely to be fairly large, and training sets of 2500 tu-
ples are not unreasonable. We increased the test data
sizes from 10000 to 25000, 50000, and 100000 tuples.
The results indicated that 10000 tuples provided al-
most identical error estimates as larger test data sets,
and we decided to stay with 10000 tuple test data sets
to conserve computing time.

3.2 Classifier Accuracy

The first set of experimental results presented in Fig-
ure 3 show the classification error rates for the five
functions. The results have been shown for the follow-
ing versions of XC:

Error Pruning: This version used pruning based
on error reduction with lookahead described in
Section 2. A lookahead of 5 was used, and no
interval was declared strong unless all the tuples
in that interval belonged to the winning group
(i.e., precision threshold = 1.0).

Adaptive Precision: In this version adaptive
precision threshold is used for deciding winner
strength. A maximum depth of 10 was used to
limit the growth of the tree.

Fixed Precision: This version used a fixed preci-
sion threshold of 0.9. A maximum depth of 10
was also used in this version.

All the three versions used information gain ratio as
the criteria for the next attribute selection. The val-
ues of all the non-categorical attributes were perturbed
by 5% for all the tuples in the training set and the
test data set. The minimum sampling values for the
non-categorical attributes were 100 and the sampling
multiplier of 0.10 was used.
The first three functions partition the attribute space
into hyper-parallelopipeds (n-dimensional rectangular
regions). ZC works very well for such classification

568

r

Attribute Description Value
Sal salary uniformly distributed from 20000 to 150000
corn commission Sal >= 75000 a corn = 0 else

uniformly distributed from 10000 to 75000
age
elvl

CW

zip

hval

age uniformly distributed from 20 to 80
education level uniformly chosen from 0 to 4
make of the car uniformly chosen from 1 to 20
zip code of the town uniformly chosen from 9 available zipcodes
value of the house uniformly distributed from 0.5klOOOOO to 1.5klOOOOO

where Ic E (0. . .9} depends on zip

hyrs years house owned
loan total loan amount

uniformly distributed from 1 to 30
uniformly distributed frorn 0 to 500000

Table 1: Description of Attributes

I W Fixed Precision I

1 2 3 4 5
Function Number

Figure 3: Comparing 3 Versions of ZC

functions. Functions 4 and 5 partition the attribute
space into hyper-polyhedra. Now ZC has to approxi-
mate the partitioning using n-dimensional rectangular
regions. Hence the error is expected to increase.

The performance of the three versions of ZC is pretty
close. We were somewhat surprised by the superior-
ity (albeit, only little) of fixed and adaptive precision
versions over the error pruning version as they are
much simpler and computationally much cheaper algo-
rithms. Although we have presented the results only
for perturbation of 5%, similar results were obtained
for other perturbation values.

The following is a summary of the results from other
sensitivity experiments (the constraint on number of
pages prohibits us from presenting data from these ex-
periments):

l The information gain ratio performed somewhat
better than the resubstitution error rate as the
criterion for the next attribute selection, but the
difference was not large. The resubstitution error
is a computationally cheaper metric.

l Increasing lookahead to 10 did not improve the
performance of error pruning. A lookahead of 2
did as well as 5.

l Increasing the maximum depth to 15 did not help
adaptive precision. The error rate with maximum
depth of 5 were not very different from that of
maximum depth of 10. It supports our conjecture
that we may work with shallower trees when using
zc.

l The performance of ZC seems to be sensitive to
the smoothing parameters. We need to explore
the parameter space further, and develop better
understanding of it. Our conjecture is that we can
improve the performance of ZC by fine tuning the
smoothing parameters.

3.3 Sensitivity to Noise

Insensitivity with respect to noise in the training and
test data is an important quality of classifiers. Figure 4
shows the error rates for the Adaptive Precision ZC for
different amounts of perturbations in the data. These
experiments were performed with the maximum depth
of the tree set to 10.
The results show that ZC is fairly stable. Errors in-
creased as expected for Functions 1, 2, and 3, but only
very moderately. We were surprised by reduction in
error rates with increase in perturbation for Functions
4 and 5. But we found similar behavior with ID3. The

569

0 fl
A f2 n n f3
+ f4
+ f5

I / I I I

0 2.5 5 7.5 10
Perturbation (%)

Figure 4: Sensitivity to Noise of Adaptive Precision

explanation seems to be that since we subtract intrin-
sic error rate in the test data from the observed error
rate to arrive at the error rate due to the classifier,
some of the tuples that would have been reported as
misclassified end up being in the intrinsic error pool,
bringing the effective error rate down.

3.4 Comparison with ID3

We obtained the IND tree package [3] from the NASA
Ames Research Center and ported it to IBM RISC
System/6000 to compare the performance of ZC with
other classifiers. Experiments have been performed by
the IND designers to ensure that IND reimplements C4
reasonably well. We present in this section the results
of the comparison of the classification errors produced
by ID3 (really C4) and ZC.
Figure 5 shows the comparative error rates for the
Adaptive Precision ZC and ID3 for 5% perturbation
in training and test data. For Function 5, ID3 beats
ZC (12.5% vs. 17.5% average error rate), but ZC beats
ID3 for Function 2 (4.4% vs. 10.5% average error rate).
The error rates for other functions are quite close, with
ID3 doing a little better. A maximum depth of 10 was
used for the adaptive Precision ZC. The difference in
error rates did not change much between the two al-
gorithms for different perturbation values (data not
shown here), except that the performance of the two
became identical for perturbation = 0 for Function 1,
and for perturbation = 10% for Function 3. Given that
ZC does dynamic pruning to gain generation efficiency
and ID3 fully expands the tree and then backtracks to
prune it, the best we expected was that ZC would come
close to ID3 in the classification accuracy. Hence we
feel satisfied with the classification accuracy shown by

1 2 3 4
Function Number

Figure 5: Comparing ZC to ID3

XC. We also think that the error accuracy of ZC can
be improved by fine tuning the smoothing parameters.

4 New Applications

A secondary goal of this paper was to present the case
that database mining applications lead to new inter-
esting research problems. We now briefly summarize
some of the new applications and research problems
that we could identify in the context of our work on
classification for database mining. These new applica-
tions call for integration of retrieval and classification
components leading to a tight coupling of these func-
tionalities. In fact, in our view, classification should
be encapsulated as a function of database systems to
meet these increasing demands. In order to do this, the
generation, retrieval and classification times should be
added as measures of quality of a classification method.
We outline here three applications:

4.1 Best N problem

In target marketing, instead of requiring all individu-
als belonging to a group, very often the best N target
individuals for a promotion are desired. The objec-
tive is to maximize profit, where profit is calculated as
the difference between the amount of money made on
all cumulative sales resulting from positive responses -
cost of mailing - cost of retrieval of N candidates from
the database. Due to the inclusion of retrieval cost, a
solution with lower positive response may be selected
over the one with the higher response, if the former
has a much smaller retrieval cost.
The classification function generated by ZC is a dis-
junction D of conjuncts C. Assuming that D selects

570

more than N tuples, the problem is to determine those
conjuncts in C whose disjunction selects at least N tu-
pies and the profit is maximized at the same time. For
each conjunct c in C, we can define two parameters:

1. The expected error of c, error(c) = 1 - return(c),
where return(c) is the expected number of positive
responses from those targets that satisfy c.

2. The expected retrieval cost of c, denoted by
retrieve(c).

The profit from using c is given by

Profit(c) = return(c) x sale-profit -

(mail-cost(c) + retrieve(c))

where mail-cost(c) is the cost of mailing to the targets
satisfying conjunct c.
In the worst case, the conjunct c can be retrieved by
a sequential scan of the database, in which case the
retrieval cost in number of I/OS will equal the number
of blocks B that the database occupies. Assume that
the database has indexes available on some attributes.
Each indexed attribute Ai is characterized by an ad-
justed selectivity: s(Ai), which is the average number
of I/O (in blocks) necessary to access all records with
A; = a where a ranges over all elements of the domain
of Ai. In case Ai has the clustering index then s(Ai) is
equal to the selectivity of Ai divided by the number of
records per block. If any indexed attribute appears in
c, we may use the index to selectively retrieve records
and then apply c to them. Assuming no index ANDing
for simplicity, we can calculate the retrieval cost of c
as

min{ B, min{s(Ai) : Ai occurring in c}}

Calculate the profit for each conjunct c in C. Sort con-
juncts according to the value of the profit. Take first
K conjuncts that together cover N targets, remember-
ing that the total I/O cost for K conjuncts ceases to
be additive after the retrieval cost exceeds the number
of blocks in the database. In that case the retrieval
cost will be constant and the final profit will depend
only on the response rate of the first K conjuncts.
Interesting open questions involve the performance of
the above method compared to a hypothetical “spe-
cial purpose” classifier that makes attribute selections
on the basis of the base profit gain for the Best N
problem. We are currently working on this problem.

4.2 Adhoc Queries and Missing Data

Suppose that a market researcher would like to try a
hypothetical new package which is similar to some of

the packages used in the past. She would like to esti-
mate its performance on a population which was not a
target for the previous mailing. For example, she may
decide to test a package which has both ski vacation
and a 3-day tour of Paris. If she had some past data
about customers who, in the past, took a ski package
and those who took Paris vacation, she may decide to
“compute the profile” for a union of the set of those
customers and use it in estimating the (missing) values
of the attribute corresponding to a new package and
use this profile on the new population. After that she
may change her mind and modify slightly the package,
starting the next iteration. These successive iterations
capture the “ad hoc”, unexpected, nature of the plan-
ning process for a new marketing campaign.
For this scenario to become realistic, not only the ex-
pected retrieval time should be minimized but also the
classifier generation time, since it contributes to the
overall run time of the query. How do we decide what
part of the classification task will be performed at com-
pile time and which part at query run time?

4.3 Filters

A classifier that provides a rough classification but
generates a profile that has “good” retrieval proper-
ties can be used as a “filter” for another classifier with
good error characteristics, but poor retrieval proper-
ties. An example of a classifier with good error but
poor retrieval is a neural net. A tree classifier, on the
other hand could work as a filter, if it displays good re-
trieval performance. This involves, in general, building
a classifier that best approximates a given “black box”
function and has desirable retrieval characteristics.

5 Summary

We considered the problem of synthesizing classifica-
tion functions for retrieving all instances of specified
groups from a large database based on a representa-
tive sample of examples, and presented a tree-based
interval classifier (ZC) for this purpose. The classi-
fier is designed to be interfaced efficiently with the
database systems. Since such classifiers may be em-
bedded in interactive loops to answer adhoc queries
about attributes with missing values, ZC has been de-
signed to be efficient in the generation of classifica-
tion functions. The novel aspect of ZC is its treatment
of non-categorical attributes. Instead of creating bi-
nary subtrees for such attributes as is the case with
ID3 and CART, ZC creates k-ary subtrees, where k
is algorithmically determined for each node. Rather
than generating a full tree and pruning it, ZC does
dynamic pruning as the tree is expanded to make the

571

classifier generation phase efficient. ZC generates SQL
queries for classification functions that can be opti-
mized using relational query optimizers to realize re-
trieval efficiency. Preliminary empirical comparison
with ID3 indicates that ZC not only has retrieval ef$
ciency and classifier generation efficiency advantages,
but also compares quite favorably in the classification
accuracy.

We also argued that classification should be encap-
sulated as part of future database systems. It then
opens up new application areas for classifiers, not hith-
erto considered in the classification literature. We de-
scribed extensions to ZC for it to be used in these new
application domains, and also presented some interest-
ing open problems.

A by-product of this work has been the development
of a systematic methodology for evaluating the per-
formance of various classifiers. Our approach and the
benchmarks we are developing allows one to systemat-
ically explore various operating regions. Our hope is
that these benchmarks will serve the same role in clas-
sifier performance evaluation as the Wisconsin Bench-
marks [l] played in the evaluation of relational query
processing strategies.

The work reported in this paper has been done in the
context of the Quest project at the IBM Almaden Re-
search Center. In Quest, we are exploring the various
aspects of the database mining problem. Besides clas-
sification, some other problems that we have looked
into include the enhancement of the database capa-
bility with “what goes together” kinds of association
queries and queries over large sequences such as stock
tables. We believe that database mining is an impor-
tant application area for databases and we hope that
it will be developed into an important research topic
by the database community.

6 Acknowledgments

We wish to thank Byron Dom and Wayne Niblack
for technical discussions and information on current
classifiers. Wolf-Ekkehard Blanz, Dragutin Petkovic,
and David Steele provided useful pointers into the im-
age processing literature. Byron Dom, Bruce Lindsay,
Allen Luniewski, Eli Messinger, and Wayne Niblack
provided insightful comments on an earlier version of
this paper. We thank Wray Buntine for providing us
the IND tree package that allowed us to compare ZC
with ID3. Finally, we wish to thank Irv Traiger for
bringing the problem of database mining to our atten-
tion.

7 Appendix A

In the following, (elvl E [l..lc]) is equivalent to
((elvl= 1) V (elvl= 2) V . . V (elvl= k)).
Function 1

Grp A: ((age < 40) V ((60 5 age)
Grp B: otherwise

Function 2

Grp A: ((age < 40) ~(5Oh' 5 sal 5 60K)) v

((40 5 age < 60) A (75K 5 sal 2 125K)) V

((age 2 60) ~(25K 5 sal< 75K))
Grp B: otherwise

Function 3

Grp A: ((age < 40)~
(((elvl E [O..l]) A
((elvl E [2..3]) A

((40 5 age < 6O)A
(((elvl E [1..3]) A

(25K 5 saI< 75K))v
(50K 5 Sal_< 1OOK))))V

(5OK 5 Sal _< lOOK)) v
(((elvl= 4)) A (75K 5 sal 2 125K)))) V

((age 2 f3OM
(((elvl E [2..4]) A (5OK < sals 100K))V

(((elvl = 1)) A (25K 5 saI 5 75K))))
Grp B: otherwise

Function 4

disp = (0.67 x (sal+ corn) - 0.2 x loan - 10K)
Grp A: disp > 0
Grp B: otherwise

Function 5

hyrs < 20 2 eqty = 0
hyrs 2 20 a eqty = 0.1 x hval x (hyrs - 20)

disp =

Grp A:
Grp B:

(0.67 x (sal + com)-
0.2 x loan+ 0.2 x eqty - 10K)
disp > 0
otherwise

References

[l] Dina Bitton, David J. Dewitt, and Carolyn Tur-
byfill, “Benchmarking Database Systems: A Sys-
tematic Approach”, VLDB 83, Florence, Italy,
1983.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and
C. J. Stone, Classification and Regression Trees,
Wadsworth, Belmont, 1984.

572

[31

PI

[51

171

PI

PI

PO1

WI

P21

Wray Buntine, About the IND Tree Package,
NASA Ames Research Center, Moffett Field, Cal-
ifornia, September 1991.

Wray Buntine and Matha Del Alto (Editors), Cal-
lected Notes on the Workshop for Pattern Discov-
ery in Large Databases, Technical Report FIA-Ol-
07, NASA Ames Research Center, Moffett Field,
California, April 1991.

John M. Chambers, William S. Cleaveland, Beat
Kleiner, and Paul A. Tukey, Graphical Methods of
Data Analysis, Wadsworth International Group
(Duxbury Press), 1983.

Philip Andrew Chou, “Application of Information
Theory to Pattern Recognition and the Design of
Decision Trees and Trellises”, Ph.D. Thesis, Stan-
ford University, California, June 1988.

G. R. Dattatreya and L. N. Kanal, “Decision
Trees in Pattern Recognition”, In Progress in Pat-
tern Recognition 2, L. N. Kanal and A. Rosen-
feld (Editors), Elsevier Science Publishers B.V.
(North-Holland), 1985.

L. Hayafil and R. L. Rivest, “Constructing Opti-
mal Binary Decision Trees is NP-Complete”, In-
formation Processing Letters, 5, 1, 1976, 15-17.

A. K. Jain and R. C. Dube, Algorithms for Clus-
tering Data, Prentice Hall, 1988.

Ravi Krishnamurthy and Tomasz Imielinski,
“Practitioner Problems in Need of Database Re-
search: Research Directions in Knowledge Discov-
ery”, SIGMOD Record, Vol. 20, No. 3, Sept. 1991,
76-78.

Richard P. Lippmann, “An Introduction to Com-
puting with Neural Nets”, IEEE ASSP Magazine,
April 1987, 4-22.

David J. Lubinsky, “Discovery from Databases: A
Review of AI and Statistical Techniques”, AT&T
Bell Laboratories, Holmdel, New Jersey, June
1989.

[13] J. Ross Quinlan, “Induction of Decision Trees”,
Machine Learning, 1, 1986, 81-106.

[14] J. Ross Quinlan, “Simplifying Decision Trees”,
Int. J. Man-Machine Studies, 2’7, 1987, 221-234.

[15] J. Ross Quinlan and Ronald L. Rivest, “Infer-
ring Decision Trees Using the Minimum Descrip-
tion Length Principle”, Information and Compu-
tation, 80, 1989, 227-248.

P71

1181

PI

PO1

G. Piatetsky-Shapiro and W. Frawley (Editors),
Proceedings of IJCAI-89 Workshop on Knowledge
Discovery in Databases, Detroit, Michigan, Au-
gust 1989.

G. Piatetsky-Shapiro (Editor), Knowledge Dis-
covery in Databases, AAAI/MIT Press, 1991.

G. Piatetsky-Shapiro (Editor), Proceedings of
AAAI-91 Workshop on Knowledge Discovery in
Databases, Anaheim, California, July 1991.

G. W. Snedecor and W.G. Cochran, Statisti-
cal Methods, 7th Edition, Iowa State University
Press, 1980.

Shalom Tsur, “Data Dredging”, IEEE Data En-
gineering Bulletin, 13, 4, December 1990, 58-63.

573

