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Abstract 1 Introduction 

We are given a large population database that contains 
information about population instances. The popula- 
tion is known to comprise of m groups, but the pop- 
ulation instances are not labeled with the group iden- 
tification. Also given is a population sample (much 
smaller than the population but representative of it) 
in which the group labels of the instances are known. 
We present an interval classifier (XC) which generates 
a classification function for each group that can be 
used to efficiently retrieve all instances of the speci- 
fied group from the population database. To allow ZC 
to be embedded in interactive loops to answer adhoc 
queries about attributes with missing values, ZC has 
been designed to be efficient in the generation of clas- 
sification functions. Preliminary experimental results 
indicate that ZC not only has retrieval and classifier 
generation efficiency advantages, but also compares fa- 
vorably in the classification accuracy with current tree 
classifiers, such as ID3, which were primarily designed 
for minimizing classification errors. We also describe 
some new applications that arise from encapsulating 
the classification capability in database systems and 
discuss extensions to ZC for it to be used in these new 
application domains. 
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With the maturing of database technology and the suc- 
cessful use of commercial database products in busi- 
ness data processing, the market place is showing ev- 
idence of increasing desire to use database technology 
in new application domains. One such application do- 
main that is likely to acquire considerable significance 
in the near future is database mining [4] [lo] [12] [16] 
[18] [17] [20]. Several organizations have created ultra 
large data bases, running into several gigabytes and 
more. The databases relate to various aspects of their 
business and are information mines that they would 
like to exploit to improve the quality of their decision 
making. 
One application of database mining involves the abil- 
ity to do classification in the database systems. Tar- 
get mailing is a prototypical application for classifica- 
tion, although the same paradigm extends naturally to 
other applications such as franchise location, credit ap- 
proval, treatment-appropriateness determination, etc. 
In a target mailing application: a history of responses 
to various promotions is maintained. Based on this 
response history, a classification function is developed 
for identifying new candidates for future promotions. 
As another application of classification, consider the 
store location problem. It is assumed that the success 
of the store is determined by the neighborhood charac- 
teristics, and the company is interested in identifying 
neighborhoods that should be the prime candidates 
for further investigation for the location of next store. 
The company has access to a neighborhood database. 
It first categorizes its current stores into successful, 
average, and unsuccessful stores. Based on the neigh- 
borhood data for these stores, it then develops a clas- 
sification function for each category of stores, and uses 
the function for the successful stores to retrieve candi- 
date neighborhoods. 

The problem of inferring classification functions from 
a set of examples can be formally stated as follows. Let 
G be a set of m group labels {Gi, Gz, . . . , Gm}. Let A 
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be a set of n attributes (features) {Al, Aa,. . . , A,}. 
Let dom(Ai) refer to the set of possible values for 
attribute Ai. We are given a large database of ob- 
jects V in which each object is a n-tuple of the form 
< Vl)V2,...,V, > where vi E dom(Ai) and G is 
not one of Ai. In other words, the group labels of 
objects in 2) are not known. We are also given a 
set of example objects Z in which each object is a 
(n + l)-tuple of the form < ~1, ~2,. . , v,, gk > where 
vi E dom(Ai) and gk E G. In other words, the ob- 
jects in ,Z have the same attributes as the objects in 
21, and additionally have group labels associated with 
them. The problem is to obtain m classification func- 
tions, one for each group Gj, using the information in 
f, with the classification function fj for group Gj be- 
ingfj:Al~Aa~...A, + G, for j = 1, . . , m. We 
also refer to the examples set f as the training set and 
the database V as the test data set. 
This problem has been investigated in the AI and 
Statistics literature under the topic of supervised leam- 
zng (see, for example, [6] [ll] [12] [17]) I. We put the 
following additional requirements, not considered in 
the classical treatment of the problem, on the classifi- 
cation functions: 

1. Retrieval Efficiency: The classification function 
should be able to exploit database indexes to 
minimize the number of redundant objects re- 
trieved for finding the desired objects belonging 
to a group. Currently, database indexes can only 
be used for queries involving predicates of the 
form Ai 0 v (point predicates), or VI 01 Ai 82 2~2 
(range predicates), or their conjuncts and dis- 
juncts, where 8, 81, and 82 are appropriate com- 
parison operators. 

Retrieval efficiency has not been of concern in 
current classifiers, and it differentiates classifiers 
suitable for database mining applications from the 
classifiers used in applications such as image pro- 
cessing. In an image processing application (e.g. 
character recognition), having developed a classi- 
fication function, the problem usually is to classify 
a given image into one of the given groups (a char- 
acter in the character recognition application). It 
is rare that one uses the classifier to retrieve all 
images belonging to a group. 

2. Generation Eficiency: The algorithm for generat- 
ing the classification functions should be efficient. 

1 The other major topic in classification is unsupervised learn- 
ing. In unsupervised classification methods, clusters are first 
located in the feature space, and then the user decides which 
clusters represent which groups. See [9] for an overview of clus- 
tering algorithms. 

The emphasis in the current classifiers has been on 
minimizing the classification error and generation 
efficiency has not been an important design con- 
sideration. This has been the case because usu- 
ally the classifier is generated once and then is 
used over and over again. If, however, classifiers 
were to be embedded in an interactive system or 
the training data changes frequently, generation 
efficiency becomes important. 

Due to the requirement for retrieval efficiency, a clas- 
sifier requiring objects to be retrieved one at a time 
into memory from the database before the classifica- 
tion function can be applied to them is not appropri- 
ate for database mining applications. Neural nets (see 
[ll] for a survey) fit in this category. A neural net is a 
fixed sized data structure with the output of one node 
feeding into one or many other nodes. The classifi- 
cation functions generated by neural nets are buried 
in the weights on the inter-node links. Even artic- 
ulating these functions is a problem, let alone using 
them for efficient retrieval. Neural nets learn classifi- 
cation functions by multiple passes over the training 
set till the net converges, and have poor generation ef- 
ficiency. Neural nets also do not handle non-numerical 
data well. 
Another important family of classifiers is based on de- 
cision trees (see [7] [6] [la] for an overview). The basic 
idea behind tree classifiers is as follows[l3]. Let f be a 
finite collection of objects. If & contains only objects 
of one group, the decision tree is just a leaf labeled 
with that group. Otherwise, let T be any test on an 
object with possible outcomes 01,02, . , 0, . Each 
object in I will give one of these outcomes for T, so 
T partitions E into {81,&, . . .&,,,} with & containing 
those objects having outcome Oi. If each &i is replaced 
by a decision tree for &ii, the result would be a decision 
tree for all of E. As long as two or more &i’s are non- 
empty, each & is smaller than E, and since E is finite, 
this procedure will terminate. 
ID3 (and its variants such as C4.5) [13] 1141 and CART 
[2] are the best-known examples of tree classifiers. 
These decision trees usually have a branch for every 
value of a non-numeric attribute at a decision node. 
A numeric attribute is handled by repeated binary de- 
composition of its range of values. The advantage of 
the binary decomposition is that it takes away the bias 
in favor of attributes with large number of values at 
the time of attribute selection. However, it has the dis- 
advantage that it can lead to large decision trees, with 
unrelated attribute values being grouped together and 
with multiple tests for the same attribute [13]. Mor- 
ever, binary decomposition may cause large increase 
in computation, since an attribute with w values has a 
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computational requirement similar to 2w-1 - 1 binary 
attributes 1131. 

The essence of classification is to construct a deci- 
sion tree that correctly classifies not only objects in 
the training set but also the unseen objects in the 
test data set[l3]. An imperfect, smaller decision tree, 
rather than one that perfectly classifies all the known 
objects, usually is more accurate in classifying new 
objects because a decision tree that is perfect for the 
known objects may be overly sensitive to statistical 
idiosyncrasies of the given data set [2] 1151. To avoid 
overfitting the data, both ID3 and CART first obtain a 
large decision tree for the training set and then prune 
the tree (usually a large portion of it) starting from the 
leaves [2] [14] [15]. Developing the full tree and then 
pruning it leads to more accurate trees, but makes 
classifier generation expensive. 
The interval classifier (ZC) we propose is also a tree 
classifier. It creates a branch for every value of a non- 
numeric attribute, but handles a numeric attribute by 
decomposing its range of values into k intervals. The 
value of k is algorithmically determined separately for 
each node. Thus, for numeric attributes, ZC results 
in k-ary trees, and does not suffer from the disadvan- 
tages of the binary trees. ZC does dynamic pruning 
as the tree is expanded to make the classifier genera- 
tion phase efficient. By limiting tests at decision nodes 
to point and range predicates, ZC generates decision 
trees that decompose the feature space into nested R- 
dimensional rectangular regions, each of which can be 
specified as a conjunction of point and range pred- 
icates. ZC can, therefore, generate SQL queries for 
classification functions that can be optimized using the 
relational query optimizers and can exploit database 
indexes to realize retrieval efficiency. 

The organization of the rest of the paper is as follows. 
In Section 2, we present the IC classifier generation 
algorithm. In Section 3, we present the results of the 
empirical evaluation of the performance of ZC. We 
consider the sensitivity of ZC to various algorithm pa- 
rameters and the noise in the training and test data. 
We also present results comparing ZC to ID3. Besides 
presenting a classifier suitable for database mining ap- 
plications, a secondary goal of this paper is to argue 
that database mining is an important research topic 
requiring attention from database perspective. In Sec- 
tion 4, we describe some new problems that arise from 
encapsulating the classification capability in database 
systems, which have not been considered in the classi- 
fication literature. We also discuss extensions that will 
allow ZC to be used in these new application domains. 
We conclude in Section 5. 

2 TC Generation Algorithm 

We assume for simplicity that the population database 
2) consists of one relation. Such a relation can usually 
be obtained by appropriate joins. Each tuple of this 
relation has n attributes. Every tuple belongs to one 
of m groups in the population: but the group label is 
not known for the tuples in 2>. We also have a training 
sample L: of tuples. Tuples in E are structurally identi- 
cal to tuples in V, except that the training tuples have 
an additional attribute specifying their group label. 
Attributes can be categorical or non-categorical. Cat- 
egorical attributes are those for which there are a finite 
discrete set of possible values. The number of possible 
values is usually small and have no natural ordering 
to allow interpolation between two values. Examples 
of categorical attributes include “make of car”, “zip 
code”, etc. Other attributes are non-categorical. Ex- 
amples of non-categorical attributes include “salary”, 
“age”, etc. 
We define an interval to be a range of values for a non- 
categorical attribute or a single value for a categorical 
attribute. Tuples having values for an attribute falling 
in an interval are said to belong to that interval. Each 
group can be assigned a count of the tuples belong- 
ing to an interval of an attribute with that group as 
the label. The function winnergrp uses the group 
counts to determine the winnzng group for an inter- 
val. A function called winnerstrength categorizes 
each winning group as a strong winner or a weak win- 
ner. The corresponding interval is then called a strong 
interval or a weak interval. 

ZC generation consists of two main steps. The function 
make-tree creates the decision tree, leaves of which 
are labeled with one group label. A tree traversal algo- 
rithm then generates a classification function for each 
group by starting from the root and finding all paths 
to a particular group at the leaves. Each path gives 
rise to a conjunction of terms, each term being a point 
predicate or range predicate. Disjunction of these con- 
junctions, one corresponding to each path for a group, 
yields the classification function for the group. We will 
only describe the function make-tree here; the gener- 
ation of classification functions from the decision tree 
is fairly straightforward. 
The function make-tree has a recursive structure. It 
works on an interval (or subdomain) of an attribute. 
Initially, it is given the entire domain of each attribute. 
One of the attributes is selected to be the winner at- 
tribute in the classification predicate (see nextattr). 
A goodness function is used for this determination. It 
then uses the tuples belonging to the input subdomain 
to partition the domain of the winner attribute into 
strong and weak intervals (see makeintervals). De- 
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cisions regarding the winning group are made final for 
the strong intervals of the winner attribute. The func- 
tion then recursively processes the weak intervals of 
the winner attribute. The function terminates when a 
stopping criteria is satisfied. 
For ease of exposition, in Figure 1, we present a ver- 
sion of the function make-tree in which several de- 
tails have been omitted. In the pseudo code below, 
we present a more detailed version of the function 
make-tree. 

// Determine the best attribute to use next 
// for classif ication 
function next-attr(H: Histograms) 
returns Attr 
c 
For every attribute attr do ( 

Compute the value of the 
goodness function for attr 

3 

Let winner-attr = attr with the largest 
value for the goodness function 
// Example of a goodness function is 
// the information gain; see Remarks 

Return winner-attr 
3 

// Partition the domain of attribute into 
// intervals. 
procedure make-intervals(attr: Attribute, 

( 
For 

// 
// 
// 
// 

H: Histograms) 

each value v in histogram of attr ( 
Determine winning group for value v 
using histograms in H 
Example: return the group that has 
the largest frequency for the value v 

winner = winner-grp(H, attr, V) 

// Determine if winner is strong or weak 
// Example: return strong if the ratio of 
// the frequency of the winning group to 
// the total frequency for the value v 
// is greater than a specified threshold 
strength = 

winner-strength(winner, H, attr, v) 

Save the winner and strength information 
for value v of attribute attr 

3 

Form intervals of domain values 
by merging adjacent values that have 
the same winner with the same strength 

3 

If the domain of attr cannot be ordered { 
Each value forms an interval by itself 

// i.e., the left and right endpoints 
// of the interval are the same 

3 
3 

// Procedure to build classification tree. 
// Called as make-tree(training-set) 
function make-tree(tuples: Tupleset) 
returns TreeNode 
c 

If stopping criteria is satisfied 
// see Remarks below 
return NULL 

Create a new tree node N 

For each group grp and attribute attr do 
make-histogram(grp, attr, tuples) 

For every non-categorical attribute do 
Smooth the corresponding histograms 
// see Remarks for smoothing procedure 

Let H be the resultant set of histograms 
for all attributes 

winner-attr = next-attr(H) 

make-intervals(winner_attr, H) 

Save in N the winner-attr and also 
the strong and weak intervals 
corresponding to the winner-attr 
for all groups 

For each weak interval WI of 
the winner-attr do c 

remaining-tups = 
training set tuples satisfying 
the predicate for WI 

child of WI = make-tree(remainiug-tups) 
3 

return N 
3 

If the domain of attr can be ordered < 
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procedure make-tree (tupleset 7J 

Partition T according to groups 

V groups G 
V attributes A 

& 
Obtain histogram of G tuples over domain of A 

Apply goodness function to select winner attribute 

& 

Partition domain of A’ into strong and weak intervals 

& 

Each strong interval is assigned the winner group 

-$ V weak intervals I of A’ having tupleset TI > 

Figure 1: Procedure make-tree 

REMARKS: 
In the above description of the ZC generation algo- 
rithm, we did not specify bodies of some of the func- 
tions. Our intention was to present a generic algorithm 
from which a whole family of algorithms may be ob- 
tained by instantiating these functions with different 
decision modules. 
We now discuss the specific functions used in our im- 
plementation and also suggest some alternatives. 
winnergrp: The function winner-grp(H, attr, v) re- 
turns the group that has the largest frequency for the 
value v of the attribute attr in histograms H. It is 
possible to use weighting if it is desired to bias the 
selection in favor of some specific groups. 
nextattr: The function next-&r(H) is greedy, and 
selects the next branching attribute by considering one 
attribute at a time. (The problem of computing opti- 
mal decision trees has been shown to be NP-complete 
[8].) We consider two goodness functions: one min- 

imizes the resubstitution error rate, the other maxi- 
mizes the information gain ratio. Other possibilities 
for the goodness function include the cost of evaluating 
a predicate. 
The resubstitution error rate [2] for an attribute is 
computed as 

1 - C winnerfreq(w)/totalfeq 
v 

where winner-freq(v) is the frequency of the winning 
group for the attribute value v, and total-freq is the 
total frequency of all groups over all values of this at- 
tribute in histograms H. 
The information gain ratio is an information theoretic 
measure proposed in [13]. Let the example set E of 
e objects contain ek objects of group Gk. Then the 
entropy E of & is given by 

E = -c, ;Iog,: 
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If attribute Ai with values {ui, a:, . . . , a?} is used 
as the branching attribute, it will partition E into 
{E:>&f,. .,Ey} with Ei containing e{ objects of C 
that have value ,a{ of Ai. If the expected entropy for 
the subtree of ,$ is E!, then the expected entropy for 
the tree with Ai as the root is the weighted average 

The information gain by branching on Ai is therefore 

gain(A;) = E - Ei 

Now, the information content of the value of the at- 
tribute Ai can be expressed as 

I(Ai) = -cj $lopz% 

The information gain ratio for attribute Ai is then 
defined to be the ratio 

gain(A;)/I(A) 
If two attributes are equally attractive, ties are cur- 
rently broken by arbitrarily picking one of them. One 
could use additional criteria, such as the length of de- 
scription, selectivity of attributes, etc. to break the 
ties. 
winnerstrength(winner, H, attr, v): The func- 
tion winner-strength returns the strength as strong if 
the ratio of the frequency of the winning group winner 
to the total frequency for the value v of the attribute 
attrin H is above a certain precision threshold. Again, 
other criteria may be used to determine the strength. 
For example, besides precision threshold, one may re- 
quire that there be certain minimum frequency at the 
value v before the winner is classified as strong. 
The precision threshold may have a fixed value. For 
example, a fixed precision threshold of 1 has the effect 
that a winner is declared strong if instances of only 
the winning group are present. The precision thresh- 
old can also be an adaptive function of the current 
depth of the classification tree. The adaptive preci- 
sion threshold we use is given by 

1 - (curr-depth/max-depth)2 

This function is conservative in the beginning in 
declaring a winner strong, but loosens the criteria as 
the tree grows. 
Smoothing: Conceptually, we handle a non- 
categorical attribute by first generating a smooth fre- 
quency distribution from the histogram of its val- 
ues. This distribution is then sampled at equi-distant 
points in its range of values. The number of sampling 
points is given by 

max(minimum sampling points, sampling multiplier x 
number of distinct values in the histogram) 
where minimum sampling points and the sampling 
multiplier are algorithm parameters. The smooth 
frequency distribution is not generated in practice. 
Rather, the frequency at a sampling point is deter- 
mined using the following procedure. 
Given a histogram {(vi, fi)} of values of a non- 
categorical attribute, where fi is the frequency of the 
attribute for value vi, we need a way to interpolate 
for frequency for values not present in the histogram. 
Following the technique in [5], the frequency f for a 
value v is determined by considering the contribution 
of all values that occur in the histogram within an in- 
terval of length h centered at v. One way to interpret 
this method is to think of frequency fi of every sample 
value vi as being smeared over the interval vi - h/2 to 
vi + h/2 according to a weight function. If we let W(U) 
be the “boxcar” weight function: 

W(u) = 
i 

1 if abs(u) < l/2 
0 otherwise 

then smearing can be thought of as replacing every the 
frequency fi at value vi by the function 

The total area under the curve fi x W((V - v;)/h)/h 

is fi. The smoothed frequency f at any value v then 
is the sum of smears from all sample values: 

f = l/n 2 fi X W((V - Vi)/h)/h 
i=l 

Instead of the “boxcar” function, we use the raised 
cosine arch function: 

W(u) = 0 
1 

1 + 2cos(2nu) if abs(u) < l/2 
otherwise 

This function decreases gradually from 0 to l/2 and 
symmetrically from 0 to -l/2. Note that the area un- 
der the raised cosine arch is 1 and that the influence 
distance h represents a trade-off between smoothing 
and locality in terms of how much we want to con- 
strain the smearing of frequency. 
Stopping condition: Further branching from a node 
does not take place if all the intervals for the corre- 
sponding attribute are found to be strong. Similarly, 
if there are no tuples (or less than a specified num- 
ber of tuples) in some range of values for the selected 
attribute, the corresponding interval is not further ex- 
panded. The winning group of the parent node is made 
the winner group in this empty interval. Branching 
may also be limited by specifying a maximum tree 
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depth, in which case all weak intervals in a leaf node 
are treated as strong. 
ZC also provides a dynamic tree pruning criteria. For 
each node, an expansion merit is computed, and a 
node is expanded only if this merit is above an accept- 
able level. The expansion merit is based on the ideas 
in [14]. Suppose a tree T has been generated using N 
cases in the training set. Let some leaf account for K 
of these cases with J of them misclassified. The ratio 
J/K does not provide a reliable estimate of the error 
rate of the leaf for unseen cases, since the tree has been 
tailored to the training set. A more realistic error rate 
is obtained by applying continuity correction for the 
binomial distribution [19] in which J is repalaced by 
J+ l/2. Let S be a subtree of T containing L(S) leaves 
and let C J and C K be the corresponding sums over 
the leaves of S. S will misclassify c J + L(S)/2 out 
of C K unseen cases. Now let E be the number of 
number of cases from the training set that a node mis- 
classifies. This node is expanded only if E + l/2 is 
beyond one standard error of C J + L(S)/2. 
To avoid pruning too aggressively, ZC also supports a 
lookahead procedure. The basic idea is that each node 
inherits from its parent a certain number of lookahead 
credits. If an expansion of a node does not result in 
acceptable error reduction, the node is still expanded 
if it still has credits left. Such a node passes one less 
credit to its children. If an acceptable level of error 
reduction takes place at a node, its credits are reset to 
the maximum. Further expansion does not take place 
if a node does not have any credit left and the amount 
of error reduction is not acceptable. 

2.1 Example 

We illustrate the ZC classifier generation with a simple 
example. Consider a people database in which every 
tuple has only three attributes: 

l age (age) - non-categorical attribute - uniformly 
distributed from 20 to 80 

l the zip code of the town the person lives in (zip) 
- categorical attribute - uniformly distributed be- 
tween 9 available zipcodes 

l level of education (elvl) - categorical attribute - 
uniformly distributed from 0 to 4 

Group membership depends only on age and elvl, and 
is independent of zip. There are only two groups in 
the population: 

Grp A: ((age < 40) A (elvl E [O..l])) V 

((40 5 age < 60) A (elvlE [O..3]))V 

((60 2 agel A ((elvl = 0))) 
Grp B: otherwise 

where (elvl E [l..k]) is equivalent to ((elvl = 1) v 

(eIvI = 2) V . . . V (elvl = Ic)). We have a training set 
of 1000 tuples that satisfy the above predicates. 
ZC first generates three histograms, one each for val- 
ues in age, zip, and elvl. It smooths the histogram 
for the non-categorical attribute age, and chooses 100 
equi-distant sampling values (an algorithm parame- 
ter) from the range of values for age. For each at- 
tribute value, it finds the winning group using the 
function winner-grp. The winning group for an at- 
tribute value is simply the group that has the largest 
frequency for that attribute value. We assume that 
the next attribute selection is based on the minimiza- 
tion of resubstitution error rate. The resubstitution 
error rate for an attribute is determined by adding for 
every value of the attribute the frequency of the win- 
ning group, dividing this sum by the total frequency, 
and subtracting this ratio from 1. The following are 
the values obtained for the resubstitution error rate 
for the three attributes: 

Attribute Error Rate 

age .227306 

zip .432000 

elvl .254000 

Therefore, the function nextattr selects age, which 
has the minimum resubstitution error rate, as the next 
branching attribute. 
ZC uses the function winnerstrength for each sam- 
ple value of age to determine whether the winning 
group is strong or weak for that value. For a winner 
to be strong, the ratio of the frequency of the winning 
group to the total frequency at that value should be at 
least equal to a precision threshold. We used adaptive 
precision to dynamically adjust this threshold. For 
level 0 node, the value of this threshold is 1. For any 
of the values of age, the winner group is not found to 
be strong. 
The function makeinterval partitions the domain of 
age into intervals by merging adjacent values that have 
the same winner. The following three intervals are 
formed: 

Attribute: age 
IntervaI Winner Strength 

[20.00, 39.59) Group B Weak 
[39.59, 59.79) Group A Weak 
[59.79, 80.61) Group A Weak 

Since all the three intervals are weak, the tree is fur- 
ther developed for them. ZC partitions the original 
training set into three sets corresponding to the above 
three range of values for age, and the algorithm re- 
peats for each set of training tuples. Let US consider 
the processing for the first set. 



First, histograms of attribute values are developed for 
the tuples belonging to the reduced set. The resubsti- 
tution error rates are computed for the selection of the 
next attribute and the following values are obtained: 

Attribute Error Rate 

age .024345 
zip .340176 
elvl 0 

Therefore, elvl is selected as the next branching 
attribute. The precision threshold is reduced to 
0.75 by the adaptive precision algorithm, and win- 
ner-strength finds the winning group to be strong 
for every value of elvl. Since elvl is a categorical at- 
tribute, each of its values is considered to be an interval 
and we have the following intervals: 

Attribute: elvl 
Interval Winner Strength 

WI Group A Strong 

PI Group A Strong 

PI Group B Strong 

PI Group B Strong 

PI Group B Strong 

Since all the intervals are strong, the tree is not grown 
further. If all or some of the intervals were weak, the 
algorithm would develop the tree further for those in- 
tervals. Figure 2 shows the decision tree generated 
by ZC. It is a coincindence that the next attribute 

[20, 39.59) [39.59, 59.79) p9.79, 80.61) 

I I I 

elevel elevel elevel 

ITT-l-l rlTTl l-n-T-l 
01234 01234 01234 

AABBB AAAAB ABBBB 

Figure 2: Example Decision Tree Generated by ZC 

selected for each of the three intervals of age turned 
out to be elvl. In general, the siblings may not be 
the same attribute and different attributes may be se- 
lected for each of the intervals. Also, the tree need 

not be balanced - different branches could grow to 
different depth. 
Thus, ZC infers the following classification functions 

Grp A: ((20 5 age < 39.6) A (elvl E [O..l])) v 
((39.6 _< age < 59.8) A (elvl E [0..3])) v 

((59.8 5 age < 80.6) A ((elvl = 0))) 

Grp B: ((20 5 age < 39.6) A (elvl E [2..4])) v 

((39.6 5 age < 59.8) A (elvl = 4)) V 

((59.8 5 age < 80.6) A (elvl t [1..4])) 

which is very close to the original rules. Note that the 
actual age range in the training set was from 20 to 80. 
It is easy for someone familiar with SQL to see how 
ZC can generate SQL queries from the decision tree it 
synthesizes. 
Let us remark on two termination conditions that are 
not illustrated in the above example. Firstly, suppose 
we had limited the classifier depth to 1. Since the al- 
gorithm treats all weak intervals in the leaf node as 
strong, we would have obtained the following classifi- 
cation functions: 

Grp A: ((39.6 < age < 59.8)) 

Grp B: ((20 5 age < 39.6) V (59.8 5 age < 80.6)) 

The other case arises when there are less than a c 1 t,ain 
specified number of tuples in some range of values for 
the selected attribute. For example, having selected 
elvl as the next attribute as above, we may find that 
there is no tuple for elvl = 0. Then, the winning group 
of the parent node is made the winner group in this 
empty interval. 

3 Performance 

The goodness of a classifier has several dimensions: 
1. Generation Efficiency: How efficient is the classifier 
generation process. 
2. Retrieval Efficiency: How efficient is the classifier 
in retrieving all instances of a specified group. 
3. Classification Accuracy: How correct is the classi- 
fication of instances into groups. 
Compared to ID3 and CART, the generation efficiency 
in ZC stems from doing k-ary decomposition, instead of 
binary decomposition, of the range of a non-categorical 
attribute, and from using dynamic pruning, rather 
than back-tracking. Since ZC develops k-ary trees, in- 
stead of binary trees, the trees in ZC should be smaller 
and shallower. This should result in smaller queries, 
leading to better retrieval performance. 
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The classification error, that is, the fraction of in- 
stances in the test data that are incorrectly classi- 
fied, is the classical measure of the quality of a classi- 
fier. We performed several experiments to empirically 
determine the accuracy of the classification functions 
generated by ZC. We first describe the experimen- 
tal set up and the evaluation methodology, and then 
present some results, including comparison with ID3. 

3.1 Methodology 

We developed synthetic data to empirically evaluate 
the classification errors produced by ZC. The synthetic 
data is for a person database in which each person 
has the nine attributes given in Table 1. Attributes 
elvl, car, and zip are categorical attributes, all other 
are non-categorical attributes. Attribute values were 
randomly generated. There is also a derived attribute 
called eqty, defined as follows: 

hyrs < 20 =+ 0 
hyrs >_ 20 * 0.1 x hval x (hyrs - 20) 

We developed a series of classification functions of in- 
creasing complexity that used the above attributes to 
classify people into different groups. There are 5 func- 
tions, labeled 1 through 5, involving 2 groups. Func- 
tions 1, 2, and 3 involve predicates with ranges on one, 
two, and three attribute values respectively. Function 
4 is a linear function and Function 5 is a non-linear 
function of attribute values. These functions are listed 
in Appendix A. 
For every experiment, we generated a training set and 
a test data set. Tuples in the training set were assigned 
the group label by first generating the tuple and then 
applying the classification function on the tuple to de- 
termine the group to which the tuple belongs. Labels 
were also generated for tuples in the test data set as 
per the classification function to determine whether 
the classifier correctly identified the group for the tu- 
ple or not. 
It is rarely the case that the boundaries between the 
groups are very sharp. To model fuzzy boundaries, the 
data generation program takes a perturbation factor 
p as an additional argument. After determining the 
values of different attributes of a tuple and assigning it 
a group label, the values for non-categorical attributes 
are perturbed. If the value of an attribute Ai for a 
tuple t is zi and the range of values of Ai is a, then the 
value of A; fort after perturbation becomes v+rxpxa, 
where T is a uniform random variable between -0.5 and 
$0.5. 
For each experimental run, the errors for all the groups 
are summed to obtain the classification error. For each 
classification function, 100 replications were done with 

new training sets being generated. The replications 
were then used to calculate the mean error with 95% 
confidence intervals. Errors are reported as percent- 
ages of the total test data set. In cases where the test 
data was perturbed, the intrinsic error in the test data 
was subtracted from the total error to arrive at the 
error due to misclassification. 
We used training sets of 2500 tuples and test data sets 
of 10000 tuples. Before settling on these sizes, we stud- 
ied the sensitivity of ZC to these sizes. The training set 
was reduced from 2500 tuples to 1000 tuples in steps 
of 500. As expected, the classification error increased 
with decreasing training set size, but the increase in 
mean error was small. In database mining applications 
involving databases in gigabytes, the training sets are 
likely to be fairly large, and training sets of 2500 tu- 
ples are not unreasonable. We increased the test data 
sizes from 10000 to 25000, 50000, and 100000 tuples. 
The results indicated that 10000 tuples provided al- 
most identical error estimates as larger test data sets, 
and we decided to stay with 10000 tuple test data sets 
to conserve computing time. 

3.2 Classifier Accuracy 

The first set of experimental results presented in Fig- 
ure 3 show the classification error rates for the five 
functions. The results have been shown for the follow- 
ing versions of XC: 

Error Pruning: This version used pruning based 
on error reduction with lookahead described in 
Section 2. A lookahead of 5 was used, and no 
interval was declared strong unless all the tuples 
in that interval belonged to the winning group 
(i.e., precision threshold = 1.0). 

Adaptive Precision: In this version adaptive 
precision threshold is used for deciding winner 
strength. A maximum depth of 10 was used to 
limit the growth of the tree. 

Fixed Precision: This version used a fixed preci- 
sion threshold of 0.9. A maximum depth of 10 
was also used in this version. 

All the three versions used information gain ratio as 
the criteria for the next attribute selection. The val- 
ues of all the non-categorical attributes were perturbed 
by 5% for all the tuples in the training set and the 
test data set. The minimum sampling values for the 
non-categorical attributes were 100 and the sampling 
multiplier of 0.10 was used. 
The first three functions partition the attribute space 
into hyper-parallelopipeds (n-dimensional rectangular 
regions). ZC works very well for such classification 
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Attribute Description Value 
Sal salary uniformly distributed from 20000 to 150000 
corn commission Sal >= 75000 a corn = 0 else 

uniformly distributed from 10000 to 75000 
age 
elvl 

CW 

zip 

hval 

age uniformly distributed from 20 to 80 
education level uniformly chosen from 0 to 4 
make of the car uniformly chosen from 1 to 20 
zip code of the town uniformly chosen from 9 available zipcodes 
value of the house uniformly distributed from 0.5klOOOOO to 1.5klOOOOO 

where Ic E (0. . .9} depends on zip 

hyrs years house owned 
loan total loan amount 

uniformly distributed from 1 to 30 
uniformly distributed frorn 0 to 500000 

Table 1: Description of Attributes 

I W Fixed Precision I 

1 2 3 4 5 
Function Number 

Figure 3: Comparing 3 Versions of ZC 

functions. Functions 4 and 5 partition the attribute 
space into hyper-polyhedra. Now ZC has to approxi- 
mate the partitioning using n-dimensional rectangular 
regions. Hence the error is expected to increase. 

The performance of the three versions of ZC is pretty 
close. We were somewhat surprised by the superior- 
ity (albeit, only little) of fixed and adaptive precision 
versions over the error pruning version as they are 
much simpler and computationally much cheaper algo- 
rithms. Although we have presented the results only 
for perturbation of 5%, similar results were obtained 
for other perturbation values. 

The following is a summary of the results from other 
sensitivity experiments (the constraint on number of 
pages prohibits us from presenting data from these ex- 
periments): 

l The information gain ratio performed somewhat 
better than the resubstitution error rate as the 
criterion for the next attribute selection, but the 
difference was not large. The resubstitution error 
is a computationally cheaper metric. 

l Increasing lookahead to 10 did not improve the 
performance of error pruning. A lookahead of 2 
did as well as 5. 

l Increasing the maximum depth to 15 did not help 
adaptive precision. The error rate with maximum 
depth of 5 were not very different from that of 
maximum depth of 10. It supports our conjecture 
that we may work with shallower trees when using 
zc. 

l The performance of ZC seems to be sensitive to 
the smoothing parameters. We need to explore 
the parameter space further, and develop better 
understanding of it. Our conjecture is that we can 
improve the performance of ZC by fine tuning the 
smoothing parameters. 

3.3 Sensitivity to Noise 

Insensitivity with respect to noise in the training and 
test data is an important quality of classifiers. Figure 4 
shows the error rates for the Adaptive Precision ZC for 
different amounts of perturbations in the data. These 
experiments were performed with the maximum depth 
of the tree set to 10. 
The results show that ZC is fairly stable. Errors in- 
creased as expected for Functions 1, 2, and 3, but only 
very moderately. We were surprised by reduction in 
error rates with increase in perturbation for Functions 
4 and 5. But we found similar behavior with ID3. The 
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Figure 4: Sensitivity to Noise of Adaptive Precision 

explanation seems to be that since we subtract intrin- 
sic error rate in the test data from the observed error 
rate to arrive at the error rate due to the classifier, 
some of the tuples that would have been reported as 
misclassified end up being in the intrinsic error pool, 
bringing the effective error rate down. 

3.4 Comparison with ID3 

We obtained the IND tree package [3] from the NASA 
Ames Research Center and ported it to IBM RISC 
System/6000 to compare the performance of ZC with 
other classifiers. Experiments have been performed by 
the IND designers to ensure that IND reimplements C4 
reasonably well. We present in this section the results 
of the comparison of the classification errors produced 
by ID3 (really C4) and ZC. 
Figure 5 shows the comparative error rates for the 
Adaptive Precision ZC and ID3 for 5% perturbation 
in training and test data. For Function 5, ID3 beats 
ZC (12.5% vs. 17.5% average error rate), but ZC beats 
ID3 for Function 2 (4.4% vs. 10.5% average error rate). 
The error rates for other functions are quite close, with 
ID3 doing a little better. A maximum depth of 10 was 
used for the adaptive Precision ZC. The difference in 
error rates did not change much between the two al- 
gorithms for different perturbation values (data not 
shown here), except that the performance of the two 
became identical for perturbation = 0 for Function 1, 
and for perturbation = 10% for Function 3. Given that 
ZC does dynamic pruning to gain generation efficiency 
and ID3 fully expands the tree and then backtracks to 
prune it, the best we expected was that ZC would come 
close to ID3 in the classification accuracy. Hence we 
feel satisfied with the classification accuracy shown by 

1 2 3 4 
Function Number 

Figure 5: Comparing ZC to ID3 

XC. We also think that the error accuracy of ZC can 
be improved by fine tuning the smoothing parameters. 

4 New Applications 

A secondary goal of this paper was to present the case 
that database mining applications lead to new inter- 
esting research problems. We now briefly summarize 
some of the new applications and research problems 
that we could identify in the context of our work on 
classification for database mining. These new applica- 
tions call for integration of retrieval and classification 
components leading to a tight coupling of these func- 
tionalities. In fact, in our view, classification should 
be encapsulated as a function of database systems to 
meet these increasing demands. In order to do this, the 
generation, retrieval and classification times should be 
added as measures of quality of a classification method. 
We outline here three applications: 

4.1 Best N problem 

In target marketing, instead of requiring all individu- 
als belonging to a group, very often the best N target 
individuals for a promotion are desired. The objec- 
tive is to maximize profit, where profit is calculated as 
the difference between the amount of money made on 
all cumulative sales resulting from positive responses - 
cost of mailing - cost of retrieval of N candidates from 
the database. Due to the inclusion of retrieval cost, a 
solution with lower positive response may be selected 
over the one with the higher response, if the former 
has a much smaller retrieval cost. 
The classification function generated by ZC is a dis- 
junction D of conjuncts C. Assuming that D selects 
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more than N tuples, the problem is to determine those 
conjuncts in C whose disjunction selects at least N tu- 
pies and the profit is maximized at the same time. For 
each conjunct c in C, we can define two parameters: 

1. The expected error of c, error(c) = 1 - return(c), 
where return(c) is the expected number of positive 
responses from those targets that satisfy c. 

2. The expected retrieval cost of c, denoted by 
retrieve(c). 

The profit from using c is given by 

Profit(c) = return(c) x sale-profit - 

(mail-cost(c) + retrieve(c)) 

where mail-cost(c) is the cost of mailing to the targets 
satisfying conjunct c. 
In the worst case, the conjunct c can be retrieved by 
a sequential scan of the database, in which case the 
retrieval cost in number of I/OS will equal the number 
of blocks B that the database occupies. Assume that 
the database has indexes available on some attributes. 
Each indexed attribute Ai is characterized by an ad- 
justed selectivity: s(Ai), which is the average number 
of I/O (in blocks) necessary to access all records with 
A; = a where a ranges over all elements of the domain 
of Ai. In case Ai has the clustering index then s(Ai) is 
equal to the selectivity of Ai divided by the number of 
records per block. If any indexed attribute appears in 
c, we may use the index to selectively retrieve records 
and then apply c to them. Assuming no index ANDing 
for simplicity, we can calculate the retrieval cost of c 
as 

min{ B, min{s(Ai) : Ai occurring in c}} 

Calculate the profit for each conjunct c in C. Sort con- 
juncts according to the value of the profit. Take first 
K conjuncts that together cover N targets, remember- 
ing that the total I/O cost for K conjuncts ceases to 
be additive after the retrieval cost exceeds the number 
of blocks in the database. In that case the retrieval 
cost will be constant and the final profit will depend 
only on the response rate of the first K conjuncts. 
Interesting open questions involve the performance of 
the above method compared to a hypothetical “spe- 
cial purpose” classifier that makes attribute selections 
on the basis of the base profit gain for the Best N 
problem. We are currently working on this problem. 

4.2 Adhoc Queries and Missing Data 

Suppose that a market researcher would like to try a 
hypothetical new package which is similar to some of 

the packages used in the past. She would like to esti- 
mate its performance on a population which was not a 
target for the previous mailing. For example, she may 
decide to test a package which has both ski vacation 
and a 3-day tour of Paris. If she had some past data 
about customers who, in the past, took a ski package 
and those who took Paris vacation, she may decide to 
“compute the profile” for a union of the set of those 
customers and use it in estimating the (missing) values 
of the attribute corresponding to a new package and 
use this profile on the new population. After that she 
may change her mind and modify slightly the package, 
starting the next iteration. These successive iterations 
capture the “ad hoc”, unexpected, nature of the plan- 
ning process for a new marketing campaign. 
For this scenario to become realistic, not only the ex- 
pected retrieval time should be minimized but also the 
classifier generation time, since it contributes to the 
overall run time of the query. How do we decide what 
part of the classification task will be performed at com- 
pile time and which part at query run time? 

4.3 Filters 

A classifier that provides a rough classification but 
generates a profile that has “good” retrieval proper- 
ties can be used as a “filter” for another classifier with 
good error characteristics, but poor retrieval proper- 
ties. An example of a classifier with good error but 
poor retrieval is a neural net. A tree classifier, on the 
other hand could work as a filter, if it displays good re- 
trieval performance. This involves, in general, building 
a classifier that best approximates a given “black box” 
function and has desirable retrieval characteristics. 

5 Summary 

We considered the problem of synthesizing classifica- 
tion functions for retrieving all instances of specified 
groups from a large database based on a representa- 
tive sample of examples, and presented a tree-based 
interval classifier (ZC) for this purpose. The classi- 
fier is designed to be interfaced efficiently with the 
database systems. Since such classifiers may be em- 
bedded in interactive loops to answer adhoc queries 
about attributes with missing values, ZC has been de- 
signed to be efficient in the generation of classifica- 
tion functions. The novel aspect of ZC is its treatment 
of non-categorical attributes. Instead of creating bi- 
nary subtrees for such attributes as is the case with 
ID3 and CART, ZC creates k-ary subtrees, where k 
is algorithmically determined for each node. Rather 
than generating a full tree and pruning it, ZC does 
dynamic pruning as the tree is expanded to make the 
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classifier generation phase efficient. ZC generates SQL 
queries for classification functions that can be opti- 
mized using relational query optimizers to realize re- 
trieval efficiency. Preliminary empirical comparison 
with ID3 indicates that ZC not only has retrieval ef$ 
ciency and classifier generation efficiency advantages, 
but also compares quite favorably in the classification 
accuracy. 

We also argued that classification should be encap- 
sulated as part of future database systems. It then 
opens up new application areas for classifiers, not hith- 
erto considered in the classification literature. We de- 
scribed extensions to ZC for it to be used in these new 
application domains, and also presented some interest- 
ing open problems. 

A by-product of this work has been the development 
of a systematic methodology for evaluating the per- 
formance of various classifiers. Our approach and the 
benchmarks we are developing allows one to systemat- 
ically explore various operating regions. Our hope is 
that these benchmarks will serve the same role in clas- 
sifier performance evaluation as the Wisconsin Bench- 
marks [l] played in the evaluation of relational query 
processing strategies. 

The work reported in this paper has been done in the 
context of the Quest project at the IBM Almaden Re- 
search Center. In Quest, we are exploring the various 
aspects of the database mining problem. Besides clas- 
sification, some other problems that we have looked 
into include the enhancement of the database capa- 
bility with “what goes together” kinds of association 
queries and queries over large sequences such as stock 
tables. We believe that database mining is an impor- 
tant application area for databases and we hope that 
it will be developed into an important research topic 
by the database community. 
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7 Appendix A 

In the following, (elvl E [l..lc]) is equivalent to 
((elvl= 1) V (elvl= 2) V . . V (elvl= k)). 
Function 1 

Grp A: ((age < 40) V ((60 5 age) 
Grp B: otherwise 

Function 2 

Grp A: ((age < 40) ~(5Oh' 5 sal 5 60K)) v 

((40 5 age < 60) A (75K 5 sal 2 125K)) V 

((age 2 60) ~(25K 5 sal< 75K)) 
Grp B: otherwise 

Function 3 

Grp A: ((age < 40)~ 
(((elvl E [O..l]) A 
((elvl E [2..3]) A 

((40 5 age < 6O)A 
(((elvl E [1..3]) A 

(25K 5 saI< 75K))v 
(50K 5 Sal_< 1OOK))))V 

(5OK 5 Sal _< lOOK)) v 
(((elvl= 4)) A (75K 5 sal 2 125K)))) V 

((age 2 f3OM 
(((elvl E [2..4]) A (5OK < sals 100K))V 

(((elvl = 1)) A (25K 5 saI 5 75K)))) 
Grp B: otherwise 

Function 4 

disp = (0.67 x (sal+ corn) - 0.2 x loan - 10K) 
Grp A: disp > 0 
Grp B: otherwise 

Function 5 

hyrs < 20 2 eqty = 0 
hyrs 2 20 a eqty = 0.1 x hval x (hyrs - 20) 

disp = 

Grp A: 
Grp B: 

(0.67 x (sal + com)- 
0.2 x loan+ 0.2 x eqty - 10K) 
disp > 0 
otherwise 
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