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Abstract 

As part of the Starburst extensible database project 
developed at the IBM Almaden Research Center, we 
designed and implemented a memory-resident stor- 
age component that co-exists with Star-burst’s disk- 
oriented storage component. The two storage compo- 
nents share the same common services, such as query 
optimization, transaction management, etc. However, 
the memory-resident storage component is faster than 
the disk-oriented storage component and hence needs 
faster run-time services. This paper examines two run- 
time services, the lock manager and the latch mecha- 
nism, and investigates possible cost-cutting measures. 
We propose the use of of a single latch for protecting 
a table, all of its indexes, and all of its related lock in- 
formation, in order to reduce storage component latch 
costs. VVe then show that although a table-level latch 
is a large granule latch, it does not significantly re- 
strict concurrency. VVe also examine traditional lock 
manager design and suggest a different design that is 
appropriate for memory-resident storage components. 
The new design exploits direct addressing of lock data 
and dynamic, multi-granularity locks. Performance 
measurements of the new lock manager show that it 
outperforms the regular Starburst lock manager, which 
is of a traditional lock manager design, by as much as 
60%. 
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1 Introduction 

The performance of relational database manage- 
ment system (DBMS) implementations has often been 
a problem for non-traditional database applications 
wishing to use the attractive features of the relational 
model. Applications such as language-based editors 
[Horwitz 851, program development environments [Lin- 
ton 841, and performance monitoring tools [Snodgrass 
841 could benefit from using the relational model, yet 
they require better performance than that typically as- 
sociated with disk-oriented database systems. Thus, 
application designers are often frustrated in choosing 
between database systems that offer either function or 
performance, but never both. 

The advent of object-oriented database systems, 
such as Object Store [Lamb 911, has further clouded 
the issue of which type of database system to use. Ob- 
ject Store uses a memory-based storage component 
and, as a result, is able to perform database opera- 
tions at memory speeds. Furthermore, the virtues of 
object-oriented programming have already contributed 
to many success stories [Michaels 91, Lamb 911. How- 
ever, those applications that need support for rela- 
tional operations, as well as high-performance, have 
not yet had their needs met. 

One solution to the non-traditional database appli- 
cation designer’s dilemma would be a database system 
that offers the performance of a memory-based storage 
component with the function of a relational database 
system. At the IBM Almaden Research Center, we 
are building such a system. As the base relational 
database system, we are using Starburst, an extensible 
database system prototype [Haas 89, Haas 901. One 
of the goals of Starburst is to support experimenta- 
tion with storage components through the use of its 
extensible Data Management Extension Architecture 
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(DMEA) [L’ m d say 871. DMEA provides database im- 
plementors with a simple interface for creating new 
storage methods and attachments. In Starburst terms, 
storage methods manage tables and their associated 
records, while attachments manage data structures re- 
lated to tables, such as indexes. We will use the term 
storage component to designate a storage method and 
its associated attachments. 

The two Starburst storage components of interest 
in this paper are the traditional disk-oriented storage 
component, known as the Vanilla Relation Manager 
(VRM), and the high-performance memory-resident 
storage component, known as the Main Memory Man- 
ager (MMM) [Lehman 921. MMM is intended to be the 
storage component one would use when storing data 
for which fast response-time is crucial, while for less 
critical data, or for data that does not fit in memory, 
VRM would be used. 

For MMM to achieve its full performance potential, 
it has to not only be stream-lined itself, but it needs 
to interact only with other software components that 
have also been optimized for performance. In Star- 
burst, a set of common services is provided for stor- 
age components. This set of common services com- 
prises such software components as a memory stor- 
age manager, an event queue manager, a default log- 
ging and recovery manager, a latch mechanism, and 
a default lock manager. A storage component such 
as MMM can use the standard software component 
provided by the common service, or it can use an al- 
ternative, more specialized software component, if one 
exists. Thus, we examined each software component 
in the set of Starburst common services to determine 
where improvement was possible. Since we are con- 
cerned only with high-performance software compo- 
nents that would work with the MMM storage compo- 
nent, we explored the possibility of letting these soft- 
ware components exploit the unique features of MMM 
in order to increase performance. Under this criterion, 
we determined that there was room for improvement 
in the use of the latch mechanism, the design of the 
lock manager, and the design of the recovery manager. 

Much work has already been done in the area of ef- 
ficient logging and recovery mechanisms for memory- 
resident database systems [Dewitt 84, Eich 87, Hag- 
mann 86, Kumar 91, Lehman 87, Salem 86, Salem 901. 
Less work has been done in the area of synchroniza- 
tion: latching and locking. Therefore, in this paper, 
we focus on efficient use of the latch mechanism and 
lock manager in the context of the MMM storage com- 
ponent . 

The remainder of this paper is organized as follows: 
Section 2 presents a minimal-cost latching scheme 
along with an analysis that shows that such a scheme 

provides sufficient concurrency. Section 3 briefly de- 
scribes the design of both the regular Starburst lock 
manager and the MMM lock manager, and then Sec- 
tion 4 compares the performance of the two lock man- 
agers. Finally, Section 5 presents our conclusions. 

2 Reducing Latch Cost 

One of the common services we have identified as po- 
tentially reducing the performance of the MMM stor- 
age component is the latch mechanism. A latch, or 
short-term lock, is a low level primitive that provides 
a cheap serialization mechanism with shared and ex- 
clusive lock modes, but no deadlock detection [Gray 
781. In Starburst, latches are used to, among other 
things, gain exclusive or shared access to buffer pool 
pages. Each time the VRM storage component needs 
access to a page, it contacts the buffer pool which then 
latches the page in the buffer pool in a shared or ex- 
clusive mode. 

A latch operation typically involves far fewer in- 
structions than a lock operation, as a latch’s data 
structures are statically allocated and directly address- 
able. In fact, in R* [Williams 821, a distributed rela- 
tional database system prototype developed at IBM 
research, a latch and unlatch operation used about 20 
CISC (IBM 370) instructions,i which was roughly an 
order of magnitude less than a lock and unlock oper- 
ation [Yost 92, Gray 89, Lehman 891. Thus, given a 
latch’s relatively short pathlength, one might dismiss 
the concern of latches imposing a significant overhead 
in the overall storage component pathlength. 

2.1 Design Alternatives 

One could imagine different MMM designs depend- 
ing on latch cost. If latch cost were indeed insignifi- 
cant, as some numbers indicate, one might consider a 
design of the MMM storage component that mimicked 
the VRM design, i.e. where individual latches con- 
trol a table’s memory pages (referred to in MMM as 
purtitions2), the nodes in a (T Tree [Lehman 861) in- 
dex, and the lock manager data structures. The many 
fine-grained latches would ensure that sharing was not 
limited. If, on the other hand, latch cost turned out to 
be more substantial, one might consider an alternative 
MMM design where all latches were removed, except 
one: the table latch. In this design, latches would not 
appear in t.he partitions that comprise an MMM ta- 
ble, they would not appear in any table control struc- 

lComplex Instruction Set Computer (CISC) instructions 
may correspond to several Reduced Instruction Set Computer 
(RISC) instructions. 

21n MMM, a table is stored in a variable-length segment. A 
segment is composed of a number of fixed size par2ilions. 
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tures. e.g. table statistics, they would not appear in 
the nodes of any MMM index, and they would not 
appear in the data structures of the MMM lock man- 
ager. Such a design is feasible in a memory-resident 
database environment, as the lack of disk I/O reduces 
the chances of a transaction being pre-empted while 
holding the large-grained table latch. 

To compare the alternative designs, we performed 
a number of experiments on Star-burst, measuring the 
amount of time spent in individual components, such 
as VRM, MMM, the lock component and the latch 
component.3 Table 1 shows the latch overhead, ex- 
pressed as a percentage of the overall storage compo- 
nent cost, for the VRM storage component, and for 
two design configurations of the MMM storage com- 
ponent: table-only latches, and node/partition/lock 
latches. Various scan operations were performed on a 
10,000 tuple table, using a 16-field! 208byte tuple, as 
defined by the Wisconsin Benchmark database [Bit- 
ton 831. In Table 1: STC is the total storage compo- 
nent, time, including the latch overhead. The VRM ta- 
ble scan and the MMM table/index scans using table- 
latches were measured. The MMM table/index scans 
(using node/partition/lock latches) were computed us- 
ing the measured table latch times. 

As a reference point for latch costs in MMM, we 
measured latch overhead in a VRM table scan. To 
our surprise. and contrary to the idea that latches are 
cheap, latch overhead was significant even in the VRM 
table scan case - 19% of the overall VRM pathlength 
was due to latching. Further examination reveals some 
of the reasons: First, each call to VRM results in at 
least three latches being set (two to fix a page in the 
buffer pool, one to release it). In a 10,000 tuple table, 
this alone is 30,000 latch calls. Second, although some 
database systems such as R* might seem to have inex- 
pensive latch operations, it is not guaranteed that all 
systems will have cheap latch calls. As we mentioned 
earlier. an R* latch/unlatch operation used about 20 
IBM 370 instructions. However, R* was able to exploit 
the powerful IBM 370 compare and swap instruction, 
which greatly simplified the latch implementation. 

Some machines, such as our test machine - an IBM 
Rise System 6000 Model 530 running AIX 3.1, do not 
have an equivalent compare-and-swap instruction. In 
fact. our test machine doesn’t even have a test and 
set instruction. For synchronization, we were forced 
to use an SVC (a kernel supervisor) call to perform 
the compare and swap function. On our Rise System 
6000, we measured the Starburst latch/unlatch oper- 
ation using a hardware clock that has a resolution of 
256 nanoseconds. When the latch operation was called 

3Section 4 gives scane more detail on how the tests were con- 
ducted and what hardware was used. 

repeatedly, suggesting that the instructions and data 
for the latch operation were in the processor cache, the 
latch/unlatch operation took about 7.3 microseconds. 
For more random, isolated latch calls, the operation 
took as much as 18 microseconds. Estimating the per- 
formance of our Model 530 at 10 MIPS, we calculate 
that the latch/unlatch pair uses about 73 RISC in- 
structions. 

In the case of the MMM table scan (Table 1); there 
is little difference between table latching and partition 
latching. In this particular example, the table-latch 
case sets a latch per MMM storage component call 
(10,000 latch calls). The partition-latch case sets a 
latch per lock (one table lock), a latch per partition 
(60 partitions in this table), and a latch per MMM 
call (lO,OOO), f or a total of 10,061 latch calls. The 
disparity between the two latching paradigms is more 
apparent when we examine the index case. MMM in- 
dexes contain only pointers to table data [Lehman 86, 
Lehman 921, so table data must be latched whenever 
an index is used. Thus, if our MMM design used indi- 
vidual latches in each table partition, each index node, 
and each lock data structure, an index scan of the en- 
tire table would require at least three latches per call: 
an index node latch, a table partition latch, and a lock 
data structure latch, plus a latch call for each new in- 
dex node encountered (240 index nodes), for a total 
of (((3 x 10,000) + 240) = 30,240 latch calls). This 
would result in a latch overhead of 37% of the ??MM 
storage component cost. In contrast, the tablL-latch 
case incurs one latch call per MMM invocation, which 
is at most a 15% overhead. 

When only two tuples are fetched from an index, 
the differences in the two latch organizations become 
more apparent. The table-latch design requires only 
three latches, one for each call to MMM (the third call 
returns end-of-scan)! whereas the other latch design 
requires a latch call for each index node touched during 
the search (8), pl us a partition latch for every reference 
to the table (16), pl us a partition and index node latch 
for three scan calls (6), plus two latch calls for the 
tuple locks for a total of 30 latch calls. In this case 
the table-latch is overhead is 6% of the MMM cost, 
whereas the other method imposes a 41% overhead. A 
similar argument applies to the insert case. 

2.2 What About Eikduced Concurrency? 

It appears that the use of table latches over index 
node, partition and lock latches can significantly im- 
prove the performance of MMM, but will the use of 
coarse-grained table latches reduce concurrency? If 
one latch controls all access to a table, including lock 
information, then both read and write operations on 
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Description STC Latch 
Latch 

Latch call percentage 
time overhead count of STC time 

VRM Full Table Scan, using (buffer) page latches 1293 ms 248 ms 34,028 19% 

MMM Full Table Scan (node/index/lock latches) 450 ms 73 ms 10,061 16% 
MMM Full Table Scan (table latches) 450 ms 73 ms 10,000 16% 

MMM Full Index Scan (node/index/lock latches) 598 ms 221 ms 30,240 37% 
MMM Full Index Scan (table latches) 450 ms 73 ms 10,000 16% 

MMM Index Scan: Fetch 2 tuples 0.536 ms 0.219 ms 30 41% 
(node/index/lock latches) 
MMM Index Scan: Fetch 2 tuples (table latches) 0.329 ms 0.022 ms 3 6% 

MMM table and Index Insert: (node/index/lock 0.552 ms 0.182 ms 25 33% 
latches) 
MMM table and Index Insert: (table latches) I 0.377 ms I 0.0073 ms I 1 2% 

Table 1: Latch costs in MMM and VRM. 

the table must use an exclusive table latch. One dan- 
ger of using an exclusive table latch is that a process 
could acquire the latch and then get pre-empted, thus 
making the table inaccessible to any other process un- 
til the latch-holding process awakens and releases the 
table latch. This is similar to the convoy phenomenon 
[Blasgen 791. 0 ne way to avoid this problem would 
be to suspend process pre-emption for the duration of 
the table latch.4Thus, in a uni-processor system, any 
table-latch contention problems could be avoided. Of 
course, for fairness reasons, we would bound the latch 
hold time and periodically force MMM to “come up 
for air” and give up the table latch. Also, as table 
latches must not be held by a transaction while it is 
waiting on a lock, the MMM lock manager must re- 
lease the transaction’s table latch before suspending 
the transaction. 

Although the table-latch case is easily argued for 
a uni-processor system, what about a multi-processor 
(MP) environment where transactions running on 
other processors could potentially be made to wait 
while one process “hogged” the latch of a frequently 
accessed table? It is necessary to determine the 
amount of concurrency, or processor overlap, that is 
possible using table-level latches. For this purpose we 
projected processor usage for a multi-processor using 
uni-processor execution times obtained by measuring 

4By modifying the AIX Version 3 kernel, we would have the 
ability to use a fast SVC service that would make a process 
temporarily exempt from pre-emption by other processes of the 
same, or lower, priority. Such a call would add approximately 20 
instructions to the pathlength of the latch operation. However, 
we might be able to reclaim some of this pathlength to switching 
from Starburst’s general multi-node latch to a more efficient, 
single (X) mode latch. 

the performance of queries run on the MMM storage 
component. 

Table 2 shows the performance measurements of 
some queries run on Starburst using the MMM storage 
component. We chose a representative set, including 
long transactions (an index scan that touched every 
tuple) and short transactions (an insert or fetch). For 
simplicity, we grouped inserts, deletes and fetches to- 
gether and gave them a common cost.5 For the pur- 
poses of these tests, a single transaction performed a 
single operation, such as a table scan, or an insert. A 
more realistic transaction, one that performs a set of 
these operations, would be a combination of these low 
level operations. 

The execution times presented in Table 2 represent 
query execution time only; other costs such as pars- 
ing, query optimization, and query compilation, have 
been excluded from this measurement. Furthermore, 
the scan-type transactions do not include the time to 
do anything with the tuple once it has been retrieved, 
such as printing; tuples returned up to Star-burst’s Ap- 
plication Programming Interface were discarded. 

For the following discussion, we’ll use these terms: 

Xi = the arrival rate of type i transactions 

CX;~ = the proportion of the time transaction i is 
holding table latch j. 

Si = the total CPU time, or service time, of trans- 
action i. 

5As logging has not yet been implemented for MMM, these 
figures do not include the cost of writing log records for update 
transactions. 
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Trans Service Latch hold Latch hold Transaction description 
Type time (set) time (set) percentage 

Ti Si Si * Cyij ’ - &lj 
Tl 0.864 0.450 52% Table Scan, count 100% 
T2 0.794 0.383 48% Table Scan. return 10% 
T3 1.006 0.586 
T4 0.445 0.107 
T5 0.007 0.0003 

58% Index Scan,’ count 100% 
24% Index Scan, return 10% 

4% Fetch. Insert or delete 
I I t I I 

Table 2: Results of benchmarks run on Star-burst. 

Given the query execution time and the percentage 
of that time spent holding the table latch, we can com- 
pute the maximum number of transactions that can be 
active in the database system. The fundamental limit 
of resources in the system implies that no table latch 
(j) can be held for more than one second for each sec- 
ond of real time. The total demand for table latch (j) 
by transactions of type (i) is XioijSi 5 1, and for all 
transaction types, xi XioijSi < 1. Thus, we can use 
the formula 

to compute Xi, the maximum number of (simple) 
transactions per second that we could process with 
an unlimited number of processors, for a given mix of 
transaction types (Ti). In this analysis, it is assumed 
that all limiting effects (such as multiprogramming 
level limitations or contention for other resources) have 
been removed. 

ine various transaction mixes using a specific database 
and observe both the processor overlap and the rate 
at which transactions are processed. Our example 
database is made up of 100 tables, each 10,000 tu- 
ples in size. Each tuple contains 16 fields and is 208 
bytes long, as described by the Wisconsin Benchmark 
Database [Bitton 831. To mimic a realistic distribu- 
tion of database references, we use the 80-20/80-20 
rule. That is, 80% of the references go to 20% of the 
tables (warm tables). Furthermore, 80% of the ref- 
erences to warm tables go to 20% of the tables (hot 
tables). Thus, for a 100 table database: 

64% of the database references go to 4 tables (hot). 
16% of the database references go to 16 tables (warm). 
20% of the database references go to 80 tables (cool). 
The four hot tables are the bottleneck, so we can use 

the transaction mix and a single hot table to determine 
the maximum value of X. Then, given X for a single 
hot table, we can derive the relative values of all the 
Xi for each transaction type. 

Then, given Xi, Little’s Law [Kleinrock 751 

N = xX& 
i 

gives us the number of transactions that can be run in 
parallel, which equates to the processors that can be 
kept. busy simultaneously. We refer to this quantity as 
the amount of processor overlap. 

For example, suppose we have only one transaction 
type T, and one relation R. A type T transaction runs 
for one second and holds the table latch on relation R 
for 10% of the time. Then, for an unlimited number of 
processors, the arrival rate is X * .lO * 1s < 1, or X < 

1 1. or X < 10/s, or 10 transactions per second. 
Then. given X, the processor overlap, or number of 
transactions that can operate simultaneously, is N = 
X * T. Substituting terms (X = 10 /s) and (T = 1s) 
gives us (N = lo), 10 transactions being processed 
in parallel. 

Table 3 shows the total number of (simple) Transac- 
tions Per Second (TPS) that could be processed by an 
unlimited number of processors, and then the actual 
number of processors that could be kept busy. It also 
shows the breakdown of TPS over the hot (64%), warm 
(16%)) and cool (20%) tables. The first “# processors 
busy” column in Table 3 gives a slightly unrealistic es- 
timation of processor overlap, as it does not include 
any application time, nor does it include any time to 
process the data returned by the database system. The 
second “# processors busy” column in Table 3 gives a 
more realistic estimate, as we doubled the transaction 
time to allow for application and tuple processing. Re- 
call that the TPS numbers presented here are for rela- 
tive comparison only, as the transactions used here do 
not represent real-world transactions. To get real TPS 
numbers, we would have to evaluate transactions that 
performed multiple steps involving some combination 
of scans, inserts, updates, and deletes. 

So, given the transaction service times and trans- We ran three sets of mixes: first, a completely uni- 
action latch hold times from table 2, we can exam- form distribution of all the transaction types from Ta- 
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Arrival Rate Mix Hot Warm Cool Total # procs busy # procs busy 
Tl T2 T3 T4 T5 TPS TPS TPS TPS (no appl code) (with appl code) 

20 20 20 20 20 13.1 3.3 4.1 20.4 12.7 25.4 

60 10 10 10 10 10.6 2.6 3.3 16.5 12.3 24.6 
10 60 10 10 10 11.6 2.9 3.6 18.1 12.8 25.6 
10 10 60 10 10 9.0 2.2 2.8 14.0 11.4 22.8 
10 10 10 60 10 19.4 4.9 6.0 30.3 16.2 32.4 
10 10 10 10 60 28.1 6.5 8.1 40.8 12.9 25.8 

100 0 0 0 0 8.9 2.2 2.8 13.9 12.0 24.0 
0 0 0 100 0 37.4 9.3 11.6 58.3 26.0 52.0 
0 0 0 0 100 13,333 3,333 4,133 20,799 145 290 

Table 3: Processor overlap and TPS. 

ble 2; second, a somewhat skewed mix where 60% 
of the transaction mix consisted of one transaction 
type and the remaining transaction types each received 
10%; finally, a skewed mix where some of the transac- 
tion types accounted for 100% of the mix. 

The numbers in Table 3 show that, for a variety of 
transaction types and a variety of transaction mixes, 
a reasonable amount of processor overlap is possible 
using coarse-grained table latches. Thus, we conclude 
that the use of table latches does not significantly re- 
duce concurrency. 

3 Reducing Lock Cost 

Besides the latch mechanism, another run-time ser- 
vice that could potentially reduce the performance of 
the MMM storage component is the lock manager. 
Compared to the large body of work in the lock- 
ing family of concurrency control methods (for exam- 
ple, [Agrawal 85: Bernstein 81, Carey 83, Carey 84, 
Eswaran 76]), there is little or no published work in 
the area of changing the locking mechanism itself. The 
System R lock manager described in [Gray 781 appears 
to be the basic design choice of most database systems, 
including Star-burst. 

Even though the regular Starburst lock manager 
keeps all of its data in memory, there are features in 
MMM that a lock manager could exploit to improve 
performance. Exploiting the extensibility feature of 
Starburst, we implemented a second lock manager, one 
that was tailor-made for the MMM storage compo- 
nent. We briefly describe the two lock managers to 
contrast their designs before we compare their relative 
performance in Section 4. Readers interested in more 
det.ails of the MMM lock manager or related work in 
the area of reducing lock cost should consult [Gotte- 
mukkala 921. 

3.1 The Starburst Lock Manager 

The control structure of the “regular” Starburst lock 
manager (SB LM) is shown in Figure 1. The SB 
LM uses a fixed-size hash table to speed lookups to 
Lock Control Blocks (LCB’s), which contain informa- 
tion about locks, such as the name of the lock, the 
group mode of the lock, and a queue of Lock Re- 
quest Blocks (LRB’s). Each requestor of a lock is 
assigned an LRB, which contains information about 
the requestor, such as the requested lock mode, the 
held lock mode, the status of the lock (held, waiting), 
and other transaction information. The SB LM main- 
tains a pre-allocated free pool of LCB’s per hash table 
slot and a pre-allocated free-pool of LRB’s per trans- 
action, which allow it to set only a single latch per lock 
operation. 

To set a lock on a named object, the Starburst lock 
manager does the following: It computes a hash value 
for the name of the object to be locked, and then sets 
a latch on the hash class (or hash slot) corresponding 
to the hash value. If an LCB for the object is not 
present, it initializes a pre-allocated LCB for the new 
lock and attaches it to the hash class chain. If an 
LRB for the lock requestor is not present, it initializes 
a pre-allocated LRB, and marks the process status as 
“running” if there is no conflict with other locks, or 
marks the process status as “blocked” and suspends 
the process. 

The SB LM supports hierarchical locking with two 
locking granularity levels: table and tuple. When lock- 
ing a tuple, an intention lock must first be placed on 
the table, to synchronize with any other table-level op- 
erations that could be active on the same table. Hence, 
setting a tuple lock results in two lock calls to set the 
table-level intention lock and the actual tuple lock. 
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Lock 
Hash Table 

. 

Hash Slot Latch 

Next Lock - 

Free LCB Pool 

Lock Control Block (LCB) 

Hash Slot 

Lock Request Block (LRB) 

Figure 1: Control structure of the Starburst lock manager. 

3.2 The MMM Lock Manager 

Figure 2 shows the basic data structures used by 
MMM and the MMM lock manager. MMM manages 
tables in variable-length segments, which are collec- 
tions of fixed-length partitions that contain records 
[Lehman 921. Each segment has a segment control 
block, which contains control information, and lock in- 
formation. As we mentioned in Section 2, a single table 
latch protects the table and all of its related structures, 
such as index and lock information. Thus, once MMM 
has acquired the table latch to reference table data, it 
has also implicitly latched all of the table’s lock data 
as well. 

The MMM Lock Manager (MMM LM) exploits two 
features of the MMM storage component: 

MMM Table data is fixed in memory, so MMM 
LM lock data is attached directly to table and 
record data, thus eliminating the need for a hash- 
table lookup operation to locate lock data. 

MMM Table control data is also fixed in memory, 
allowing MMM LM to maintain a “locking gran- 
ularity level” flag for each table, which is used 
to eliminate the need for locks at multiple lev- 
els while maintaining the semantics of hierarchical 
locking. 

The MMM Lock Manager uses two locking granu- 
larities: “table” and “tuple.” A locking granularity 
level flag, kept in the table’s control information, des- 
ignates the current locking granule size. The MMM 

LM changes the locking granularity level flag for each 
table dynamically, depending on the level of sharing 
required for that table. Locking at the table level is 
cheaper than locking at the tuple level, so it is the 
preferred method when fine granularity sharing is not 
needed. When one or more transactions are blocked 
while trying to access a table that is locked with an- 
other transaction’s table lock, the table lock is de- 
escalated into a collection of tuple locks; the higher 
cost for tuple-level locking is then paid, but the level 
of sharing is increased. To allow for the possibility of 
table lock de-escalation, tuple locks that would have 
been set are “remembered,” so that they may be con- 
verted into real tuple locks if the need arises. When 
fine granularity locks are no longer needed, tuple-level 
locks are escalated into table-level locks. Certain op- 
erations that require the use of an entire table can 
force lock escalation to the table level and disable lock 
de-escalation until they have completed. 

Each transaction that sets a lock on a table gets a 
Table Lock Control Block (LCB) which tracks the ag- 
gregate mode of the transaction’s locks on that table. 
The Table LCB also maintains the list of remembered 
locks that a transaction acquires while a table lock is in 
effect. A transaction’s remembered lock that is com- 
patible with the aggregate lock modes of all the other 
running transactions with LCB’s on a table is referred 
to as a granted lock. On the other hand, a transac- 
tion’s remembered lock that is not compatible with 
the aggregate lock modes of the table’s other LCB’s, 
and thus causes the transaction to block, is referred to 
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Figure 2: Structure of the MMM Lock Manager. 

as an awaited lock. 4.1 The Results 

4 Performance Experiments 

In this section we compare the performance of the 
MMM Lock Manager (MMM LM) with that of the 
Starburst Lock Manager (SB LM). The hardware used 
for our experiments was a model 530 IBM Rise System 
6000 workstation with a 25 MHz processor and a 64 
Kbyte I&D cache. The peak integer performance of a 
model 530 Rise System 6000 is nominally 25 MIPS, but 
in practice we have estimated that 10 MIPS is closer 
to the mark for database workloads because of poor 
instruction and data locality, which causes processor 
cache misses. Our machine was configured with 128 
megabytes of memory, which was more than enough to 
keep all data cached in memory during test runs. Fur- 
thermore, to ensure that we were getting real memory- 
resident performance numbers, we added special sanity 
checks to Starburst to verify that no I/O occurred in 
any of the test runs. All our tests were run under AIX 
Version 3.1. 

As we were interested in the most common case 
where there was no lock contention, we measured lock 
cost by setting non-conflicting read locks. The exe- 
cution times in Table 4 are presented in four groups. 
The first group shows the execution times of the lock, 
unlock, and combined (lock/unlock) operations per- 
formed by the regular Starburst lock manager (SB 
LM). The second group shows the execution times of 
the lock, unlock and combined operations performed 
by the MMM lock manager (MMM LM) for setting 
“remembered” locks. A remembered lock is set instead 
of a real tuple lock when the lock granularity level of 
a table is at the table level. The third group shows 
execution times of the same operations performed by 
the MMM lock manager for setting real tuple locks, 
as would be the case when the table granularity flag 
is at the tuple level. The last group shows the cost of 
de-escalating a table lock (essentially, a remembered 
lock) into a real tuple lock. 

A real-time hardware clock on the Rise System 6000 
with a resolution of 256 nanoseconds was used to mea- 
sure query execution time during test runs. We instru- 
mented Starburst with assembly-routine macros that 
made use of the Rise System 6000’s hardware clock 
facility to time key code segments in Starburst. Thus, 
we were able to not only obtain the overall execution 
time of a query, but we were also able to obtain an ac- 
curate breakdown of where the time was being spent 
in the query’s execution. 

The execution times presented in Table 4 represent 
the minimum execution times for both SB LM and 
MMM LM. Since the SB LM is a “traditional” lock 
manager which stores lock data in a chained-bucket 
hash table, its performance is sensitive to the num- 
ber of locks set. Starburst memory constraints pre- 
vented us from creating a lock hash table larger than 
1,000 slots, so lock numbers greater than 500 caused 
SB LM’s performance to decrease.6 The best perfor- 

6By using a dynamic hashing algorithm, such as linear hash- 
ing [Litwin SO] or modified linear hashing [Lehman 861, we could 
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mance was obtained from SB LM when setting and 
releasing 100 locks, 25 microseconds and 12 microsec- 
onds. respectively. 

For a sanity check, we compare the performance of 
the Starburst lock manager with two other tuned lock 
managers: the R* lock manager and the GAMMA 
database machine lock manager. We estimate the 
37 microseconds for the SB LM lock/unlock call at 
370 RISC instructions, and compare that with the 
150 IBM 370 (CISC) instructions that were used by 
a lock/unlock call in R* [Gray 891, and the 235 
DEC VAX (CISC) instructions that were used by a 
lock/unlock call in the GAMMA database machine 
[DeWitt 90, Gh an e arizadeh 891. It is difficult to d h 
compare RISC and CISC instructions at this level and 
draw any conclusions, but we can make some observa- 
tions. The 150 instructions used by R* actually con- 
tained 5 occurrences of the compare and swap instruc- 
tion, which correspond roughly to 20 or 25 RISC level 
instructions. Furthermore, it is not uncommon to es- 
timate one CISC instruction at 1.5 to 2 RISC instruc- 
tions. From these statements, and our own knowledge 
of the SB LM, we feel that the SB LM is a reasonable 
implementation of a lock manager. 

As expected, the MMM lock manager tuple lock cost 
is less than that for the Starburst lock manager, as the 
direct access to the Lock Control Block (LCB) avoids 
the cost of the hash-table lookup step. Additionally, 
because of the direct access, MMM LM is not affected 
by the number of locks set on a table. Overall tu- 
ple locking cost for the MMM lock manager is derived 
from a combination of the two lock granularity modes: 
table and tuple. When there is no contention for the 
table, all of the locks set are table-level, and the tu- 
ple locks are remembered. In this mode, the unlock 
cost reflects processing the table-level LCB (checking 
for waiting transactions, etc.) and then throwing away 
(recycling) the remembered tuple-lock data structures. 
Thus the cost of unlock for remembered tuple locks is 
relatively small (5 ps), as no checking is needed. When 
there is contention for the table, some of the locks set 
are real tuple-level locks, although, recall that only one 
lock is set per tuple, as table-level intention locks are 
not needed. The tuple-unlock cost of the MMM lock 
manager and the Starburst lock manager are similar, 
as they perform similar functions. Both lock managers 
traverse the LCB chains, set a latch on each LCB, and 
check for waiting transactions. In fact, the MMM LM 
is slightly slower when unlocking a tuple because of 
the extra checking done t,o test for possible lock gran- 
ularity escalation. 

Not shown in Table 4 is the time used by the MMM 

eliminate this problem for any number of locks. 

lock manager to set a fixed table lock, which is 10 
microseconds for lock and 10 microseconds for unlock 
(20 combined). The first lock call in a table, for either 
a remembered or real tuple lock, also incurs the cost 
of setting the initial table lock. Hence the first tuple 
lock (and subsequent unlock) operation costs approxi- 
mately 31 (20 + 11) and 44 (20 + 24) microseconds, for 
remembered and tuple locks respectively.7 Thus, using 
regular locking and intention locks, the Starburst lock 
manager would require 74 microseconds to lock and 
unlock the first tuple, whereas the MMM lock man- 
ager would require either 31 or 44 microseconds. Sub- 
sequent tuple-lock calls to the Starburst lock manager 
would still cost 74 microseconds, whereas subsequent 
calls to MMM LM would cost 11 or 24 microseconds, 
for remembered or real tuple locks, respectively. If 
we were to move the intention lock checking logic into 
the Starburst storage components that use the regular 
Starburst lock manager, then we would be able reduce 
the lock cost somewhat, although the amount is diffi- 
cult to quantify. Notice also that a table-scan opera- 
tion does not have the problem of repeatedly resetting 
the table-level intention lock, as the logic of the table- 
scan code is such that the intention lock is set exactly 
once. However, repeated probes with an index, or any 
modifying operation, such as insert, delete, or update, 
do repeatedly set table-level intention locks in Star- 
burst. 

Finally, we computed the cost of de-escalating re- 
membered locks into tuple locks. At first glance, the 
cost of de-escalation might appear t.o be the cost of 
setting a regular tuple-lock for each remembered lock, 
spending 24 + 11 = 35 microseconds total per tuple 
lock. Fortunately this is not the case. Consider the 
following: 

All running transactions have remembered locks 
that have a compatible lock mode. 

All remembered locks of blocked transactions have 
compatible lock modes, with the exception of the 
last one (the request which caused the transaction 
to block). 

So the process of conversion of remembered locks to 
“real” locks involves: 

1. Converting all remembered locks of running trans- 
actions into real locks. 

2. Converting all non-blocking (granted) remem- 
bered locks of blocked transactions into real locks. 

7The first lock call is actually a bit less than this, as both 
operations are done in a single lock call - however it’s easier to 
explain it this way. 
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I Oneration I Cost (microseconds) I 

SB LM Lock 
SB LM Unlock 
SB LM Combined 

MMM LM (seg + Remembered) Lock 

I 

25 ps 
12 us 
37 ;s 

6 PS 
1 MMM LM (see + Remembered) Unlock 1 5 us I 

\ ” , 

MMM LM (seg + Remembered) Combined 

MMM LM (tuple) Lock 
MMM LM (tuple) Unlock 
MMM LM (tuple) Combined 

MMM LM De-escalate Op 

ll’ps 

9 PS 
15 ,Lls 
24 ps 

2.3 ps 

Table 4: Execution times of a Read Lock/Unlock call for Starburst and MMM 

3. Converting all blocking (awaited) remembered 
locks of blocked transactions into real locks. This 
is almost equivalent to a tuple lock call. However, 
the number of these will be low - equal to the 
number of blocked transactions. 

Since all non-blocking (granted) remembered locks 
have compatible lock modes, steps 1 and 2 only involve 
adding the lcbs to the tuple lock chains; no compat- 
ibility checks are needed. Also, no new tuple LCBs 
need to be allocated because they have already been 
allocated as remembered locks (remembered and real 
tuple locks use the same data structure). 

In fact, we found that the cost of remembering a lock 
and then de-escalating it later appears to be slightly 
less than the cost of setting the tuple lock in the first 
place. We’ve seen this effect before in our benchmark 
experiments. When an operation is repeatedly done 
in “batch” mode, it runs faster - probably due to a 
better hit ratio in the processor instruction and data 
cache. 

4.2 The Bottom Line 

Consider the transaction execution numbers pre- 
sented earlier in Table 2. The latch-hold times rep- 
resent the amount of time spent in the MMM storage 
component. If we compute the number of locks set by 
these transactions and then multiply that by the lock 
cost, we’ll be able to compare the total time spent 
locking with the total time spent in the MMM storage 
component. The interesting cases are ones in which 
locking cost plays a major role, such as index scan or 
update transactions. To keep the numbers consistent, 
the MMM storage component and transaction times 
in Table 5 do not include any lock manager time. The 
lock times measured during the runs to generate Ta- 
ble 2 were subtracted from the MMM and transaction 

times. 
Table 5 shows the bottom line. For the three 

lock costs (SB LM lock/unlock, MMM LM real tuple 
lock/unlock, and MMM LM remembered lock/unlock) 
we display the cost of the lock call in milliseconds, 
and we also display the lock overhead as a per- 
centage of the total MMM time used for locking 

( lock time 
MMM time + lock time ). The benefits vary depend- 

ing on transaction type, the specific lock mode needed 
by the MMM LM (remembered or real tuple lock), 
and the amount of unnecessary intention-mode lock- 
ing performed by SB LM. However, except for the 
case of table scans where locking cost is not signifi- 
cant, the MMM lock manager can reduce SB LM lock- 
ing cost by 30% to 60%, as a result of using more 
efficient data structures and setting cheaper coarse- 
grained locks when fine-grained sharing is not needed. 
These savings equate to a 15% to 30% reduction in 
MMM time and a 5% to 20% reduction in overall trans- 
action time. Additional savings can be produced by 
MMM LM in those cases where SB LM is called to set 
redundant table-level intention locks. 

5 Conclusion 

We have described our attempts to reduce the lock 
and latch costs in the Starburst MMM storage compo- 
nent. We have shown that the use of table-level latches 
in MMM provides provides up to a 35% improvement 
in storage component performance, while not signifi- 
cantly reducing concurrency. 

As an example of Starburst extensibility, the MMM 
lock manager exists in Starburst side-by-side with the 
regular Star-burst lock manager. It supports the stan- 
dard Starburst lock manager interface, and it commu- 
nicates with the global deadlock detector that inter- 
faces to all lock managers (currently, there are only 
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Trans Transaction MMM Number of SB LM 1 MMMLM 1 MMMLM 1 
Type time time Locks set cost hi cost lo cost 

Tl 864 ms 450 ms 1 0.074 ms (.02%) ,024 ms (.Ol%) .Oll ms (0%) 
T2 794 ms 383 ms 1 0.074 ms (.02%) .024 ms (.Ol%) .Oll ms (0%) 
T3 910 ms 496 ms 10,000 370 ms (42%) 240 ms (33%) 107 ms (17%) 
T4 433 ms 85 ms 1,000 37 ms (30%) 24 ms (22%) 11 ms (11%) 
T5 7 ms 0.3 ms 1 0.074 ms (20%) 0.044 ms (12%) 0.031 ms (9%) 

Table 5: Comparing lock costs with MMM storage component costs. 

two). We described the design and implementation 
of the MMM lock manager. By attaching Lock Con- 
trol Blocks directly to the data and using dynamic 
multi-granularity locking, we can achieve locking costs 
that are up to 60% less than that of the Star-burst lock 
manager. This lock cost reduction translates into an 
MMM storage component performance improvement 
of up to 30%! and an overal transaction response-time 
improvement of up to 20%. 

We have shown that common services, such as the 
latch mechanism and the lock manager, are important 
to the performance of a database system storage com- 
ponent, and to the database system overall. In the case 
of the Starburst MMM storage component, reducing 
lock and latch costs has improved MMM performance 
by up to 65%, which corresponds to an improved trans- 
action response time of up to 30%. 
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