
Performance Evaluation of an 
Adaptive and Robust Load Control Method 

for the Avoidance of Data-Contention Thrashing* 
Axe1 Moenkeherg and Gerbard Weikum 

ETEI Zurich 
Department of Computer Science 
Information Systems - Databases 

CH-8092 Zurich, Switzerland 
E-mail: {moenkebe,weikum}@inf.ethz.ch 

Abstract 
Load control is necessary to prevent a database system from 
data-contention or memory-contention thrashing, 
caused by excessive lock conflicts or excessive buffer re- 
placements that may occur due to temporary load peaks. 
The load control method that is adopted by virtually all 
commercial database systems is to limit the degree of multi- 
programming (DMP), that is, the maximum number of 
transactions that are allowed to execute concurrently. Se- 
vere shortcomings of this DMP method are that it requires 
manual tuning by the human system administrator, and that 
it cannot react to dynamic changes of the transaction mix in 
the workload. 
In this paper we present a performance evaluation of an 
adaptive, that is, self-tuning load control method for the 
avoidance of data-contention thrashing. The basic princi- 
ple of this method is to monitor a data-contention per- 
formance metric called the conflict ratio, and to react to 
critical changes of the conflict ratio by temporarilysuspend- 
ing the admission of newly arriving transactions or by can- 
celling blocked transactions that block other transactions. 
In order to show the practical viability of our method, we 
have performed a performance evaluation based on page 
reference traces from the on-line transaction processing 
system of a large Swiss bank. The adaptive load control 
method copes well with the dynamic load fluctuations of 
this workload. It clearly outperforms the DMP method, 
since it adapts the system to the dynamic changes of the 
transaction mix whereas the DMP method uses a fixed 
DMP as a (bad) compromise for the entire duration of the 
experiment. 

1 Introduction 
1.1 The Problem 
Performance tuning of database systems depends critically 
on the expertise and experience of system admi&rators 
Permission to co 
gmntedpmv’ d 

without fee all or part of this material is 
thatthecopit3arenotmadeordisbibutedfor 

direct commercial advantage, the K!.DB wpyright notice and 
thetirleofthepublicationanditsdateappea~andnoticeirgiv- 
en that copyin is bypemission of the V Large Data Base 
f$oyg;l~h$g~g;~~~tv~ a fee P 

Proceedings of the 18th VLDB Conference 
Vancouver, British Columbia, Canada 1992 

l This work is partially supported by the UBL4B of the Union 
Bank of Switzerland (Schweizerische Baukge~khaft). 

and other human tuning experts who are responsible for the 
setting of system parameters. The purpose of such system 
parameters, or “tuning knobs”, is to adapt the system’s in- 
ternalalgorithms and resource limits to the specific charac- 
teristics of an application workload. One of the most impor- 
tant parameters that virtually all commercial database 
systems provide is the degree of multiprogramming (DMP) 
in a multi-user environment. The Dh4P is a limit for the 
maximum number of transactions that are allowed to ex- 
ecute concurrently. During a load peak, when transactions 
arrive very frequently, only the specified maximum number 
of transactions are admitted for execution, and some trans- 
actions may be queued at the system entry before they ac- 
quire any resources. 
The DMP serves to prevent the system from being tempo- 
rarily overloaded, and aims to smooth out load peaks over 
longer periods of time while ensuring that the available re- 
sources (CPUs, disks, memory) aresufficientlywell utilized. 
Without limiting the DW, load peaks would lead to thrash- 
ing, that is, a sudden and sharp performance degradation, 
similar to virtual-memory thrashing in operating systems 
[De68]. Thrashing may occur for (at least) the following two 
reasons: 

memory contention, that is, excessive buffer replace- 
ments leading to disk I/OS that could be avoided if the 
working sets or “hot sets” of the executing transactions 
were held in memory, or 
data contention, that is, excessive lock conflicts leading 
to frequent and/or long blocking delays. In addition, de- 
pending on the reference characteristics of an applica- 
tion, the frequency of deadlocks may increase signifi- 
cantly. 

This paper deals with the problem of data-contention 
thrashing (DC thrashing). Throughout this paper, we as- 
sume that two-phase locking is employed as the concur- 
rency control protocol, as it is the case in virtually all com- 
mercial database systems. The DC thrashing phenomenon 
has been intensively discussed in various papers on the per- 
formance analysis of two-phase locking (e.g., [TGS85, 
ACLH, JTK89, TR91]). When DC thrashing occurs, more 
and more transactions become blocked so that the response 
time of transactions increases beyond acceptable values 
and essentially approaches infinity. In practice, DC thrash- 
ing is probably infrequent because the limitation of the 
DMP acts as a load control method. In addition, application 

432 



programs are typically highly tuned in performance-criti- 
cal applications (e.g., to reduce the probability of deadlock) 
and sometimes even sacrifice data consistency to avoid per- 
formance problems. 
Unfortunately, the DMI’ method has two severe shortcom- 
ings as discussed in the following 
1. There are workloads that are very sensitive to changes of 

the DMP. If the DMP is set too high, then DC thrashing 
cannot be safely avoided. On the other hand, if the DMP 
is set too low, then transactions are often unnecessarily 
queued at the system entry and transaction response 
time becomes unacceptably high, too. Unfortunately, it 
is costly if not infeasible to determine the optimal DMP 
of an application by “trial-and-error” experiments, be- 
cause one would need many operating hours of expen- 
sive production hardware to replay representative sam- 
ples of the production workload. In practice, the setting 
of the DMP is probably based on a mix of simple exper- 
imentation and guesswork; or applications tend to be 
conservative in that their DMP is unnecessarily low and 
results in underutilized hardware. 

2. In all commercial systems, the DMP is set “statically”, 
that is, when the system is started up and configured ac- 
cording to the administrator’s specification. Conse- 
quently, the DMP method cannot react to dynamic 
changes of the mix of transactions that constitute the cur- 
rent load. For example, a few heavy update transactions 
that occur once in a while may enforce a restrictive DMP, 
even if the workload consists of short and mostly read- 
only transactions most of the time. This problem may be 
alleviated by specifying DMP values for different over- 
lapping classes of transaction types, which is supported 
by some TP monitors. However, this extended method 
makes the problem of finding the optimal combination 
of DMP values even trickier and ultimately unmanage- 
able for most human administrators. 

The above two problems are severe drawbacks of the DMP 
method for performance -critical database system applica- 
tions such as on-line transaction processing (OLTP). Un- 
fortunately, the problems will likely be further aggravated 
by the expected advances of database systems. Object -ori- 
ented and extended relational database systems are geared 
towards more complex transactions and more diverse work- 
loads (e.g., mixing OLTP and decision-support queries). 
Because such systems will also speed up the application de- 
velopment process, the workload that is imposed on a sys- 
tem will change more rapidly and will become less predict- 
able. In addition, with increasing interoperability across 
system boundaries, a significant fraction of the workload 
may become inherently unpredictable, and DMP settings 
that are based on the local load alone will be meaningless. 
The bottom line is that the DMP method is inappropriate as 
a load control method that can safely avoid DC thrashing in 
systems with complex, temporally changing, highly diverse, 
or simply unpredictable workloads. 

1.2 Our Approach 
This paper advocates an adaptive load control method, 
which has been proposed by the authors in [Mw91] and is 
further elaborated and evaluated here. Unlike the DMP 
method, our adaptive method does not depend on any man- 
ual tuning directives; it is completely self-tuning in the 

sense that it adapts the DMP to the current workload dy- 
namically and automatically. Its basic principle is to moni- 
tor a data-contention performance metric called the con- 
flict ratio, and to react to critical changes of the conflict 
ratio by temporarily suspending the admission of newly ar- 
riving transactions or by cancelling blocked transactions 
that block other transactions. In addition, our method is 
able to exploit predictions for the length of a newly arriving 
transaction, that is, the number of locks that a transaction 
is going to request. However, our method does not depend 
on the availability of such advance lmowledge; it is fairly ro- 
bust without predictions or inaccurate predictions. More 
details of our load control method are presented in Section 
2 and Section 3. 
The performance of our load control method has been stu- 
died in w91] by means of simulation based on relatively 
simple, synthetic workloads. In this paper, we present a 
much more challenging performance evaluation based on 
real-life page reference traces. This evaluation is not only 
considered to be more significant than the synthetic-load 
simulations of w91] (and those of [CKL90, HW91], cf. 
Section 2.3), it also shows even bigger performance gains of 
the proposed adaptive load control method compared to 
the DMP method. 

1.3 Contribution of the Paper 

The focus of this paper is on the performance and the ro- 
bustness of our load control algorithm. Robustness means 
that the algorithm has the following properties: 
1. It does not only avoid DC thrashing and provide good av- 

erage response time, but it also keeps the variance of the 
transaction response time as low as possible, so that the 
system performance perceived by the end-user be- 
comes more predictable. 

2. It does not require advance knowledge of the length of 
transactions, the access characteristics of transactions 
(e.g., specitic access patterns), or the transaction mix 
(i.e., fractions of transaction types) of the near-future 
load. If such knowledge is available (e.g., based on aver- 
age transaction lengths of the various transaction types), 
then it may be exploited for further performance im- 
provements. 

3. It can cope with highly diverse workloads, with a high 
variance of the transaction length. It is shown analytically 
in p91, Th91, Th92] that workloads with a high vari- 
ance of the transaction length are much more susceptible 
to DC thrashing than more homogeneous workloads 
with the same average transaction length. 

4. It can cope with load fluctuations where the transaction 
arrival rate changes rapidly due to bursts of transaction 
arrivals. 

5. It can cope with dynamic changes of the transaction mix, 
that is, the relative frequency of the transaction types that 
constitute the workload. Such changes may occur inde- 
pendently of or in conjunction with dynamic changes of 
the overall arrival rate of transactions. 

This paper provides evidence that our adaptive load control 
method does, in fact, satisfy the above requirements to a 
large extent. The paper presents a performance evaluation 
of our algorithm, based on real-life page reference traces 
that were gathered from the on-line transaction 

433 



Load control PMfOllllaIlCe 
method metric 

Adaptive method 
of[MW911, 
elaborated in this 
paper 

Half-and-half 
method [CKISO] 

Feedback method 
of [Hw911 

Analytic model of 
Pll 

Analytic model of 
P-h921 

Wait-depth 
liIllitidiOll 

[FR85,m11 

DMP method 

fhdict ratio = 
ratio of the number of 
lodes held by all trans- 
actions to the number 
of locks held ty active 
transaCtiOnS 

Fraction of blocked 
and mature transao 
tiOIlS 

Fraction of active and 
mature tra.nsaUions 

-on through- 
put in time intewals of 
the recent past 

Fraction of blodted 
tK811s8QiOllS 

Fraction of lock con- 
flicts with blocked 
transactiom = 
1-l/amflictratio 

none 

none 

lksaction admission policy 

Trigger condition 1 Action 

Conflict ratio exceeds a Suspend the admission of 
critical threshold of 13 

I 
new transactions 

Conflict ratio drops be- Admit one or more trans- 
low the critical threshold actions of the BOT queue 
of13 

Fraction of blocked and Suspend the admission of 

Fraction of active and 
mature transactions is 
below 0.5 

Throughput has in- 
creased in last interval 

Throughput has de- 
creased in last interval 

Performance metric ex- 
ceeds a critical threshold 
of 03 

Admit one or more trans- 
actions of the BOTqueue 

Increase DMP 

Decrease DMP 

no details given 

Performance metric ex- 
ceeds a critical threshold 
~withO.2S~SO3 
depending on transac- 
tion characteristics 

no details given 

Number of executing 
tmnsauions is qual to 
the specified DMP limit 

Suspend the admission of 
new transauions 

lkuwction cancellation policy 

Tkigger condition 

Conflict ratio ex- 
ceeds a critical 
threshold of 13 

Fraction ofblocked 
and mature trans- 
actions exceeds 0.5 

Cancel one or 
more transactions 
that are blocked 
and block other 
tKX&XtiOIlS 

Came4 one or 
more trans- 
actions that are 
blocked and block 
other transadons 

no details given 

no details given 

Fiire 1: Comparison of DC Load Control Methods 
processing system of a large Swiss bank. The diversity and 
variance of the transactions in these traces pose a stress test 
to our algorithm. Since the dynamics of real- life workloads 
cannot be modeled by stochastic distribution functions, it is 
crucial to perform this sort of experimental evaluation. We 
believe that the results from this performance evaluation 
are an important step beyond the simulations that were 
presented in the previous work on DC load control. 
It is shown that our algorithm has robust behavior in the 
presence of the challenging workload properties discussed 
above. The algorithm not only avoids DC thrashing, but ac- 
tually outperforms the DMP method since it adapts the sys- 
tem to the dynamic changes of the transaction mix. In addi- 
tion to achieving good average response time, our method 
provides also acceptable variance of performance, as indi- 
cated by the 90th percentile of the transaction response 
time. These re-suits are achievedwithout assuming anyad- 
vance knowledge of transaction lengths and access charac- 
teristics. The paper also discusses the performance impact 
of such knowledge, including the impact of inaccurate pre- 
diCtiOtlS. 

The rest of the paper is organized as follows. Section 2 dis- 
cusses previous work on data-contention load control 
methods, including our own adaptive method w91], 
which is further elaborated here. Section 3 discussesvarious 
options how to exploit predictions of the transaction lengths 
and access characteristics. Section 4 presents the set -up of 

our performance experiments and the workload that drove 
the experiments. Section 5 presents the experimental re- 
sults, and discusses our major findings. The paper is con- 
cluded with an outlook on the next steps in our work to- 
wards a practically viable load control method. 
2 Previous Work 
The problem of DC thrashing and the need for load control 
were pointed out in the literature on performance analysis 
of two-phase locking (e.g., pGS85, ACL87, JTK89, 
TR91]), and has been discussed in some textbooks and tuto- 
rials (e.g., [BHG87, Hae87, Sha921). However, the perform- 
ance analysis work is not constructive as it does not make 
any algorithmic proposals how to avoid DC thrashing. More 
recently, a number of researchers, including ourselves, have 
proposed adaptive load control methods that aim to pre- 
vent systems from DC thrashing while ensuring that the 
available resources are sufficiently well utilized [CKL90, 
MW91, HW91]. In addition, some papers on performance 
analysis of two-phase locking have provided an analytic ex- 
planation of the DC thrashing phenomenon, and have con- 
tributed elements of load control methods without giving 
complete algorithms [FR85, FR’l91, Th91, Th92]. The basic 
idea of all these approaches is to monitor some perform- 
ance metric that indicates the current degree of data con- 
tention in the system, and to react to critical changes of the 
metric. The various approaches differ in their underlying 

434 



performance metric and in their possible reactions to criti- 
cal changes. These differences are summarized in Figure 1, 
and are further discussed in the following. 
2.1 Performance Metrics 
Chu own approach p91] is based on the conflict ratio 
metic. The conflict ratio at a given point of time is the ratio 
of the total number of locks that are currently held by all 
transactions in the system and the total number of locks 
held by active, i.e., non-blocked transactions.’ The best 
possible value of the conflict ratio is 1.0, that is, when no 
transaction is blocked. The conflict ratio increases with the 
fraction of blocked transactions, where the impact of a 
blocked transaction increases with the number of locks that 
it has already acquired. Through extensive simulation ex- 
periments we found that DC thrashing is about to occur 
when the conflict ratio exceeds a critical threshold of 1.3. 
The point about this threshold is that it is essentially work- 
load-independent; that is, a conflict ratio of 1.3 or higher 
indicates DC thrashing, regardless of the length and the ac- 
cess characteristics of the transactions in the system. In par- 
ticular, the conflict ratio and its critical threshold are inde- 
pendent of the fractions of shared and exclusive locks. 
The existence of such a universal constant was suggested al- 
ready by the seminal work of Tay [TGW], and its exact val- 
ue was further investigated by means of analytic modeling 
in the recent work of Thomasian m91, Th91, Th92]. The 
results presented in [Th92] do in fact provide a thorough 
analytical justification for using the conflict ratio as a per- 
formance metric for DC load control. 
Alternative metrics that have been proposed in [CKIJO, 
MW91, Th91, Th92] are: 1) the fraction of blocked transac- 
tions in the system (called the “tmnsaction metric” in 
[h4W91]), and 2) the fraction of lock conflicts with blocked 
transactions. The fraction of lock conflicts with blocked 
transactions is equivalent to the ratio of the total number of 
locks held by blocked transactions and the total number of 
locks held by all transactions; so it is actually the same as 1.0 
minus the inverse of the conflict ratio. 
The fraction of blocked transactions is essentially used as 
the performance metric of the “half- and- half” load con- 
&01 method [CKL90]. However, in this approach, “non- 
mature” transactions, which have not yet acquired at least 
25% of their locks, are discounted. Note that this notion of 
mature vs. non-mature transactions requires some ad- 
vance prediction of the number of locks that a transaction 
is going to acquire. The degree of data contention is consid- 
ered critical when the fraction of blocked and mature trans- 
actions exceeds 0.5 (hence the name of the method). The 
model of [Th91, Th92], on the other hand, yields a value of 
approximately03 for the fraction of blocked transactions at 
the DC thrashing point, taking into account both mature 
and non-mature transactions. It seems, however, that the 
critical value of this blocked-transactions metric is more 
sensitive to the characteristics of the workload and there- 
fore less appropriate as a load control threshold, compared 
to the critical threshold of the conflict ratio (cf. [Th92]). The 
instability of the critical threshold of the blocked- transac- 

l.In~91],wereferredtothismetricastheconflict.?heterm 
conflict do seems more appropriate, sina amteusually refers to the 
frquency of some event type per time unit The conflic3 ratio always 
refers to the au-rent state of the system 

tions metric is probably one reason for distinguishing ma- 
ture vs. non-mature transactions in the half-and-half 
method. 
An approach that uses transaction throughput as its per- 
formance metric is the feedback method proposed in 
[Hw91, Heigl]. The feedback method continuously mea- 
sures the transaction throughput over fixed-size time in- 
tervals, and it attempts to track the optimal DhP by react- 
ing to increases or decreases of the transaction throughput. 
If the throughput in the last measurement interval has in- 
creased (compared to the interval before), the Dh4P is in- 
creased; if the. throughput has decreased, the DMP is de- 
creased, too. In both cases, the amount by which the DMP 
is adjusted depends on the gradient of the observed 
throughput curve (i.e., the transaction throughput as a func- 
tion of the DMP values of the past intervals), using mathe- 
matical approximation techniques. 
A problem with the feedback method is that it crucially de- 
pends on a proper choice of the size of the measurement in- 
tervals. If the intervals are too big, then the feedback meth- 
od is not reactive enough in the presence of rapid load 
fluctuations; if the intervals are too short, then the algo- 
rithm may overreact to stochastic noise. It is not clear to 
what extent the size of the measurement intervals needs to 
be tuned to the workload at hand. It still needs to be shown 
that the method does not need any manual tuning hints, and 
that it can cope also with highly heterogeneous workloads 
(e.g., a mix of frequently arriving, short transactions and in- 
frequent, long transactions). 
2.2 Reaction to Overload 
The policy how to react to critical changes of the underlying 
DC performance metric can be decomposed into a transac- 
tion admission policy and a transaction cancellation policy, 
as illustrated in Figure 2 for our algorithm. The transaction 
admission control is invoked when a new transaction arrives 
and issues a BGT (i.e., Begin-Of-Transaction) request. 
The transaction is either admitted immediately when the 
DC performance metric is in the uncritical range, or is held 
in a BGT queue at the system entry when the performance 
metric is above the critical threshold. In the latter case, the 
transaction will be reconsidered for admission at a later 
point of time. 
23.1 ‘hnsaction Admission 
Several policies are conceivable as to when the transactions 
in the BGT queue are reconsidered for admission. Our load 
control method reconsiders non-admitted transactions at 
each EOT (End-Of-Transaction), that is, when a transac- 
tion commits and leaves the system, or when a transaction 
is aborted (due to deadlock or cancellation) and reenters 
the BGT queue. In either of these cases, the conflict ratio, 
that is, our performance metric, may have decreased, and if 
it has dropped below the critical threshold, then one or 
more of the transactions in the BGT queue are admitted. 
The basic version of our method simply admits all transac- 
tions of the BGT queue whenever it decides to admit one of 
them. However, transactions that were aborted due to 
deadlock and request to be restarted are delayed (see Sub- 
section 2.2.2). If our load control method is provided with 
advance lmowledge about transaction lengths, then it may 
decide to admit only a subset of the transactions that are 
waiting in the BOT queue (see Section 3). 

435 



EOT Lock Wait 

ok wita - ‘Itansaclioll 
Carmllatior 

* 1 

BOT queue 

I Ttamaction Admission 

Figure 2: Transaction Admission and Cancellation 
in the Adaptive Load Control Method 

The half- and-half method, on the other hand, reconsid- 
ers transactions in the BOT queue at each lock request. If 
the fraction of active and mature transactions is above 50%, 
then all transactions in the BOT queue are admitted. In ad- 
dition, when a transaction commits, either the first transac- 
tion in the BOT queue or, if the BOT queue is empty, the 
next arriving transaction will be admitted, regardless of the 
performance metric. Note that, once the BOT queue is 
non-empty, the half- and- half method checks its per- 
formance metric much more frequently than our method, 
since it reconsiders transaction admissions at each lock re- 
quest. This seems to be natural as the state of transactions 
may change from non-mature to mature upon a lock re- 
quest, thus changing the value of the performance metric 
for admission control. However, it also seems to make the 
method over-reactive to rapidly changing workload charac- 
teristics, whereas our algorithm tends to be more robust. 
The feedback method [Hw91] does not have an explicit ad- 
mission policy. Transactions are admitted whenever the 
current optimum of the DMP that is determined by the 
method is higher than the number of transactions that are 
currently executing. 

2.2.2 Transaction Cancellation 
The impact of an admitted transaction on the degree of data 
contention becomes effective only some time after the ad- 
mission, namelywhen the transaction has acquired a signifi- 
cant fraction of its locks. Therefore, transaction admission 
control alone may not be sufficient for load control. In addi- 
tion, the load control method may consider cancelling one 
or more transactions when the performance metric be- 
comes critical. Here, cancellation means that a transaction 
is aborted and restarted, subject to transaction admission 
control and possibly after some delay interval. 
Our load control algorithm cancels one or more transac- 
tions whenever its performance metric, the conflict ratio, is 
above the critical threshold. This condition is checked at 
each lock wait, i.e., lock requests that are not granted and 
lead to the blocking of a transaction. The algorithm cancels 
as many transactions as necessary to bring the conflict ratio 
below the threshold. However, it will cancel only transac- 
tions that are blocked and do in turn block other transac- 
tiOtlS. 

Cancellation victims are picked in ascending order of the 
product: number of locks held by the transaction * number 
of aborts and restarts that the transaction experienced so 
far. Ricking the transaction with the fewest locks has been 

found to be a good policy for selecting deadlock victims in 
[ACM87], and it is extended here to prevent transactions 
from starvation. The testbed on which we performed our 
performance evaluations (see Section 4) employs the same 
policy for deadlock resolution, too. A deadlock victim is re- 
started only after all other transactions in its wait-for- 
graph cycle are committed; this policy has been called Re- 
start Waiting in [TR90]. Cancellation victims are restarted 
(i.e., placed in the BOT queue) without any delay. Both can- 
cellation and deadlockvictims are prioritized over newly ar- 
riving transactions by the admission policy. 
So our load control method cancels only transactions that 
do not make progress and, in addition, prevent other trans- 
actions from making progress. This cancellation policy has 
been proposed in [FR85, FRT91], where it is used uncondi- 
tionally, i.e., independently of the degree of data conten- 
tion in the system, in order to limit the length of lock wait 
queues. pT91] also proposes a criterion for carefully se- 
lecting cancellation victims, based on the number of locks 
that are currently held by the candidate transactions. Note 
however, that this unconditional cancellation policy may in- 
cur unnecessary work by aborting and restarting a transac- 
tion even if the system is far below the DC thrashing point 
and transactions make reasonable progress. 
The half-and- half method essentially uses the same can- 
cellation policy as our algorithm. When the fraction of 
blocked and mature transactions is higher than 0.5, then 
transactions are cancelled until this metric drops below 0.5. 
Compared to our method, the half- and- half method fur- 
ther restricts the selection of cancellation victims to mature 
transactions. This restriction is in line with the underlying 
performance metic of the method, since only lock releases 
by mature transactions will affect the method’s perception 
of data contention. This observation again conveys the main 
problem of the half-and-half method: in order to improve 
the stability of the blocked-transactions metric as a data- 
contention indicator, the notion of mature vs. non-mature 
transactions is introduced. However, basing all decisions 
only on mature transactions seems to make the algorithm 
less robust than our method, and it requires advance esti- 
mates of the length of transactions. 
The feedback method [Hw91] discuses cancellation poli- 
cies only briefly. It concludes that cancellation should not 
be employed, or only as a last resort. Consequently, when 
the optimal DMP is decreased at some point of time and the 
current number of executing transactions is 6 transactions 
above the new optimum, the effective DMP will decrease 
only after the commit of 6 transactions. According to 
w91], this delay has a smoothing effect on the variation 
of the DMP, on the other hand, it seems to make the algo- 
rithm less reactive to rapidly emerging overload. 

2.3 Experimental Results 

The half- and- half method and our load control method 
have been evaluated based on simulations driven by syn 
thetic workloads with relatively few different transaction 
types [CKL90, MW91]. Both methods performed reason- 
ably well in that they safely avoided DC thrashing and 
achieved transaction response time results that were not 
much worse and sometimes even better than those of a 
manually tuned system using the DMP method. 

436 



Both evaluations mostly concentrated on the case of 
“steady overload”, that is, a transaction arrival rate that is 
higher than the system’s sustained throughput (for the given 
average transaction length). Only preliminary results were 
presented on the impact of dynamic load fluctuations, 
where the arrival rate may increase temporarily due to load 
bursts or the transaction mix may change dynamically. In a 
synthetic load-peak experiment, where the transaction 
mix changed periodically, our method outperformed the 
half-and-half method w91]. Similar simulation ex- 
periments are descriid in [Hw91] for the feedback meth- 
od, without comparison to other methods. However, none 
of these simulation studies captures the diversity and fluc- 
tuations of real-life workloads, which is the real touch- 
stone for adaptive load control methods. 

3 Exploiting Advance Knowledge of 
lhnsaction Properties 

In this section we discuss how the effectivity of our load con- 
trol method can be potentially further improved by exploit- 
ing advance knowledge of the access characteristics of 
transactions. Suppose that the conflict ratio of a database 
system is slightly below the critical threshold, and that a long 
update transaction arrives and requests to be admitted. The 
admission control would usually admit the transaction. 
However, if it knew in advance that the transaction is going 
to aquire a large number of locks, then it may infer that the 
conflict ratio will most likely increase beyond the critical 
threshold due to the increased probability of lock conflicts. 
In this case, the admission control should better decide to 
postpone the admission of the transaction until after the 
commit of some (or, in the extreme case, even all) of the cur- 
rently executing transactions, so that the long update trans- 
action will not cause DC thrashing. 
More generally, the advance knowledge of certain proper- 
ties of a transaction can be used to estimate the effect on the 
conflict ratio if the transaction were admitted, and the ad- 
mission decisions could be based on the estimated rather 
than the currently observed value of the conflict ratio. One 
could even estimate the effect of the expected lock requests 
of the transactions that are already executing, and may sus- 
pend the admission of all new transactions if the conflict ra- 
tio is expected to become critical in the near future. 
Transaction properties that are useful to know for this sort 
of intelligent admission control are: 

the le&th of a transaction, that is, the number of locks 
that it is going to requesf 
the CPU tune and the number of diskI/Os for each trans- 
action step, so that one could estimate the duration for 
which a lock is held, at least in a (resource- and data-) 
contention-free system, 
the transaction’s fraction of write accesses, that is, exclu- 
sive locks that it is going to request, 
the reference pattern of the transaction (e.g., index trav- 
ersal, sequential scan over a certain set of pages, etc.). 

In general, it is unrealistic to assume that all this informa- 
tion is available on-line and accurately. However, because 
most production systems run “canned transactions” where 
transactions are c1assXe.d into transaction types that corre- 
spond to pre-compiled transaction programs, at least 

some of the desired information may be available in the 
form of average values for individual transaction types. In 
the following, we assume that the average length of each 
transaction type is known in advance. Moreover, in many 
systems, these statistics are available for individual data- 
base partitions, i.e., tables or tablespaces/indexspaces in a 
relational system, areas in a Coda@ system, or “object clus- 
ters” in an object-oriented database system. So we assume 
that the average number of locks is lmown for each pair of 
database partition and transaction type. 
One may object that average values are not meaningful if 
the variance of the transaction length is high. However, 
while this is true for some applications, other applications 
exhibit relatively low variance of the length of most transac- 
tion types. The challenge for the adaptive load control is to 
exploit this knowledge for the “predictable” transaction 
types, while avoiding that inaccurate predictions for high- 
variance transaction types affect the performance in an ad- 
verse way. Note that advance knowledge along these lines 
has been shown to be beneficial for aff?nity- based transac- 
tion routing methods in shared-disk systems [Ra89, 
Reu86, YBL.881. The exploitation of advance knowledge 
has also been proposed for conflict-avoiding concurrency 
control methods [BSRSO, Bu89]. 
In the following, we show how the knowledge of the length 
0 of a transaction I; can be used to estimate the conflict ratio 
if the transaction were admitted for execution. We will use 
only simple heuristic formulas that can be evaluated at 
run-time with little overhead. Suppose that the database 
cm&s of D lock granules such as pages, the current num- 
ber of locks held by alI transactions in the system is L, and 
the current number of locks held by active, i.e., non- 
blocked transactions is A. Thus, the current conflict ratio is 
L/A. Further suppose, for now, that all locks are exclusive 
locks, and that lock granules are accessed according to a 
uniform distribution. Finally, let n be the number of cur- 
rently executing transactions in the system. Then, the prob- 
ability that a new transaction T,+l will become blocked if 
it were executed is: 

P[T,,+,isblockedJ = 1 -“+fi 
-‘D-L-k 

b,l-# D-k (1) 

This result can be used to adj&t”the confhct ratio by the fol- 
lowing heuristic formula, which simply adds a weighted 
number of locks to the number of locks held by active trans- 
actions: 

L + L+, 
cR’ =A+(1 -P[T,+,irbkxkedJ)‘l,+, (2) 
This rough estimate does not yet take into account the fact 
that the currently executing transactions will also request 
further locks, which increase the conflict potential for the 
new transaction and may also lead to blocking among the 
current transactions. Let 4 ’ be the number of locks that are 
still to he requested by transaction I; (I Ii < PI). A simple 
heuristics to accomodate this conflict potential is to view all 
these residual locks as a single fictitious transaction fl of 

length 2 I,‘. Then tire estimated conflict ratio CR’ can be 

adjuste$Ly computing the blocking probability of p and by 
setting 

437 



CR” = (3) 
L + In+1 + f Ii’ 

A+(l-PIT,+, isbkxkxi])*l,+l + (1 -410 L&C&])* $Zi’ 

This formula yields an upper bound for the confliA=:atio 
that one would estimate if the blocking probabilities of the 
n current transactions were computed and incorporated in- 
dividually? The formula can be extended analogously, if 
one wants to estimate the effect of admitting more than one 
transaction at the same time. Likewise, the formula can be 
refined so as to take into account knowledge of the number 
of lock requests for each pair of transaction type and data- 
base partition. Suppose that the database consists of m par- 
titions of size 4 (1 (j 5 m). Let L+ Aj, and & denote the 
number of locks on partition j held by all transactions, all ac- 
tive transactions, and requested by transaction T, respec- 
tively. Then the probability that a newly admitted transac- 
tion T,+I will become blocked is estimated by the following 
formula (4); this formula can be directly substituted into 
formula (3) to estimate the conflict ratio, as in the case of 
a non-partitioned database discussed before. 

PIT,+Iisblocked] = 1 - fi”+“ir 
-I Di-Lj.-k 

c4) i-1 ire Di - k 

Now let us relax the conditions that all locks are exclusive 
and that lock granules are accessed uniformly. Suppose we 
lrnow the fraction S of shared locks, averaged over all trans- 
action types. Further suppose that the skew in the distribu- 
tion of the access frequency of lock granules is specified by 
two numbers 11 and b (0 c a, b < 1) where b is the fraction 
of the database that is accessed by a traction a of the data 
references. For example, values u =0.8 and b =0.2 denote a 
Zipf-like access skew where 80% of the accesses refer to 
20% of the data. The size of the database that is used in the 
predictions of the conflict ratio can then be “normalized” as 
follows: 

D D’=1-&y2 

D” = 1 + (u - bq;,b(l - b) 

= (1 + (u - b)z,bc: - b)) l (1 - 9) 
(5) 

It is shown in pGS85] that, under a number of simplifying 
assumptions, a workload with a fraction S of shared locks 
and an a -b access skew on a database of size D has the same 
degree of data contention as a workload with exclusive 
locks only and uniformly distributed accesses on a “normal- 
ized” database of size D”. For example, with S=O.7, a=0.8, 
and b = 0.2, a database of size D = 1’000’000 pages is equiva- 
lent to a “normalized” database of size D” M fiOO’000 pages. 
Our adaptive load control method uses the above formulas 
to estimate the effect of a transaction admission on the con- 
flict ratio. The amount of advance knowledge that is ex- 
ploited gives rise to the following three different configura- 
tions of our algorithm. 

2. Even thea, hmvever, the formula would be far from being accurate, 
hecause it dot3 not capture the fact that the residual steps of the II 
transactions execute ameurrentiy, may have different durations, etc 

1. Ignorant: This is the basic version of the load control al- 
gorithm, in which no assumptions are made about the 
availability of advance knowledge. 

2. Smart: The expected change of the conflict ratio is esti- 
mated based on the average length of transaction types 
(formulas (1) and (3)). 

3. Intelligent: The expected change of the conflict ratio is 
estimated based on the average number of lock requests 
for each pair of transaction type and database partition 
(formulas (4) and (3)). 

In addition to providing a better basis for making admission 
decisions, the estimates of the conflict ratio can also be used 
for managing the BOT queue in a more aggressive way. 
Usually, the queueing discipline of the BOT queue is strict 
FIFO, with the exception of aborted and restarted transac- 
tions which are always placed at the front of the queue. With 
the ability to estimate the expected change of the conflict 
ratio that would be caused by the admission of one or more 
transactions, the admission control selects a maximum set 
of transactions from the front of the BOT queue such that 
the estimated conflict ratio will still remain below the criti- 
cal threshold. Alternatively, a non-FIFO queueing disci- 
pline may be employed such that an arbitrary maximum 
subset of transactions in the BOT queue can be selected for 
admission. In this case, the admission control still processes 
the BOT queue in FIFO order. However, when a transac- 
tion is rejected because the admission of this transaction 
would increase the estimated conflict ratio beyond the criti- 
cal threshold, the admission control will continue looking 
for further admission candidates with a lower conflict po- 
tential. This non-FIFO policy bears the risk of transaction 
starvation, that is, a transaction keeps being passed by less 
DC-critical transactions and remains in the BOT queue 
virtually forever. To reduce the probability of starvation, the 
algorithm artificially shrinks the transactions in the BOT 
queue by decreasing (i.e., dividing by two) the predicted 
length of a transaction each time a transaction is passed by 
another transaction. A better solution would be to intro- 
duce explicit priorities to reflect response time constraints 
of the individual transaction types, but this is beyond the 
scope of this paper. 

4 Set-up of Performance Experiments 
This section presents the organization of our performance 
experiments. Subsection 4.1 descrii the testbed on which 
the experiments were performed, and Subsection 4.2 de- 
scribes the real- life workload that drove the experiments. 

4.1 System Configuration 
We have implemented the described variants of the adap- 
tive load control method as a component of the COMFORT 
prototype [wei90]. COMFORT is an experimental self- 
tuning storage server for complex objects, which currently 
consists of a multi-disk file system providing coarse- 
grained file striping and automatic disk load balancing, a so- 
phisticated buffer manager with a spedrum of adaptive 
DBMIN-like policies, a transaction manager using two- 
phase locking, and the load control component. This proto- 
type served as the testbed for our performance evaluation. 
Since the purpose of the experiments was to evaluate the 
DC load control method, all other components were confi- 
gured in a “vanilla” way. That is, files were not striped but 

438 



Trace Data 

Driver Process 

Client Processes 

r 
Request 
Queue 

Server 
Processes 

Figure 3: Architecture of the Performance Testbed 

simply placed across (raw partitions of) eight disks with 
coarse load balancing by hand, and the buffer manager was 
configured to use global LRU for a page buffer of 1000 
pages. The lock granule was set to pages, since the trace 
data that drove the experiments consist of page references 
(see Section 4.2). 
The experiments were run stand-alone on a Sequent Sym- 
metry S81 shared- memory multiprocessor with 12 proces- 
sors (Intel 80386), 8 disks (Fujitsu M2344K), 2 dual-chan- 
nel controllers, and 80 h4B memory. COMFORT is 
designed for a client-server architecture with multiple 
server processes that share the load and keep all control 
blocks in shared memory, as illustrated in Figure 3. For bet- 
ter control of the experiment, the client processes were run 
on the same machine as the server processes. In this experi- 
ment, clients were mere stubs from which the transactions 
were invoked. The clients did not perform any application 
processing; they merely placed page access requests (read 
or write), BOT requests, and Commit requests in a request 
queue serviced by the server processes. The clients were fed 
by a separate driver process which read the trace data and 
assigned transactions to clients. The experiments were per- 
formed with 50 client processes and 8 server processes. 
Server processes were prioritized and bound to real proces- 
sors. 

4.2 Workload Description 

Qur performance evaluation was driven by page reference 
traces that were gathered from the on-line transaction pro- 
cessing system of the Union Bank of Switzerland, located at 
Zurich. The traces were collected during one hour of high 
activity (10 AM to 11 AM). In this hour, about 46’000 trans- 
actions were processed against a Codasyl database consist- 
ing of more than 150 areas with a total size of approximately 
23 GBytes. 
For the performance experiments described in this paper, 
we selected a subset of these transactions, namely all trans- 
actions that belong to the local stock maTket application. 
This subset contained 2163 transactions, that is, about 5 per- 
cent of the total number of transactions. However, in terms 
of the number of page references, the stock market transac- 
tions represent the heaviest application with a total of 
36’621 page references, which is about 6.6 percent of the 
werall load. These page references were distributed across 
10 areas with a total size of about 730’000 pages. The stock 
market transactions exhibited an 80-40 access skew; that is, 
80 percent of the page references referred to 40 percent of 
the potentially accessible pages. The average fraction of 
write accesses was 21 percent. These figures translated into 
a “normalized” database size of approximately 1.1 million 
pages (see Section 3, formula (5)). The 80-40 access skew 
was observed for the entire database (i.e., the 10 relevant ar- 
eas) and within individual areas. There were no obvious in- 
dividual hot-spot pages. 
The selected stock market transactions were generally 
much more complex than one would expect: with an aver- 
age of 17 page references per transaction they were about 3 
to 5 times heavier than the debit/credit transactio:~ of the 
TPC-A benchmark [Gr91]. The standard deviation of the 
transaction length (in terms of page references) was 46, in- 
dicating a highly diverse workload. The stock market appli- 
cation comprised 51 different transaction types, one of 
which had an average length of 160 page references. There 
were nine occurrences of transactions that reference more 
than 500 pages, probably because of scans over the member 
records of large set occurrences. Figure 4 summarize-s the 
access characteristics of the werall stock market workload 
and the top five transaction types in terms of the total num- 
ber of page references per transaction type. The standard 
deviation of the transaction lengthof individual transaction 
types was relatively low for almost all transaction types, so 
that transaction length predictions based on average values 
promised to be meaningful. 

t Transaction 1 Number Nuder of page references 

Figure 4: Description of the Transaction Types in the Workload 

439 



0 time 6omin 
12 

-zi+j g 10 
P t 8 

2 
0 

time 

Fiie 5: Temporal Distniution of lfausaction Arrivals 
The temDoral distribution of the transaction arrivals is 
shown in-Figure 5. The average interarrival time of stock 
market transactions was 1.2 seconds. The stochastic distri- 5 Performance Results 
bution of the interarrival time corresponds approximately 5.1 Reference Experiment 
to an exponential distribution function. However, the one- 
hour trace also exhibited some bursts of transaction arrivals, 
which cannot be modeled by a probabilistic distribution 
function. These bursts of arrivals were even more obvious 
for individual transaction types, as shown in Figure 5. Even 
more interestingly, there seemed to be a strong correlation 
in the load peaks of some transaction types, whereas the 
load peaks of other transaction types were uncorrelated or 
even seemed to alternate. 
Such dynamic fluctuations in the transaction arrival rate 
and the transaction mix, which are not properly modeled by 
stochastic functions, were in fact the main motivation for 
using real-life traces to drive our performance evaluation. 
In the performance experiments that we performed, trans- 
action arrivals were generated at the same relative points of 
time at which they occurred in the original trace, and their 
page references were fed into our testbed as fast as possible. 
We note in passing that the real OLTP system of the bank 
did not show any significant data contention problems dur- 
ing the one-hour trace period, since it used much faster 
hardware (Unisys mainframe) and was operating at a fairly 
restrictive DMP setting. The fact that our experiment was 
run on a parallel computer with relatively slow CPUs in- 
creased the degree of data contention in the workload. 
Note, however, that out experimental platform was able to 
process all transactions within one hour (i.e., the duration of 
the trace). 

200 --__ 
A l@-J ---------__________-- 
15 25 35 45 DMP 

_---- Average response time 
- 90th percentile of response time 

Figure 6: Transaction Response lime of the DMP Method 

This subsection describes a refemce experiment that sewed 
as a yardstick against which our adadptive load control 
method was measured. In a series of runs, we employed the 
DMP load control at different DMP settings. Figure 6 
shows the transaction response time as a function of the 
DMP values. The optimum Dh4P was 45, with an average 
response time of 37 seconds and a 90th percentile of 140 se- 
conds. 
There was a fair amount of data contention despite the fact 
that load control was in effect? The number of lock waits (i. 
e., lock requests that led to transaction blocking) was 485, 
and the transactions spent a large fraction of their response 
time waiting for locks (about 36 percent on average). In ad- 
dition, there was a fairly high number of deadlocks (79 
deadlocks), which temporarily increased the CPU load due 
to the reprocessing ofaborted transactions. It maybe worth- 
while to mention that the observed high number of dead- 
locks is in contrast to the folk wisdom that deadlocks are in- 
frequent [GrBl]. Recall, however, that the 
transactions in our experiment were much more complex 
than, for example, debit/credit transactions (see Section 
4.2), and that many deadlocks may have been caused by spe- 
cificreference patterns (see also [PR83] for similar obseIva- 
tions on deadlock frequency in real-life workloads).The 
degree of data contention was reduced at lower DMP val- 
ues; however, then the waiting time in the BOT queue be- 
came a significant factor so that the response time increased 
again. Figure 6 shows that the performance is quite sensitive 
to changes of the DMP; so it is not exactly easy to “guess” 
an appropriate DMP setting. Note that the experimenta- 
tion by which we determined the optimal DMP is usually 
too expensive to be applied in a real-live production envi- 
ronment. 

3.~verifythatthesystemwasindeedboundby&tacontentionrather 
than resource contention (i.e. CPU or disk contention), w-e also ran an 
experiment in which all exchsive lock rquests were replaced by 
shared lock rquests The avarage response time of this experiment 
was 552 seconds, and the 90th percentile was 7.9 seuxds, there was 
no obvious bottleneck in this case. 

440 



Avg. response time [xc] 

90th percentile of response time [set] 

Number of non-admissions 

Optimal DhCP method 

37 

140 

470 

Number of cancellations --- 

Number of deadlocks 79 

Ave. BOT aueue wait timelsecl ger transaction 1.34 
Number of lock waits 485 

Avg. lock wait time [set] per transaction 13.6 

Avg. DMP 16.0 

Avg. conflict ratio 1.65 

18 --- 

61 76 

0.02 0.22 

448 446 

11.0 15.6 

15.1 14.8 

Figure 7: Performance of Different Load Control Methods 

5.2 Performance of the Basic Load Control 
Method 

In this subsection we compare the basic version of our adap- 
tive load control method to the best possible DMP method. 
Our method used the admission and cancellation policy as 
described in Section 2. In addition, we included a version 
without cancellation control in the comparison. This ver- 
sion is supposed to be roughly similar to the feedback meth- 
od of v91], which does not use cancellation control ei- 
ther. Figure 7 shows the average response time and the 90th 
percentile of the response time as well as further perform- 
ance details for the three methods under comparison. The 
BOT queue wait time denotes the total time that a transac- 
tion spent waiting in 
the BOT queue for one of the following three reasons: 1) 
the transaction is not admitted immediately upon its arrival, 
2) the transaction is not admitted immediately for restart af- 
ter having become a cancellation victim, or 3) the transac- 
tion is not admitted immediately for restart after having be- 
come a deadlock vi~tim.~ The main observations from this 
experiment are the following. 
l The adaptive load control method clearly outperforms 

the (best possible) DMP method. It gains a factor of 1.5 
in terms of the average response time and a factor of 1.8 
in terms of the 90th percentile of the response time. The 
performance gains of our method are further illustrated 
by considering individual transaction types. Figure 8 
shows the response time results for the four most domi- 
nant transaction types (i.e., the top four transaction types 
of Figure 4). For the very long read-only transaction 
type B0330-331, the performance of the DMP method 
was actually quite comparable to that of the adaptive 
load control method, both in terms of average response 
time and the 90th percentile. The performance penalty 
of the DMP method was much more sign&ant for short 
transaction types (up to a factor of 4). The transaction 
type with the highest response time &gradation was 
BOllO-lll,afrequentbutfairlyshortread-onlytrans- 
action, which one would usually consider harmless. Ob- 
viously, the transactions of this type suffered from per- 
formance problems that 

4. Recall from Section 222 that deadlock victims may be delayed in- 
tentionally even if the conflict ratio has dropped below the critical 
threshold 

. 

were caused by other transaction types (see below for fur- 
ther explanation). Such a situation is not only counterin- 
tuitive, it is also unacceptable in practice. In on-line 
transaction processing, it is especially important to guar- 
antee good response time for the frequent “bread- 
and-butter” transactions, whereas for complex deci- 
sion-support queries one would be willing to accept a 
higher variance of the response time. Note that the adap- 
tive load control method behaved more intuitively in the 
sense that the response time of the various transaction 
types was roughly proportional to the complexity of the 
transactiOnS. 

The reasons for the bad performance of the DMP meth- 
od are twofold and have to do with the dynamic fluctua- 
tions of the workload (i.e., an inherent characteristic of 
most real-life workloads). 
1. At certain points in the course of the experiment, the 

rapid arrival of many potentially conflicting transac- 
tions produces a data-contention potential that re- 
quires very restrictive admission control; otherwise 
the system would possibly suffer DC-thrashing. How- 
ever, since the DMP limit of the optimal DMP method 
is relatively high, the degree of data contention be- 
comes quite critical, at least temporarily. 

2. At other points in the experiment, there are bursts of 
transaction arrivals which, however, may be quite un- 
critical in terms of their conflict potential (e.g., peaks 
of the read-only transaction type BOllO-111). The 
response time of these transactions degrades because 
the transactions spend a long time waiting in the BOT 
queue, despite the fact that they are uncritical in terms 
of data contention. This effect is even amplified by the 
other type of load peaks, which really bear the risk of 
DC thrashing the DC-critical load peaks lead to a 
backlog of non-admitted transactions, and the speed 
at which this backlog is processed is limited by the 
fixed DMP setting. The DMP method is not flexible 
enough to increase the DMP temporarily even if all 
currently executing transactions were read-only. 

The above consideration shows a fundamental problem 
of the DMP method. If the DMP limit were set higher, 
then the DC-critical load peaks may indeed cause 
thrashing if, on the other hand, the DMP limit were set 

lower, then the DC-uncritical load peaks would in- 
crease the unnecessary BOT queue wait time even fur - 

441 



Figure 8: Response Tie [set] of the Four Most Dominant Transaction Types 
ther. So, whatever the “optimal” DMP is, it is a statically worse than the Ignorant version. One of the pitfalls of at- 
fixed limit and, therefore, merely a (bad) compromise for tempting to be smart was the inaccuracy of the predictions 
the different load situations that occur in the one-hour of transaction lengths. Using average lengths of transaction 
trace. types in the estimation of the conflict ratio seemed to over- 
Our adaptive load control method, on the other hand, estimate the expected degree of data contention. There- 
adapts the DMP to the current load dynamically and au- fore, the Smart method held too many transactions in the 
tomatically. In the course of the experiment, the DMP BOT queue, and thus increased the transaction response 
varied between 1 and 50. The conflict ratio occasionally time in periods that appeared to be DC-critical but were 
exceeded the critical threshold and reached a maximum actually uncritical. The combination of the Smart method 
of 10; however, the average conflict ratio of 1.127 was with a non- FIFO queueing discipline, on the other hand, 
well below the critical threshold. admitted too many transactions in DC-critical periods. 

l The adaptive method with admission control only (i.e., The reason for this was that, especially in DC-critical peri- 
without cancellation) performed about equally badly as ods, the BOT queue contained enough transactions of al- 
the DMP method. Not having the option to cancel trans- most any type. The non-FIFO method could then select 
actions in DC-critical situations seems to make the for admission many transactions with a low predicted 
adaptive approach less reactive to dynamic fluctuations length. However, by the law of statistics, some of these ad- 
of the transaction mix mitted transactions were in fact longer than the average 

length of the corresponding transaction type. So, attempt- 
5.3 Performance of the Method Exploiting ing to be smart and unfair (i.e., non -FIFO) did not pay off. 

Advance Knowledge Note, however, that both Smart methods were at least as 

In this subsection we discuss the performance impact of ex- 
good as the Dh4P method; so our method is quite robust 

poiting predictions of the transaction lengths. We compare 
even in the presence of inaccurate predictions. 

the basic version of the adaptive load control method (i.e., 
The Intelligent method, on the other hand, seemed to esti- 

the “Ignorant”variant of Section 3) to the “Smart” and “In- 
mate the expected changes of the conflict ratio quite accu- 

telligent” methods described in Section 3. Recall that the 
rately, based on the average number of locks for each pair af 

Smart method is based on average lengths of transaction 
transaction type and database area. In this case, the non- 

types, whereas the Intelligent method considers the average 
FIFO version performed slightly better than the FIFO 

number of locks for each pair of transaction type and area 
method. However, before drawing general conclusions on 

(i.e., database partition). Orthogonally to these degrees of 
this issue, further performance studies are needed. 

exploiting advance knowledge, we considered two options 
6 Conclusion 

for the queueing discipline of the BOT queue: FIFO as in We presented an adaptive load control method for the 
the basic version of our method or non-FIFO as described avoidance of data-contention thrashing. This method has 
in Section 3. Figure 9 shows the response time results of the been stress- tested and its performance has been evaluated 
resulting five methods Ignorant (i.e., the basic version), based on real-life page reference traces from an on-line 
Smart/FIFO, Smart/non-FIFO, Intelligent/FIFO, Intelli- transaction processing system. It was shown that our meth- 
gent/non-FIFO. od can cope well with the diversity of the transaction mix 
Some of the methods that exploit advance knowledge per- and the dynamic fluctuations of the transaction arrivals. 
formed even better than the Ignorant method. The Intelli- The adaptive load control clearly outperforms the best pos- 
gent method improved the average response time by about sible DIviP method, since it can dynamically adapt the sys- 
20% and the 90th percentile of the response time by about tern to the temporal changes of the transaction mix The 
40%. The Smart method, on the other hand, performed performance of our method may be improved even further 

Average Response 
Tie 

90th Percentile of 
Response Time 

FIFO/ Non-FIFO/ FIFO/ Non -FIFO/ 
Smart Smart Intelligent Intelligent 

Figure 9: Response Time of the Methods with Exploitation of Advance Knowledge 

442 



by exploiting predictions of the lengths of transactions. 
However, our method does not depend on the availability of 
such advance knowledge; it is fairly robust without predic- 
tions or with inaccurate predictions. 
More experimental work is needed to quantify the advan- 
tages and disadvantages of the various options of our load 
control method. The next step is to extend our performance 
evaluation by including the half-and-half method and 
possibly other proposals for data-contention load control. 
Among the issues that we further plan to investigate are the 
impact of alternative scheduling policies, such as prioritiz- 
ing transactions that hold many locks, and the potential 
benefit of partial rollbacks wo92]. The idea of the latter is 
to undo a cancellation or deadlock victim only back to the 
point where its “most critical” locks can be released, that is, 
those locks that block other transactions. This option would 
potentially save work in the reprouzssing of aborted trans- 
actions. Finally, we have begun to address the problem of 
load control for memory contention, based on DBMIN- 
like buffer management architectures [CD85 FNS91, 
YC91], and we plan to study the interaction of this load con- 
trol component with the data-contention load control. 
Our ultimate long-term goal that we pursue in the COM- 
FORT project [wei is to automate as many database per- 
formance tuning decisions as possible, thus simplifying the 
tricky job of system administrators and human tuning ex- 
perts. The work presented in this paper is a step towards this 
ambitious goal. 

7 Acknowledgements 
We would like to thank the Union Bank of Switzerland 
(Schweixerische Bankgesehschaft) for supporting this 
work, and especially Dr. Stefan Gyr for providing us with 
the trace data and for his cooperation. We wouid aLso like 
to thank Christof Hasse for his help on troubleshootingvar- 
ious performance bugs of our prototype. Finally, we would 
Iike to thank Dr. Alex Thomasian for his comments on an 
earlier version of the paper. 

References 
[ACL87] AgrawaI, R, Carey, MJ., Livny, M., Concurrency Con- 

trol Performance Modeling: Alternatives and Implications, 
ACM TODS 12 (1987), 4 

[ACM81 AgrawaI, R., Carey, M J., McVoy, LW., The Perform- 
ance of Alternative Strategies for Dealing with Deadlocks in 
DatabaseManagementSystems,IEEETrans.onSoftwEng.13 
(1987) 12 

[BHG87] Bernstein, PA.,HadxiIacos,V, Goodman,N., Concur- 
rency Control and Recovery in Database Systems, Addison- 
Wesley, 1987 

pR80] Bernstein PA., Shipman, D.W., Rothnie, J.B., Concur- 
rency Control in a System for Distributed Databases 
(SDD-l), ACM TODS 5, (1980), 1 

[Bu89]Buchmann,etaI.,Tii-CriticaIDatabaseScheduIing:A 
Framework for Integrating Real-Time Scheduling and Con- 
currency Control, IEEE Data Engineering Conf., 1989 

[CD851 Cbou, H.-T, DeWitt, D-J., An Evaluation of Buffer 
Management Strategies for Relational Database Systems, 
VLDB Conf., 1985 

[CKL90] Carey, MJ., Krishnamurthi, S., Livny, M., Load Con- 
trol for Locking: The ‘Half-and-Half Approach, ACM 
PODS Conf., 1990 

[De681 Den&g, P., Thrashing: Its Causes and Prevention, 
AFIPS Cod., Vol. 33,1%8 

FJS91] Faloutsos, C, Ng, R, SeUis, T, Predictive Load Control 
for Flexible Buffer Ahocation, VLDB Conf., 1991 

m851 Franasze~ P., Robinson, J., Limitations on Concurrency 
in ‘Bansaction Processmg ACM TODS 10 (198S), 1 

[FRT91] Franasze k,P.,Robinson,J.,Thom~an.,WaitDepth 
Limited Concurrency Control, IEEE Data Eng. Conf., 1991 

[Gr81] Gray, J., et al., A Straw Man AnaIysis of Probability of 
Waiting andDeadlock, IBMRes. Rep. RJ3066, San Jose, 1981 

[Gr91] Gray, J. (Ed-), ‘Ibe Benchmark Handbook for Database 
and’Bansaction Pr ocessingSystems, MorganKaufmann, 1991 

[Hae87] Haerder, T, On Selected Performance Issues of Data- 
baseSystems,InvitedPaper,4thGI/ITGConf.onPerformance 
Modeling of Computing Systems, Springer, 1987 

[Hei91] Heiss, H.-U., Overload Effects and Their Prevention, 
Performance Evaluation 12 (1991) 

[Hi891 Highleyman, W.H, Performance Analysis of Transaction 
Processing Systems, Prentice Hall, 1989 

[Hw91] Heiss, H.-U., WQner, R, Adaptive Load Control in 
Transaction Recessing Systems, VLDB Conf., 1991 

[JTK89] Jenq, BP, ‘Rvicbell, B., Keller, T, Locking Performance 
in a Shared Nothing Parallel Database Machine, IEEE Data 
Eng. Cad., 1989 

~o92]Mohan,C.,etal.,ARIES:ATkansactionRecoveryMeth- 
od Supporting Fine-Granularity Locking and Partial Roll- 
backs Using Write -Ahead Logging, ACM TODS 17,1(1992) 

w91] Moenkeberg, A, Weikmn, G., Contlict-driven Load 
Control for the Avoidance of Data-Contention Thrashing, 
IEEE Data Eng. Co& 1991 

pR83] PeinI, I?, Reuter, A, Empirical Comparison of Database 
Concurrency Control Schemes, VLDB Cot& 1983 

w9] Rahm, E, AFrameworkfor Workload Avocation in Dis- 
tributed~actionR~ingSystems,toappearin: Journal 
of Systems and Software 

[Reu86] Reuter, A., Load Control and Load Balancing in a 
SharedDatabaseManagementSystem,IEEEDataEng.Conf., 
1986 

[Sha92] Shasha, D., Database Tuning: A Principled Approach, 
Prentice Ha& 1992 

[TGS85]~y,Y.,GooQnan,N.,SuriR.,LockingPerformancein 
Centralized Databases, ACM TODS 10 (1985), 4 

[TR90] Thomasian, A., Ryu, I.K, Performance Analysis of Dy- 
namic Laking with the No-Waiting Policy, IEEE Trans. on 
Softw. Eng. 16, (1990), 7 

~l]~omasian,k,Ryu,I.K-,PerformanceAn~~o~o- 
Phase Locking, IEEE Trans. on Softw. Eng.. 17 (1991), 5 

[Th91]Thomasian,A,PerformanceLimitso~o-PhaseLock- 
hg IEEE Data Eng. Co& 1991 

~2]Thomasian,A,Thrashmgin’Bvo-PhaseLockingRevis- 
ited, IEEE Data Eng. Conf., 1992 

[yBL88] Yu, P.S., BaIsamo, S., Lee, Y., Dynamic Transaction 
Routing in Distributed Database Systems, IEEE Trans. on 
softw. Eng. 14 (1988), 9 

[yC91] Yu, P.S., Come& D-W., Optimal Buffer AIIocation in a 
Multi-Query Environment, IEEE Data Eng. Conf., 1991 

[wei%] Weikum,G.,etaL,TheCOMFORTRoject:AComfort- 
abIeWaytoBetterPerformance,Tech.Rep.,ETHZuricb,1990 

443 


