
A Performance Study of Alternative Object Faulting and
Pointer Swizzling Strategies

Seth J. White David J. Dewitt

Computer Sciences Department
University of Wisconsin

Madison, WI 53706
{ white,dewitt}@cs.wisc.edu

Abstract
This paper presents a portable, efficient method for accessing
memory resident persistent objects in virtual memory in the con-
text of the E progr amming language. Under the approach, objects
are copied from the buffer pool of the underlying object manager
into virtual memory on demand, as they are accessed by an E pro-
gram. The cumulative effects of updates to a persistent object are
then propagated back to the object manager via a single write
operation at the end of each transaction. The method incorporates
a comprehensive pointer swizzling mechanism to enhance perfor-
mance. Swizzling is done a pointer-at-a-time and software checks
are used to detect the use of swizzled pointers. The paper also
presents the results of a performance study comparing the method
presented here with several alternative software architectures
including ObjectStore V1.2, a commercially available OODBMS.
The results highlight the tradeoffs between providing software vs.
memory-mapped support for pointer swizzling and quantify the
effects of pointer swizzling on overall performance. In addition,
the significant performance impact of pointer swizzling on the
generation of recovery information is examined. The experimen-
tal results show that in many situations a software approach can
outperform the memory-mapped approach.

1. Introduction
E is a persistent programmin g language [Rich89, Rich901 that was
originally designed to ease the implementation of data-intensive
software applications, such as database management systems, that
require access to huge amounts of persistent data. The current
implementation of E (E 2.0) uses an interpreter, the E Persistent
Virtual Machine (EPVM l.O), to coordinate access to persistent
data [Schuh90] that is stored using the EXODUS Storage Manager
[Carey89a, Carey89bl. Under the approach taken by EPVM 1.0,
memory resident persistent objects are cached in the buffer pool of
the EXODUS Storage Manager (ESM) and persistent objects are
accessed m-place. In addition, EPVM 1.0 provides support for a
limited form of pointer swizzling.

This paper introduces an. alternative implementation of EPVM
(EPVM 2.0) that is targeted at CAD environments. One common
example of a CAD application is a design tool that loads an engi-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distribtied for
direct commercial advantage, the VLDB copyright rwtice and the
title of the publication and ifs date appear, and notice is given that
copying is by permission of the Very Large Dtia Base Endow-
meti. To copy otherwise, or to republish, requires a fee and/or
special permission porn the Endowmeti.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

neering design into main memory, repeatedly traverses the design
while performing some computation over it, and then saves the
design again on secondary storage. An important property of
design applications is that they perform a considerable amount of
focused work on in-memory persistent objects. A major fraction
of this work involves the manipulation of persistent objects via
pointers.

The basic approach employed by EPVM 2.0 is to maintain a cache
in virtual memory of the set of persistent objects that have been
accessed by an E program. Objects are copied from the ESM
buffer pool and inserted into the cache as they are accessed by a
program. In addition, the cumulative effects of updates to a per-
sistent object are propagated back to ESM via a single write
operation when a transaction commits (finishes execution). The
cache supports a comprehensive pointer swizzling scheme that
swizzles inter-object pointer references, i.e. converts pointers from
object identifiers (OIDs) to direct memory pointers. Pointers are
swizzled one-at-a-time as they are used by an E program. If the
volume of data accessed by an individual transaction exceeds the
size of real memory, objects are swapped to disk in their swizzled
format by the virtual memory subsystem.

To help evaluate the effectiveness of the design of EPVM 2.0 this
paper presents the results of a number of performance experiments
that were conducted using the 001 benchmark [Catte91]. The
experiments compare EPVM 2.0 with three alternative software
architectures. The first of these is ObjectStore VI.2 [Objec90], a
commercially available object-oriented DBMS. ObjectStore uses
a memory-mapped approach to support pointer swizzling and fault
objects into main memory. The second architecture is represented
by EPVM 1 .O which supports only a limited form of pointer swiz-
zling. The third architecture does not support pointer swizzling,
and corresponds to using a conventional non-persistent program-
ming language, i.e. C++, to call ESM directly.

The experimental results illustrate the tradeoffs between the dif-
ferent implementations of object faulting and pointer swizzling
(including doing no swizzling) and examine the impact of the dif-
ferent schemes on the generation of recovery information. In the
case of EPVM 2.0, alternative ways of managing the migration of
persistent objects from the ESM buffer pool into virtual memory
are also examined. All of the systems included in the study are
based on a client/server architecture and feature full support for
transactions, concurrency control, and recovery. The client/server
version of ESM [Frank92, Exodu92] was used to store persistent
data for the experiments based on EPVM 2.0, EPVM 1.0, and
C++.

This research was funded by the Defense Advanced Research Projects
Agency under contract DAAB07-92-C-Q.508.

419

The remainder of the paper is organized as follows. Section 2
discusses related work on object faulting and pointer swizzling.
Section 3 presents a detailed description of the implementation of
EPVM 2.0. Section 4 describes the benchmark experiments. Sec-
tion 5 presents the performance results. Section 6 contains some
conclusions and proposals for future work.

2. Related Work
Previous approaches to pointer swizzling can be roughly divided
into two groups; those that use memory mapping techniques, simi-
lar to virtual memory, and those that use software checks to detect
accesses to nonresident objects. Some early work on software
implementations of pointer swizzling was done as part of an
implementation of PS-Algol [Atkin83, Cock84]. This approach
also used pointer dereferences to trigger the transfer of objects
from secondary storage into main memory.

[Moss90] presents a more recent study of software swizzling tech-
niques, and also examines the issue of storing persistent objects in
the buffer pool of the object manager versus copying them into
virtual memory. [Moss90] takes an object-at-a-time approach to
swizzling in which objects that are in memory are classified as
either swizzled or unswizzled. Under this approach, all pointers in
an unswizzled object are swizzled immediately upon the 6rst use
of the object. This causes the objects that the pointers reference to
be faulted into memory and marked as unswizzled. Finally, the
initial object is marked as swizzled.

One advantage of this approach over that of milso90] (see below)
is that it should generally perform less unnecessary swizzling and
unswizzling work. A disadvantage, however, is that objects that
are not accessed by a program can be faulted into memory by the
swizzling mechanism, resulting in unnecessary I/O operations. In
particular, unswizzled objects, while they are memory resident,
have by definition not been referenced.

A restricted form of pointer swizzling is supported by EPVM 1.0
[Schuh90]. Since it maintains memory resident objects in the
ESM buffer pool, swizzling inter-object pointer references is
difficult to implement efficiently. Hence, only local program vari-
ables that are pointers to persistent objects are swizzled.

The advantage of this approach is that it allows objects to be writ-
ten back to disk in the presence of swizzled pointers. In general,
this is very hard to do efficiently when using a software approach,
because all swizzled pointers to an object must be found and
unswizzled, before the memory space occupied by the object can
be reused. However, the E compiler stores local pointers to per-
sistent objects on a special ‘pointer stack” that is maintained in
parallel with the regular procedure activation stack. When space
in the buffer pool needs to be reclaimed, EPVM 1.0 scans the
pointer stack and unswizzles any swizzled pointers that it contains.
This ensures that there are no dangling references to objects that
are no longer resident in memory.

A pointer swizzling scheme based on virtual memory techniques
is described in [wilso90]. A similar approach is used in Object
Design’s ObjectStore [Objec90, Lamb91]. The basic idea
presented in [Wilso90] is to allocate virtual memory addresses for
pages containing persistent data one step ahead of a program’s
actual usage of the pages. When a program hrst attempts to access
a page, a virtual memory page fault occurs. This fault is inter-
cepted by the underlying object manager which then loads the
page into its preassigned location in memory.

One advantage of this method of swizzling is that programs only
see regular virtual memory pointers, allowing accesses to per-
sistent objects to occur at memory speeds. In addition, the same
compiled code can be used to access both persistent and non-
persistent objects. Objects that span multiple pages in virtual
memory can be handled transparently as long as sufficient con-
tiguous virtual memory address space can be reserved for the
entire object.

A disadvantage of the basic approach described in [Wilso90] is
that programs may incur unnecessary swizzling and unswizzling
overhead. This is because swizzling and unswizzling are done at
the granularity of individual pages, and it is unlikely that most
programs will use all of the pointers located on each page.
[Objec90] describes an extension of the basic technique that can
avoid this problem by eliminating the need to swizzle and unswiz-
zle pointers in many cases. In effect, pointers are always stored in
their swizzled format in [Objec90].

3. EPVM 2.0 Design Concepts

3.1. Object Caching
As mentioned in Section 1, ESM is used to provide disk storage
for the persistent objects that are accessible to an E program.
EPVM 2.0 copies objects from the ESM client buffer pool into
virtual memory as they are accessed. Separate schemes are used
to cache objects that are smaller than a disk page, hereafter
referred to as small objects, and large objects that can span any
number of pages on disk. Small objects are copied from the ESM
client buffer pool in their entirety and stored in individual contigu-
ous regions of virtual memory. A bitmap, which is appended to
the beginning of each region is used to record the locations of all
swizzled pointers contained in the small object.

Large objects are cached a page-at-a-time in units of 8K bytes.
Individual large object pages are cached on demand, so that only
the pages that have been referenced are cached. Each cached page
has appended to it a bitmap that keeps track of all swizzled
pointers on the page. Different pages of a large object are not
necessarily stored contiguously in virtual memory. This fact has
important implications for pointer swizzling since it essentially
means that pointers to large objects cannot be swizzled because
accesses to large objects through such pointers can span page
boundaries.

Objects that have been cached in virtual memory are organized
using a hash table on each object’s identifier (OID). Entries in this
hash table are pointers to object descriptors (see Figure 1). In the
case of a small object, the object descriptor contains a single
pointer to the copy of the object in virtual memory. Paired with
this pointer are a low and a high byte count that are used to keep
track of the range of modified bytes in the object. For each update
of a small object the range is expanded by decrementing and
incrementing the low and high byte counts respectively, as
needed. Note that this method of keeping track of the modified
portion of an object works best when there is some locality of
updates to objects. The range of modified bytes together with the
bitmap stored at the beginning of the object determines the portion
of the object that must be written to disk, and the subset of swiz-
zled pointers in the object that must be unswizzled when a transac-
tion completes.

The object descriptor of a large object contains an array of
pointers to pages of the large object. Each large object page has
associated with it a low and high byte count that are used to keep

420

Figure 1. An object descriptor for a large object.

track of the modified portion of the page, in a manner analogous to
that used for small objects.

Figure 2 shows an example of small and large objects that have
been cached. The small objects’ descriptors each contain a single
pointer to their respective objects, while the large object’s descrip-
tor contains pointers to two pages of the large object. Note that
these pointers point to the beginning of the object/page and not to
the corresponding bitmap. In Figure 2, the last page of the large
object has not been referenced, so the object descriptor points only
to the Crst two pages.

The object descriptors of small objects are organized in a second
hash table according to the disk page on which their corresponding
objects reside. All small objects that reside on the same disk page
are in the same overflow chain. This allows the effects of updates
to all objects on the same page to be propagated back to the ESM
buffer pool at the same time when a uansaction commits. Large
objects are kept in a separate linked list that is traversed at the end
of a transaction to write back dirty portions of large object pages.

Figure 2 depicts two small objects, residing on the same disk page.
The objects are linked together by the next page pointers in their
object descriptors. Of course, it is possible that objects from dii-
ferent disk pages may be found in the same overflow chain if their
page numbers hash to the same value. In practice, however, the
low cost of this strategy, plus the fact that such collisions are rare,
allows it to perform well.

3.2. Pointer Swizzling in EPVM 2.0
Since all persistent objects are accessed through pointers in E, it is
important to provide an efficient mapping from E pointers to per-
sistent objects. When a pointer is dereferenced by an E program it
may be in one of two states: unswizzled, in which case it contains
the value of an object identifier (OLD); or swizzled, meaning that
it contains a direct memory pointer. Dereferencing an unswizzled
pointer basically incurs the cost overhead of a lookup in the OID
hash table in order to obtain a pointer to the referenced object.
Dereferencing a swizzled pointer avoids this cost as a swizzled
pointer contains a direct memory pointer to the object it refer-
ences.

While the difference in dereferencing cost may seem small, it is
important to remember that tens or hundreds of thousands of
pointer dereferences can occur during the execution of a program.
Hence, the potential savings offered by pointer swizzling is indeed
large. A key assumption of any pointer swizzling scheme is that
pointers are used often enough on average to justify the costs of
doing the pointer swizzling.

EPVM 2.0 supports a pointer swizzling scheme that converts
pointers from OID form to direct memory pointers incrementally
during program execution. The goal is to quickly and cheaply
convert pointers to swizzled format so that a program “sees” only
swizzled pointers during the majority of the time it is executing.

Software checks are used to distinguish swizzled and unswizzled
pointers. This seems reasonable since the price of such checks
should be a very small part of overall program execution time; a
fact that has been independently confirmed in [Moss90]. Further-
more, it is possible to do standard kinds of compiler optimizations
to eliminate checks from a program (though the E compiler
currently does not do this). The software approach combines
efficiency with portability, and provides a flexible environment for
conducting further research. The swizzling scheme used in EPVM
2.0 is further characterized by the fact that it swizzles pointers
one-at-a-time, as opposed to the approach described in [Wilso90]
which swizzles a page-at-a-time, and [Moss901 which swizzles

1 , OID HashQable),I ,Paqe tiash Table 1

Figure 2. Object cache containing small and large objects.

421

pointers at the granularity of objects. The type of swizzling
scheme used by EPVM 2.0 is referred to as an ‘edge marking’
scheme in [Moss90].

Implementation Strategy
Since pointers are swizzled dynamically during program execu-
tion, the key decision that must be made is when during execution
to actually do the swizzling. One possibility is to swizzle pointers
when they are dereferenced. To see how this is done, consider in
detail what happens when an unswizzled pointer is dereferenced
during the execution of an E program. First, the memory address
of the pointer is passed to an EPVM function that performs a
lookup in the OID hash table using the value of the OID contained
in the pointer. An E pointer is composed of a 12 byte OID
(volume id: 2 bytes, page id: 4 bytes, slot number: 2 bytes, unique
field: 4 bytes) and a 4 byte offset field. If the referenced object is
not found, then it must be obtained from the EXODUS Storage
Manager (ESM), possibly causing some I/O to be done, copied
into virtual memory, and inserted into the cache. The pointer may
then be swizzled since the virtual memory addresses of both the
pointer and the object it references are known. This type of swiz-
zling will be referred to as swizzling upon dereference.

The advantage of this scheme is that pointers that are never
dereferenced are never swizzled, so the amount of unnecessary
swizzling work is minimized. Furthermore, since only pointers to
referenced objects are swizzled unnecessary I/O operations are
avoided. Swizzling upon dereference does present a major prob-
lem, however. In particular, when a pointer is dereferenced, it has
often already been copied into a temporary memory location, e.g.
a local pointer variable somewhere on the activation stack. Swiz-
zling upon dereference, therefore, fails to swizzle pointers
between persistent objects and can, in effect, force programs that
use these pointers to work with unswizzled pointers throughout
their execution.

The approach used by EPVM 2.0 is to swizzle pointers within
objects as they are “discovered’, i.e. when the location of the
pointer becomes known. We shall call this type of swizzling swiz-
zling upon discovery. A pointer within an object may be
discovered when its value is assigned to another pointer, when it is
involved in a comparison operation, or in a number of other ways.
In the context of EPVM, pointers are discovered as follows. First,
EPVM is passed the persistent address of the pointer that is a can-
didate for swizzling. The contents of this persistent address are
then used to locate the object containing the candidate pointer in
the cache. (Note that this initial step may involve actually caching
the object that contains the pointer to be swizzled.) Once the vir-
tual memory address of the candidate pointer is known, its con-
tents can be inspected, and if it is not already swizzled, used to
perform a lookup in the OID hash table to lind the object that it
references. If the object denoted by the candidate pointer is found
in the cache, then the candidate pointer is swizzled. Note that this
swizzling scheme solves the major problem associated with swiz-
zling upon dereference since pointers within persistent objects are
swizzled.

Next consider the case when the object referenced by the candi-
date pointer is not found in the cache. One alternative would be to
go ahead and cache the object. This “eager” approach could result
in unnecessary I/O operations, however, since the object refer-
enced by the candidate pointer may in fact not be needed by the
program. For example, consider a persistent collection object that
is used to store pointers to objects of some other class. The

routine that implemenrs deletion from the collection may need to
compare the value of a pointer being deleted with an arbitrary
number of pointers in the collection. Each of these comparisons
discovers a pointer contained in the collection objecL so the dele-
tion operation could fault in a large number of objects if eager
swizzling upon discovery were used. Since a swizzling scheme
should avoid causing unnecessary I/O operations, EPVM 2.0 takes
a lazy approach in which it does not swizzle the candidate pointer
when the object it references is not already cached.

In sumnary, the swizzling scheme used by EPVM 2.0 uses only
pointer dereferences to fault objects into the cache. Then, once an
object is in the cache, pointers that reference the object are swiz-
zled when their locations are discovered. Pointers to an object that
are discovered before the object has been referenced are not
immediately swizzled. Lastly, note that swizzling on discovery
restricts swizzling activity to those pointers that are actually used
by a program, so programs that do not use many pointers do not
have tc pay a big price in terms of swizzling overhead. Also, only
those objects actually needed by the program are cached, so no
extra I/O activity results nom swizzling.

The example in Figure 3 is designed to illustrate the differences
between swizzling upon dereference and the eager and lazy varia-
tions of swizzling upon discovery that were described above. The
functicn TotalCost traverses an assembly of persistent part objects
(which is assumed to form a tree for simplicity) in depth first order
and calculates the total cost of the assembly. Each part object
contains a cost field and three pointers to subparts. We also
assume that the collection of part objects is as shown in Figure 4%
i.e. theze are eight part objects in the collection whose OIDs are
represented by the letters A to H, and the objects form a tree of
height two. Figure 4a depicts the format of the part objects when
they are stored on disk and the connections between parts are
represented by OIDs.

Note ,hat the only pointer that is actually dereferenced in the
example is root; a transient, local pointer variable. If swizzling
upon sdereference is used while executing TotalCost, then only
roof will be swizzled, and the subpart pointers contained within
part objects will always remain in their unswizzled form. This
implies that repeated traversals of the parts assembly will always
encounter unswizzled pointers, i.e. the assembly will remain in the
forma: shown in Figure 4a.

Pointers located within part objects are discovered by the Toral-
Cosr function when the expression root->subParr[ij is evaluated

1 dbstruct part (
2 dbint pCost;
3 part *subPart[3];
4 I;

// structure of a part

5 int TotalCost(part *root, int depth) (
6 int totCost = 0;
7 for (int i = 0; i < 3; i++)
8 if (root->subPart[i] && depth)
9 totCost += TotalCost(root->subPart[i], depth-l);
10 totCost += root->pCost;
11 return totCost;
12 1

Figure 3. Example E function.

422

lb)

Figure 4. Different representations of a collection of objects.

in line 8. Note that whenever a part object is visited, all three of
the subPurr pointers located in the object are discovered. Suppose
that the collection of parts shown in Figure 4a is repeatedly
traversed using the TotaZCost function, beginning at object A, to a
depth of 1. If the eager implementation of swizzling upon
discovery is used, then all three subparts of each leaf node in the
subtree visited by Tot&m are cached. Figure 4b shows the basic
structure of the part assembly in memory after the first traversal of
the parts using this method. In this example, a total of eight part
objects are read from disk and cached, which is double the number
of objects actually needed.

NexL consider how the swizzling scheme used in EPVM 2.0
behaves when doing the same traversal. After the 6rst traversal of
the collection, the part objects that have been cached will appear
as in Figure 4c. Note that all of the objects accessed by the pro-
gram have been cached, but that the pointers among the objects
are still in their unswizzled OID form. In this case, none of the
subpart pointers have been swizzled since, when they are
discovered on line 8 during the first traversal, the objects that they
reference are not yet in the cache. The objects are faulted into the
cache during the first traversal when the pointer root is derefer-
enced on line 8. After a second traversal, the structure of the col-
lection is as in Figure 4d. Note that all of the pointers between
objects that have been visited by the program are swizzled, and
that further traversals of the collection will dereference only swiz-
zled pointers.

4. Performance Experiments
The performance experiments were done using the traversal por-
tion of the 001 Benchmark [Catte91]. The traversal portion
involves repeatedly traversing a collection of part objects, begin-
ning at a randomly selected part, in a depth-first fashion to a depth
of 7 levels. Each of the individual traversals is referred to as an
iteration of the benchmark. As each part is visited during an itera-
tion a simple function is called with four values in the part object
as parameters. In addition, the ability to update part objects was
added, so that each time a part object is visited, a simple update
can be performed with some fixed probability. The update opera-
tion was defined as incrementing two 4-byte integer fields con-
tained in the part object.

A total of eight different software versions were evaluated. These
software versions can be classified into four basic architectures
(see Section 4.1). The experiments compare the performance of
the different architectures and investigate the relative performance
of several versions of the approach used by EPVM 2.0. The use-
fulness of pointer swizzling is also evaluated. A number of exper-
iments that vary the frequency with which updates are performed
on objects were also conducted. This was done to access the
impact that the diierent swizzling approaches have on the genera-
tion of recovery information. All of the architectures that are
examined offer equivalent transaction facilities, i.e page level
locking, atomicity of transactions, and transaction rollback. Some
architectures attempt to batch updates of objects together and gen-
erate recovery information for all of the updates made to an object
at the end of the transaction, while other architectures take the
traditional database approach of generating log records for each
individual update. Both approaches have important implications
for systems that do redo/undo logging. The experiments also
compare the different software versions using a small database
that fits into main memory and a large database that represents a
working set size that is bigger than main memory[Catte91].

4.1. Software Versions
The iirst architecture, which is shown in Figure 5, results when a
conventional non-persistent programming language, i.e. C-t+, is
used to call ESM directly. This approach accesses objects in the
client buffer pool of ESM using a procedural interface, The rou-
tines that make up the ESM interface are linked with the applica-
tion at compile time and the client buffer pool is located in the
application’s private address space. In all of the experiments, the
server process was located on a separate machine that was con-
nected to the client over a network.

I I Page 1 pagen I
I ’ I

i
network

Figure 5. Architecture 1.

423

Accesses occur within a particular transaction, and take place dur-
ing a visit to an object as follows. When an application first wants
to read a value contained in an object, it calls an ESM interface
function. The interface function requests the page containing the
object from the server if necessary (possibly causing the server to
perform some I/O on its behalf), and pins the object in the client
buffer pool. Next, the interface function returns a data structure to
the application, known as a user descriptor [Carey89a], that con-
tains a pointer to the object. The application can then read values
in the object any number of times by following the pointer con-
tained in the user descriptor.

Each time the application wants to update a portion of an object it
must call an interface function, passing in (among other things)
the new value, and a user descriptor pointing to the object as
parameters. The update function then updates the specified por-
tion of the object in the client buffer pool and generates a log
record for the update using the old value contained in the object
and the new value which was passed as a parameter. When an
application is finished visiting an object it calls an ESM function
to unpin the object in the client buffer pool. If all objects on the
page are unpinned at this point, the page becomes a candidate for
replacement by the client buffer manager.

Note that in this architecture, a pin/unpin sequence of operations
on an object generally takes place during a very short period of
time relative to the life of a program, often during a single invoca-
tion of a function. This causes an object to be pinned and
unpinned multiple times if it is visited more than once by a pro-
gram. In addition, each update operation causes a log record to be
generated.

In the current release of ESM, data pages are cached in the client’s
buffer pool between transactions. However, the client must com-
municate with the server to reacquire locks for cached pages that
are accessed in succeeding transactions. Transaction commit
involves shipping dirty data pages and log pages back to the
server, writing log pages to disk, and releasing locks [Frank92].
In the future, ESM will support “callbacks” i?om the server to the
client. This will allow inter-transaction caching of locks at the
client and eliminate the need to ship dirty data pages back to the
server during transaction commit. No pointer swizzling is done in
this architecture. A single software version based on this architec-
ture was used (referred to as CESM). The size of the ESM client
and server buffer pools was 5 megabytes.

The second architecture represents the approach taken by EPVM
1.0 [Schuh90]. Figure 6 shows the client portion of this architec-
ture (The server portion is identical to the server shown in Figure
5). EPVM 1.0 avoids calls to the storage manager by maintaining
a cache of worthy objects in the ESM client buffer pool. Objects
are accessed in the following way. The first time that an object is
needed by an application, EPVM 1.0 calls an ESM interface func-
tion that pins the object in the client buffer pool, and returns a user
descriptor through which the object can be referenced. This may
involve communication between the client and the server and the
server may in turn perform some I/O on behalf of the client. Next,
EPVM 1 .O creates an ently for the object in a hash table based on
the object’s OID. The hash table maintains a mapping from OIDs
to user descriptors that remains valid until either the client buffer
pool becomes full or program execution completes.

Objects that are cached in the ESM buffer pool are accessed by
doing a lookup in the OID hash table, or by following a swizzled
pointer since EPVM 1.0 supports a limited form of pointer swiz-
zling (see Section 2). Updates to objects, however, require EPVM

OID hash table

\

-4 OID hash entxv
ESM Client

buffer pool

pj . ..q

page 1 me 2 page n

I I
: (network connected to server)

Figure 6. Architecture 2.

1.0 to invoke a storage manager interface function. The interface
function updates the object in the buffer pool and generates a log
record for the update. Transaction commit requires that EPVM
1.0 scan the OID hash table and unpin all objects, in addition to
the usual operations performed by ESM to commit a transaction.

In order to measure the effectiveness of the swizzling technique
employed by EPVM 1.0, experiments were performed using two
versions of this architecture, the first version had the limited form
of pointer swizzling enabled, and the second had swizzling turned
off. These versions will be referred to as EPVMl and EPVMl-
NO, respectively. Again, 5 megabyte client and server buffer
pools were used.

The third architecture investigated corresponds to the approach
taken by EPVM 2.0. Let us briefly review how objects are
accessed with this architecture. When an object is first needed by
an application program, EPVM 2.0 calls ESM on behalf of the
application. ESM then pins the object in the client buffer pool, as
shown in Figure 5. Next, EPVM 2.0 uses the user descriptor
returned by ESM to copy the object into virtual memory and
EPVM 2.0 inserts the object into the cache in the manner depicted
in Figure 2. EPVM 2.0 then calls ESM to unpin the object in the
client buffer pool. All subsequent reads or updates of the object
during the current transaction occur in the cache and are handled
exclusively by EPVM 2.0.

During transaction commit EPVM 2.0 scans the page hash table
and for each small object that has been updated, EPVM 2.0 calls
ESM to pin the object in the client buffer pool and update the
object. Note that this may involve communication between the
client and the server if the page containing the object is no longer
present in the client buffer pool. When ESM updates the object in
the client buffer pool, the new value of the modified portion of the
object and the old value located in the client buffer pool are used
to generate a log record for the update. Updates of large objects
are handled in a similar manner, the only difference being that

424

EPVM 2.0 invokes ESM once for each modified page of the large
object.

The perfomxmce of two alternative ways of copying objects from
the client buffer pool into virtual memory were examined. The
first copies objects one-at-a-time from the client buffer pool into
virtual memory while the other copies all of the objects on a page
when the first object on the page is accessed. These two schemes
shall be referred to as object caching and page caching respec-
tively. The tradeoff between the two approaches is that object
caching generally requires more interaction with the storage
manager, i.e. one interaction per object, while page caching
requires only one interaction per page, but has the potential to per-
form more copying.

Four versions of this architecture were investigated. Two used
object caching. In order to study the effect of buffer pool size on
object caching, the size of the client buffer pool for one version
was set at 5 megabytes while the client buffer pool for the other
was set at 1 megabyte (both used a 5 megabyte server buffer
pool). These versions shall be referred to as OC5M and OClM
respectively. Both versions did pointer swizzling.

The third and fourth versions were designed to measure the benefit
provided by the swizzling technique implemented in EPVM 2.0.
Both versions do page caching and each was given a 1 megabyte
client buffer pool to make the amount of memory that they used
similar to the other versions. Again, a 5 megabyte server buffer
pool was used for all of the experiments. The version referred to
as PClM does pointer swizzling, while the version labeled
PCIM-NO does not.

The fourth architecture examined was that of ObjectStore V1.2r
[Lamb91]. Lie ESM, ObjectStore uses a client/server architec-
ture in which both the client and server processes buffer recently
accessed pages of objects. All interaction between the client and
server in ObjectStore was set to take place at the granularity of
individual pages, just as in ESM. ObjectStore features basically
the same transaction facilities as ESM, i.e. recovery for updates in
the event of client or server failure, page level locking, and trar-
saction rollback.

ObjectStore also supports inter-transaction caching of persistent
data in the client’s main memory[Lamb91]. Callback messages
are sent by the server to clients in order to maintain the coherence
of cached data. This allows the ObjectStore client to cache locks
between transactions as well as data pages. To efficiently support
callbacks, the ObjectStore client is divided into two
processes[Orens92]: a callback process, and an application pro-
cess. When only a single client is connected with the server, the
two-process architecture does not have a noticeable effect on per-
formance since the application process communicates directly
with the server to obtain data pages and locks on those pages.

The most important difference between ObjectStore and the archi-
tectures already mentioned is that ObjectStore uses a memory-
mapping scheme, similar to virtual memory, to implement pointer
swizzling and fault objects from secondary storage into main
memory (see Section 2). Another important difference is that
ObjectStore generates recovery information for updates of

‘We have recently received ObjectStore V1.2.2 which is said by the
manufacturer to offer improved performance. However, we lacked
sufficient time to obtain reliable results using the new version, so the
results presented in the paper are for ObjectStore V1.2.

persistent data by logging entire dirty pages. Full page logging is
used to implement recovery largely due to the fact that Object-
Store applications are allowed to update objects by dereferencing
normal virtual memory pointers. Because of this, ObjectStore is
not able to keep track of the modified portions of pages (or
objects) as is done in EPVM 2.0. The amount of real memory
available to the client for caching pages of objects during a single
transaction is fixed. We used 5 megabyte client and server buffer
pools for all of the experiments. This architecture will be referred
to as OS.

4.2. Benchmark Database
For ESM, the small benchmark database [Cattegl] consumed a
total of 489 8K-byte disk pages (3.8 Mg) and consisted of a col-
lection of 20,000 part objects (each object is an average of 176
bytes in size). Additionally, the Sun benchmark requires that
objects be indexed, so the parts were indexed using an array of
20,000 object pointers (OIDs). An array of pointers was used
instead of a B-tree index in order to keep performance differences
due to differing B-tree implementations from influencing the
results. The total size of the index for ESM was 320,000 bytes.

The small database, including the part index, required 422 8K
pages (3.3 Mg) using ObjectStore. Each part object contains con-
nections to three other part objects in the database. These connec-
tions were implemented using pointers in both systems. The data-
base required more disk space when using ESM largely because of
differences in the way that pointers to persistent data are stored by
the two systems.

The large benchmark database is identical to the small database
except that 125,000 part objects were used. The large database
occupied 3,057 disk pages with an index whose size was 1.9
megabytes when using ESM. For ObjectStore the large database
required 2,559 pages. 125,000 objects were used for the large
database instead of 200,000 as specified in [Cattegl] due to limita-
tions in the amount of available swap space. Using 125,000
objects eliminated this problem while still providing a database
that would not fit into the real memory of the workstations that
were used.

4.3. Hardware Used
All experiments were performed using two identically configured
SUN SPARCstation ELCs (approximately 20 mips). One was
used as the client machine and the other was used as the server.
The two machines were connected via a private Ethernet. Both
machines had 24 megabytes of main memory. Data was stored at
the server using 70 megabyte raw disk partitions located on
separate SUN0207 disk drives. One partition was used for the
transaction log and the other was used to store normal data. The
virtual memory swap area on the client machine was also located
on a SUN0207 and was 32 megabytes in size.

5. Benchmark Results

5.1. Small Database Results
This section contains the results of running several variations of
the traversal portion of the 001 benchmark using the small bench-
mark database of 20,000 objects. All of the experiments were
repeated 3 times and then averaged to obtain the results that are
shown. All times are listed in seconds.

425

Tables 1,2, and 3 present the individual cold, warm, and hot itera-
tion times when no updates are performed and the entire bench-
mark run is executed as a single transaction. The cold time is the
execution time for the first iteration of the benchmark when no
persistent data is cached in memory on either the client or server
machines. The warm time is the execution time for the tenth itera-
tion of the benchmark. The hot times were obtained by repeating
the traversal done during the warm iteration, so that all of the
objects were in memory and all swizzling was done prior to the
beginning of the hot iteration. The number of I/O operations per-
formed by the client during each iteration is also given. The times
in Tables 1, 2, and 3 do not include the overhead for transaction
begin and commit.

Table 1 compares one version from each of the four software
architectures discussed in Section 4.1. The versions selected are
generally comparable in the sense that each uses a similar amount
of memory, though PClM does use slightly more memory than
the others. CESM has the best time in the cold iteration, but
EPVMl does almost as well. The small difference between
CESM and EPVMI is likely due to the overhead of inserting
objects into the OID hash table for EPVMl. PClM is 7% slower
than EPVMl due to the overhead of caching full pages of objects.
OS does the worst during the cold iteration despite the fact that it
performs the fewest I/O operations. Given our understanding of
how OS works, we believe this is partially due to the overhead of
mapping data into the client’s address space.

The ordering of times for the warm iteration in Table 1 is just the
reverse of that for the cold iteration. OS is much faster than the
other versions in the warm iteration since it incurs essentially no
overhead for accessing in-memory objects in this case. PClM is
next in terms of performance. PClM is 33% faster than EPVMl
because EPVMl incurs the overhead of inserting a large number
of objects into the OID hash table while PClM caches only 2
pages (80 objects). Since PClM is more aggressive at caching
than EPVMl, it has already cached the additional objects during
previous iterations. CESM has the worst performance in the warm
iteration due to the overhead of calling ESM for each object that is
visited during the iteration.

Table 2 presents the results for each of the versions based on
EPVM 2.0. OClM has the worst performance during the cold
iteration because its small client buffer pool size forces it to reread
pages from the server. It may seem surprising that OClM is only
10% slower than OC5M given that it performs 33% more I/O
operations. This is due to the fact that the server buffer pool is
large enough to hold all of the pages read by the client in this case
and shipping pages from the server is much faster than reading
them from disk. OC5M is 6% faster than PClM due to the over-
head that PClM incurs for copying full pages into virtual memory.
The similarity of PClM and PClM-NO shows that there is essen-
tially no advantage or disadvantage to doing swizzling during the
cold iteration.

In the warm iteration, Table 2 shows that PClM has the best per-
formance. PCIM and PClM-NO do better than the object caching
versions during the warm iteration because many more objects are
being cached than are pages. More precisely, 2 pages are cached
during the warm iteration by the page caching versions, while
1097 objects are cached by the object caching versions. PClM
caches fewer objects in the warm iteration because it has already
cached the additional objects during previous iterations. This
accounts for the somewhat strange fact that PClM-NO (which
does page caching and no swizzling) is 40% faster than OC5M

(which does full swizzling). OClM continues to reread pages
from the server in the warm iteration and consequently has the
worst performance. Turning to swizzling. in the warm case Table
2 shows that swizzling provides a 12% reduction in execution time
for page caching. The times for EPVMl-NO are not shown in
Tables 1 and 2. There was essentially no difference between
EPVMl and EPVMl-NO in the cold iteration for this experiment.
In the warm iteration, swizzling made EPVMl 8% faster than
EPVMl-NO.

The hot times in Table 3 represent the asymptotic behavior of each
of the versions, when no further conversion or copying of in-
memory objects is taking place. An additional version, labeled C,
has been added to Table 3. C represents an implementation of the
benchmark coded in non-persistent C++ using transient in-
memory objects. C represents the best performance that a per-
sistent system could hope to achieve in the hot case.

We first examine architectural differences. OS does the best dur-
ing the hot iteration. The fact that the performance of OS is ident-
ical to C shows that the memory-mapped architecture of OS
imposes no additional overhead in the hot case. OS is 33% faster
than PClM because of the overhead for swizzle checks and
EPVM 2.0 function calls that PClM incurs. In addition, the fact
that pointers to persistent objects in E are 16 bytes long as
opposed to 4 bytes in OS further slows the performance of PClM.

EPVMl is third in terms of performance and is 21% slower than
PClM. This is because EPVMl does not swizzle pointers

Table I . Single transaction without updates (times are in second s).

Traversal without updates
Version Cold I/OS Warm I/OS
OC5M 10.750 327 0.227 2
OClM 11.799 434 1.979 171
PClM 11.386 327 0.120 2
PClM-NO 11.384 327 0.136 2

Table 2. Single transaction without updates (times are in seconds).

Traversal without updates
Version Hot Hot w/o random
C 0.039 0.005
OS 0.039 0.005
PClM 0.058 0.024
PClM-NO 0.078 0.044
EPVM 1 0.074 0.040
EPVM 1 -NO 0.082 0.048
CESM 0.230 0.196

Table 3. Single transaction without updates (times are in seconds).

426

between persistent objects and also because of the extra level of
indirection imposed upon it by user descriptors. CESM has the
worst performance in the hot iteration. Its hot time is approxi-
mately 3 times that of EPVMl and nearly 6 times that of OS. This
is due to the fact that CESM calls ESM to pm and unpin each
object that is visited during the iteration. OC5M and OClM were
identical to PClM in the hot iteration, so they are not shown.
Comparing PClM with PClM-NO, we see that swizzling has
improved performance by 26% in the hot case for page caching
while swizzling makes a difference of just 10% for EPVM 1.0.

It seemed surprising that in the hot column of Table 3, OS is only
33% faster than PClM. Upon closer inspection of the benchmark
implementation, it was noticed that the Unix function random was
being called during each visit of a part object as part of the over-
head for determinin g whether or not to perform an update. The
last column of Table 3 shows the results for the hot traversal when
the overhead for calling random is removed. Note that OS now
has approximately 5 times the performance of PClM. This is
closer to what one would expect given the differences between
these two architectures. Similarly, the difference between PCIM
and EPVMl increases to 40%. Both sets of hot results have been
included since we believe that they illustrate how quickly the
difference in performance between the architectures diminishes
when a small amount of computation is performed on each object
access.

Table 4 contains the cold and warm iteration times for traversal
without updates over the small database when each iteration is
executed as a separate transaction. In Table 4 the relative perfor-
mance of the different architectures is identical to Table 1 during
the cold iteration. Comparing the cold iteration times of Table 4
with Table 1 also shows that the overhead of transaction commit is
relatively minor for all of the versions when no updates are done.
The warm iteration results in Table 4 highlight the effects of
inter-transaction caching. OS has the best performance in large
part because it caches both data pages and locks between transac-
tions. The OS client, therefore, only has to communicate with the
server process once, to read the one page which was not accessed
during the previous nine iterations. The versions using ESM. on
the other hand, must communicate with the server to read
uncached data pages and to reacquire locks on cached pages.
PClM caches the fewest pages between transactions because it
only has a 1 megabyte client buffer pool. This causes it to have
the worst performance. We also ran this experiment without
inter-tmnsaction caching for ESM. Inter-transaction caching
improved performance by 40% for CESM and EPVMl and by just
7% for PClM during the warm iteration.

The cold and warm times for the four versions based on EPVM
2.0 are not shown for the multiple transactions experiment. The
cold iteration times were all within 1% of those shown in Table 2.

Table 4. Multiple transactions w/o updates (times are in seconds).

The warm iteration times were, of course, slower than the warm
times in Table 2 since locks on pages had to be reacquired.
OC5M had the best performance in the warm iteration. It was
42% faster than PClM and 50% faster than OClM. Pointer swiz-
zling made essentially no difference for either PClM or EPVMl
in this experiment. In addition, the hot times were within 2% of
the warm times for PClM and OClM. The hot time for OS was
0.377 seconds which is 7% faster than the warm time for OS
(Table 4). The hot times for CESM, EPVMl, and OC5M were
approximately 50% faster than their corresponding warm times.

We next consider the effect of adding updates to the traversal.
Figure 7 presents the total execution time for a single transaction
consisting of 1 cold, 9 warm, and 10 hot iterations when the
update probability ranges between 0 and 1. The non-swizzling
versions EPVMl-NO and PClM-NO where each within 1% of
EPVMl and PClM, respectively, and so are not shown. In addi-
tion, the performance of CESM was roughly 7% faster than
EPVMl throughout.

OS has the fastest time when no updates are done. however, the
relative performance of OS degrades as updates are added due to
the high cost of transaction commit. We believe that transaction
commit is more expensive for OS because full page logging is
used. The performance of OS levels off once the frequency of
updates is high enough so that all pages are being updated. PClM
is always faster than OS when updates are performed. The perfor-
mance of EPVMl continually degrades as the update probability
is increased because it generates a log record for every update. It
is a little surprising that EPVMl is better than PClM and OS in
many cases. This is due in large part to the fact that the log
records generated by EPVMl can be processed asynchronously by
the server while the uansaction is running. PClM is faster than
EPVMl when the update probability is greater than about .3. The
commit time for PClM is constant once all of the objects visited
during the transaction have been updated.

OCIM has the worst performance overall in Figure 7 since it must
reread pages from the server while the transaction is running and
also during the commit phase. The performance of OCSM shows
that object caching can perform quite well when its client buffer
pool is large enough to avoid having to reread data pages. The
difference between PClM and OC5M is because PClM must
reread pages during transaction commit in order to generate
recovery information. If PClM is given a bigger client buffer
pool then its performance is nearly identical to the performance of
OC5M.

Figure 8 presents the overall execution time for traversal with a
varying write probability when each iteration of the benchmark
constitutes a separate transaction. The curves for PClM-NO,
EPVMl-NO, and CESM are again omitted due to their similarity
to the curves for PClM, and EPVMl. OS has the best perfor-
mance when the update probability is low. As the update proba-
bility is increased, however, the relative performance of OS
degrades due to the high cost of transaction commit. OCIM is a
little slower than PClM in Figure 8 because OClM must reread
pages from the server while a transaction is executing. This over-
head is greater than the cost of the extra copying done by PClM.
The curve for OC5M shows that if enough memory is available,
then object caching performs the best in most cases. EPVMl does
quite well because it avoids the extra copying overhead of PClM
and the object caching versions and also does not have to reread
data pages from the server in the context of any single transaction.
Finally, we note that inter-transaction caching improved

427

cold=], wa~~n=9, hot=10 cold=l, warm=9, hot=10

+ OClM

* EFvMl

8 OS
8 PClM
A'- CXZSM

0, . , . , , , , , ,
0.0 0.2

(
0.4 0.6 0.8 1.0

write probability

0
0.0 0.2 0.4 0.6 0.8 1.0

write probability

Figure 7. Benchmark run as a single transaction Figure 8. Benchmark run as multiple transactions.

cold=l, warm=O, hot=X

0
0 100 200 300 4al 500 600 700 800 900 1000

#of hot iterations

Figure 9. Single read-only transaction.

performance for OC5M and EPVMl from 43% (read-only) to
29% (write prob. = 1). The improvement was smaller when
updates were done because of the fixed overhead for sending dirty
data pages back to the server at the end of each transaction.
PClM and OClM posted a 5% gain in performance when caching
was added.

Figures 9 and 10 fix the number of cold and warm iterations at 1
and 0, respectively, and vary the number of hot iterations between
0 and 1000. In both figures each benchmark run was a single tran-
saction. In Figure 9 the update probability was 0 and in Figure 10

250
cold=l, warm=O, hot=X

OT,,,,,,~,,,,,,,,,,,,,
0 100 200 300 400 500 600 700 800 900 1000

#of hot iterations

Figure 10. Single transaction (update prob. = .Ol),

it was .Ol. Both figures illustrate the large difference in CPU
requirements between CESM and the other versions when a large
number of hot tTaversals are performed. Although it is not easy to
see in Figure 9, EPVMI has the best performance when the
number of hot iterations is between 1 and 60 and OS does the best
when the number of hot iterations is greater than 60. PClM is
better than EPVM 1.0 after approximately 60 hot iterations have
been performed as well.

When 1000 hot iterations are done, OS is 25% faster than PClM,
39% faster than EPVMl and posts a 76% improvement over

428

CESM. PClM always does better than PClM-NO and shows an
improvement of 21% when 1000 iterations are done. The results
for EPVMl-NO are not shown however, EPVMI was 7% faster
than EPVMl-NO after 1000 iterations. The times for OCSM and
OCIM were within 1% of PClM in Figure 9, so their times have
been omitted as well.

In Figure 10, when the n~ber of hot traversals is between 1 and
160 EPVMl has the best performance. PClM is the best when the
number of hot traversals is between 160 and 600. After 600 hot
iterations OS is always the fastest. It is surprising that 600 hot
traversals must be performed in order for OS to perform the best,
but this is due to the relatively high cost of transaction commit for
OS. Turning to swizzling, after 1000 iterations PClM-NO was
24% slower than PClM and EPVMl-NO (not shown) was 7%
slower than EPVMl. OC5M and OClM are also not shown in
Figure 10. OCIM was within 1% of PCIM in all cases. The per-
formance of OC5M was initially 15% faster than PClM and 6%
faster than PClM after 1000 iterations.

Figure 11 demonstrates what happens when one varies the fraction
of each part object that is updated while the update probability
remains fixed In this experiment part objects were defined to con-
tain an array of 19 integers (76 bytes) instead of the usual non-
pointer data specified by the 001 benchmark. The x-axis shows
the percentage of this array that was updated. Not surprisingly,
OS has relatively flat performance once any updates are done.
This is because it does full page logging. The versions based on
EPVM 2.0 also show little change in performance once updates
are added. This is because the number of log pages that were gen-
erated only varied from 51 to 160 as the update fraction was
increased. ESM required roughly two seconds to process these
extra log pages. The performance of EPVMl degrades quickly as
a larger portion is updated because it generates a log record for
each update. The number of log pages generated by EPVMl

cold=l, warm=9, hot=10

0
0 20 40 a 80 100

‘70 of bytes updated

Figure 11. Single transaction (update prob. = .3).

varied from 171 (update 1 integer) to 3,325 (update whole array).

5.2. Large Database Results
In the large database (125,000 parts) experiments the number of
page faults that occurred was important for some versions. Page
faults are listed in parentheses next to the number of normal I/O
operations done by the client for the versions that experienced
page faults. The number of page faults was obtained by using the
Unix gefrusuge system call.

Tables 5 and 6 present the cold and warm times observed when
the benchmark was executed as a single transaction, so the time
for transaction begin and commit is not included. CESM has the
best performance in the cold iteration of Table 5. PClM does
fewer I/O operations, but is slower than CESM due to copying
costs. EPVMl is slower than CESM primarily because it does a
less effective job of buffer management. OS has the worst perfor-
mance in the cold iteration. We believe this is due to the cost of
mapping data in and out of the client’s address space.

PClM performs the best in the warm iteration, but comparing
PClM to the other architectures is not strictly fair in this case
since it is allowed to use all of available memory, as shown by the
number of page faults that it experiences. CESM and EPVMl are
close in terms of performance, but EPVMl is a little slower due to
the fact that it performs more I/O and must insert objects into the
OID hash table. OS is surprisingly 12% slower than EPVMl in
the warm iteration. As with the cold iteration, this is likely due to
data mapping costs[Orens92].

In Table 6 OClM has the worst performance in the cold iteration
because it performs more I/O operations. PClM is a little slower
than OC5M due to the overhead of copying full pages. Swizzling
makes no difference for PClM in the cold iteration. The relative
times in the warm iteration are similar to the cold iteration. How-
ever, the performance of PClM-NO is a little better than PClM
since swizzling dirties pages in virtual memory causing them to be
written to disk more often. This fact doesn’t show up in the
number of page faults shown in Table 6 since these numbers only
give the number of pages read from the swap area by the process.
The times for EPVMl-NO were essentially identical to EPVMl in
both the cold and warm iterations and so are not shown,

I Traversal without updates

Table 5. Single transaction without updates (times are in seconds).

Table 6. Single transaction without updates (times are in seconds).

429

When each iteration was executed as a single transaction, the cold
times were all within 2% of the times shown for the versions in
Tables 5 and 6. In the warm iteration the times for the versions
included in Table 5 were also all within 2%. except for PClM
whose performance was slower by 23%. The decrease in perfor-
mance for PClM was due to the fact that it was not able to cache
as much data in virtual memory and it also performed a lot of
unnecessary copying. OClM was 12% slower than PClM during
the warm iteration and OC5M was just 2% faster than PClM.
PClM-NO and EPVMl-NO were each within 1% of PClM and
EPVMI respectively in the multiple transactions experiment.
Repeating the experiment without inter-transaction caching
showed that caching had much less impact on performance when
using the large database. Caching improved the performance of
EPVMl by 4% and PClM by just 2% during the warm iteration.

Figure 12 presents the total execution time for traversal when 1
cold, 9 warm, and 0 hot iterations are run as a single transaction.
OS has the worst performance in most cases. It may be surprising,
given the results presented in Table 5, that OS is better than PClM
in the read only case. PClM is slower in this case because when it
scans the page hash table during transaction commit to determine
which objects have been updated, it causes a signiticant amount of
virtual memory swapping activity. This poor performance during
the commit phase makes PCIM slower than the other versions as
well.

It should be noted that in the large database case it is not strictly
fair to compare OS, EPVMl, and CESM to the page caching and
object caching versions since the caching versions are allowed to
use more memory. The comparison between EPVMl, CESM, and
OS is fair, however, since these versions were given equal
amounts of memory. The times for EPVMI-NO (not shown) were
all within 1% of EPVMl. PClM-NO, which is also not shown in
Figure 12, was 4% faster than PClM in the read only case because
swizzling dirtied pages in virtual memory for PClM which caused

cold=l, warm=9, hot=0
0

%- OS
8 PClM

i

+ EPVMI

200 -& CFSM
4 OClM

100 + OC5M

0; , . , I , I , , 0; 1 / , I , / . ,

0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

write probability write probability

Figure 12. Benchmark run as a single transaction. Figure 13. Benchmark run as multiple transactions.

an increase in paging activity. The difference between PClM and
PClM-NO gradually diminished as more updates were performed
and PClM-NO was well within 1% of PClM when the update
probability was 1.

Figure 13 presents the total execution time for traversal when 1
cold, 9 warm, and 0 hot iterations are executed as separate rransac-
tions. OS has the worst performance in all cases in Figure 13.
CESM has the best performance, but is only slightly faster than
EPVMl. Turning to object and page caching, the performance of
page caching is intermediate between OClM and OCSM. This
again illustrates the tradeoff made by object caching which must
reread pages from the server and page caching which caches more
objects and copies more data into virtual memory. EPVMl-NO
(not shown) and PCIM-NO (not shown) were always within 1%
of EPVMl and PClM respectively in Figure 13.

6. Conclusions
This paper has presented a detailed discussion of the implementa-
tion of pointer swizzling and object caching in EPVM 2.0. The
paper then analyzed the relative performance of several versions
of EPVM 2.0 using the 001 benchmark. EPVM 2.0 was also
compared to some alternative methods of supporting persistent
data access, including the memory-mapped approach of Object-
Store V1.2.

The 001 cold iteration times for ObjectStore were slower than the
cold times for the architectures based on ESM when using both a
small and a large database. ObjectStore had the fastest warm
iteration time when using the small database, but when the large
database was used ObjectStore had the worst warm performance.
These results suggest that either the I/O performance of Object-
Store is worse than that of ESM or that mapping data into a
process’s address space is a relatively expensive operation. The
hot iteration results (done using the small database) showed that
the memory-mapped scheme used by ObjectStore is five times

12001

cold=l, warm=9, hot=0

400
4 OClM

8 FClM

-v- oc5M
* EPVMI

-& CESM

430

faster than the software approach of EPVM 2.0 when operating on
in-memory data. However, it was observed that the difference in
performance was only 33% when a small amount of additional
computation was added

The paper also compared the total elapsed time of the different
architectures using several transaction workloads. When a small
database was used (Figures 7 and 8). ObjectStore had the best per-
formance in the read-only case. It was shown, however, that
PClM generally performed better than ObjectStore when updates
were performed. The main reason for this appears to be that
ObjectStore does full page logging in order to support crash
recovery. EPVMl and CESM performed better than ObjectStore
and PClM when the frequency of updates was low and when mul-
tiple transactions were used When a large database was used, the
memory-mapped approach of ObjectStore always had slower per-
formance than EPVMl and CESM.

Among the versions based on EPVM 2.0, PClM had better overall
performance than OClM when the small database was used.
PClM does well because the cost of copying full pages is rela-
tively small compared to the cost of copying individual objects in
this case. PClM also avoided the need to reread pages from the
server during normal transaction execution as was done by OClM.
When the large database was used, however, OClM generally per-
formed better than PClM. PClM performed a lot of unnecessary
copying work and experienced paging of virtual memory which
lowered its performance in this case.

The swizzling scheme used by EPVM 2.0 never noticeably hurt
performance when the small database was used and improved per-
formance by as much as 45% in some cases (see Table 3 column
4). When the large database was used, swizzling did not improve
performance and resulted in a 4% decrease in a few cases due to
the fact that it caused an increase in the amount of virtual memory
paging activity. Lastly, we note that the swizzling scheme used by
EPVMl improved performance by 16% in some cases when using
a small database and had no effect when using the large database.

We feel that an important conclusion that can be drawn from the
results presented in the paper is that it is important to look at
overall performance when comparing the different architectures.
For example, simply comparing the speed with which the architec-
tures manipulate m-memory data or comparing them without con-
sidering recovery issues does not capture the true differences in
performance between the systems. In the future, we would like to
explore variations of the object caching and page caching schemes
studied here in the context of EPVM 2.0 to see if an approach
combining their relative strengths can be found. We are also
interested in tiding more efficient ways of generating recovery
information both in the wntext of EPVM and the memory-
mapped approach. If a more efficient method of generating
recovery information for the memory-mapped approach can be
found, then we feel that its performance could be improved sub-
stantially.

References
[Atkins31 M. Atkinson, K. Chisholm, and P. Cockshott, “Algo-
rithms for a Persistent Heap,” Software Practice and Experience,
Vol. 13, No. 3. pp. 259-272, March 1983

[Catte91] R. Cattell, “An Engineering Database Benchmark,” in
The Benchmark Handbook For Database and Transaction Pro-
cessing Systems, Jim Gray ed., Morgan-Kaufman, 1991.

[Carey89a] M. Carey et al., “The EXODUS Extensible DBMS
Project: An Overview,” in Readings in Object-Orietied Data-
bases, S. Zdonik and D. Maier, eds., Morgan-Kaufman, 1989.

[Carey89b] M. Carey et al., “Storage Management for Objects in
EXODUS,” in Object-Oriented Concepts, Databases, and Appli-
cations, W. Kim and F. Lochovsky, eds., Addison-Wesley, 1989.

[Cock841 P. Cockshott et al., “Persistent Object Management Sys-
tem,” Software Practice and Experience, Vol. 14, pp. 49-71, 1984

[Exodu92] Using the EXODUS Storage Manager V2.0.2, techni-
cal documentation, Department of Computer Sciences, University
of Wisconsin-Madison, January 1992.

[Frank92] M. Franklin et al., “Crash Recovery in Client-Server
EXODUS”, Proc. ACM SIGMOD Int’l Conf. on Management of
Data, San Diego, California, 1992.

[Lamb911 C. Lamb, G. Landis, J. Orenstein. D. Weinreb, ‘“The
ObjectStore Database System”, CACM, Vol. 34, No. 10, October
1991

[Moss901 J. Eliot B. Moss, Working with Persistent Objects: To
Swizzle or Not to Swizzle, COINS Object-Oriented Systems
Laboratory Technical Report 90-38, University of Massachusetts
at Amherst, May 1990.

[Objec90] Object Design, Inc., ObjectStore User Guide, Release
1 .O, October 1990.

[Orens92] J. Orenstein, personal communication, May 1992.

[Rich891 J. Richardson, M. Carey, and D. Schuh, The Design of
the E Programming Language, Technical Report No. 824, Com-
puter Sciences Dept., University of Wisconsin, Feb. 1989.

[Rich901 J. Richardson, “Compiled Item Faulting,” Proc. of the
4th Int’l. Wor!&op on Persistent Object Systems, Martha’s Vine-
yard, MA, September 1990.

[Schuh90] D. Schuh M. Carey, and D. Dewitt, Persistence in E
Revisited---Implementation Experiences, in Implementing Per-
sistenr Object Bases Principles and Practice, The Fourth Intema-
tional Workshop on Persistent Object Systems.

[wilso90] Paul R. Wilson, Pointer Swizzling at Page Fault Time:
Efficiently Supporting Huge Address Spaces on Standard
Hardware, Technical Report UIC-EECS-90-6, University of Illi-
nois at Chicago, December 1990.

Acknowledgements
We wish to thank Jack Orenstein, Dan Weinreb, and Benson Mar-
gulies of Object Design, Inc. for their many helpful comments
and feedback concerning the results presented in the paper. Spe-
cial thanks should be given to Dan Schuh who implemented
EPVM 1.0 and the E compiler. Mike Zwilling and Mike Franklin
implemented the ARIES based recovery algorithm used in the
EXODUS storage manager. Nancy Hall implemented inter-
transaction caching.

431

