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Abstract. For the conventional relational model there 
has been considerable research in the area of incomplete 
information. On the other hand, research in temporal 
databases has concentrated on models in which complete 
historical information is needed. However, the likelihood of 
missing information in temporal databases is greater 
because of the vast amount of information. Hence, a 
mechanism must be provided to store and query incomplete 
temporal information. In this paper we present a model for 
incomplete information in temporal databases. The model 
generalizes our previous model for complete temporal 
information. It is shown that our relational operators 
produce results that are reliable. We also show, with some 
excentions. that if the definitions of the onerators were 
strengthened to give more information, we’ may obtain 
results that are not reliable. 

1. Introduction. 

Research in temporal databases has concentrated on 
models in which it is essential that all the information be 
known [CC87, Ga88, GY88, NA89, Sa90, Sn87, Ta86]. 
However, in the case of temporal databases the likelihood of 
missing information increases because of the vast amount of 
information being stored. Furthermore users may want to 
maintain only selective portions of history, for instance 
only the salary history of certain .employees. Therefore, 
there is a need to develop data models in which partial 
historical information can be stored and queried. 

For the conventional relational model there has been 
considerable research in the area of incomplete information 
(which exists but is unknown) [Co79,Bi83,IL84,Li81,Re86]. 
In most models unknown values are marked by a special 
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symbol caUed a null value, denoted w. Since some attribute 
values are unknown a selection expression does not always 
evaluate to TRUE or FALSE for a given tuple. To solve this 
problem, a third truth-value which we call UNDEFINED is 
sometimes introduced. In [Co79] two forms of the selection 

operator are introduced: the TRUEselect and the 
MAYBEselect. The result of a TRUEseleCt operation 
consists of those tuples for which the selection expression 
yields the value TRUE. The result of a MAYBE-select 
operation consists of those tuples for which the selection 
expression evaluates to UNDEFINED. In [Bi83] each relation 
has an additional column called STATUS which marks 

tuples as definite tuples (marked with a d) or maybe tuples 
(marked with an m). Only a single selection operation is 
needed. Selection formulas are restricted to be of the form 
C = D or of the form C = b where C, D are attributes and 
b is a constant. The selection mechanism is set up in such 
a way that maybe tuples can lead only to maybe tuples in 
the result of a selection, while definite tuples can lead to 
definite or maybe tuples in the result. 

In this paper we present a relational model for temporal 
databases with incomplete information. There are two 
points that must be considered in the storage model for 
incomplete information in temporal databases. First, for a 
given object, we may know the values for a given attribute 
at some points in time but the values at other points in 
time may be unknown. Second, at some points in time we 

are sure that the object must exist in the relation but at 
other points in time the existence of the object in the rels 
tion is not a certainty. Thus at some points in time the 
tuple is a definite tuple but at other points it is a maybe 
tuple. This second situation is more likely to occur in com- 
puted relations rather than in stored relations. However, 
we allow for this possibility even in stored relations. 

Apart Lrom the storage model to maintain partial hi+ 
tories, we also define a powerful algebra to query the in- 
complete historical information. The selection operation is 
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an especially interesting operator in our model. It allows us 
to ask questions that have no counterpart in the classical 

case and it represents a departure of temporal databases 
from the classical snapshot databases. As a consequence, 
our results for incomplete temporal information cannot be 
obtained directly from corresponding results on incomplete 
snapshot information. Our model has the following 

properties: 

l The incomplete information model presented here 
generalizes the model for temporal databases with complete 
information as given in [GY88] (Theorem 5.1). Thus, if our 
relation had no incomplete information our operators would 
give the same results as the operators in [GY88]. Our 
generalization is seamless in the sense that queries which 
could be presented to a database with complete information 
can also be presented to our model without any change in 
syntax. Some remarks about further extending the 
querying capability of our model, without altering the 
structure of the syntax, are made in Section 6. 

l Our algebraic expressions produce results that are reliable 
in the sense that they never report incorrect information 
(Theorem 5.2). 

l Except for certain cases of selection, if the definition of 
the operators were strengthened to give more information, 
we may obtain results that are not reliable (Theorem 5.4). 
This theorem does not extend to (i) certain cases of 
selection and (ii) arbitrary algebraic expressions. 

The rest of the paper is organized as follows. In 
Section 2 we describe a model for temporal databases with 
complete information on which our model is based. In 
Section 3 we introduce our model for incomplete temporal 
databases. The algebra to query the databases is given in 
Section 4. In Section 5 we prove some results which show 
that our model is theoretically sound. In Section 6 we 
conclude with some remarks on the inherent querying 
capability of our model and on how our ideas can be further 
investigated. 

2. Model for Complete Temporal Information. 

In this section we describe a complete information 
temporal database model [GY88], which is used as a 
reference point from which we define the model for partial 
temporal relations. 
2.1. Universe of time and temporal elements. We assume a 
universe [O,w of time instants together with a linear 
order <_ on it. Although it is not necessary, we assume for 

simplicity that [O,w is the discrete set {O,l,-- -,Now). 
Intervals are not adequate to model history of an object in 
a single tuple and lead to query languages that are difficult 
to use [GY91]. Therefore we define a temporal element to 
be a finite union of intervals. Temporal elements are closed 
under u, n and 1 (complementation) and form a boolean 
algebra (for a definition of a boolean algebra see (TM75]). 

2.2. Attribute values. To capture changing value of an 
attribute we define a temporal assignment to an attribute A 

to be a function from a temporal element into the domain 
of A. An example of a temporal assignment to the 
attribute COLOR is ([25,32] red, (33,Now] blue). If [ is a 
temporal assignment, [(I denotes its domain. Thus 
[r([25,32] red, [33,a blue)] = [25,~$ (1~ denotes the 
restriction of t to the temporal element p. Thus 
([25,32] red, [33,w blue) I[25,30] = ([25,30] red). 

2.3. 0-comuarisons. Our counterpart of the construct ABB 
of the relational model is [AoBI], which captures the time 
when A is in 0-relationship to B. This is introduced 

though Ut,K,ll = it: t1 and tz are defined at t, and 
t,(t)@,(t) iS TRUE}. For example, [([25,32] red, 
[33,~~~l blue) = ([O,Now] blue)] = [33,Now]. We also allow 

the construct [A B bl], where b is a constant, which is 
evaluated by identifying the constant b with the 
assignment [O,Now] b. 

2.4. TuDles and relations. A tuple is simply a concatenation 
of assignments whose temporal domains are the same. The 
assumption that all temporal assignments in a tuple have 
the same domain is called the homogeneity assumption 
[Ga88]. The model collects the entire history of a real 
world object in a single tuple. The restriction of a tuple r 
to a temporal element /J, denoted rip, is obtained by 
restricting each assignment in r to the temporal element p. 

A relation I over a scheme R, with KER as its key, is a 
finite set of non-empty tuples such that no key attribute 
value in a tuple changes with time, and no two tuples agree 
on all their key attributes. Figure 2.1 shows a database 
with a relation emp(NAME SALARY DEPT) with NAME as 
its key, and a relation management(DEPT MANAGER) with 
DEPT as its key. The restriction of a relation r to a 
temporal element p, denoted r/p, is the relation obtained 
by restricting alI tuples of r to the temporal element k 
The snapshot of a relation r at an instant t, denoted r(t), is 
the relation obtained by restricting each tuple of r to t. 

2.5. The nature of kevs in our model. Keys play a critical 
role in our model. A key provides a persistent identity to 
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an object. In every instantaneous snapshot of the 

management relation in Figure 2.1 DEPT and MANAGER 

functionally determine each other. However, viewing 
MANAGER a8 the key would require the management 
relation to be restructured as shown in Figure 2.2. This is 
further discussed in Section 2.6.3. 

NAME DEFT 

[8,521 J&n [8,39] 15K [8,44] Toys 
[40,52] 20K [45,52] Shoes 

[48,IiUiI] Douq [48,Now] 20K [48,hW] Auto 

The emp relation 

DEPT M?ANAGm 

[8,N(3wl Toys [8,39] John 
[4O,NW] Jack 

fe,=l U f48,NW fe,=l Jaclc 
Auto [48,NW Doug 

The management relation 

Figure 2.1. A database 

1 [48,NY - t [48FV Doug 1 

Figure 2.2. management: MANAGER relation 

2.6. Aleebra for comolete temnoral information. The set of 
all algebraic expressions can be divided into three mutually 
exclusive groups: temporal ezpressions, boolean ezpressions, 
and relational ezpressions. 

2.6.1. TemDoral expressions. Temporal expressions are the 
syntactic counterpart of temporal elements. They are 
formed using temporal elements, [AI], BAoBj, [At%‘& U, tl, 

;“, 
-. If p is a temporal expression and 7 is a tuple, then 

r ev ua es al t t o a temporal element and is defined in a 
natural way. For example, if r is John’s tuple in 
Figure 2.1, [SALARY = 20Kl(r) evaluates to [40,52]. 

2.6.2. Boolean exnressions. Boolean expressions are formed 
using /.&Y, where p and v are temporal expressions. More 
complex expressions are formed using A, V, and 7. 

2.6.3. Relational exuressions. Relational expressions are 
the syntactic counterpart of temporal relations. 

Restructurinn. The purpose of the restructuring operator is 
to change the key of a relation. Two relations are said to 
be weakly equal if they have the same snapshot8 at all 
instants [Ga86a]. Suppose r is a relation over R with K a8 
it8 key. Then if K’ c R such that K’ -) R in all snapshots 
of r, then r:K’ is the unique relation weakly equal to r but 
with key K’. For example, management: MANAGER is 

shown in Figure 2.2. 

Union and difference. If r and s are relations over the same 
scheme R and the same key K, then rUs and rs also have 
the same scheme and key. Informally, rUs is obtained by 
collapsing tuples with same key values to form a single 
tuple. Similarly, rs is obtained by removing portions of 
tuples in r which overlap with tuples in s. 

Proiection. To define H,(r), we require that the key of r 
be a subset of X. Then II,(r) is defined to be {r(X): rer}. 

Selection. Selection is a powerful operator in temporal 
databases. If f is a boolean expression and p is a temporal 
expression then the selection u(r;f;p) evaluate8 to (~14~): 
fir A f(r) A rt/.~(r) is not empty}. If f evaluate8 to TRUE 
for a tuple, fr allow8 us to select only a relevant part of it, 
which is specified by /L. For example, the query give 
information about employees while they were in Toys OT 

shoes if they are currently employed can be expressed as 
o(emp;[NCW,Nc@(yNAMEI]; uDEPT=Toys@[DEPT=Shoe8& 
If the parameter f is omitted in a(r;f;p) it default8 to TRUE. 
If p is omitted it default8 to [O,N@ 

The selection operation cannot be evaluated 
snapshot-wise [GY88]. For example, the management 
relation in Figure 2.1 is weakly equal to the management1 
relation in Figure 2.2. However, a(management;[8,NOW] E 
[DEPT = TOy8lj; [O,NC%$ is not weakly equal to 
a(managementl; [8,w < [DEPT = Toysn; [O,w). Thus 
our selection operator represents a departure of temporal 
database8 from classical snapshot databases. 

Cross product. Suppose r and 8 are two relations. A tuple 
in rxs i8 obtained by concatenating a tuple in r and a tuple 
in 8, and only preserving the instant8 where both the tuples 
are defined. This a.ssures the homogeneity of 1x8. To avoid 
distraction from the main theme of this paper, we confine 
ourselves to homogeneous relations, but our framework can 
be extended to mu15 homogeneous relations [Ga86b] where 
a literal CrOSS product is formed. 
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3. Model for Incomplete Temporal Information. an attribute encodes the following information: 

In this section, we define our model for temporal 
databases with incomplete information, called partial 
temporal databases, by generalizing notions of a temporal 
element, temporal assignment, tuples and relations to 
capture incomplete information. 

. During L we are sure that the object exists. 

. Beyond u the object does not exist. 
6 During u - 1 we are uncertain about the existence of the 

object. 

3.1. Partial temporal element. In the case of complete in 
formation an expression like [A=Bl yields a temporal ele 
ment which is the set of instants during which A=B. 
When A and B have missing information we may not be 
able to compute this set exactly. Hence the knowledge of 
instants when we are sure A=B is TRUE, and instants when 
we are sure that A=B is FALSE is important. This leads to 
the notion of a partial temporal element, which is defined to 
be a pair (L,u) where C E u; L and u are called the lower 
and upper limit of the partial temporal element, respective 
ly (see Figure 3.1(a)). Now uA=BJ yields a pair (L,u), 
where L is a set of instants when A=B definitely holds, and 
u is a set of instants beyond which A=B could not hold. 
Note that a temporal element p can be represented as a 
partial temporal element by (/.q~). Thus partial temporal 
elements are a generalization of temporal elements. The 
operations U, n, - and 7 are generalized as follows: 

0 Union: (L1,ul) U ($,u,J = (tlU~2,u1Uu2) 

. During L n [1[n we know that the object exists and the 
values it takes. 

. During L - a[] the object tists but its values are 
unknown 

l During u - [[I the object may exist, but we do not 
know the values. 

l During fit]- L if the object etists we know the values. 

1 u 

ucn 

68 

(a> (b) 
(a) A partial temporal element 

(b) [t’J, L and u in a partial temporal assignment <Lu. 

Figure 3.1. 

e-g. ~[~,51,[~,~~1>~~~4,~51,[~,~5]~ = ([0,151,[0,~01>. 

. Intersection: (I!.~,u,) n (C2,u2) = (~,nt,,u,nu,) 

l Difference: (Cl+) - ($u,) = (C,-uZ,ul-CJ 

e.g. W451,[vW - ([4,151,[0,151) = m~,31 u m201). 

0 Complementation: ~(!.I,u~) = (mu,,++) 

e.g. ~~~~,~l~~~,~l,~~,~~l> = (~~~,Now],[6,7lu~10,~). 

In the model for complete information, an attribute is 
assigned a temporal assignment [. This complete 
information can be represented in our model for incomplete 
information by the partial temporal assignment <I[tJ[tn. 
In this sense, partial temporal assignments are a 
generalization of temporal assignments. 

The operators on the left hand side are operations on 
partial temporal elements while the operators on the right 
hand side are operations on temporal elements. The set of 
partial temporal elements is closed under the operations 
defined above. The following theorem is easily proved. 

THEOREM 3.1. The set of partial temporal elements together 
with U and fl forms a distributive lattice (for a definition of 
a lattice see [TM75]). 

3.2. Attributes. In our model a partial temporal assignment 
to an attribute A is a triple [Lu, where t is a temporal 
assignment (as defined in Section 2.2), L and u are 
temporal elements such that [(I 5 u and e E u (see 
Figure 3.1(b)). The restriction of @II to a partial temporal 
element (L’,u’), denoted (<Lu)t(L’,u’), is defined as 
(ttu’).(L’ne).(u’nu). The triple &I when it is assigned to 

3.3. &comnarisons. As we did in Section 2.3 for the 
complete temporal model, we want to introduce the 
constructs [A 0 Bn and (IA 0 bJ where A and B are 
attributes and b is a constant. In our model an assignment 
to an attribute is a partial temporal assignment of the type 
@.u where [ is a temporal assignment and L,u are temporal 
elements. A constant b can be identified with the 
assignment Q.u where { = [O,NOW]b, 1 = [O,Now] and u = 
[O,NC$ Hence the constructs [A 0 Bn and [A 0 bn may be 
introduced by first defining [(t,L,u,) 0 (~ZIZuZ)~. The 
expression [([,L,u,) 0 (~,J.,&~ evaluates to the partial 
temporal element ([(1ef,If7t,nt,, ulnuz - [rf,e’f,m) 
where 0’ = 4 (i.e. if B is < then 0’ is > etc.) The 
lower-limit, uf,eqpL,nt,, is the time during which we 
are sure the e-relation holds. This lower limit cannot be 
greater than C,nL,. The upper limit, ulnu2 - [f,U’~.Jl, is 
the time beyond which the e-relation cannot exist. For 
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example, let tlL,ul be (t,=([O,S]a [6,9]b); L1=[O,lO]; 

ul=P,201) and t2Lp2 be (t2=([0,4]a [5,61c); $=[Wj; 

u2=[0,151). Then U(~l$ul) = (S,&)n = ([IE,=$n n 
$n$ upu2 - UC,#qD = m4,P>4luI%151) 

The definitions of [AUBI and [AUbn given above are a 
generalization of the complete case. Also, by constructing 
a suitable example, the reader can verify that having [ 
defined beyond the lower limit L may help to reduce 
uncertainty in UASBn. 

3.4. TUDLZ, and relations. A tuple 7 is a concatenation of 

partial temporal assignments whose 1 values are the same 
and u values are the same. Hence, in an actual 
implementation the common L value and u value could be 
stored at the tuple level rather than with each attribute. 
However, we will continue to have the temporal elements ! 
and u associated with the attributes in order to simplify the 
formalism. The L values and u values have the following 
interpretation: During I we are sure the object represented 
by the tuple exists in the relation and beyond u the object 
cannot exist in the relation. The requirement that the C 
values of all attributes are equal and the u values of all 
attributes are equal makes the tuple homogeneous. This 
definition of homogeneity is analogous to the definition of 
homogeneity for the complete temporal case defined in 
Section 2.4. By rt(!.,u) is meant that each attribute in r 
is restricted to (l,u) (the restriction of an attribute to a 
partial temporal element was defined in Section 3.2). A 
relation r over a scheme R with key K (CR) is a set of 
tuples such that no key attribute values of a tuple change 
with time, for key attributes we have [[<n = u, and no two 
tuples in r agree on all their key attributes. Figure 3.2 
shows a relation emp with NAME as the key. In each 
attribute &I, the t part is shown first, followed by the 
temporal element that represents the e part and then the 
temporal element that represents the u part. 

PlAm DEPT 

[O,lOO]J&n [10,40]3OK [~O,3Olws 
[41,45]4OK [31,55]shoes 

[0,501 r0,501 [Or501 

[O,lOOl [0,1001 to,lool 

[10,50]mm [10,45]4OK [10,5OlTgrS 
[46,50]6OK 

[10,501 [10,501 [10,501 
[10,501 110,501 [10,501 

Figure 3.2. The emp relation 

In the emp relation, we are sure that John was an 
employee at least during [0,50] and that he was not an 
employee beyond (O,lOO]. However, we have missing 
information for his department during [0,9]. If he was 
present in the organization at any time during [56,100], we 
have missing information on his department at that time 
also. If John was working for the organization during 
[51,55], he was in the Shoes department. We also have 
some missing information for the SALARY attribute. 

NAME DEPC 

[50,5O]J&n [50,50]shces 

150,501 150,501 [50,501 

150,501 150,501 [50,501 

[50,5O]mn [50,50]6OK [50,5O]'bys 

t50,501 [50,501 [50,501 

I50,501 [50,501 150,501 

- 

Snapshot as a temporal relation 

fiff$Jq 

Snapshot as a static relation with nulls 
Figure 3.3. Snapshot of emp relation at instant 50 

NAME DEW 

[55,55]Jchn [55,55]sloes 

0 0 0 
155,551 c55,551 [55,551 

Snapshot as a temporal relation 

Snapshot as a static relation with nulls 
Figure 3.4. Snapshot of emp relation at instant 55 

3.5. Snanshots of martial temuoral relations. An instant t 
can be represented as a partial temporal element 
([t,t],[t,t]). A temporal snapshot of a relation at time t is 
obtained by restricting each tuple in r to ([t,t],[t,t]). The 
temporal snapshot may be represented as a static snapshot 
with nulls and an additional column called STATUS with 
domain = {d,m} which denotes whether the tuple is 
definitely(d) in the relation or maybe(m) in the relation. 
Such a relation corresponds to a classical relation with null 
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values aa in [Bi83]. The static snapshot at t can be 

obtained from the temporal snapshot by placing a d in the 
STATUS column for a tuple whose lower limits are [t,t] or m 
if the lower limits are 0, by replacing empty assignments 
with null values and then deleting all timestamps. We 
denote a temporal or static snapshot by r(t). Figure 3.3 
shows the snapshot at t = 50 of the relation emp from 
Figure 3.2 as a temporal relation and as a static relation 
with nulls. Figure 3.4 shows the snapshot of emp at t = 55. 

4. Algebra for Partial Temporal Databases. 

In this section we generalize our algebra of Section 2 to 
partial temporal relations. As before there are three hinds 
of algebraic expressions: partial temporal ezpressiotls, 

partial boolean ezpressions and partial relational 

tZprtT.Wi07W. 

4.1. Partial temuoral expressions. Partial temporal 

expression5 are the syntactic counterparts of partial 
temporal elements and are formed from temporal elements, 
[IA], [A B Bl EA 0 bn, U, 0 and -. Hence partial temporal 
expressions are syntactically the same as temporal 
expressions. However, the evaluation of these expressions 
on 

. 

. 

a tuple r yield a partial temporal element as follows: 

If p is a temporal element then p(r) = (p,~). 

[rAMr) = (!.,u) where r(A) = (err and A is an 
attribute. 

UAoBll = lI(t,~,~,) 0 (&~,)ll where 7(A) = &ul, 
r(B) = &L2u2 and A and B are attributes (for our 
model 1, = L,, I+ = u2 by homogeneity). 

UAfilK7) = U(t,$u,) 0 (~,~,u,)l where 7(A) = 
&uI, tz = [O,mb 1, = [O,Nd and u2 = [Wd- 

If tI and t2 are temporal expressions then 

(t,nt&) = tl(d ” t2(4 

($U$)(r) = t,(r) u t&r) and 

($-fJb) = t,(d -t&d. 

4.1.1 Examnle. Consider the emp relation in Figure 3.2. If 
John’s tuple is denoted by r then [INAMEn = ([O,SO], 
[O,lOO]). Similarly, (ISALARY=30Kjj(r) = ([10,40],[0,40] U 
[46,100]) and [DEPT=Shoesj(r) = ([31,5O],[O,O]U[31,100]). 
Also, ([SALARY = 30Kn u [DEPT = Toys])(r) = ([10,40], 

[0,4O]U[46,100]). 

4.2. Partial boolean exwessions. Like the complete 

temporal case, essentially the atomic partial boolean 
expression is /.&v, where p and v are partial temporal 

expressions. More complex boolean expressions are formed 
using V, A and 7. 

Since we have incomplete information, we may not 
always be able to determine if a particular formula applied 
to a tuple yields TRUE or FALSE. For instance, consider 
John’s tuple in Figure 3.2. The atomic formula [46,48] c 
[SALARY=GOKn may be TRUE or FALSE depending on the 
SALARY values during [46,48]. Hence we need to introduce 
the truth value UNDEFINED. Then [46,48] E [SALARY = 
6OKn yields the truth value UNDEFINED for John’s tuple. 
The three-valued truth tables for A, V and -I are shown in 
Figure 4.1. 

-7 

T F 

‘L 

F T 

u u 

Figure 4.1. Three-valued truth tables for A, V and 1. 
TZTRUE, FGFALSE, UZUNDEFINED 

The evaluation of p E v for a given tuple r is performed 
by first computing p(r) and P(T). Since p and v are partial 
temporal expressions, 4~) and ~(7) yield partial temporal 
elements. Hence, we need to decide the truth value for one 
partial temporal element ($,I+) being a subset of another 
partial temporal element (l,,u,). The partial temporal 
element (.$,I+) means “at least L, and at most uI.” Siti 
larly, the partial temporal element (.$,uz) means “at least 
L, and at most uz.” Hence, (!.,,I$) E ($,u2) is TRUE for 
sure if u1 c L,. Similarly, ($,u,) c ($,,u2) is FALSE for 
sure if f., $ u2. Otherwise, we say that (Ll,ul) C (L2,u2) is 
UNDEFINED. To further see the motivation for the defk 
nition consider the following example. Suppose from the 
given information in the database we can conclude that a 
certain condition holds at least during C, and at most dur- 
ing ul. Suppose that we can also conclude that a second 
condition holds at least during L, and at most during u2. 
We now want to ask if the second condition holds during 
the time the first condition holds. This would be TRUE for 
sure if u1 E L, i.e. if the maximum possible time for the 
first condition is a subset of the minimum possible time for 

the second condition. Hence ($,I+) c (.$,uz) should be 
TRUE if u1 E e,. Similarly, ($,u,) C (Iz,uz) should be 
FALSE if L, $ u2. Hence we get the following definition. 

($Jq E ($uJ = TRUE if uI C_ t, 
= FALSE if L, (r I$ 
= UNDEFINED otherwise. 

400 



n (III) (0,0> VII> -I 

(III) (III> (0IQ> (0,1> (III> @IQ> 

(0,0) (010) VA (0N (0 3) (III) 

(081) (0,I) (0J) VII> (fl,I> @#I> 

Tables for u and 7 where I = (O,~c%ij (table for n is similar) 
Figure 4.2. 

We make an observation that TRUE, FALSE, 

UNDEFINED, 7, V, A are isomorphic to (I$), (0,0), (0,I), -(, 
U and fl where I = [O,Now]. This is clear from Figure 4.1 
and Figure 4.2. Now we introduce a function called eval, 
which takes a partial boolean expression and a tuple 7, and 
returns one of (($I), (0,0), (0,I)). eval(f)(r) is defined in 
such a way that eval(f)(r) = (I,I) if and only f(r) = TRUE, 

eval(f)(r) = (0,0) if and only f(r) = FALSE, and eval(f)(r) 
= (0,1) if and only if i(7) = UNDEFINED. The main use of 
eval is to simplify the definition of the selection operator 
and to simplify the statements of some of our results. The 
function eval allows the evaluation of a partial boolean 
expression using the operations U, il and 7 for partial 
temporal elements. Formally, eval(f)(r) is defined as 
follows: 

. evd(TRUE)(T) = (I,I) and evd(FALSE)(7) = (0,0) 

. If p and v are partial temporal elements then 
evd(p~u)(~) = (III) if p 5 Y is TRUE 

(0,0) if p 5 uis FALSE 

(0,I) if p 5 v is UNDEFINED. 

l If p and v are more complex partial temporal 
expressions then eval(p 5 u)(r) = eval(p(r) c V(r))(r). 

l eval(fl V f2)(7) = eval(fl)(r) U eval(f2)(7) 
0 eval(fl A f2)(7) = eval(fl)(r) n evaI 

0 eval(d)(T) = $eval(f)(T)). 

4.2.1. Examole. If r is John’s tuple in Figure 3.2 then let 
us calculate eval([46,48] E [SALARY=GOKD(?). For John’s 
tuple, [SALARY=GOKl = (0, [0,9] U [46,100]). Since 
([46,48], 146,481) C (0, [0,9] U (46,100]) is UNDEFINED, 

eval([46,48] c_ [SALARY = 6OK11)(r) = @,I). 

4.3. Relational exoressions. Relational expressions are the 
syntactic counterparts of partial temporal relations and are 
defined as follows. 

4.3.1. Restructurine. Suppose r is a relation over R with 
key K. The snapshot of r at t was defined in Section 3.5. 
Two relations are said to be weakly equal if they have the 
same snapshot at each instant. If K’ C R such that K’ -+ 
R in each snapshot, then r:K’ is the relation weakly equal 

to r but having K’ as the key. We require that there is no 
missing value in the attributes in K’ in the relation r 
otherwise it is not possible to do the restructuring (No 
missing value in <Lu means [[n = u). 

4.3.2. Union. Suppose r and s are relations with the same 
scheme and key. Then r U s also has the same scheme and 
key. To arrive at r U s we first compute the union of r and 
s treating them as sets, and then collapse each pair of 
tuples that agree on all key attributes into a single tuple. 
Hence the union is an objectwise union with the object 
being identified by the key values. Note that the collapsing 
could give an error if the two tuples being collapsed have 
different values at some non-key attributes at the same 
instant of time. Hence we need to assume that the union is 
being performed between compatible relations. 

To formally define the union operation we first define 
frlrur U fzlzuz, the union of two partial temporal assign 
ments, to be fIUfs l,Ul, u1Uu2. Suppose we are given 
partial temporal relations r and s with the same scheme R, 
and the same key KSR. Tnples rler and 7s~~ are said to be 
key-equivalent if they agree on all their key attributes, For 
key-equivalent tuples r1 and 7s their union TRUTH is defined 
attributewise. Thus, (or U TV) = rr(A) U .rz(A) for each 
attribute A in R. We can now define r U s to be the 
relation {r tir and 7 is not key- equivalent to any tuple in 
s) U {T. r~s and r is not key- equivalent to any tuple in r) U 

{ r1 U r2: rlEr and r2cs and r1,r2 are key- equivalent} 

4.3.3. Difference. Suppose r and s are relations with the 
same scheme R and the same key K. Then r - s has the 
same scheme and key. The relation r-s is computed as fog 
lows. We start with r. For each tuple rr of r we check to 
see if there is a key-equivalent tuple in s. If there is no 
such tuple in s, then r1 does not change. If s has such a 
tuple r2, then let the lower limit of the assignments in rr 
and rs be f., and L, respectively, and the upper limits be u1 
and u2 respectively. Now, at any instant in L,, if for r1 
and rs the I’s are defined and agree on all attributes, then 
that instant is removed from the domain of f part of the 
assignments in rl. That instant is also removed from 1, 
and ur, the lower and upper limits of assignments in rr. 
Also, those instants at which the fs in r1 and r2 agree on 
all attributes or may have agreed on all attributes, if all the 
temporal assignments were completely defined, must be 
removed from e,. 

Consider the relation emp from Figure 3.2 and the 
relation emp’ shown below in Figure 4.3. The result of 
emp - emp’ is shown in Figure 4.4. 
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Nz!m DEPT 

[41,lZO]Jchn [41,50]4OK [41,7O]shces 
[51,60]5OK 

[41,701 [41,701 [4L701 

141,=01 141,=01 [41,=01 

Figure 4.3. The relation emp’ 

, 
NAME DEPT 

[Or401 u [10,40]3OK [10,401Toys 
[46,1OO]John [46,55]Shces 

LO,401 LO,401 10,401 

[0,4O]U[46,100] [0,4O]U[46,100] [0,4O]U[46,100] 

[10,5O]win [10,45]4OK [~0#501Toys 
[46,50]6OK 

r10,501 [10,501 [10,501 

[10,501 110,501 PO,501 

Figure 4.4. emp - emp’ 

4.3.4. Proiection. The projection operation allows the user 
to choose certain columns of a relation. However, we 
require that all the attributes in the key of a relation must 
be projected. Thus, if I is a relation with scheme R and 
key K and if K 5 X c R then n,(r) = (r(X): 7~1). 

4.3.5. Selection. The selection operator is the most power- 
ful operator in temporal databases. The selection operator 
has the form a(r;f;p) where f is a partial boolean expression 
and p is a partial temporal expression. As in Section 2.6.3, 
the computation of the result of a selection operation can 
not always be done by merely considering snapshots of 
relations at each instant of time. The operator uses the 
function eval defined in Section 4.2. In the incomplete 
information case, the expression f when applied to a tuple r 
yields TRUE, FALSE or UNDEFINED i.e. eval(f)(r) yields 
&I), (0,0), or (fl,I). If f(r) is FALSE, we want to reject 
the tuple. If f(r) is TRUE (i.e. eval(f)(r) = (1,I)) then we 
accept the tuple, but restrict it to p(r) in the result because 
of the parameter p. If f(r) is UNDEFINED (i.e. eva.l(f)(r) = 
(0,1)) we are not sure if the tuple 7 should be in the result 
or not and so the lower limits of the assignment in the 
tuple must be set to 0. This lower limit says that we are 
sure that the object must be present in the result only 
during 0. In other words, it is possible that the object 
should never be there in the result relation. The tuple 
must be further restricted to p(r). All of these require 
ments are captured by the following definition of u(r;f;p). 

Let r be a relation, f be a partial boolean expression and 

p be a temporal expression. Then a(r;f;p) is defined to be 

Wb-JW)~4O): 7-a A d(eval(f)(T)nji((7)) is not 
empty}. The tuple d(eval(f)(~)np(7)) is not empty if the 
upper limit of the tuple is not 0. In a(r;f;l.c), f and p, when 
omitted, default to TRUE and [O,* respectively. 

[O,lOO]Jahn [10,40]3OK 
[41,45]4OK 

ii-i 

Figure 4.3. Result of selection in Example 4.3.5.1 

4.3.5.1. ExamDle. Consider the query give all details of 
employees if they had a salary of 60K during [/6,48] applied 
to the emp relation in Figure 3.2. This query can be ex- 
pressed as a(emp;[46,48] < [SALARY = GOK~;[O,~). For 
John’s tuple eval([46,48] 5 [SALARY = 60KIj) = (0,1), 
which is what we expect since we cannot determine if the 
condition is TRUE or FALSE with the given information. 
The result of the algebraic expression is shown in 
Figure 4.3. For John’s tuple the L values are 0. This 
means that we are sure that John’s tuple belongs in the 
relation only during 0 i.e. John’s tuple may not belong in 
the relation at all. However, we do carry the t values for- 
ward in the result since John’s tuple may belong in the 
relation. 

NAMEi DEPT 

[0,3O]U[56,100] [10,30]3OK [10,3OlTays 
JOhll 

0 0 0 
[0,3O]U[56,100] [0,3O]U[56,100] [0,3O]U[56,100] 

[10,50]TcEn [10,45]4OK [10,5OlTays 
[46,50]6OK 

[10,501 [10,50] c10,501 

[10,501 [10,501 [10,501 

Figure 4.4. Result of selection in Example 4.3.5.2 
J 

4.3.5.2. Examole. Consider the relation emp in Figure 3.2. 
Suppose we want to answer the following question: give 
details of employees if they had a saZay of 60K during 
[46,&?] but restrict th e an omation to the time they were in . f 
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the Toys department. This can be expressed as a(emp; 
[46,48]#ALARY=6OK~; [DEPT = Toysll). For John’s 

tuple, eval([46,48] 5 [SALARY = 60Kl) = (0,I) as before, 
and [IDEPT=To~sIJ = ([10,30],[0,30]u[56,100]). On the 
other hand, for Tom’s tuple eval([46,48] < [[SALARY=GOKD 

= (1,I) and [DEPT=TOYS~ = ([10,50],(10,50]). The result 
of the algebraic expression is shown in Figure 4.4. 

4.3.6. Cross Droduct. When a tuple of r is concatenated 
with a tuple of 6, to ensure homogeneity in the resultant 
tuple, we reduce its !. value (u value resp.) to the 
intersection of the e values (u values resp.) of the tuples 
being concatenated. We also restrict the rs to the new u 
value. The key of rxs is the union of the keys of r and S. 

5. Evaluation of the model. 

In this section, we analyze our model for incomplete 
temporal information. In particular, we show the 

theoretical soundness of our model by proving the 
properties mentioned in the introduction. 

Generalization of the complete information model. A relet 
tion r in the model for complete temporal information can 
be converted to an equivalent relation in the format of the 
incomplete information model by changing each temporal 
assignment [ to the partial assignment t[I[n[tJl. The fact 
that the incomplete information model is a generalization 
of the complete information model is captured by the 
following theorem. The theorem states that if all the 
relations had no missing information then an algebraic 
expression evaluated according to our model would give the 
same results as the complete information model described 
in Section 2. 

THEOREM 5.1. Suppose 6 is a database in the complete 
information model, and E is an algebraic expression. If 6’ 
is the database in the incomplete information model 
obtained from 6 by replacing every attribute value < to 

MlU~D~ thenEW can be obtained from E(b) by making 
a similar replacement. 

5.2. Comuletions. In this section we prove results which 

show that our algebraic expressions give reliable results 
even when we have incomplete information. We first intro 
duce the notion of completions of a relation. A relation r in 
our model has correct but incomplete information about the 
objects it describes. Informally, a relation r’ is a 
completion of a relation r if r’ has complete information 
but is consistent with r. Thus, if we had complete 

information about the objects in r it is possible that we 

would have r’ as our relation. Clearly, there could be 
many possible completions for a relation r. In fact, the 
more incomplete the information in r, the larger is the set 
of possible completions for r. On the other hand the more 
complete the information in r, the smaller the set of 
possible completions of r. If r had complete information 
then there would be just one completion of r, namely r 
itself. 

We now formalize the idea of completions. If a tuple 7 
has lower limit f. and upper limit u, then the object 
described by r should be present in the relation at least 
during 1 and at most during u. In “reality”, the object 
would be present during some intermediate period u’ such 
that C < u’ 5 u. Also, time instants during u’ at which we 
do not have values for an attribute would actually have 
some value. This motivates the following definitions. An 
assignment [‘u’u’ is a completion of an assignment [Lu if 
(i) C 5 u’ 5 u, (ii) f’ agrees with < everywhere that both 
are defined, and (iii) (r{’ I= u’ . 

5.2.1. Examole. Consider the assignment to NAME for 

John’s tuple in Figure 3.2. In that assignment we had < = 
[O,lOO]John, L = [0,50] and u = [O,lOO]. Thus John must be 
in the relation at least during [0,50] and at most during 
(O,lOO]. An assignment [‘u’u’ such that f’ = [O,GO]John, 
u’ = [0,60] is a completion of the assignment .$!u. 

We denote the lower and upper limits of a tuple r by 
r.L and r.u, respectively. 7.((A) denotes the temporal 
assignment part of the assignment to A in r. If p is a 
partial temporal expression, p(r).e and p(r).u denote lower 
and upper limits of the resulting partial temporal element. 
If -r and 7’ are tuples with the same scheme R and key K 
such that r and r’ agree on all attributes in K, then r and 
r’ are said to be key- equivalent. Now we define a tuple r’ 
over R to be a completion of a tuple 7 over R if for all 
attributes AeR, +.((A) is a completion of r.<(A). Thus, if 
r and 7’ are tuples over R, then r’ is a completion of 7 if 
(i) 7.C E r’.L = r’.u < r.u, (ii) for all A E R, ?.((A) is 
defined everywhere along r’.u, and (iii) for all A E R, 
?.((A) and r-.((A) g a ree everywhere both of them are 
defined. A relation r’ is a completion of a relation r if (i) 
given a r E r with 7.C # 0 there is a 7’ E r’ such that r’ is 
a completion of 7, and (ii) given a r’ E r’ there is a T E r 
such that 7’ is a completion of 7. A completion of a 
database is a natural extension. 

5.2.2. Examule. The relation shown in Figure 5.1 is one of 
the possible completions of the relation emp shown in 
Figure 3.2. 
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NAME 

[0,6O]Jahn 

fo,eol 
Co,eol 

SALARY DEW 

[0,40]30K [0,9]Auto 
[41,60]4OK [~0,3OlWS 

[31,6O]Shces 

lo,601 fo,eol 
fo,eol lo,eol 

[10,45]4OK [10,5OlTayS 
[46,50]6OK 

110,501 PO,501 

I10,501 [10,501 

Figure 5.1. A completion of the emp relation 

[10,50]Tunl 

PO,501 

[10,501 

LEMMA 5.1. Let 7,~’ be tuples over R such that r’ is a 
completion of T. Let p be a partial temporal expression. 
Then Ar).L E ,n(r’).e and p(r).u 2 p(r’).u. 

By induction on complexity of p. PROOF. 

LEMMA 5.2. Let 7,~’ be tuples over R such that r’ is a corn 
pletion of 7. Let f be a partial boolean expression. Then 
1. if eval(f)(r’) = (I$) then eval(f)(r) = (III) or (@,I) 
2. if eval(f)(r’) = (0,0) then eval(f)(r) = (0,0) or (0,1) 
3. if eval(f)(r) = (1,I) then eval(f)(r’) = (I$) 
4. if eval(f)(r) = (0,0) then evaI = (0,0) 

PROOF / Parts 1 and 2 are proved together by induction on 
complexity off. Parts 3 and 4 are proved by contradiction. 

Part 1 of Lemma 5.2 shows that if r’ is a completion of 
r (and hence 7’ is consistent with 7 but has complete 
information) and if f(r’) evaluates to TRUE then in our 
model f(r) will not evaluate to FALSE in spite of r having 
incomplete information. Similarly, part 2 of the above 
lemma states that if f(r’) evaluates to FALSE then we will 
not evaluate f(r) to be TRUE in spite of incomplete 
information. Part 3 of the lemma states that if we evaluate 
f(r) to be TRUE then f(r’) is TRUE for every tuple T’ 
which is a completion of 7. Similarly, according to part 4 
of the lemma, if we evaluate f(r) to be FALSE then f(r’) is 
FALSE for every tuple 7’ which is a completion of 7. 

LEMMA 5.3. Let 7,~’ be tuples over R such that r’ is a corn 
pletion of 7. Let f be a partial boolean expression. Then 
1. eval(f)(r).!. 5 evaI( 
2. eval(f)(r).u 1 eval(f)(r’).u 

PROOF A Immediate from statements 1 and 2 of LEMMA 5.2 

and the fact that eval(f)(r’) is either (0,0) or (&I). 

We now state a theorem which shows that the results of 
our algebraic expressions are reliable. Suppose 6 is the 
state of a database having incomplete information. Then a 

completion of 6 (say 6’) has complete information and is 
consistent with the information in 6. Hence, 6’ is a 
possibility for 6 in the “real” world. Since our model 
generalizes the complete information model we know that 
when there is complete information our model gives correct 
information. Hence, E(6’) should be a possibility for the 
result when E is applied to 6. In other words if E(6’) is a 
completion of E( 6) we may say our result E( 6) is reliable 
because then E(6) does allow E(6’) as a possibility with 
complete information. The following theorem is proved by 
induction on complexity of E. The above lemmas are used 
in the proof for the case of selection. 

THEOREM 5.2. Let 6 be the state of a database and let E be 
an algebraic expression applied to the database. Then for 
any completion 6’ of the database 6, E( 6’) is a completion 

of E( 6). 
The above theorem is analogous to the notion of ade 

quacy of operators as defined in [Bi83]. However, a transi- 
tion to our model is not straightforward. This is because 
(i) in [Bi83] AOB and AOb are defined only when 0 is the 
equality comparison, and (ii) our selection operation is of 
the form a(&) and it cannot be evaluated using 
snapshots of relations at instants of time (see 
Section 2.6.3). 

5.3. Information content of a relation. The preceding 
theorem showed that the results of algebraic expressions are 
reliable in the sense that they never produce incorrect 
information. However, we want to produce results that 
have as much information as possible. 

As we mentioned earlier, the more incomplete the 
information in r, the larger is the set of possible 
completions for r. On the other hand the more complete 
the information in I, the smaller the set of possible 
completions of r. This motivates the following definition 
for more informative relations. The set of completions of a 
relation r, denoted C,, is given by Cr = {r’: r’ is a 
completion of r}. A relation r2 is more informative than a 
relation rl if Crz 5 C . A relation r2 is aa informative as r1 
ifC =C. A relafiron r2 is strictly more informative than 
a reZtion f: if Crz C C . 

To find if r2 is rnirre informative than r1 based on the 
above definition one has to compute the set of completions 
for the relations rr and r2. However, a relation has a 
potentially infinite set of completions. Hence, a more 
syntactic notion is needed by which one can determine if a 
relation r2 is more informative than a relation rl. Hence, 
we introduce the notion of etiensions. The relationship 
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between extensions and information content of relations is 
then captured in Theorem 5.3. 

Let 7 and 7’ be tuples over a scheme R. Then r’ is an 
tztension of r iff the following conditions hold (i) r.L 5 r’.L 
c r’.u E r.u, (ii) for all A E R, +.((A) is defined 
everywhere in +.u where 7.((A) is defined, and (iii) for all 
A E R, +.((A) and r.t(A) agree everywhere both of them 
are defined. A tuple 7’ is a proper eztension of r if (i) 7’ is 
an extension of r, and (ii) 7 is not an extension of T’. 

These definition can be extended to relations. A 
relation r’ is an eztension of r if (i) given a tuple r E r with 
7.e # 0, there is a 7’ E r’ such that r’ is an extension of T, 
(ii) given a tuple 7’ E r’ there is a 7 E r such that r-’ is an 
extension of r. A relation r’ is a proper eztension of r if 
(i) r’ is an extension of r, and (ii) r is not an extension of 
r’. The following theorem shows the relation between 
extensions and more informative relations. The proof is 
omitted due to lack of space. 

THEOREM 5.3. Let r1 and r2 be two relations. Then (i) r2 is 
more informative than r1 iff r2 is an extension of rl, and 
(ii) r2 is strictly more informative than r1 iff r2 is a proper 
extension of rr. 

We now examine how far our definition of the opera- 
tions produce as much information as is possible. Our re 
sult is analogous to the restrictedness property of operators 
for classical databases with null values as developed in 
[Bi83]. Again, however, our result cannot be obtained as a 
straightforward transition from the snapshot case to the 
temporal case. The proof is omitted due to lack of space. 

THEOREM 5.4. Let rl, r2 be two relations and let r3 be a 
proper extension of r1 e r2 where e is a relational operator. 
Then there are completions r;, r; of rl, r2 respectively such 
that r; @ II is not a completion of rs. (This shows that the 
result of rI o r2 cannot be strengthened to rs). For unary 
operators we have a similarly statement. The above 
statement holds for the following operators 

l u,-,n, x, restructuring 

l u of the form a(r; ;n), cr(r; ;IJAj), a(r; ;[AUbll), o(r; ; 

UAOBID, 41; PWI]; 1, 41; K[AObl; ), a@; pE[EAOBlJ;) 
where p is a temporal element, and 0 is one of <, <, >, 
1, #. (Note that it does not hold if 0 is =, see 
Example 5.3.1.). 

This theorem shows that if the results of the operations 
listed above were extended to be more informative then we 
would lose the property of reliability of our results. 

5.3.1. Examule. We show that Theorem 5.4 does not hold 
for selection operations of the form a(r; ;[ABbm etc. where 
B is =. This is shown by the following counterexample. 
Let r be the relation over the scheme AB with key A as 
shown in Figure 5.2(a). Then the result of a(r; ;[B=bB is 
shown in Figure 5.2(b). The relation r3 shown in 
Figure 5.2(c) is an extension of a(r; ;[B=bll) (the term 
extension was defined in Section 5). However, for every 
completion r’ of r, a(r’; ;[B=b’J) will be a completion of 
r3. Note that this selection could be easily delined so that 
r3 is in fact the result of the selection. In that case, we 
would be paralleling [Bi83]. 

The case a(r; ;[B#bjj) would work if dam(B) has at 
least three elements. We have implicitly assumed this to 
be the case. For a(r; ;jlB<bll) we assume there are at least 
two elements < b. For a(r; ;[B>bm we assume there are 
at least two elements > b. 

, 

~~~ 

(a) Relation r (b) a(r; ;[rB=bJj) (c) The relation r3 
Figure 5.2. A counterexample for c(r; ;[rB=bn) 

6. Conclusions. 

We have presented a model for partial temporal 
databases which meet the expectations stated in the 
introduction. Our model clearly generalizes the complete 
information model. Our model allows the storage of 
incomplete temporal information and provides a powerful 
algebra to query the incomplete information. We showed 
that the algebraic expressions produce reliable results even 
when we have incomplete information in the database. We 
also showed that except for certain cases of selection, if the 
definition of our operators were strengthened to give more 
information, we may get results that are not reliable. We 
end this paper with a few remarks. 

The inherent auerving capabilitv of the algebra. We term 
the queries in a complete information model as standard. 

The standard queries can be submitted to the incomplete 
information model without any changes in the syntax. This 
means our algebra is a seamless extension of the algebra for 
complete information. In addition our algebra has the 
inherent capability to express nonstandard queries i.e. 
queries involving uncertainty. To achieve the said inherent 
capability, we only have to add primitives for constructs 
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mentioned in Section 3.2. For example, if we define s(A) = 
A.L - [A.<], then this primitive captures the time when 
the object should be definitely present in the relation but 
its A-values are unknown. Then the query give salaries of 

employees when their department was unknown while they 
surely worked for the organization is expressed as IINAME 

SAL1lRY(demp; TRUE; &(DEpT))). 

Our work as generalization of Biskuo’s. Except for some 
differences, our formalism is a generalization of Biskup’s 
formalism when key values are required to be known. In 
Biskup’s formalism, information is maintained only for the 
current instant NCXJ and the concept of maybe tuples is in 
traduced by adding a STATUS column which has a ‘d’ for 
definite tuples and an ‘m’ for maybe tuples. In our model 
this can be achieved by restricting the upper limits of par- 
tial temporal assignments to [~ow,Now]. Then definite tup 
les have lower limit [NCW,N~ and maybe tuples have lower 
limit 0. 

Further work. Imielinski and Lipski [IL841 introduce 
condition tables in which they use marked nulls and an 
additional column to store conditions which must be 
satisfied by each tuple. This helps them obtain a theorem 
which states that all valid conclusions expressible by 
relational expressions are in fact derivable in their system. 
It would be useful to investigate these ideas in the context 
of incomplete temporal information. 
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