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Abstract 

In this paper, we discuss issues involving tempo- 
ral data fragmentation, temporal query processing, 
and query optimization in multiprocessor database 
machines. We propose parallel processing strategies, 
which are based on partitioning of temporal relations 
on timestamp values, for multi-way joins (e.g., com- 
plex temporal pattern queries) and optimization al- 
ternatives. We analyze the proposed schemes quanti- 
tatively, and show their advantages in computing com- 
plex temporal joins. 

1 Introduction 

With the availability of cheaper and larger sec- 
ondary storage devices such as magnetic/optical disks, 
more historical data can be stored on line instead of 
being archived onto magnetic tapes or being purged 
from the database. Recently, there have been active 
research efforts that attempt to provide basic tempo- 
ral functionality so that historical data can be accessed 
and queried more efficiently [SooSl]. There are several 
classes of temporal queries. Among the most difficult 
to process are the inequality joins and multi-way joins 
such as complex temporal pattern queries. Even in 
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centralized database systems, these queries are often 
expensive to process. 

Recently there has been growing interest in multi- 
processor database machines which appear to have 
better price-performance than traditional centralized 
DBMS residing in mainframe computers [DeWSO, 
Ter85]. A crucial design issue in these database ma- 
chines is the fragmentation strategy, which specifies 
how tables are fragmented and stored, and which has 
a significant impact on the efficiency of query process- 
ing. Unfortunately, providing temporal functionality 
in parallel database machines as well as addressing 
the issue of fragmentation strategies for temporal data 
have largely been ignored. 

In [LeuSO] we proposed stream processing algo- 
rithms for processing temporal inequality join and 
semijoin operations. In this paper, we develop parallel 
join strategies for multiprocessor database machines 
based on the stream processing paradigm. For an in- 
equality join of two relations, a conventional strategy 
in multiprocessor database machines, which is not al- 
ways desirable, is to dynamically and fully replicate 
the smaller relation. We propose parallel processing 
strategies that are based on partitioning of tempo- 
ral relations on timestamp values, and show that they 
can be attractive alternatives to conventional strate- 
gies. An analytic model is developed for estimating the 
number of tuples that have to be replicated; the model 
indicates in which situations only a fraction of tuples 
needs to be replicated among processors as opposed to 
replicating the entire relation. 

Another subclass of complex queries is called snap- 
shot or interval join queries. These queries refer to tu- 
ples that are active as of a certain time point or over a 
certain time interval in the past. Basically, the query 
qualification contains join predicates and comparison 
predicates on timestamps. We discuss optimization al- 
ternatives when these queries are processed using our 
approach. 

The organization of this paper is as follows. In Sec- 
tion 2 we present the fundamental concepts. The par- 
allel query processing strategies and optimization al- 
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ternatives will be the main focus in Section 3 and Sec- 
tion 4 respectively. Finally, we discuss related work 
in Section 5, and conclusions and future research are 
included in Section 6. 

2 Data Model 

In the temporal data model, time points are re- 
garded as natural numbers { 0, 1, . ., now } and 
are monotonically increasing. The special marker now 
represents the current time point. A time-interval tem- 
poral relation is denoted as X(S,V,TS,TE), where S is 
the surrogate, V is a time-varying attribute, and the 
interval [TS,TE) d enotes the eflective lifespan of a tu- 
ple [Sno87, Seg87]. The TS and TE attributes are 
referred to as timestamps. In Table 1 we show a sam- 
ple employee relation which stores the salary history 
of employees. All temporal relations are assumed to 
have a homogeneous lifespan - [O,now). Furthermore, 
we require that for each tuple, the TS value is always 
smaller than the TE value. 

We first propose a classification of Temporal Select- 
Join (denoted as TSJ) queries. This classification pre 
vides a meaningful partitioning of query types with re- 
spect to the difficulty and complexity of query process- 
ing and optimization. Each class has a restricted form 
of query qualification which is defined as a conjunc- 
tion of several comparison predicates and join predi- 
cates, and thus each class is amenable to a particu- 
lar query processing algorithm. We consider two spe- 
cial kinds of joins whose formal definitions will be pre- 
sented shortly; both are referred to as “overlap joins” 
in the sense that the lifespans of tuples satisfying the 
join condition must overlap. Informally, their charac- 
terizations are: 

TSJl - All participating tuples that satisfy the join 
condition share a common time point, as illus- 
trated in Figure l(a). For example, finding a com- 
plex “event” pattern in which all (interval) events 
occur during the same period of time (or as of a 
time point) can be regarded as a TSJl join query. 

time 

TSJ2 - The tuples that satisfy the join condition 
overlap in a “chain” fashion, as illustrated in Fig- 
ure l(b). However, not all participating tuples 
that satisfy the join condition have to have a com- 
mon time point. For example, finding a pattern in 
which (interval) events occur in some overlapping 
sequence can be regarded as a TSJ:! join query. 
Note that all TSJl queries are also TSJz queries. 

In this paper, we focus on only TSJl queries. 

We now precisely define the classes of queries that 
are of interest here. Given a query Q E aP(&,...,R,) 
(R1,-&J1, we construct a join graph, denoted as 
G, from the query quaIification P(R1,. . . , Rm) using 
Definition 1 below. Based on the join graph, we are 
able to formally define TSJl and TSJB join queries. 

Definition 1 Join Graph. There are m nodes in 
the join graph G; each node represents an operand 
relation Rk, llk<m, and is labeled with the name 
of that relation. We add an undirected edge between 
nodes Ri and Rj, where i, j E (1,. + .,m} and ifj, to G 
if the following condition is satisfied: 

P(R1,-..,R,) + Ri.TS<Rj.TE A Rj.TS<Ri.TE2. 

Cl 

Definition 2 TSJ2. Q 3 OP(R~ ,..., R,) (R1,. . , Rm) 
is a TSJz query if: 

1. m>l, and 

2. the join graph G constructed using Definition 1 is 
a connected graph. cl 

Definition 3 TSJl. A TSJz query is also a TSJl 
query if the join graph G constructed using Defini- 
tion 1 is a fully connected graph. In other words, for 
all i and j such that i, j E { 1; . .,m) and ifj, the fol- 
lowing condition holds: 

1 Ri’s need not be distinct. 
’ This condition is defined such that we can also handle the 

join predicate “X.TE=Y.TS” for a join of two relations. Test- 
ing the implications can be readily achieved via algorithms pre- 
sented in [RosSO, Ull82, sun89]. 
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P(R1, . , R,) 3 Ri.TS<Rj.TE A Rj.TS<Ri.TE. 

That is, for each m-tuple <rl, ..s ,I~>, where rk 
E Rk, l<k<m, that satisfies the join condition 
P(Rl,~..,Rm), all participating tuples (rk’s) must 
span a common time point. 0 

TSJi and TSJ2 queries are multi-way temporal 
joins (e.g., temporal pattern queries) in which the 
lifespans of tuples intersect. Non-TSJZ queries in- 
clude Cartesian products across multiple relations (i.e., 
no join predicates) and a query with join condition 
“Ri.TE<Rj .TS” This characterization is crucial in 
developing the parallel processing algorithms to be 
described later. Examples of TSJi queries include 
the “natural time-join” [Cli85, Cli87], the “intersec- 
tion join” [GunSl], and the following temporal join 
operators [AllS3, LeuSO]: 

contain-join(X,Y) E “X.TS<Y.TS A Y.TE<X.TE” 
overlap-join(X,Y) I “X.TS<Y.TS A Y.TS<X.TE 

A X.TE<Y .TE” 
intersect-join(X,Y) E “X.TS<Y.TE A Y.TS<X.TE” 

We now show how common temporal queries can be 
formulated in TSJr Consider the following temporal 
relations which store information on studios, directors 
and stars in the film industry3: 

Studio(Sname,Head,TS,TE) - the head of a studio 
Dir(Dname,Sname,TS,TE) - directors who worked 

for a studio 
Stars(Star,Dname,TS,TE) -film stars who acted in 

films directed by a director 

where Sname and Dname stand for the name of studios 
and directors respectively, 

Example 1 Find the heads of studios and the direc- 
tors who worked for the studios at the same time: 

0 P A Studio.Sname=Dir.Sname (Studio,Dir)4 

where P is “intersect-join(Studio,Dir)“. 0 

Example 2 Find all combinations of studio heads, 
film stars and directors such that they worked during 
the same period of time and when the star acted in a 
film that the director directed at the studio: 

0 p1 ,, pz (Studio,Dir,Stars) 

where Pi is “intersect-join(Studio,Dir) A intersect- 
join(Dir,Stars) A intersect-join(Studio,Stars)“, and 
Pz is “Studio.Sname=Dir.Sname A Dir.Dname= 
Stars.Dname” cl 

3 Adopted from examples in [Cli87]. 
4 A more appropriate response might include two “com- 

puted” fields which represent the lifespan of a joined tuple. In 
this paper, we focus only on the query qualification which is a 
major optimization issue. 

data values 
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Figure 2: Range-partitioning along a Timestamp 

3 Parallel Temporal Query Processing 

In this section, we discuss data fragmentation 
schemes that facilitate the processing of temporal 
joins. We then introduce the notion of checkpointing 
the execution state of a query, and present the parallel 
query processing strategies. 

3.1 Data Fragmentation 

A number of well-known fragmentation strategies 
have been proposed and implemented in multiproces- 
sor database machines [Ter85, DeWSO, GhaSO]. They 
include: range-partitioning, round-robin, and hash- 
ing. Below we discuss the strategy based on range- 
partitioning the timestamp values; a discussion of 
other strategies can be found in [Leu92]. 

The strategy is to partition temporal relations 
based on a timestamp (e.g., TS) as illustrated in Fig- 
ure 2. For example, tuples that started during the in- 
terval [tr ,ts) are stored in processor pr . Suppose there 
are n processors in the database machine, and let the 
processors be denoted as pi, for l<iln. Let npi be the 
number of intervals in the partitioning function: 

[t1,t2), . . ., [tllpi-lttIIpi)7 [tnpi>tIlpi+l). 

We refer to ti and [ti,ti+i) as the partitioning bound- 
ary and the partitioning interval (or simply partition) 
respectively. As relation lifespans are assumed to be 
[O,no2u), by convention ti is 0 and &-,,;+I is now. In 
general, we require that the number of partitions be at 
least as large as the number of processors, i.e., n,i>n. 
For simplicity, we adopt the hybrid range-partitioning 
scheme in [GhaSO]: an interval [tj ,tj+l) is assigned to pi 
if i equals j modulo n. Partitioning relations on the TS 
(respectively TE) t’ lmestamp is called TS (respectively 
TE) range-partitioning. With TS range-partitioning, 
processor pi stores a fragment of relation X, denoted 
as Xi, which contains tuples of X that started during 
the interval [ti,ti+i), i.e., “ti<X.TS<ti+i” holds. Sim- 
ilarly for the TE range-partitioning, Xi contains tuples 
that ended during the interval. 
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Figure 3: A Merge-join Stream Processor 

In this paper, we assume that all operand relations 
of a given query are homogeneously range-partitioned, 
i.e., relations are partitioned using the same partition- 
ing functions. We note that range-partitioning along 
the time dimension can facilitate the processing of 
complex temporal joins. The intuition is that tem- 
poral tuples with close timestamp values are likely to 
be clustered within the same processor and therefore a 
pair of tuples that satisfy the temporal join condition 
are likely to be stored at the same processor. Hence, 
fewer tuples would be copied between processors. In 
the following sections, we further develop the query 
processing strategies based on this approach. 

There will certainly be many natural situations 
in which not all relations are homogeneously range- 
partitioned or relations are fragmented using other 
schemes. In Section 3.3 we will briefly describe the 
case when this assumption is relaxed, and we note that 
our processing strategies still apply. 

3.2 Checkpointing Execution State 

In order to introduce checkpointing in this context, 
we first discuss 1) the stream processing paradigm for 
temporal query processing, and 2) the notion of check- 
pointing a stream processing execution. 

3.2.1 Stream Processing 

In [LeuSO], we introduced stream processing algo 
rithms for processing temporal joins and semijoins. A 
stream is abstractly defined as an ordered sequence 
of data objects. A stream processing algorithm can 
be abstractly described as a stream processor which 
takes one or more input data streams and produces 
one or more output data streams. A classical exam- 
ple of stream processing operations is the merge-join 
where both operand relations are sorted on their join 
attribute as depicted in Figure 3; the output from the 
join is also a data stream sorted on the join attribute. 

Stream processing in database systems has several 
interesting characteristics. First, a computation on a 
stream has access only to one element at a time (refer- 
enced via a data stream pointer) and only in the spec- 

ified ordering of the stream. Second, stream proces- 
sors may keep some local state information in order to 
avoid multiple readings of the same data stream. The 
state information represents a summary of the history 
of a computation on the portion of data streams that 
have been previously read. Depending on the opera- 
tion itself, the state may be composed of copies of some 
elements (e.g., tuples for join operations) or some sum- 
mary information of the objects previously read (e.g., 
partial sum for aggregate functions). In [LeuSO] we 
noted that the storage requirements for the local state 
information can depend heavily on the sort ordering of 
input streams, data statistics and the operation itself. 
As a simple example from conventional query process- 
ing, when we merge-join two relations sorted on their 
key attribute, at any point in time we need only one 
tuple from each table as the state information. On 
the other hand, if an operand relation is not sorted, 
keeping all its tuples in the local workspace is required 
prior to reading the other relation. Alternatively, one 
can reduce the storage size by allowing the unsorted 
relation to be read multiple times - the merge-join 
then becomes a nested-loop join. 

3.2.2 Checkpointing Stream Processors 

We now discuss the notion of checkpointing the execu- 
tion state of a query in the context of stream process- 
ing. To illustrate the idea more clearly, we consider a 
stream processor that implements a query Q with data 
streams X and Y as shown in Figure 4, and we assume 
that both X and Y are sorted on a timestamp (either 
TS or TE) in increasing order. A stream processor 
that implements the processing of a query Q starts by 
reading elements at the beginning of data streams. At 
any time t, the execution state of the stream processor 
includes: 

state information, denoted as sg(t), stored in the 
local workspace of the stream processor. 

dsp,(t) and dspy (t): the data stream pointer for 
X and Y respectively which represent the posi- 
tions in the data streams up to which the stream 
processor has read so far. Recall that data stream 
elements are accessed one at a time using the data 
stream pointer. 

A checkpoint of the execution state of a query at time 
t, denoted as ckq(t), has the following characteristic: 

The execution state at any time t’>t is a 
function of ck,(t) and all tuples in the data 
stream X (respectively Y) between dspx(t) 
(respectively dsp,(t)) and the first tuple in 
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Figure 5: The Parallel Processing Strategy 

the data stream after t’. That is, the exe- 
cution state at t’ contains sufficient informa- 
tion so that re-reading the portions of data 
streams prior to dsp,(t) and dsp, (t) can be 
avoided. 

The type of state information required depends on the 
query itself. We will define what state information is 
required for TSJr queries shortly, but intuitively, at 
any time the state information of a join query consists 
of a subset of tuples of operand relations that were 
previously read. 

3.2.3 The Approach 

We now outline the parallel processing strategy for 
TSJr queries. Remember that relations are homoge- 
neously range-partitioned on a timestamp (TS or TE), 
i.e., the partition [ti,ti+r) is assigned to processor pi as 
depicted in Figure 5. For the moment, we assume that 
the data stream pointers at the partitioning boundary 
ti, dspx(ti) and dsp,(ti), are “pointing” at the rela- 

tion fragments Xi and Yi respectively. Given a query 
Q, the strategy is to construct the state information 
at evenJ partitioning boundary so that each proces- 
sor can independently process the query Q on its local 
relation fragments using the constructed state infor- 
mation. For example, as shown in Figure 5, pi will 
process its local fragments Xi and Yi using the state 
information Ss(ti). Similarly, piti will process Xi+1 
and Yi+i using the state information sg(ti+i). In gen- 
eral, the strategy has three distinct phases: 

Replication Phase Construct the state information 
for every partition. 

Join Phase The query can be executed by each pro- 
cessor using its local relation fragments and the 
constructed state information. 

Merge Phase The query response is produced by 
merging the results returned from all processors 
and eliminating duplicates. 

Let us emphasize that TSJr queries are multi-way tem- 
poral joins in which all participating tuples share a 
common time point. For the sake of simplicity of ex- 
position, we focus on joins of two relations unless oth- 
erwise stated. 

3.3 Replication Phase 

Intuitively, the replication phase copies tuples 
whose lifespans intersect with each other such that 
they co-exist at the same processor for the subsequent 
join phase. Instead of copying all tuples that span a 
partitioning interval to the corresponding processor, 
one may limit which tuples need to be copied using a 
state predicate which is defined formally below. For 
each relation, we derive a state predicate using the 
query qualification as we will explain shortly. In gen- 
eral, the more restrictive state predicates are, the fewer 
tuples would have to be replicated. 

Definition 4 A state predicate for a relation R, de- 
noted as PI,, is a query qualification on R. That is, PI, 
is a conjunction of several comparison predicates. q 

Consider a query involving relations X and Y whose 
query qualification is P(X,Y), a state predicate for re- 
lation X, denoted as PI,, is obtained from P(X,Y) by 
substituting join predicates and comparison predicates 
that involve the relation Y with “true”5. That is, PI, 
contains only comparison predicates involving only X 
in P(X,Y). A state predicate for the relation Y, de- 
noted as Ply, is defined analogously. 

’ Recall that we consider only conjunctions of join and com- 
parison predicates as query qualification. 
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Figure 6: Constraint Graph for Example 4 - Upper 
and Lower Bounds on Timestamps 

Example 3 Consider the film industry examples 
presented earlier. The query for finding the head of 
a studio that the director “Fred” worked for at the 
same time is: 

0 intersect-join(Studio,Dir) A P (Studio,Dir) 

where P is “Studio.Sname=Dir.Sname A Dir.Dname= 
Fred”. The state predicate for the relation Dir is 
“Dname=Fred” while the state predicate for the re- 
lation Studio is “true”. Cl 

By propagating constraints between attributes, one 
can sometimes find a more restrictive state predicate. 
For example, consider the query for finding the head 
of the studio “MGM” and the directors who worked 
for the studio at the same time is: 

0 intersect-join(Studio,Dir) A P (StudWir) 

where P is “Studio.Sname=Dir.Sname A Stu- 
dio.Sname= MGM”. Using the first (simplistic) 
method, the state predicate for the relation Dir 
is “true” while the state predicate for the rela- 
tion Studio is “Studio.Sname=MGM”. Intuitively, 
only tuples in relation Dir that satisfy the predicate 
“Dir.Sname=MGM” would participate in the join and 
thus only these tuples should be replicated as state 
information. Likewise, bounds on timestamp values 
can be propagated between relations- [Ull82, Chak84, 
Jar84, She89]. Because of space limitations, we only 
illustrate the approach using the following example. 

Example 4 Suppose we want the combinations of 
all stars and directors such that the star acted in films 
directed by the director during the entire period of 
time in which the director worked for a studio for the 
entire interval [l/85,12/86). The query is: 

0 contain-join(Stars,Dir) A pWarS,Dir) 

where P is “Dir.TS<1/85 A 12/86<Dir.TE”. The con- 
straints on timestamp values are represented by a con- 
straint graph as shown in the Figure 6. Basically, a 

node represents a timestamp and a solid arrow repre- 
sents the “before” (i.e., <) relationship between two 
timestamps. The values of timestamps “Dir.TS” and 
“Dir.TE” are bounded by [0,1/85) and [1/87,nozu) re- 
spectively6. 

The constraints on timestamp values are then prop- 
agated among nodes. For example, in Figure 6, the 
TS values of relation Stars (i.e., TS,) are bounded by 
the interval [0,12/84) while the TE values (i.e., TE,) 
are bounded by [2/87,now). Thus, the state predi- 
cate for the relation Stars becomes “Stars,TS<12/84 
A 2/87<Stars.TE”. 0 

Given a query Q - 0p(X,Y) E TSJi, we first de- 
rive a state predicate for each operand with the results 
being denoted by PI, and PI,. Using these state pred- 
icates, one can define the state information required 
on each processor as follows. 

Definition 5 Given that the partition [ti,ti+l) is as- 
signed to processor pi, the state information for a re- 
lation R at the partitioning boundary ti, denoted as 
Sr(ti), contains: 

{ T 1 T E R A r.TS<ti A ti<r.TE A Plr(r) } 
if R is TS range-partitioned 

{ T 1 T E R A r.TS<ti+r A ti+i<r.TE A PI,(r) } 
if R is TE range-partitioned 

where PI, is the derived state predicate for the relation 
R, and Plr(r) holds for the tuple T. 0 

Essentially, all qualified tuples (based on the state 
predicate) whose lifespan intersects with the interval 
[ti, ti+i) and are not stored in the local fragments at 
processor pi will be replicated at processor pi as “state 
information”. In other words, if the lifespans of tuples 
intersect, they should co-exist at the same processor. 

Note that when relations are not homogeneously 
range-partitioned or relations are fragmented using 
other schemes? more tuples will be copied between pro- 
cessors. For example, consider a temporal join of re- 
lations R and S, where R is TS range-partitioned as 
before and S is fragmented using a hash function on 
any attribute(s). The state information for S at parti- 
tion [ti,ti+r) is: 

{ s I s E S A s.TS<ti+r A ti<s.TE A PI,(S) }. 

We emphasize that only a fraction of S tuples (instead 
of the entire relation) is replicated at a partition. 

As soon as the state information for all operand re- 
lations at all partitions have been constructed, the join 

6 We assume that the time gramdarity in this example is 
“month”, i.e., consecutive months are mapped into natural num- 
bers. 
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phase, which is the focus of the following subsection, 
can proceed. That is, the query can be processed in 
parallel without additional data transfers. 

3.4 Join Phase & Merge Phase 

For a query Q F Op(X,Y) E TSJr, each processor 
pi can execute Q using its local relation fragments and 
the state information constructed at pi. The response 
to Q is the union of the results (eliminating duplicates) 
from all processors: 

Ul<i<*,i { OP( Cxi u sxCti>), tyi u Sy(ti)) ) 1 

where npi is the total number of partitions. For a 
TSJi join query involving m relations, we can use 
the following strategy whose correctness can be found 
in [Leu92]: 

Ul<iSn,i{ aP((Rl,i U Sr,(ti)),* ’ .,(Rm,i U Sr,(ti)))) 

where Rj,i is the ith fragment (i.e., for partition 
[ti, ti+i)) of the relation Rj, j E (1; ..,m}, which is 
stored at processor pi. 

4 Optimization Alternatives 

In this section, we discuss several optimization 
alternatives for processing TSJl queries in parallel 
database machines, and present a quantitative anal- 
ysis on the overhead of the replication phase. 

4.1 Reducing State Information 

Depending on the properties of the user query and 
data statistics, there are opportunities for reducing the 
number of tuples to be replicated as state information. 
First, we define the asymmetry property of operands 
in a TSJr join query with respect to the TS and TE 
timestamps. 

Definition 6 Given Q E O~(n~,..,,n,)(Rr,. . . , R,,,) 
E TSJr. The relation Rk, k~{l;..,m}, has the asym- 
metry property with respect to the TS timestamp if 
the following condition is satisfied: 

P(Rl,...,R,) + Rk.TS>Ri.TS, V l<i<m. 
0 

Definition 7 Given Q - ~P(R~,...,R,)(R~,...,R~) 
E TSJ1. The relation Rk, kE{l; .,m}, has the asym- 
metry property with respect to the TE timestamp if 
the following condition is satisfied: 

P(Rr;.. ) Rm) * Rk.TE<Ri.TE, V l<i<m. 
0 

For each m-tuple <rl, .. ,rm> that satisfies the 
query qualification P, where ri E Ri for l<i<m, the -- 
asymmetry property with respect to the TS time- 
stamp means that the tuple rk must have the maximal 
TS value among all participating tuples. For exam- 
ple, consider contain-join(X,Y) whose join condition is 
“X.TS<Y.TS A Y.TE<X.TE” and overlap-join(X,Y) 
whose join condition is “X.TS<Y.TS A Y.TS<X.TE 
A X.TE<Y.TE”. The relation Y in both contain- 
join(X,Y) and overlap-join(X,Y) has the asymmetry 
property with respect to the TS timestamp. Similarly, 
the asymmetry property with respect to the TE times- 
tamp means that the tuple rk must have the minimal 
TE value among all participating tuples. For example, 
the relation Y in contain-join(X,Y) and the relation X 
in overlap-join(X,Y) h ave this asymmetry property. 

Depending on whether a relation is TS or TE range- 
partitioned, the asymmetry properties can be used to 
show that constructing the state information for some 
relation is redundant in the sense the result produced 
by the local joins using those tuples (as state informa- 
tion) would have been produced by some other pro- 
cessors, and therefore the replication phase for that 
particular relation can be eliminated. 

Property 1 Property of Redundant State Informa- 
tion. Given: 

l a query Q - Crp(Rr;..,R,) E TSJr, and 

l there are m’, where l<m’<m, relations which 
have the asymmetry property with respect to 
their partitioning timestamp (we use a subscript 
j to denote these relations as Rj where j = 
{ 1,. . .,m’}). 

Conditions under which the state information for a 
relation is redundant are: 

If all Rj’s, jc{l,. . .,m’}, are TS range-partitioned, 
then all Rj’s hold the property. 

If all Rj’s, jc{l,. . .,m’}, are TE range-partitioned, 
then all Rj’s hold the property. 

If some Rj’s are TS range-partitioned while others 
are TE range-partitioned, then Rj’s can be parti- 
tioned into two disjoint sets: 

Rj ITS and Rj ITE. 

The first set corresponds to TS range-partitioning 
while the second set corresponds to TE range- 
partitioning. Then relations in either set (not 
both sets) hold the property7. 0 

’ Then we have a choice of selecting which relations to have 
the redundant state information property. 
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Theorem 1 The replication phase for a relation can 
be eliminated if the relation holds the property of re- 
dundant state information’. 0 

Example 5 Consider Example 4 whose join con- 
dition is “contain-join(Stars,Dir)“, i.e., “Stars.TS < 
Dir.TS A Dir.TE<Stars.TE”. If the relation Dir is TS 
range-partitioned, its replication phase can be elim- 
inated. That is, one has to replicate only tuples of 
relation Stars as state information. 0 

There are several interesting observations that can 
be made. First, when all temporal join predicates are 
inequalities, only one operand relation has the redun- 
dant state information property. Second, for contain- 
join(X,Y) the relation Y has the asymmetry property 
with respect to both the TS and TE timestamps. For 
this reason, state information for the relation Y need 
not be constructed regardless of whether the relation is 
TS or TE range-partitioned. Thirdly, when there is an 
equality temporal join predicate (e.g., “X.TS=Y.TS” 
or “X.TE=Y.TE”) between two relations, and both 
relations have the asymmetry property with respect 
to their join attribute (i.e., timestamp), Y has the re- 
dundant state information property if the state infor- 
mation of X is redundant (or vice versa). As another 
example, consider meet-join(X,Y), whose join condi- 
tion is “X.TE=Y.TS” , and X is TE range-partitioned 
while Y is TS range-partitioned. Both relations have 
the asymmetry property with respect to their respec- 
tive partitioning timestamp, and thus the state infor- 
mation for both X and Y are redundant. 

In addition to the above properties, the data statis- 
tics of each local fragment can be used to further re- 
duce data replication. Let us consider a join of two 
relations - X and Y. Suppose that the database sys- 
tem keeps the maximum and minimum of the TS and 
TE values for every relation fragment. For example, 
the TS and TE values of a relation fragment Yi (i.e., 
the interval [ti,ti+i)) of the relation Y are bounded 
by the intervals: pi .TSmin, Yi.TS,,] and p,.TEmin, 
Yi.TE,,,] respectively. We further suppose that the 
fragment Yi is stored at processor pi. Together with 
the query qualification, the statistics can be used to 
further reduce data replication of the relation X. To il- 
lustrate this point, we consider the following examples, 
assuming that both X and Y are TS range-partitioned: 

l Consider the overlap-join(X,Y) whose join con- 
dition is “X.TS<Y.TS A Y.TS<X.TE A X.TE 
<Y.TE”. Intuitively, tuples in the relation X that 
span the partitioning boundary ti and whose TE 
values are smaller than or equal to Y,.TS,i, need 

’ A proof of this theorem can be found in [Leu92]. 

. 

. 

4.2 

not be sent to processor pi because these X tuples 
do not join with any tuples in Yi. This is also true 
for X tuples that span ti and whose TE values are 
larger than or equal to Yi.TE,,,. 

Consider the contain-join(X,Y) whose join condi- 
tion is “X.TS<Y.TS A Y.TE<X.TE”. Tuples in 
the relation X that span ti and whose TE values 
are smaller than or equal to Yi.TE,i, need not 
be sent to pi as state information. 

Consider the meet-join(X,Y) whose join condition 
is “X.TE=Y.TS”. Tuples in the relation X that 
span ti and whose TE values are smaller than 
Yi.TS,i, or larger than Yi.TS,,, need not be sent 
to pi as state information. 

Participant Processors 

For the parallel processing strategies that we dis- 
cussed earlier, all processors participate in the replica- 
tion and join phases. However, for some TSJi queries, 
it can be determined a priori that some processors nec- 
essarily return a null response when they perform the 
local join. Similarly, it can also be determined a pri- 
ori that some processors need not replicate some frag- 
ments of a relation in the replication phase since the 
relation fragments will not contribute to the query res- 
ponse. These situations may occur when the query 
qualification contains some comparison predicates in- 
volving timestamps (such as in snapshot or interval 
queries). To illustrate the idea, we first define the no- 
tion of replication-interval and join-interval. 

Definition 8 The replication-interval for an oper- 
and relation in a query is defined as the minimal in- 
terval with the property that only tuples whose parti- 
tioning timestamp value falls within the interval must 
participate as state informationg. a 

Definition 9 The join-interval for a query is defined 
as the minimal interval with the property that only 
tuples whose partitioning timestamp value falls within 
the interval can possibly contribute to the query re- 
sponse. 0 

Definition 10 A join processor is referred to as a 
processor that has to participate in the join phase 
(of our parallel processing strategy), i.e., a proces- 
sor which has a partitioning interval that intersects 
with the join-interval. Otherwise, it is referred to as 
a non-join processor which necessarily returns a null 
response. 0 

’ Note that if the relation has the property of redundant state 
information discussed in the previous section, the correspond- 
ing replication-interval is necessarily null (i.e., no tuples will be 
replicated as state information). 
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Ri, Rj: TS range-partitioned 

Figure 7: Determining the Join-interval and the 
Replication-intervals 

Definition 11 A replication processor is referred to 
as a processor that has to participate in the replica- 
tion phase (of our parallel processing strategy), i.e., 
the processor which has a partitioning interval that 
intersects with the replication-intervals. Otherwise, it 
is referred to as a non-replication processor. cl 

If the join-interval is null, the join response is nec- 
essarily null. Similarly, if the replication-interval for 
a relation is null, tuples of that relation need not be 
replicated as state information. Otherwise, tuples in 
the replication-intervals are replicated on join proces- 
sors as state information for the join phase. 

The join-interval and replication-intervals for a 
given query depend on the following: 

1. the TS and TE range-partitioning functions, and 

2. the query qualification: 

l the relationship between the comparison 
predicates involving timestamps and the 
temporal join predicates. 

l the property of redundant state information 
discussed earlier. 

Earlier we briefly mentioned the issue of determining 
upper and lower bounds on the TS and TE values of 
each individual relation by propagating constraints be- 
tween relations using a constraint graph. Below we 
address other issues. 

Consider a TSJi join query with relations Ri and Rj. 
Suppose that the upper and lower bounds of the time- 
stamp values have been determined. As illustrated in 
Figure 7, we denote ts, and ts$ as the lower and upper 
bounds on the TS timestamp of relation R respectively, 
and similarly te; and te$ for the TE timestamp. Here 
we consider only the case when both Ri and Rj are TS 
range-partitioned; a discussion for other situations can 
be found in [Leu92]. There are three situations to be 
considered: 

1. 

2. 

3. 

When neither Ri nor Rj has the property of re- 
dundant state information, the join-interval for 
the query is: 

[max(ts;, ts;),min(max(ts$, ts$),te$ tee))“. 

The replication-interval for relation Rk, where 
kE{ij}, is: 

[max(min(ts;, ts;),ts;k),min(min(ts$ tsz),ts;t,)). 

In Figure 7, the join-interval is [ts;, tez), and the 
replication-interval for Ri is [ts; , tsz) while that 
of Rj is [ts, , ts;(;). 

When the relation Ri (but not Rj) has the prop- 
erty of redundant state information, the join- 
interval becomes: 

[max(ts;, ts;), min(ts:, tez)), 

and the replication-interval for Ri is a null interval 
while that of Rj is: 

[ts;,min(tsz, ts$.)). 

When both relations Ri and Rj have the property 
of redundant state information, the join-interval 
becomes: 

[max(ts,,ts;), min(t$,t$)) 

and the replication-intervals of both relations are 
null intervals. 

Example 6 Find the directors who joined a studio 
sometimeduring [l/85,1/86) and also became the head 
of the studio sometime during [l/86,1/87): 

0 p (Studio,Dir) 

where P is “intersect-join(Studio,Dir) A Studio.Sname 
= Dir.Sname A 1/85<Dir.TS A Dir.T%1/86 A 
1/86lStudio.TS A Studio.TS<1/87”. Suppose that 
both relations Studio and Dir are TS range- 
partitioned. The constraints on the TS timestamps 

lo The operator max(A,B) (respectively min(A,B)) returns the 
larger (respectively smaller) value of A and B. 
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l/85 Dir.TS l/86 
time 

l/86 Studio.TS l/87 

Figure 8: Constraints on TS Timestamps of Relations 
Dir and Studio 

of both relations are illustrated in Figure 8. The join- 
interval for the query is [l/86,1/87). The replication- 
interval for relation Dir is [l/85,1/86) and that for 
relation Studio is a null interval. That is, the state 
predicates for relations Dir and Studio are “l/85 5 
Dir.TS A Dir.TS < l/86 A Dir.TE 2 l/86” and “false” 
respectively. The join phase involves only joining 
the state information for the relation Dir and the lo- 
cal fragments of relation Studio that started during 
[l/86,1/87)? 0 

To recap, using the query qualification one can a 
priori determine which processors have to send data 
as state information and which processors have to re- 
ceive data as state information. In the following sub- 
section, we discuss the overhead of constructing the 
state information. 

4.3 Quantitative Analysis 

The overhead associated with constructing the state 
information for a relation R can be measured in terms 
of the number of tuples to be replicated since the com- 
munication and/or storage costs will be directly re- 
lated to this number (and the tuple size). We let ,J be 
the rate of insertion of tuples into the relation R (in 
terms of number of tuples per time unit), G be the 
average tuple lifespan, and TRl, be the relation lifes- 
pan. Using Little’s result [LitGl], the average number 
of tuples that are active as of a particular time, de- 
noted by ?i, is given by: 

- 
-ii = /\ .T1,. 

A natural assumption is that the average number of 
active tuples at partitioning boundaries is also H. Sim- 
ilarly, the total number of tuples in the relation R is: 

X TRI,. 

Suppose that the selectivity of the state predicate q 
that is used to construct the state information for the 

I1 One can obtain tighter bounds by examining (and thus 
accessing) local fragment of relation Studio tlztt started dur- 
ing [l/86,1/87), as well as further analyzing the temporal join 
predicates involved. 

relation R is uq and is defined as the fraction of tuples 
in R that satisfy q. The number of tuples that are 
copied as state information is then given by: 

‘Tq ‘nP .ii = uq.np.X.x 

where np is the number of partitioning boundaries at 
which state information has to be constructed (i.e., 
the partitioning intervals that overlap with the join- 
interval that we discussed in the previous section). 
Note that np must be smaller than the total number 
of partitioning intervals (np;). 

Definition 12 The overhead is defined as the ratio 
of the number of tupIes to be copied over the total 
number of tuples in the relation: 

aq.np.X.%/(X.TRI,) = gq.np.%/TRls. c3 

The quantity is consistent with our intuition that: 

. l np. the overhead increases as the number of par- 
titions with state information increases. 

l uq: the more selective the state predicate (which 
constructs the state information) is, the less over- 
head is incurred. 

l z/TRl,: the overhead is smaller for relations 
with relatively short tuple lifespans (compared 
with the relation lifespan). 

5 Previous Work 

The parallel processing schemes that we present in 
this paper is a substantial extension of the work on 
generalized data stream indexing [Leu92a] - the no- 
tion of checkpointing the execution state of a query 
appears in both [Leu92a] and this paper. In [Leu92a], 
we proposed an indexing technique based on periodi- 
cally checkpointing on data streams which are sorted 
on the timestamp values. Checkpoints are stored in a 
file structure which is in turn indexed on checkpoint 
times. In this paper, we apply the idea of checkpoint- 
ing in parallel database machines. 

[KarSO] is apparently the first publication that ap- 
pears to support temporal features in multiproces- 
sor database machines. The paper, however, only 
discussed a front-end syntactic translator for a rela- 
tional database system regardless of whether or not 
the database system is residing on a multiprocessor 
database machine. Moreover, there is no discussion on 
query processing optimization or fragmentation strate- 
gies. 

In [DeWSl] a “partitioned band” join algorithm was 
proposed to evaluate the so-called “band join”‘*: 

I2 One can think of it as a “fuzzy” equi-join. 
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A “band join” between relations R and S on 
attributes R.A and S.B is a join in which the 
join condition is “R.A-cl 2 S.B 2 R.A+cz”, 
where cl and c:! are non-negative constants. 

In the band join algorithm, ranges of the operand re- 
lations Ri and Si, where i E { 1,. .,n}, are found such 
that (1) R = U i R, and S = U i S,, and (2) for ev- 
ery tuple T in Ri, it is required that all tuples of S 
that join with r appear in Si. The complete join is 
formed by joining Ri and Si for each range (i=l; . .,n) 
and merging the result. With the assumption that the 
width of a “band” (i.e., ci+cz) is small, the major 
concern in [Dew911 is to choose the ranges such that 
each of the Ri fits entirely into the buffer pool. For 
the parallel version of the band join algorithm, each 
join between ranges Ri and Si can be performed by a 
separate processor. 

One can process the above band join using our 
strategies as follows. Suppose both relations R and S 
are range-partitioned based on the join attribute (R.A 
and S.B) using the same partitioning function. This 
assumption is easily relaxed and would just result in 
greater data movement. We further suppose that a 
partitioning interval [vi,vi+i) is assigned to a proces- 
sor pi, i.e., a tuple r E R (similarly for tuples in S) 
is stored at pi if its join attribute value falls into this 
interval. The replication phase then involves copying 
tuples s E S to pi if the value of s.B falls into the 
interval [vi-ci,vi) or [vi+i,vi+l+cz). When both ~1 

and c2 are small, tuples from only processors pi-1 and 
pi+1 are replicated at processor pi. After the replica- 
tion process, the join can be processed as the merging 
of the results of the parallel local joins. If say R is 
range-partitioned on the join attribute but S is not, 
then the same strategy works except that the tuples 
in S replicated on processor pi (i.e., those tuples whose 
attribute B values fall into [vi-c1 ,vi+i+cz)) may come 
from all other processors. 

In this paper, we consider temporal join queries 
with several time-interval relations and investigate the 
query processing issues by studying the qualification 
clause as opposed to individual join operators. More- 
over, we address the issues related to both TS and TE 
range-partitioning schemes, as well as several query 
optimization strategies. 

6 Conclusions & Future Work 

We discuss parallel query processing strategies for 
the complex temporal join queries and a number of 
optimization alternatives. Based on the query qual- 
ification, some work can be shown to be redundant 
and therefore can be eliminated from the replication 

or join phase. We note that data statistics and the 
characteristics of the query qualification can also be 
used to reduce the state information to be constructed 
and thus the overhead of the replication phase can 
further be reduced. Finally, we provide an analytic 
method which allows us to estimate the overhead as- 
sociated with the replication phase, i.e., the number of 
tuples that should be copied between processors. The 
overhead is small when the average tuple lifespan is 
small compared with the relation lifespan or the query 
qualification is restrictive. 

In [Leu92], we reported a preliminary study on vari- 
ous fragmentation schemes for temporal data. We also 
proposed a fragmentation scheme in which current and 
history tuples are fragmented and stored using differ- 
ent strategies - current tuples are partitioned based 
on another function such as hashing on surrogate at- 
tribute while history tuples are range-partitioned on 
the timestamp values. The approach allows more effi- 
cient accesses to current tuples via surrogates and yet 
facilitates the processing of temporal joins. There are 
many research directions which require further inves- 
tigation, and some preliminary results can be found 
in [Leu92]. The most challenging ones include the 
parallel query processing strategies for TSJi queries 
whose operand relations are heterogeneously range- 
partitioned, i.e., the relations are (timestamp) range- 
partitioned using different partitioning functions. Also 
it appears that our parallel join strategies presented 
here can be easily adopted to process TSJz queries: 
the join sequence can be obtained by a graph reduction 
algorithm on the join graph constructed using Defini- 
tion 1. We plan to investigate this further. 
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