
An Efficient Indexing Technique for 
Full-Text Database Systems 

Justin Zobel 
Department of Computer Science, 

Royal Melbourne Institute of Technology, 
GPO Box 2476V, Melbourne 3001, Australia. 

jz@kbs.citri.edu.au 

Alistair Moffat 
Department of Computer Science 

The University of Melbourne, Parkville 3052, -4ustralia. 
alistair@cs.mu.oz.au 

Ron Sacks-Davis 
Collaborative Information Technology Research Institute 

723 Swanston St., Carlton 3053, Australia. 
rsd@kbs.citri.edu.au 

Abstract: Full-text database systems require an in- 
dex to allow fast access to documents based on their 
content. We propose an inverted file indexing scheme 
based on compression. This scheme allows users to 
retrieve documents using words occurring in the doc- 
uments, sequences of adjacent words, and statistical 
ranking techniques. The compression methods cho- 
sen ensure that the storage requirements are small and 
that dynamic update is straightforward. The only as- 
sumption that we make is that sufficient main memory 
is available to support an in-memory vocabulary; given 
this assumption, the method we describe requires at 
most one disc access per query term to identify an- 
swers to queries. 

Keywords: Text support, storage management, in- 
dexing, compression, database performance 

Permission to copy without fee all or part of this material is 

grantedprovided that the copies are not made or distributed 

for direct commercial advantage, the VLDB copyright no- 

tice and the title of the publication and its date appear, 

and notice is given that copying is by permission of the 

Very Large Data Base Endowment. To copy otherwise, or 

to republish, requires a fee and/or special permission from 

the Endowment. 

Proceedings of the 18th VLDB Conference 
Vancouver, British Columbia, Canada 1992 

1 Introduction 

Full-text database systems can be used for storing 
and accessing document collections such as newspaper 
archives, office automation systems, and even libraries 
of books and ar titles. The needs of full-text databases 
are not well served by traditional database systems, 
srnce, instead of key indexing, full text requires facil- 
it,ies such as document ranking and indexing on text 
content. 

In this paper we consider how best 1~0 implement 
the indexing component of a full-text database sys- 
tem. For a full-text database system, indexes should 
efficiently support three kinds of activity. First, given 
a boolean query on a set of words, the index should 
efficiently support retrieval of the documents, or more 
generally recorrls, satisfying the query; in the context 
of text retrieval, conjunctive queries are particularly 
common. This requires a record-level index which indi- 
cates whether or not a record contains a word; indexes 
are word-level if word position is also stored. Second, 
ii. must be possible to efficiently insert new records; 
because of the archival nature of most full-text ap- 
plications, deletion and change are less l:ommon, but 
should still be supported. Last, given an ‘inform&l’ 
query, it must be possible to statistically rank all of 
t,re records in the collection with respect to the query, 
so that the records most likely to be of interest to the 
user are retrieved first [SM83]; this stratl:gy simplifies 

352 



the problem of finding text about a topic. Basic rank- 
ing techniques require statistics about the words occur- 
ring in the collection, such as their frequency within 
the collection, so that words’ importance can be esti- 
mated [SM83]. M ore sophisticated ranking techniques 
also use parameters such as the frequency of each word 
in each record and the length of each record. 

Additional functionality may also be considered de- 
sirable. One addition is indexing on adjacency of 
words: allowing queries on phrases or word sequences 
as well as individual words. More generally, we might 
seek records in which two words lie within some speci- 
fied distance of each other. Another possible extension 
is indexing on stems, substrings, patterns, and other 
partially specified terms. 

We propose an inverted file scheme based on com- 
pression. We have already described a variety of fast 
algorithms for compressing sparse bitmaps; using these 
algorithms, record-level indexes can be represented in 
under 10% of the size of the source text [MZ92b]. 
Elsewhere we have argued that stored text should be 
compressed using a word-based model, in which each 
byte of text can typically be represented in about 
2.2 bits [MZ92a]. Thus the compressed text of and a 
record-level index for a large database can be stored in 
approximately 40% of the space required by the source 
database. The compression of the text does not signifi- 
cantly affect retrieval time, as the decoding procedures 
are fast and the cost of decompression is partially off- 
set by faster transmission from disc [ZM92a]. The only 
assumption that we make is that sufficient memory is 
available to support an in-memory vocabulary of the 
words used in the collection, together with some small 
amount of additional information associated with each 
word. 

In this paper we show how, given the same assump- 
tions, these methods for indexing text can be extended 
to efficiently support ranking and word-level indexing, 
which permits retrieval of word sequences. The large 
memories of current machines also allow in-memory 
storage of other tables that can be used to improve 
efficiency. Storage of vocabularies and other tables in- 
memory gives us better performance than traditional 
inverted file techniques [SM83]. 

Signature file methods have also been proposed for 
indexing text [CSSS, Fa185a]. Signatures use hashing 
to form compacted representations of the data being 
indexed and therefore do not require a vocabulary to 
support boolean queries. For efficient query evaluation 
on large databases, signatures are usually transposed 
into bit slices [SDKR87, WLO+85]. However, given 
sufficient memory to store the vocabulary, or a large 
component of it, many of the advantages of bit sliced 
signature file methods are lost. In particular, we show 

that bit sliced signature files require at least as many 
disc accesses to identify answers as do our inverted 
files. Furthermore, parameters such as the frequency 
of each word in each record cannot be stored with sig- 
nature files, nor can they easily support word-level in- 
dexing. 

In the following section we give an overview of 
the proposed method. In Section 3 we describe our 
scheme’s memory requirements. We describe tech- 
niques for compressing the size of inverted file indexes 
in Section 4 and review previous work. In Section 5 
we develop methods for supporting retrieval of word 
sequences. In Section 6 we outline a method for man- 
aging compressed indexes on secondary storage. In 
Section 7 we compare our methods to previous tech- 
niques. Conclusions are given in Section 8. 

2 Inverted file text indexing 

A general inverted file index consists of two parts: a 
set of inverted file entries, being lists of identifiers of 
the records containing each indexed word; and a search 
structure or vocabzllary for identifying the location of 
the inverted file entry for each word (Figure 1). We 
assume that inverted file entries store ordinal record 
numbers rather than addresses, and so to map the re- 
sulting record identifiers to disc addresses there must 
also be an address table (or disc mapping). An entry 
in a record-level inverted file can be thought of as a 
representation of a bit vector in which the ith bit is 
set if the ith record contains the word being indexed. 

For our indexing scheme we assume that there is 
sufficient main memory to hold the search structure. 
Given this assumption, the cost of finding candidate 
answers to boolean queries is at most one disc access 
for each word specified in the query, where a disc ac- 
cess involves a seek followed by retrieval of the one or 
more pages that contain the inverted file entry for that 
word. In a conjunctive query, fewer disc accesses may 
be needed, as retrieval of a series of inverted file entries 
may leave so few candidate answers that it is cheaper 
to fetch those records and check for false ,matches than 
to fetch the remaining inverted file entries. Once the 
candidates have been identified, either one or two disc 
accesses are required per candidate answer, depending 
on whether the address table is held in memory or on 
disc. 

For ranking queries, as for boolean queries, at most 
one disc access per query term is required to iden- 
tify answers. Basic ranking techniques require only 
the number of records containing each word to de- 
termine the likely relevance of each answer [SM83]; 
this frequency must be stored anyway for the index 
compression techniques. To improve ranking perfor- 

353 



vocabulary inverted file inverted file 

search structure address table 

for documents 

mance (that is, recall and precision [SM83]), more in- 
formation is needed. For example, better performance 
can be obtained if the frequency of each word in each 
record is known, and further improvement can be had 
by using the ‘length’ of each record; length might be a 
sum of weights of the words in the record or simply the 
number of words it contains. Croft & Savino estimate 
that the improvement in ranking performance in going 
from a basic scheme to more sophisticated schemes is 
about 10% to 20% [CSSS]. 

The choice of ranking scheme will be affected by 
issues such as frequency of update. For example! in- 
serting a new record means that each of the words in 
the record now occurs in one more record overall, thus 
changing the weight of each of these words. If record 
length was based on sums of weights, the length of 
every record containing any one of these words would 
have to be recomputed. In many applications it would 
be preferable to use a simpler measure of length, for 
which ranking performance may be worse but update 
is feasible. 

3 Memory requirements 

Our indexing scheme requires memory to hold the vo- 
cabulary of the indexed text collection. As well as the 
words themselves, the vocabulary can include pointers 
to index entries, frequency counts, and compression 
parameters. Memory is also used for buffers to hold 
data read from disc, and may be required for ancillary 
tables such as the address table and any data used for 
ranking. 

Of these, the most important is the vocabulary. For- 
tunately, the size of the vocabulary of a text collec- 

Figure 1: Inverted File Index Structure 

tion is usually small compared to the collection size. 
For example, the King James version of the Bible con- 
tains 13,777 distinct words-using case-sensitive com- 
parison and distinguishing plurals, etc.. from their 
roots-of 885,009 word occurrences. The largest of 
our text collections (described in the next section) 
contains 68,074 distinct words of 23,100.786 word oc- 
currences; this vocabulary occupies 1.3 Mb includ- 
ing pointers to index entries, frequency counts, and 
a compression code. Harman & Candela describe an 
806 Mb text collection that contains 243,470 distinct 
words [HC90]. If necessary, compression techniques 
can be used to reduce the memory requirements of the 
vocabulary [WBN91], and need not be computation- 
ally expensive [MZ92a], so precise choice of vocabulary 
representation will depend on the relative importance 
of fast search, space constraints, and fast insertion of 
new words. 

If the search structure does not fit into memory, it 
could be partitioned, with an abridged vocabulary of 
common words held in memory and the remainder held 
on disc. This would still be effective because for large 
vocabularies many words only occur once or twice in 
the collection [Zip49], and so the cost of going to disc 
twice for rare words is offset by the fact that they 
dramatically reduce the set of candidate records. We 
believe, however, that the trend of growth in memory 
size will render partitioning unnecessary; for example, 
16 Mb of memory should comfortably hold a vocabu- 
lary of l,OOO,OOO words as well as the other tables our 
indexing techniques require. 

Other components may also be retained in main 
memory. For ranking purposes, the length of each 
record may be needed. Any straightforward represen- 

354 



Manuals GNUbib Comacl 

Text size (Mb) 5.15 14.12 132.11 
Records 2.496 64,344 261,829 
Distinct words 27,554 70,866 68,074 
Word occurrences 958,744 2,575,411 23,100,786 
Words record (av.) per 384 40 88 
Distinct words record (av.) per 169 36 51 
Distinct pairs record (av.) per 332 39 73 

Inverted file size (Mb) 0.45 4.38 30.51 

Table 1: Sizes of Document Collections 

tation of lengths will typically require one to four bytes 
per record, and in a large collection this could occupy 
more space than the vocabu!ary. 

An address table will also be required. If main mem- 
ory is scarce this would be implemented as a two level 
index and retrieval of each answer would require two 
disc accesses. However, single-access retrieval would 
be possible given as little as one bit of main mem- 
ory per record, assuming suitable blocking of data on 
disc [MZ92b]. 

4 Compressing inverted files 

In this section we consider methods for compress- 
ing inverted file entries. In all of the schemes we 
outline decompression is fast-about 50 Kb of com- 
pressed data can be decompressed in a second on a 
25 MIP Sun SPARCserver ~--SO that the decompres- 
sion time is only a small overhead on the cost of the 
disc access for all but very frequent terms. Tech- 
niques for compressing inverted file entries, or equiv- 
alently bitmaps, have been described by many au- 
thors, including Fraenkel & Klein [FK85] and Book- 
stein & Klein [BK91]. Faloutsos described the applica- 
tion of similar techniques to the compression of sparse 
signatures [Fa185a, Fa185b]. 

Our presentation is based on that of Moffat 8i Zo- 
be1 [MZ92b], who compare a variety of bitmap com- 
pression techniques. These techniques could be ap- 
plied to any stream of bits, but, like most compression 
techniques, take advantage of sparsity and pattern in 
the values being compressed. To demonstrate the rel- 
ative power of different compression schemes, we con- 
sidered three text collections, Manuals (Unix manual 
pages), GNUbib (bibliographic citations), and Comact 
(acts of parliament). The parameters of these collec- 
tions are shown in Table 1. The inverted file size is 
of an uncompressed record-level inverted file, assum- 
ing a binary code of [log, N] bits per record identifier, 

where N is the number of records in the collection. 
Rather than compressing the series of record num- 

bers in an inverted file entry,, we compress their run- 
length encoding, the series of differences between suc- 
cessive numbers [GV75, McI82]. For example, the in- 
verted file entry 

4,5,9,11,12,17.. 

has the run-length encoding 

4,1,4,2,1,5,... 

This does not in itself yield any compression, but does 
expose patterns that can be exploited for compression 
purposes. 

rJyGGy- 

1 1, 1, 
2 01,o 010,o 
3 01,l 010,l 
4 001~00 011.00 
5 001,Ol 011,Ol 
6 001,lO 011,lO 
7 001,ll 011,ll 
8 0001,000 00100,000 

Table 2: Examples of Codes 

A simple run-length compression method is to use 
the codes for integers described by Elias [Eli75]. His 
5 code represents integer 2 as [log, ~1 + 1 in unary 
(that is: [log, z] O-bits followed by a l-bit) followed by 
z--211”gzXl in binary (that is, 2 less its most significant 
bit); the 6 code uses y to code [log, XJ + 1, followed 
by the same suffix. Some sample values of codes y 
and 6 are shown in Table 2; commas have been used 
to separate the suffixes and prefixes. The 6 code is 

355 



Manuals GNUbib Comact 

TLi: 

Table 3: Space Requirements for Inverted Files 

longer than the y code for most values of z smaller 
than 15> but thereafter 6 is never worse. 

The compression of inverted file entries that can be 
achieved with 7 and 6 is shown in Table 3. Each num- 
ber in this table is the size of an index as a percentage 
of the size of its source text. For example, a set of 
compressed inverted file entries for Comact occupying 
20 Mb would be described as having a space require- 
ment of 20/132.11 = 15.1%. 

The 7 and 5 codes are instances of a more gen- 
eral coding paradigm as follows [FK85]. Let V be a 
(possibly infinite) vector of positive integers Q, where 
C pi 2 N. To code integer 2: 2 1 relative to V we find 
k such that 

k-l 

c -kvj Vj<XC 

j=l j=l 

and code k in some representation followed by the dif- 
ference 

d=X-~Vj-l 

j=l 

in binary, using either [log, vk] bits if d < 2r10gzvkl - 
zik or [log, ak] bits otherwise. In this framework 
the y code is an encoding relative to the vector 
(1,2,4,8,16,. ..>, with k coded in unary. 

Consider another example. Suppose that the coding 
vector is (for some reason) chosen to be (9,27,81,. .). 
Then if k is coded in unary, the values 1 through to 7 
would have codes 1,000 through to 1,110, with 8 and 
9 as 1,lllO and 1,llll respectively, where again the 
comma is purely indicative. Similarly, run-lengths of 
10 through to 36 would be assigned codes with a 01 
prefix and either a 4-bit or a 5-bit suffix: 0000 for 10 
through to 0100 for 14, then 01010 for 15 through to 
11111 for 36. 

The effectiveness of compression for an inverted file 
entry will vary with the choice of vector. One scheme, 
due to Teuhola [Teu78], is to use the vector 

VT = (b, 26,4b, 8b, 16b,. .) . 

An appropriate choice of b is the median run-length 
in the entry [MZ92b], again with k coded in unary. 

‘Ihis scheme g:ves good compression because it ex- 
ploits skewness in entries; records containing text on a 
similar topic will often be clustered, since an effective 
way to store long documents is to break them into a 
series of adjacent records [ZTSDSl]. For each inverted 
file entry, b must be stored, either with the entry or in 
the vocabulary: 7 can be used to encode N/b, which 
will generally be smaller than b itself. Compression 
(including this overhead) using VT is shown in Table 3. 

Better compression can be achieved with the LL- 
RUN technique, in which k is coded with a Huffman 
technique based on observed values of k for all inverted 
file entries [FK85, MZ92b]. However, LLRUN is ef- 
fectively two pass; the entries must be created, then 
compressed in a batch. For the other schemes, en- 
tries can be efficiently created and compressed on the 
fly [Mof92], and it is not necessary to periodically re- 
build a set of entries. (We discuss management of vari- 
able length entries in Section 6.) It follows that LL- 
RUN is not likely to be suitable if updates are frequent. 
In general, any scheme in which parameters must be 
computed for effective compression may be inefficient 
with regard to update. In this respect, simple schemes 
such as the 6 code may be preferable, as they achieve 
good compression with a minimum of processing over- 
head. All of the schemes described in this section allow 
entries to be individually modified. 

On average, entries can be decompressed much more 
quickly than they can be retrieved. For example, the 
average Comact entry is 122 bytes, which can be de- 
compressed in about 2 milliseconds. However, the 
longest entry is about 32 Kb, and we are investigat- 
ing auxiliary st,ructures to allow fast random access 
into compressed inverted file entries. We believe that 
it, will be possible to provide fast AND operations on 
long inverted file entries whenever the set of candidate 
records is small. 

None of our compression schemes use arithmetic 
coding or adaptive modelling, neither of which are ef- 
fective in this application [BWCSS]. Arithmetic coding 
requires significant computational resources, whereas 
our schemes require only a few machine instructions 
to decode each bit. Adaptive modelling requires long 
runs of data to be effective. 

5 Extended indexing schemes 

In this section we consider how to extend indexes to 
provide greater functionality, and the effect this has 
on space requirements. We first consider improving 
ranking, then indexing on word sequences. 

356 



Manuals GNUbib Comact 

Frequency counts 
Y 60, 1.8 2.3 2.2 
Locations within record 
f5 PO) 24.1 17.7 17.7 
Global Bernoulli (%) 20.3 13.5 14.0 
Local Bernoulli (%) 18.5 13.0 13.3 
Total index size 
VT + y + global Bernoulli (%) 26.5 25.6 22.2 
Word-level index using VT (%) 23.9 23.0 20.2 
VT + y + signature (estimated) (%) 21.6 28.7 22.0 

Table 4: Space Requirements for Extended Indexes 

5.1 Storing word frequency 

Ranking is more effective if, in addition to each word’s 
overall frequency, its frequency in each record is also 
known [SM83]. A simple way to achieve this is to 
interleave frequency counts with record identifiers in 
the inverted file entries. Since most frequencies are 
small, the y code is suitable for this task, although, 
if the great majority of frequency counts are 1 (as is 
true for our collections), still yields far from optimal 
compression [MZ92b]. In the first section of Table 4 we 
show, as a percentage of the size of the source text, the 
additional space required by frequency counts coded 
using y. 

5.2 Indexing word sequences 

In this and the following two sections we consider three 
methods for indexing word sequences in association 
with an inverted file index. The method considered 
in this section is to extend the index to identify the 
locations where the words occur in each record. This 
also allows queries such as retrieval of records in which 
certain words are (say) less than ten words apart. 

For each word, the sequence in the word’s index en- 
try for each record would be as follows: 

record number / frequency 1 positions . . 

A position number of k indicates that the word is the 
kth in the record. Record number can be represented 
as a run length (distance from the previous record 
number) and compressed using VT, as described in Sec- 
tion 4; frequency in record can be represented with y 
values; and the positions can also be represented as a 
sequence of run lengths. Since position numbers will 
generally be small-depending on the length in words 
of a typical record-a parameterless code, such as 6, is 
one possibility for representing these run lengths. The 

first row of the second section of Table 4 shows, as a 
percentage of the size of the source text, the extra cost 
associated with the use of 5 to code word locations. 

Better compression is achieved with a Bernoulli 
model. This model assumes that each position num- 
ber is independently likely to occur with probability 
P, so that a difference of k between two position num- 
bers will appear with probability (1 - ~)~-‘r, which 
is the geometric distribution. These probabilities can 
then be used implicitly to generate an infinite Huff- 
man code [Fal85b, GV75, McI82, MZ92a, MZ92b] for 
coding run lengths. To calculate the code, we need 
an estimate for r, and take T x p/N, where p is the 
number of occurrences of the word and N is the total 
number of word occurrences. We then have a further 
choice: we can use localised values, where p is the num- 
ber of occurrences of the word in the record and A; is 
the number of words in the record; or we can take a 
global approach, where p is the number of occurrences 
of the word in the database, and N is the size in words 
of the database. The second section of Table 4 shows 
compression results for both of these variants. In the 
case of the local model, the compression rates listed 
include the small overhead cost of storing, for each 
document, its length in words; for the global model, 
the rates include the cost of storing the frequency of 
the word. In both cases the values were compressed 
using a suitable code. 

The localised model gives slightly better compres- 
sion than the global model, but requires that local 
values for p and N be known. Knowledge of the lo- 
cal value of p is required in any case, to determine 
how many codes must be decoded. Knowledge of the 
local value of N requires that an extra table, stor- 
ing the length in words of each record, be held in 
memory. (The extra frequency value required by the 
global model can be stored on disc with the inverted 

357 



file entry.) Although small in terms of the overall 
database, this table would require substantial amounts 
of main memory, and even compressed would require 
200-300 Kb for the largest of our test databases. Un- 
less the table of lengths is available anyway, to sup- 
port ranking for example, we prefer the use of the 
global model for representing word locations. Book- 
stein, Klein, & Raita [BKR92] have also recently de- 
scribed the use of a Bernoulli model for storing posi- 
tional information about words. 

The third section of Table 4 shows the total cost 
of a record-level inverted index containing both word 
frequency and word locations. It is worth noting that 
a large fraction of this index is consumed by relatively 
few words. In our experiments we did not remove 
any stop words, and retained all case information, so 
that every sequence of alphanumeric characters was 
indexed. When no positional information is being 
recorded, case folding or the removal of stop words 
would achieve only small savings, since record-level in- 
verted file entries for common words are represented 
very compactly in our coding methods. However, when 
positional information is added the inverted file en- 
tries for common words become dramatically larger. 
For example, on Comact the inverted file entry for 
‘the’ grew from 32 Kb to 1 Mb, and the 5 most com- 
mon words (‘the’, ‘of’, ‘to’, ‘a’, ‘in’) accounted for 
more than 3 Mbyte, 10% of the inverted file. In this 
case substantial additional savings would be gained by 
not recording positional information for a few common 
words, retaining only the record-level inverted file en- 
try. Any positional or word sequence queries involving 
these words would then have to be evaluated with a 
relatively costly post-retrieval scan to eliminate the 
(many) false matches. It could be argued, however, 
that queries on such common words would be rare and 
that the space saving warranted the small risk of costly 
queries. 

5.3 Word-level indexing 

The second method of providing positional informa- 
tion is to store it directly within a word-level index. If 
a table of cumulative record lengths is held in mem- 
ory, so that word positions (within the entire data- 
base) can be turned into record numbers, processing 
of both conjunctive queries and word sequence queries 
is possible [WBNSl]. This would, however, make the 
simple queries slower, since the auxiliary record length 
table must searched for every word appearance to de- 
termine if two words appear in the same record, and 
has the disadvantage of requiring non-trivial amounts 
of main memory for the table of cumulative record 
lengths. The second row in the third section of Ta- 

ble 4 shows the cost of a complete word-level index 
compressed with VT. There is a gain in compression, 
but in most cases this would be insufficient to war- 
rant expenditure of several hundred kilobytes of main 
memory and additional time during query processing. 

5.4 Use of a signature file for word pairs 

The third method for supporting indexing on word 
sequences is to have a bit sliced signature file of adja- 
cent word pairs only, to be accessed after the inverted 
file entries have been used to generate a list of can- 
didate records. Single-level bit sliced signature files 
contain one fixed-length slice for each bit position; the 
length of each slice is the number of records being in- 
dexed [SDKR87]. To answer queries, a subset of the 
slices (corresponding to bits set by the query term) 
is retrieved and AND’~~ together to identify candidate 
records. Bits in the same slice can be set by hashing 
different words. so there can be false matches which 
must be filtered out. 

The effectiveness of a signature file that indexes 
word pairs will depend on the likely number of false 
matches. Without collecting real word sequence 
queries it is difficult to identify pairs likely to occur in 
practice, but using a heuristic we estimated the false 
match rate. We used a dictionary to identify the words 
in Comact that were nouns or adjectives! eliminating 
words that also had other senses; for example, the word 
‘are’ is a verb as well as a noun (one hundredth of a 
hectare). We then found all pairs of nouns and adjec- 
tives and for each pair counted the number of records 
containing the pair (true matches) and the number of 
records containing both words but not containing the 
pair (false matches). On average, only 15% of matches 
were true matches. The proportion of true matches to 
false matches in real queries is unknown, but real pairs 
could include words of ambiguous sense such as ‘will’ 
and ‘power’, for which false matches are more likely. 

We therefore aim to substantially reduce the num- 
ber of false matches. Consider a signature file scheme 
in which hashing each pair sets two bits, with the sig- 
nature width chosen so that on average at, most 25% of 
the bits in each slice are on. For example, this could 
be achieved by choosing a signature width (in bits) 
8 times the average number of distinct word pairs per 
record in the collection. To answer a word pair query, 
ret,rieval of two bit slices will, on average, eliminate 
E/16 = 94% of f 1 a se matches. For our estimate of 
numbers of true matches, of the remaining candidates 
approximately 75% would be true matches. This is 
consistent with results of Sacks-Davis, Kent, & Ra- 
mamohanarao, who randomly selected pairs remaining 
when common words are eliminated [SDKR87]. Note 

358 



that this method does not support queries where, for 
example, two words are required to be less than ten 
words apart within the record. 

An estimate of the total storage cost for this alterna- 
tive is given in the third section of Table 4, where it is 
assumed that: a record-level index is used; the y code 
is used for word frequency; and an auxiliary bit sliced 
signature file is used to process queries involving word 
sequences. The space required by this alternative is 
similar to that required by the extended inverted file 
indexes, but less functionality is provided, word se- 
quence queries would require additional disc accesses, 
and post-retrieval scans are required. 

6 Storage of variable-length entries 

There are two difficulties in managing inverted file en- 
tries on disc. The first is that entries vary in length. 
The second is that, in a dynamic environment, entries 
can grow as new records are inserted. These problems 
are very similar to the more general problem of storage 
of variable-length modifiable records. However, com- 
pressed inverted file entries are on average relatively 
small; for our test collections, the largest average en- 
try length was 468 bytes, for the word-level Comact 
index. Also, entries can be stored in any order. 

We investigated a simple entry management scheme 
in which entries were stored in large, fixed-length 
blocks on disc. The details of this scheme are beyond 
the scope of this paper, but its broad outlines are as 
follows. 

By using large blocks, many entries can be kept in 
each block, thus reducing space wastage. Each block 
contains a set of entries and a table indicating where 
each entry resides in the block. To retrieve an entry, 
the block containing the entry is fetched; this saves 
space in the vocabulary, as instead of a full address 
only a block number needs to be stored. 

During insertion, deletion, and extension or contrac- 
tion of an entry, the free space in each block can be gov- 
erned by a fixed tolerance. If the free space in a block 
is less than the tolerance, no action need be taken. 
If the free space is greater than the tolerance, entries 
can be migrated between blocks, or a description of 
the block can be added to an in-memory ‘free list’, of 
blocks with space for new or modified entries. The 
small number of entries that are longer than a block 
must be managed separately. 

In simulations with block sizes of 32 Kb and 64 Kb, 
record-level Comact index entries, and a tolerance of 
2%, the free list never contained more than a few en- 
tries. Including the space required for the block ta- 
bles, the space utilisation was better than 90%. These 
simulations also indicated that the average number of 

disc accesses rtquired for an update was about one: 
updates require up to two accesses, but a series of in- 
sertions can be written to the last block, which can be 
held in memory for efficiency. 

One overhead of using large blocks is retrieval time. 
With current disc performance, it takes roughly 50% 
longer to fetch a block of 64 Kb than a block of 
1 Kb.’ To improve retrieval time blocks must be 
shorter, which will lead to poorer space utilisation. 
This will often be an acceptable tradeoff since indexes 
are small compared to the source data. Another over- 
head is moving entries within a block to accommodate 
enlarged entries. However, moving half of a block’s 
contents, as required for an average update in place, 
will take considerably less time than a single disc ac- 
cess for reasontrble block sizes. For example, on the 
SPARCserver 2, 32 Kb can be moved in about 8 mil- 
liseconds, compared to about 20 milliseconds for a ran- 
dom disc access. 

Although individual entries can be updated quickly 
with this scheme, insertion of a new record can still 
be expensive, since the entry for each of the record’s 
words must be updated. For this reason, it may be 
desirable to batch insertions of new records: because 
new records will often have words in common, the cost 
per record will be significantly reduced. 

7 Other methods 

Harman & Candela [HC90] have recently described 
an inverted file implementation for full-text databases. 
Like our method, their scheme uses an in-memory vo- 
cabulary that includes frequency information and, on 
disc, each inverted file entry is sorted and contains 
record numbers and the frequency of each word in 
each record. This scheme has been designed to support 
ranking but could also be used for boolean queries. 

Their scheme achieves good response times, but is 
not space efficient. On the collections for which sizes 
of indexes are given, each entry uses about 44 bits to 
store each record number/frequency pair, compared 
to 6.5 bits under our scheme for Comact, using VT 
with y frequencies. The (record-level) index for their 
largest collection appears relatively small-112 Mb for 
a 806 Mb collection-but this is because the average 
frequency of a word in a document is 6, compared to 
1.6 for Comact, and because the average document in 
their collection contains 3,264 words, compared with 

1 We note, however, that typical figures for disc retrieval are 
not very informative. For example, for the three kinds of disc 
drives attached to our SPARCserver 2, the overheads of re- 
trieving 64 Kb compared to retrieving 1 Kb were 30%, 45%, 
and 400%. Factors involved include seek, latency, caching and 
prefetch strategies, and disc channel speed. 

359 



88 for Comact. 
Record-level inverted file indexes provide similar 

functionality to bit sliced signature files and it is in- 
structive to compare them. 

Inverted file indexes with in-memory search struc- 
tures require fewer disc accesses to answer a conjunc- 
tive query than do bit sliced signature files. This can 
be seen from the following inductive argument. Ini- 
tially, all records are candidate answers to the query. 
For each word in a query, there can be bits set in the 
word’s bit slices that are not set in the word’s bit vec- 
tor (that is, inverted file entry), but the converse does 
not hold; so the word’s bit vector is never denser than 
any of its bit slices. Thus, for any bit slice that can be 
selected to AND with the list of candidate records in a 
signature file index, a bit vector that is no less discrim- 
inating can be selected in the corresponding inverted 
file index. For a query involving q words the selec- 
tion of q inverted file entries is sufficient to guarantee 
that no false matches remain in the inverted file case; 
but after q bit slices have been processed in the signa- 
ture file case there can still be candidate records that 
are false matches. These false matches can only be 
resolved after further disc accesses, either to retrieve 
more bit slices or to retrieve text. If, in the bit sliced 
case, p slices are retrieved before false match check- 
ing begins, where p < q, then in the inverted file case 
false match checking should also be commenced after 
p inverted file entries have been merged, and, provided 
that inverted file entries have been selected for merg- 
ing in order of increasing length, the number of records 
that must be retrieved in the inverted file case cannot 
be greater than the number of records accessed in the 
signature file case. 

Signature files can be augmented with an in- 
memory vocabulary of common words, and on-disc 
compressed bitvectors of the records containing the 
words [SDKR87]. From this perspective, signature 
files and record-level inverted files can be seen as ex- 
tremes of a spectrum. Traversing the spectrum, we 
find at the signature file end the ability to handle an 
infinite vocabulary, and at the other end the ability 
to answer queries with a minimum number of disc ac- 
cesses. 

In practice, the relative performance of signature 
files and inverted files will also be affected by factors 
such as the lengths of bit slices and entries. Decoding 
a long inverted file entry can take much longer than 
a disc access, so in our scheme it is important that 
inverted file entries be retrieved in order of increasing 
length, and that the further AND'ing of entries cease 
as soon as the number of candidate records falls below 
some minimum threshold. If this is done it is necessary 
to check for false matches, exactly as if a signature file 

was used. 
It is not clear which system these factors favour. 

Bit slices are of fixed length, with (typically) one bit 
per 4 to 32 records if blocking is used to reduce their 
size [SDKR87], so Comact entries can be as short as 
1 Kb. The cost of composing two bit slices is fixed. 
Record-level inverted file entries vary in length, from 
a few bytes to about one bit for each record in the 
database, with an average of 122 bytes for Comact. 
The search structure can be used to order the selection 
of entries so that more discriminating entries are re- 
trieved first, but nonetheless processing costs are vari- 
able: for words with short entries the cost of merging 
will be less than the cost of composing two bit slices, 
but for long, non-discriminating entries the cost will 
be greater. 

As Croft & Savino have shown, inverted files support 
ranking more efficiently than do signature files [CSSS]. 
Ranked queries behave like disjunctions of the words in 
the query [SFW83], and moreover, if ranking is to be 
effective, require a vocabulary that holds information 
about the relative importance of words. Inverted files 
are faster for disjunctive queries, and because there 
is an in-memory vocabulary it is possible to support 
queries on stems, patterns, and substrings [ZM92b]. 
They are also better at indexing collections in which 
the lengths of records is variable. 

On the other hand, an inverted file approach re- 
quires that the text be inverted to generate the file, 
a process not necessary during signature construction. 
For example, Harman & Candela [HC90] report that 
inversion of a 50 Mb database using a disc-bound tech- 
nique required over 10 hours. However, the inversion 
of large texts is a further application of the compressed 
inverted file representations that we advocate, and we 
have described an in-memory inversion technique that 
allowed inversion of Comact (132 Mb) in 45 minutes 
on the 25 MIP SPARCserver 2 [Mof92] An area of 
current investigation is the extension of this technique 
to arbitrarily large databases. 

Finally, even our word-level indexing schemes use 
less space than is typically required by conventional 
bit sliced signature files-quoted at 30% to 40% of 
the size of the source data [KSDRSO, SDKR87]-and 
much less space than the 50% to 300% for inverted 
files quoted by Hasking [HasSl]. 

8 Conclusion 

We have described an indexing method based on com- 
pression for us(’ in full-text retrieval databases. The 
assumptions we make are that we are working only 
with text and that the vocabulary is sufficiently re- 
stricted that it can be stored in main memory. 

360 



Given these assumptions, the indexing scheme pro- 
vides fast response to boolean queries, and can be ex- 
tended to support word sequence queries and ranking 
techniques. These indexes can be dynamically main- 
tained, and it is not necessary to periodically rebuild 
them. At most one disc access per query term is re- 
quired to identify answers, and we have shown that 
this need never be more than is required by a bit sliced 
signature file. 

We have also shown that our techniques make effl- 
cient use of space. If conjunctive boolean queries or 
basic ranking are the only access to be supported, a 
typical compressed inverted file index will require less 
than 10% of the space used by the source text. If 
better ranking or word sequence queries are to be sup- 
ported, the index will typically require less than 25% of 
the space used by the source text. These sizes compare 
favourably with other implementations of inverted files 
and with bit-sliced signature files. 

Our method has a number of drawbacks. Like other 
text indexing methods, insertion of new records is com- 
plex and is best handled by batching, and database 
creation can be expensive. Also, there is some pos- 
sibility of a bottleneck during inverted file entry de- 
coding if long entries must be processed to obtain a 
small number of answers to some query. We are cur- 
rently investigating possible solutions to all of these 
problems, and, despite these drawbacks, feel that the 
space-efficiency of the method and its other advan- 
tages allow it to compete more than favourably with 
established techniques. 

Acknowledgements 

We would like to thank Lachlan Andrew for imple- 
menting several of the tests described in this paper, 
and Alan Kent for a great deal of helpful advice and as- 
sistance. Thanks are also due to Tim Bell and Ian Wit- 
ten: it was their comments that initiated this investi- 
gation. This work was supported by the Australian 
Research Council. 

References 

[BK91] A. Bookstein and S.T. Klein. Generative 
models for bitmap sets with compression 
applications. In Proc. SIGIR Conf. on Inf. 
Retrieval, pages 63-71, Chicago, 1991. 

[BKR92] A. Bookstein, S.T. Klein, and T. Raita. 
Model based concordance compression. 
In J.A. Storer and M. Cohn, editors, 
Proc. IEEE Data Compression Confer- 

ence, pages 82-91, Snowbird, Utah, Ma.rch 
1992. 

[BWCSS] T.C. Bell, I.H. Witten, and J.G. Cleary. 
Modelling for text compression. ACM 
Computing Surveys, 21(4):557-592, 1989. 

[CS88] W.B. Croft and P. Savino. Implementing 
ranking strategies using text signatures. 
ACM Trans. on Office Inf. Sys., 6(1):42- 
62, 1988. 

[Eli753 P. Elias. Universal codeword sets and rep- 
resentations of the integers. IEEE Trans. 
on mnf. Theory, IT-21:194-203, 1975. 

[Fa185a] C. Faloutsos. Access methods for text. 
ACM Computing Surveys, 17(1):49-74, 
1985. 

[Fa185b] C. Faloutsos. Signature files: Design and 
performance comparison of some signa- 
ture extraction methods. In Proc. ACM- 
SIGMOD, pages 63-82, Austin, Texas, 
1985. 

[FK85] A.S. Fraenkel and S.T. Klein. Novel com- 
pression of sparse bit-strings-Preliminary 
report. In A. Apostolico and Z. Galil, edi- 
tors, Combinatorial Algorithms on Words, 
Volume 12, NATO AS1 Series F, pages 
169-183, Berlin, 1985. Springer-Verlag. 

[GV75] R.G. Gallager and D.C. Van Voorhis. Op- 
timal source codes for geometrically dis- 
tributed alphabets. IEEE Trans. on Inf. 
Thaory, IT-21(2):228-230, 1975. 

[Has911 R.L. Hasking. Special purpose proces- 
sors for text retrieval. Data Engineering, 
4(1):16-29, 1991. 

[HC90] D. Harman and G. Candela. Retriev- 
ing records from a gigabyte of text on 
a minicomputer using statistical ranking. 
Joum. American Society for Inf. Science, 
41(8):581-589, 1990. 

[KSDRSO] A.J. Kent, R. Sacks-Davis, and K. Rama- 
mohanarao. A signature file scheme based 
on multiple organisations for indexing very 
large text databases. Joum. American So- 
ciety for Inf. Science, 41(7):508-534,199O. 

[McI82] M.D. McIlroy. Development of a spelling 
list. IEEE Trans. on Communications, 
COM-30(1):91-99, 1982. 

361 



[Mof92] 

[MZ92a] 

[MZ92b] 

[SDKR87] 

[SFW83] 

[SM83] 

[Teu78] 

[WBNSl] 

A. Moffat. Economical inversion of large 
text files. Computing Systems, 5(2), June 
1992. To appear. 

A. Moffat and J. Zobel. Coding for 
compression in full-text retrieval systems. 
In J.A. Storer and M. Cohn, editors, 
PTOC. IEEE Data Compression Confer- 
ence, pages 72-81, Snowbird, Utah, March 
1992. 

A. Moffat and J. Zobel. Parameterised 
compression for sparse bitmaps. In Proc. 
SIGIR Conf. on Inf. Retrieval, Copen- 
hagen, Denmark, June 1992. To appear. 

R. Sacks-Davis, A.J. Kent, and K. Rama- 
mohanarao. Multi-key access methods 
based on superimposed coding tech- 
niques. ACM Trans. on Database Systems, 
12(4):655-696, 1987. 

G. Salton, E.A. Fox, and H. Wu. Extended 
Boolean information retrieval. Comm. 
ACM, 26(11):1022-1036, 1983. 

G. Salton and M.J. McGill. Introduction to 
Modern Information Retrieval. McGraw- 
Hill, New York, 1983. 

J. Teuhola. A compression method for 
clustered bit-vectors. Znf. PTOC. Letters, 
7(6):308-311, 1978. 

I.H. Witten, T.C. Bell, and C. Nevill. 
Models for compression in full-text re- 
trieval systems. In J.A. Storer and J.H. 
Reif, editors, Proc. IEEE Data Compres- 
sion Conference, pages 23-32, Snowbird, 
Utah, April 1991. 

:WLO+85] H.K.T. Wong, H. Liu, F. Olken, D. Rotem, 
and L. Wong. Bit transposed files. In Proc. 
VLDB, pages 448-457, Stockholm, August 
1985. 

:Zip49] G. Zipf. Human Behaviour and the Princi- 
ple of Least Eflort: An Introduction to Hu- 
man Ecology. Hafner Publications, 1949. 

:ZM92a] J. Zobel and A. Moffat. Adding compres- 
sion to a full-text retrieval system. In Proc. 
15’th Australian Computer Science Con- 
ference, pages 1077-1089, Hobart, Aus- 
tralia, January 1992. 

[ZM92b] 

[ZTSDSl] 

J. Zobel and A. Moffat. Pattern index- 
ing for main memory lexicons. Techni- 
cal Report 92/28, Collaborative Informa- 
tion Technology Research Institute, De- 
partment of Computer Science, Royal Mel- 
bourne Institute of Technology, Australia, 
May 1992. 

J. Zobel, J.A. Thorn, and R. Sacks-Davis. 
Efficiency of nested relational document 
database systems. In Proc. VLDB, pages 
91-102, Barcelona, Spain, 1991. 

362 


