
Production Rules in Parallel and Distributed Database Environments

Stefano Ceri Jennifer Widom

Dipartimento di Elettronica IBM Almaden Research Center
PoIitecnico di Milan0 650 Harry Road, K55/801
Piazza L. da Vinci, 32 San Jose, CA 95120
I-20133 MiIano, Italy USA

ceri@cs.stanford.edu widomQalmaden.ibm.com

Abstract. In most database systems with production rule
rules respond to operations on centralized data, and rule

facilities, rules respond to operations on centralized data and processing usually is performed in a centralized, sequen-

rule processing is performed in a centralized, sequential fash- tial fashion. (There has been some work on paralleliz-
ion. In parallel and distributed database environments, for ing rule firings in the context of the OPS5 production
maximum autonomy it is desirable for rule processing to oc- rule language, but this work still considers centralized
cur separately at each site (or node), responding to operations data and does not directly apply to database production
on data at that site. However, since rules at one site may read rule languages; see Section 1.1.) Given the high interest
or modify data and interact with rules at other sites, inde- in parallel and distributed database systems [DGS+SO,
pendent rule processing at each site may be impossible or
incorrect.

OV91], it clearly is important for database production

We describe mechanisms that allow rule processing to oc-
rule facilities to be adapted to these environments.

cur separately at each site and guarantee correctness: par-
For maximum autonomy in parallel and distributed

allel or distributed rule processing is provably equivalent to
environments, it is desirable for rule processing to occur

rule processing in the corresponding centralized environment. separately at each site (or node), responding to opera-

Our mechanisms include locking schemes, communication tions on data at that site. Rule processing can, in fact,
protocols, and rule restrictions. Based on a given parallel be completely independent at each site: as long as each
or distributed environment and desired level of transparency, rule is restricted to reference (i.e. be triggered by, read,
the mechanisms may be combined or may be used indepen- and modify) data at one site only. However, this seri-
dently. ously limits the expressible rules, provides no notion of

transparency (the illusion to the user that the database
1 Introduction is centralized), and forces rules to be revised if data is re-

distributed. Once rules are permitted to reference data
Many next-generation database systems include facilities
for creating and processing producZion rules, e.g. [GJ91,

at multiple sites, independent rule processing at each

Han89, MD89, SJGPSO, WCLSl]. These “active” rules
site may be impossible or incorrect. Rules triggered at

specify that certain database operations are to be ex-
one site may need to operate on data at remote sites;
these operations may trigger additional rules at remote

ecuted automatically whenever certain events occur or sites, etc. Priorities between rules further complicate the
conditions or met. Production rules in database sys-
tems can be used for integrity constraint enforcement,

problem, particularly when they involve rules at different
sites. Additional mechanisms are needed to process rules

derived data maintenance, triggers and aierters, autho-
rization checking, and versioning, as well as providing

in parallel and distributed environments, and, for trans-

a platform for large and efficient knowledge-bases and
parency and correctness, these mechanisms should en-
sure that parallel or distributed rule processing is equiv-

expert systems. alent to rule processing in the corresponding centralized
Although a wide variety of semantics and algorithms environment.

have been proposed for production rule processing in
database systems (see, e.g. [HW92,Sel89]), in all cases

We consider a database production rule facility we
have developed, the Starburst Rule System [WCLSl],
and describe mechanisms for adapting it to parallel and

Permission to copy without fee all or part of this material is
distributed environments. Although some details of our

granted provided that the copies are not made or distributed
mechanisms are particular to the semantics of the Star-

for direct commercial advantage, the VLDB copyright notice burst rule language, in general the mechanisms are ap-

and the title of the publication and its date appear, and no- plicable to other database rule systems as well.
tice is given that copying is by permission of the Very Large For distributed environments, we begin by imposing
Data Base Endowment. To copy otherwise, or to republish, certain restrictions on the environment and the allow-
requires a fee and/or specialpermission from the Endowment. able rules that guarantee correct rule processing. We

then describe several orthogonal mechanisms, each of
Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

which allows a restriction to be lifted. Based on a given
environment and desired level of transparency, the mech-

339

anisms may be combined or may be used independent,ly.
For the distributed environment, we describe a locking

scheme and rule-tusk executor that allow rules to refer-
ence data at multiple sites. These mechanisms assume
that coordination is used to initiate rule processing, so
we give a second locking scheme that alleviates this re-
quirement. Finally, we describe some additional locking
and a communication protocol that support priorities
between rules at different sites.

These mechanisms all apply to parallel environments
as well. However, because of the horizon2a[fragmen~a-
lion often used in parallel relational database systems
(i.e. tables are partitioned across nodes by row), we in-
troduce an additional approach: we define (semantic) re-
strictions on rules that allow them to effectively be hor-
izontally fragmented along with the data. When rules
satisfy these restrictions, the fragmented rules can be
processed independently at each site, with a behavior
that is equivalent to rule processing in the correspond-
ing non-fragmented environment.

1.1 Related Work

Most previous work on parallel or distributed execution
of production rules considers the rule language OPS5
[BFKM85] in the context of main-memory expert sys-
tems, e.g. [Gup86, Pas89, SG90, SM84]; some work has
considered OPS5 coupled to database systems [RSDSl,
SHTSO]. Results include parallel algorithms for deter-
mining which rules are triggered, methods for detecting,
at compile-time or at run-time, that multiple triggered
rules (or multiple instantiations of a triggered rule) can-
not interfere with each other and consequently can exe-
cute in parallel, and run-time locking methods for serial-
izing parallel rule executions. Our initial locking scheme
given in Section 3.1.2 is similar to proposals in [RSDSl,
SHTSO]; however, since only centralized data is consid-
ered in [RSD91,SHT90], their work does not address the
many other problems that arise when rules respond to
operations in parallel and distributed database environ-
ments. Furthermore, the language and rule processing
semantics of OPS5 are quite different from those used in
most integrated database production rule systems, in-
cluding Starburst.

In [BKK87], a distributed database architecture is
proposed in which data distribution is tailored for par-
allel production rule processing. Data is horizontally
partitioned based on existing rules; indexing and query
optimization techniques along with RET&like pattern
matching [SDLT86] are used to determine, in parallel,
which rules are triggered. The problem of detecting
triggered rules in a distributed environment also is in-
vestigated in [HSL92]. They propose a method for al-
gebraically decomposing complex and potentially time-
consuming rule conditions into multiple conditions eval-
uated on distributed database sites; they also present
the coordination algorithms to evaluate such conditions.
Although condition evaluation is distributed, rule pro
cessing itself is still centralized.

1.2 Outline of Paper

In Section 2 we describe the production rule language
and rule processing semantics of the Starburst Rule Sys-
tem. Section 3 covers distributed environments: Mecha-
nisms whereby rules can reference data at multiple sites
are given in Section 3.1; mechanisms whereby each site
can independently initiate rule processing are given in
Section 3.2; mechanisms for intersite rule priorities are
given in Section 3.3. A proof of correctness is included
in each of these subsections. Section 4 covers parallel
environments: Most mechanisms from Section 3 apply
here, but an additional notion of rule partitionability is
introduced and proven correct. Finally, in Section 5 we
draw conclusions and propose future work.

2 The Starburst Rule System

We provide a brief overview of our set-oriented, SQL-
based production rule language, which has been inte-
grated into the Starburst extensible relational database
system at the IBM Almaden Research Center [HCL+SO].
Further details and numerous examples appear in
[WCLSl, WF90]; some examples appear in Section 4.2
of this paper. Note that the current Starburst prototype
is a multi-user, centralized database system.

Starburst production rules are based on the notion
of transitions. A transition is a database state change
resulting from execution of a sequence of data manipu-
lation operations. Rules consider only the net effect of
transitions, as defined in [WF90]. The syntax for creat-
ing a rule is:

create rule name on table
when triggering operations
~fexmM&n]

[precedes rule-list]
[follows rule-list]

The triggering operations are one or more of inserted,
deleted, and updated(q, . . . , cn), where cl,. . , c, are
columns of the rule’s table. A rule is triggered by a given
transition if at least one of its triggering operations oc-
curred in the net effect of the transition. The optional
condition specifies an SQL predicate. The action speci-
fies an arbitrary sequence of SQL data manipulation op-
erations (including rollback) to be executed when the
rule is triggered and its condition is true. The optional
precedes and follows clauses are used to induce a par-
tial ordering on the set of defined rules. If a rule ~1
specifies a rule rz in its precedes list, or if rz specifies
r1 in its follows list, then r-1 is higher than rz in the
ordering. (We also say that rr has higher priority than
rz.) When no direct or transitive ordering is specified
between two rules, their order is arbitrary.

A rule’s condition and action may refer to the cur-
rent state of the database through top-level or nested
SQL select operations. In addition, rule conditions and
actions may refer to transition tables, which are logical
tables reflecting the changes that have occurred during
a rule’s triggering transition. At the end of a given tran-

340

sition, transition table inserted in a rule refers to those
tuples of the rule’s table that were inserted by the tran-
sition. Transition tables deleted, new-updated, and
old-updated are similar.

Rules are processed at the commit point of each
transacti0n.i The state change resulting from the trans-
action creates the first relevant transition, and some set
of rules are triggered by this transition. A triggered rule
r is chosen from this set for consideration. Rule r must
be chosen so that no other triggered rule has higher pri-
ority than r. If r has a condition, then it is checked. If
r’s condition is false, then another triggered rule is cho-
sen for consideration. Otherwise, if r has no condition
or its condition is true, then r’s action is executed. As-
sume for the moment that r’s action does not include
rollback. After execution of r’s action, all rules not
yet considered are triggered if a triggering operation oc-
curred in the composite transition created by the initial
transition and subsequent execution of r’s action. Rules
already considered (including r) are triggered again only
if a triggering operation occurred in the transition cre-
ated by r’s action. From the new set of triggered rules, a
rule r’ is chosen for consideration such that no other trig-
gered rule has higher priority than r’. Rule processing
continues in this fashion.

At an arbitrary time in rule processing, a given rule is
triggered if a triggering operation occurred in the (com-
posite) transition since the last time it was considered. If
it has not yet been considered, it is triggered if a trigger-
ing operation occurred in the transition since the start
of the transaction. If a rule action specifying rollback
is executed, then the system roils back to the start of
the transaction and rule processing terminates. Other-
wise, rule processing terminates when there are no more
triggered rules, and the entire transaction then commits.

A skeleton algorithm for rule processing is shown in
Figure 1. It is used in the next section as a basis for de-
scribing rule processing in distributed environments. For
convenience, we refer to steps 1 and 2 in the algorithm
as rule selection, and steps 3 and 4 as rule consideration.

3 Distributed Environments

We consider distributed relational database environ-
ments in which the tables comprising the database re-
side at a number of separate sites. We assume that ta-
bles are not replicated or fragmented across sites, since
many distributed database systems do not support these
features [GR92,TTC+90].2 Based on the distribution of
database tables, user transactions are distributed to ex-
ecute across multiple sites at the same time. The typical
requirement for providing (location) transparency is that

‘We recently have extended the system to support rule
processing at arbitrary user-specified points within a trans-
action. The mechanisms in this paper are easily adaptable
to this extension.

2We do consider horizontal partitioning for parallel
database environments in Section 4. Vertical partitioning
and data replication will be addressed in future work; see
Section 5.3.

repeat until step 1 produces no triggered rules:

1. determine which rules are triggered (based on
the net effect of appropriate transitions)

2. choose a triggered rule r such that no other
triggered rule has higher priority

3. evaluate r’s condition
4. if true, execute r’s action

Figure 1: Algorithm for centralized rule processing

the effect of distributed transaction execution must be
equivalent to the effect of the original transaction on the
corresponding centralized database.

In these environments, we would like rule processing
to also execute in a distributed fashion. A rule system re-
sides at each site, responding to the database changes at
that site only. To provide transparency, the combined ef-
fect of distributed transaction execution with distributed
rule processing must be equivalent to the combined effect
of the original transaction with centralized rule process-
ing on the corresponding centralized database. We refer
to this as correct distributed rule processing.

Clearly, each rule should reside at the site containing
the table whose changes trigger that rule. Suppose the
following three conditions also hold:

1. All rules read and modify tables at their local site
only.

2. All priorities are between rules at the same site.

3. Rule processing at each site S for a transaction T
does not begin until it is known that T will not sub-
sequently read or modify tables at S.

Then the algorithm of Figure 1 can be run independently
at each site and rule processing will be correct: Since
rules do not read or modify data at remote sites, they
cannot trigger and need not see the effects of rules run-
ning at other sites.3 Since there are no priorities between
rules at different sites, no information about triggered
rules at remote sites is needed for correct rule selection.
Finally, since no user changes are made at a site after
rule processing begins, the distributed user transaction
logically precedes all distributed rule processing. When
rule processing has terminated at all sites, the entire dis-
tributed transaction commits (using, e.g., a two-phase
commit protocol [GR92]).

The first two conditions given above restrict the ex-
pressible rules. Although they represent reasonable de-
sign principles, for some applications these conditions
are just too restrictive. (This may depend on the level
of transparency desired for rule definition, how often
rules change, and how often data is redistributed; see
Section 5.4 for further discussion.) The third condition
above may require extra coordination between sites and

3Note that if a rule action specifying rollback is executed
at some site, then the entire distributed transaction must be
rolled back. We assume the existence of a mechanism for
distributed rollback.

341

1 No Mukisite Rules
No Autonomous Start
No lntersite Priorities

2 Multisite Rules 3 No Muttisite Rules
No Autonomous Start Autonomous Start
No Intersite Priorities No lntersite Priorities

4 Multisite Rules 5 Multisite Rules
No Autonomous Start Autonomous Start
Intersite Priorities No Intersite Priorities

6 Multisite Rules
Autonomous Start
lntersite Priorities

Figure 2: Paradigms for distributed rule processing

may unnecessarily restrict parallelism, particularly in en-
vironments where transactions are decomposed into mul-
tiple subtransactions (see Section 3.2).

We give mechanisms that allow each of these three
conditions to be dropped. For presentation, we con-
sider condition 3 before condition 2. Hence, our first
mechanism allows rules to read and modify tables at re-
mote sites (Multi&e Rules), our second mechanism al-
lows rule processing to be initiated independently at each
site even when the user transaction may subsequently
read or modify tables at that site (A~2onomovs S2ati),
and our third mechanism allows priorities between rules
at different sites (Mersiie Priorities). The mechanisms
may be used in any combination, as illustrated by the
lattice in Figure 2. The two paradigms omitted from the
lattice combine No Multisite Rules with Intersite Priori-
lies; this combination is allowable but makes little sense
since there is no need for priorities between rules that
cannot affect each other.

Note that any paradigm combining Multisite Rules
and Intersite Priorities (Paradigms 4 and 6 in our lat-
tice) provides full transparency with respect to rule defi-
nition and processing. That is, rules can be created with
no knowledge of data distribution. Each rule is installed
automatically at the correct site, and (as we will show)
distributed rule processing is equivalent to rule process-
ing in the corresponding centralized environment.

3.1 Multisite Rules

Recall that each rule is triggered by changes to one ta-
ble, so each rule resides at the site containing its trigger
table. In this section we consider Paradigm 2 in the lat-
tice of Figure 2-we give mechanisms that allow rules
to read and modify tables at remote sites. To model
this paradigm, we say that each user transaction T is
divided into a set of tasks, and each task is executed
on the tables at a single site. There may be flow-of-
control, communication, and parallelism between tasks.
The transformation of transactions into tasks (includ-
ing their coordination) is performed by the distributed

query optimizer, and we assume it is correct: the effect
of T’s distributed tasks always is equivalent to what T
would have produced on the corresponding centralized
database.

Since we are assuming No Autonomous Start, rule pro-
cessing does not begin for transaction T at a site 5’ until
it is known that T will not subsequently read or modify
tables at S. Depending on the flow-of-control between
tasks, this may require that rule processing does not be-
gin at any site until all of T’s tasks have completed. We
assume this is the case, however with slight modifica-
tions our mechanisms allow rule processing to begin at
a site S as soon as it is known that T will execute no
further tasks at S.

When all of T’s tasks have completed (but before T
commits), the rule processor takes control at each site.
Since rule conditions and actions are database queries,
evaluating a rule condition or performing a rule action
involves executing additional tasks (determined by the
query processor), possibly at remote sites. Whereas we
did not concern ourselves with the scheduling of tasks at
each site during user transaction T, during rule process-
ing the tasks to be executed at each site are managed
by a rule-task executor at that site, described in Sec-
tion 3.1.1. This is necessary for correct rule processing:
otherwise, if tasks are executed concurrently or arbitrar-
ily at a site during rule processing, rules might be trig-
gered by and process inconsistent sets of changes. (This
is explained in more detail below.) In addition to the
rule-task executor, a locking scheme is used in which
each site obtains special locks on data during rule pro-
cessing that may conflict with locks held by other sites
during their rule processing, described in Section 3.1.2.
Together with the rule-task executor, the locking scheme
ensures that distributed execution of rules is serializ-
able [BHG87], similar to [RSDSl, SHTSO]. Further-
more, any equivalent serial schedule corresponds to some
valid execution of rules on the corresponding centralized
database; a proof of correctness is given in Section 3.1.3.

342

3.1.1 Rule-Task Executor

Let Si, S2, . . . , S, denote the R distributed sites. Once
rule processing begins for a transaction T, the rule-
task executor at each site Si takes full responsibility for
scheduling the tasks to be executed on tables at Si. Some
of these tasks may be generated by local rule processing
at Si, while other tasks may be requested on behalf of
rule processing at other sites. If Si receives no requests
for tasks to be executed on behalf of other sites, then
rule processing can proceed according to the algorithm
of Figure 1. However, since other sites are running the
same algorithm, and since rule conditions and actions
may read or modify tables at remote sites, during the
rule processing loop requests may be received from other
sites to execute tasks.

Si executes tasks on behalf of remote sites at the dis-
cretion of its rule-task executor, but remote tasks are
executed only at the “top” of the rule processing loop
(recall Figure 1). To see why, suppose instead that re-
mote tasks are executed during rule selection (steps l-
2). Then changes made by remote tasks might trigger
additional rules, producing an inconsistent set of trig-
gered rules used in rule selection. If remote tasks are
executed before or during rule consideration (steps 3-4),
then changes made by remote tasks might trigger addi-
tional rules with higher priority than the selected rule,
invalidating rule selection.

Rule processing at site Si cannot terminate until all
other sites also have completed rule processing: if rules
are still being processed at another site Sj, then Sj could
generate tasks that modify tables at Si and trigger addi-
tional rules. The modified rule processing algorithm used
by the rule-task executors is given in Figure 3. Note that
distributed termination of rule processing can be coordi-
nated together with transaction commit. Also note that
a variety of fairness criteria can influence task selection
in step 0, and we do not explore these issues here.

3.1.2 Locking Scheme

Even when each site uses a rule-task executor as de-
scribed in the preceding section, distributed rule process-
ing still may be incorrect. As an example, suppose that
the action of a rule r1 at site Sr is decomposed into two
tasks, one of which reads and modifies a remote table ti
at site Si, and the other of which reads and modifies a
remote table tj at site Sj. Suppose the action of a rule
r2 at site S2 is similar. If ~1 and rz are concurrently trig-
gered and selected for consideration during distributed
rule processing for a transaction T, then the rule-task ex-
ecutors at sites Si and Sj may execute 1-1 and rz’s tasks
such that their rule actions are effectively interleaved: ~1
sees some but not all of ~2’s modifications, or vice-versa.
This behavior is not equivalent to any valid rule process-
ing sequence following T in the corresponding centralized
environment. Hence, an additional mechanism must be
used to enforce serializability of rule considerations.

We assume that standard two-phase locking is used
for transactions [BHG87,GR92] and that locks obtained
by a transaction T are shared by all of T’S tasks. We

repeat until step 1 produces no triggered rules
and all other sites also have completed:

0. if there are requested tasks, execute
zero or more

1. determine which rules are triggered (based
on the net effect of appropriate transitions
on local data)

2. choose a triggered rule r such that no other
triggered rule has higher priority

3. evaluate r’s condition
4. if true, execute r’s action

participate in distributed commit of the
transaction

Figure 3: Algorithm for distributed rule processing

call these standard-grade (or L) locks; they are used for
concurrency control with respect to other transactions.
We introduce an additional notion of rule-grade (or R)
locks. R locks are obtained by individual sites on local
or remote data during rule processing. R locks are not
shared across sites for the same transaction; e.g., if site
Si holds an exclusive R lock on a data item during rule
processing for transaction T, then site Sj cannot con-
currently hold a shared or exclusive R lock on that data
item for any transaction (including T).

During rule processing at each site Si, consideration
of each selected rule r follows its own two-phase lock-
ing protocol using rule-grade locks (as well as standard
locking to exclude other transactions). That is, during
evaluation of r’s condition and execution of r’s act,iion, in
addition to the usual accumulation of L locks, .5i must
obtain corresponding R locks on the same data items.
(Note that if an L lock is already held, the correspond-
ing R lock still must be obtained.) When consideration
of r is complete, all accumulated R locks are released.4

Deadlock based on R lock requests can occur. Such
deadlocks can be broken by backing up one site Si par-
ticipating in the deadlock to step 0 in its rule processing
loop (recall Figure 3), including release of R locks as ap-
propriate. Site Si can then choose a different task to
execute or rule to consider, or it can try the same task
or rule again. Backing up and choosing a different task
or rule may be a useful strategy when a lock conflict is
encountered even if deadlock is not present: with some
extra bookkeeping, task and rule selection coupled with
backup techniques can try to minimize lock waiting time
as well as minimize the possibility of deadlock.

3.1.3 Correctness
Recall our assumptions: rules can read or modify re-

mote data, there are no priorities between rules at dif-
ferent sites, and rule processing does not begin for a
distributed transaction until all of its tasks have com-
pleted. The following theorem shows that, under these

4 As an optimization, the release of R locks on remote data
can sometimes be “piggy-backed” onto remote task execu-
tion. Note also that we are assuming the existence of a reli-
able distributed lock manager.

343

assumptions, the rule-task executor and locking scheme
described above guarantee correct distributed rule pro-
cessing.

Theorem 3.1 (Multisite Rules) Let T be a transac-
tion and assume that the effect of T’s distributed tasks
is equivalent to what T would have produced on the cor-
responding centralized database. Any behavior of dis-
tributed rule processing following T’s tasks is equivalent
to some valid behavior of centralized rule processing fol-
lowing T on the corresponding centralized database.

Proof: Omitted due to space constraints; see [CW92].

3.2 Autonomous Start

In some distributed database environments, each user
transaction is decomposed into subtransactions, and each
site takes responsibility for running one subtransaction.
Subtransactions primarily manipulate tables at their lo-
cal sites, but also may manipulate tables at remote sites.
In these environments, it often is reasonable to allow rule
processing to begin at each site as soon as its subtrans-
action has finished. This avoids explicit coordination
to initiate rule processing (eliminating message-passing
overhead) and may result in more parallelism. However,
additional mechanisms are needed in this case to ensure
the correctness of distributed rule processing.

In a distributed database environment with sites
Sr , S2, . . . , S,, each user transaction T is divided into
n subtransactions, Tl , T2, . . . , T,. Let subtransaction Ti
run at site S’i, 1 5 i < n. As previously, we say that each
subtransaction Ti isdivided into a set of tasks, and each
task is executed on the tables at a single site. Let each
site begin rule processing as soon as it finishes executing
its subtransaction, independent of the other sites. Then
subtransaction Ti running at site S’i may execute a re-
mote task on the tables at site Sj even after rule process-
ing has begun at Sj. If this task reads tables at Sj then
it may incorrectly see the effects of Sj’s rule processing;
if this task modifies tables at S, then its modifications ?
may invalidate Sj’s rule processmg.

To guarantee that distribute rule processing is cor-
rect in this environment, we must ensure that each site’s
subtransaction logically precedes each other site’s rule
processing. (This is equivalent to ensuring that user
transaction T logically precedes rule processing in the
centralized environment, an obvious requirement.) Our
mechanisms for this are partially optimistic: in certain
cases they simply detect that a consistency violation
has occurred, and rule processing must be rolled back
and restarted.’ The mechanisms are based on a locking
scheme in which each site obtains special locks on data
during subtransaction execution that may conflict with
special locks held by other sites during rule processing.
In addition, each site obtains special table-level locks
during rule processing to ensure that rule selection and
transition tables are correct. This locking scheme may

‘Hence, consistency violations can effectively cause Au-
tonomous Start to degenerate to No Autonomous Start, which
probably is the desired behavior in this case.

be used alone (Paradigm 3 in the lattice of Figure 2) or
together with the rule-task executors and locking scheme
of Section 3.1.2 (Paradigm 5 in the lattice).

3.2.1 Locking Scheme

We introduce two new types of locks: transaction-
grade (or T) locks, and saved-rule-grade (or SR) locks.
Intuitively, each site obtains T locks throughout sub-
transaction execution and SR locks throughout rule pro-
cessing; T and SR locks on the same data items are in-
compatible across sites, allowing the detection of incon-
sistent access to data with respect to subtransactions
and rule processing. In more detail, T locks are ob-
tained by individual sites on local or remote data during
subtransaction execution (along with the usual accumu-
lation of L locks). Each site releases its T locks when
it finishes its subtransaction, before rule processing be-
gins. SR locks are obtained by individual sites on local
or remote data during rule processing (along with L and
possibly R locks). Unlike R locks, SR locks are accumu-
lated for the duration of rule processing and released at
final commit.

T locks do not conflict with each other across sites,
nor do SR locks. SR locks do, however, conflict with T
locks across sites. That is, site Si must wait to obtain
an SR lock on a data item if another site Sj holds a con-
flicting T lock on the same item. This correctly forces
Si’s rule processing to logically follow Sj’s subtransac-
tion. Now suppose site Si requests a T lock on a data
item while another site Sj holds a conflicting SR lock
on the same item. Then Sj’s rule processing has already
logically preceded Si’s subtransaction, and a consistency
violation has occurred. In this case, all sites already pro-
cessing rules must be rolled back to the start of their rule
processing (releasing SR locks as appropriate) and rule
processing is restarted.6

One final mechanism is needed to ensure correct rule
processing. Suppose that, during rule processing at site
Si, a rule r is selected for consideration, and suppose a
subtransaction running at another site Sj subsequently
modifies the table at Si whose changes trigger r. Our
scheme does not guarantee a lock conflict in this case.
However, Sj’s subtransaction may not logically precede
Si’s rule processing: if Sj’s subtransaction actually pre-
ceded Si’s rule processing, it could affect the value of r’s
transition tables or even “untrigger” rule T.~ As a second
example, again consider rule r selected for consideration
at site Si, and suppose a subtransaction running at site
Sj subsequently modifies a table at Si whose changes
trigger a rule T’ with higher priority than r. Again, our

6As an optimization in some cases, such as when there are
No Multisite Rules, rule processing need not be rolled back
at every site but only at the site holding the conflicting SR
lock.

‘A rule is “untriggered” if it is triggered at some point dur-
ing rule processing but not chosen for consideration, then sub-
sequently no longer triggered because all triggering changes
were undone. (Reca.ll from Section 2 that rules consider the
net effect of multiple operations.)

344

If conflict L at Sj T at Sj R at Sj SR at Sj Any at another transaction
L at Si OK OK OK OK (1)
T at Si OK OK OK (2) OK
R at Si OK OK (3) OK OK
SRatSi OK (4) OK OK OK

(1) S; waits for lock to be released by other transaction
(2) Consistency violation-roll back rule processing
(3) Si waits for lock to be released by other site or backs up and tm’es a different task or rule
(4) Si waits for lock to be released by other site or backs up and tn’es a different rule

Figure 4: Summary of special lock types

scheme does not guarantee a lock conflict, but Sj’s sub-
transaction may not logically precede 5’;‘s rule process-
ing: if Sj’s subtransaction actually preceded Si’s rule
processing, rule r may not be eligible for consideration.

To solve these problems, during rule processing at each
site Si, before selecting a rule r for consideration, Si ob-
tains a table-level shared SR lock on the table whose
changes trigger r and on all tables whose changes trig-
ger rules with higher priority than r (recall that we are
still assuming No Intersite Priorities). This ensures that
if other sites’ subtransactions subsequently try to mod-
ify the table whose changes triggered r, or subsequently
try to modify a table whose changes trigger a rule with
higher priority than T, then a consistency violation is de-
tected. This approach is somewhat conservative, since a
table-level shared lock prevents all modification opera-
tions on the table (inserts, deletes, and updates), not
just the operations that trigger relevant rules. A varia-
tion of predicate locking [EGLT76] might be used here to
refine our approach; see Section 5.1.

In summary, each site Si must:

1. Obtain T locks on data during subtransaction ex-
ecution. If a conflicting SR lock is already held by
another site, then there is a consistency violation and
sites performing rule processing must be rolled back.

2. Obtain SR locks on data during rule processing. If a
conflicting T lock is already held, Si can wait for its
release or can back up and select a different rule to
consider.

3. Obtain table-level shared SR locks on the trigger ta-
bles for all rules selected for consideration and for
all rules with higher priority than rules selected for
consideration.

Note that deadlock based on T and SR lock requests
is not possible. A site requesting an SR lock may wait
for another site to release a conflicting T lock, but a
site requesting a T lock will not wait for another site
to release a conflicting SR lock; rather, a consistency
violation will occur. Hence, a cycle of waiting sites is
not possible. Also note that, as in Section 3.1.2, with
some extra bookkeeping rule selection can try to mini-
mize lock waiting time. This may be particularly useful
with respect to table-level SR locks.

3.2.2 Summary and Discussion of Special
Locks

Before proving the correctness of our locking mecha-
nisms for Autonomous Start, we summarize the special
lock types introduced in the previous section and in Sec-
tion 3.1.2. The behavior of these lock types with respect
to each other is given in Figure 4. The rows in the table
represent requests for locks by a site Si on behalf of a
transaction T. The columns represent locks held by an-
other site Sj on behalf of the same transaction T, or in
the case of the last column, any lock held on behalf of
another transaction. An “OK” entry indicates that lock
conflict is not possible, while numbered entries indicate
that conflict is possible with the resulting behavior de-
scribed below.

Since the Starburst database system is extensible at
all levels [HCL+SO], it is fairly straightforward in Star-
burst to introduce new special lock types such as those
suggested here [RicSl]. Notice, however, that whenever
a site obtains a T lock on a data item, it also obtains
an L lock on that item. In Starburst, and perhaps in
other systems, it is possible and may be more efficient
to implement T locks as a special mode of L lock: in-
stead of obtaining T locks, a site can obtain L locks in
Yransaction” mode during execution of its subtransac-
tion, then downgrade the locks to “normal” mode before
rule processing. Similarly, if both Multisite Rules and
Autonomous Start are used, then whenever a site ob-
tains an R lock on a data item, it also obtains an SR
lock on that item. Hence R locks might be implemented
as a special mode of SR locks. This approach reduces
locking to at most two types, each with at most two
modes.

3.2.3 Correctness

The following theorem shows that the locking scheme
of Section 3.2.1 ensures correct distributed rule process-
ing even if some sites begin processing rules while other
sites are still executing subtransactions.

Theorem 3.2 (Autonomous Start) Let T be a
transaction and Tl, . . , T, its distributed subtransac-
tions. Assume that the effect of Tl, . . , T, is equivalent
to what T would have produced on the corresponding
centralized database. Then Tl, . . . , T,, along with any
behavior of distributed rule processing is equivalent to

345

T along with some valid behavior of centralized rule pro-
cessing on the corresponding centralized database.

Proof: Omitted due to space constraints; see [CWg2].

3.3 Intersite Priorities

So far we have assumed that priorities exist only between
rules at the same site. This clearly is a desirable situa-
tion, since it gives maximum autonomy and parallelism,
but for some applications intersite priorities may be use-
ful or necessary. Our mechanisms for allowing intersite
priorities combine additional locking (using the special
lock types already introduced) with some communica-
tion between sites. We first consider Paradigm 4 in the
lattice of Figure 2, in which there are Multisite Rules
but No Autonomous Start. We then slightly modify the
mechanisms to allow Autonomous Start (Paradigm 6).

3.3.1 Without Autonomous Start

In a distributed database environment with sites
Si, Sz, , S,, consider rule processing at a site Si. Sup-
pose there is a triggered rule ~1 at Si such that a rule
rz at another site Sj has higher priority than ~1. In the
corresponding centralized environment, ~1 may be se-
lected for consideration only if ~2 is not triggered at the
same time. In the distributed environment, since there
is concurrency in rule processing, if r1 is to be selected
for consideration then not only must we ensure that ~2

is not triggered at the same time, we also must ensure
that rz cannot become triggered during ~1’s considera-
tion: otherwise ~1 and ~2 may logically be triggered at
the same time, and ~1’s consideration may incorrectly
logically precede 72’s.

Site Si can ensure that rule ~2 is not triggered at site
Sj by communicating with Sj and, if necessary, by wait-
ing for ~2 to no longer be triggered at Sj. To ensure
that ~2 cannot become triggered during ~1’s considera-
tion, site S; obtains a table-level shared R lock on the
table at Sj whose changes trigger ~2. (Recall that we are
assuming Multiszte Rules and No Autonomous Start, so
all sites are processing rules at this point, and all sites
are obtaining R locks during their rule considerations.)
S; releases the table-level R lock when it completes con-
sideration of rule r. (As in Section 3.2.1, table-level locks
are somewhat conservative here; see Section 5.1.)

Hence, before site Si selects a rule T for consideration,
it performs the following protocol:

for each rule I-’ at a remote site Sj such that r'
has higher priority than r:

A. obtain a table-level shared R lock on the
table at Sj whose changes trigger r ’

B. ensure that (or wait until) r’ is not
triggered at Sj

Step A in this protocol requires communication with site
Sj, and all sites must be prepared to participate in such
communications. This is reflected in two additional steps
in the rule-task executor (Figure 3). First, after step 1,
each site receives and responds to inquiries about which
rules are triggered at that site. Second, when a site com-

pletes consideration of a rule T, it notifies any sites that
are waiting that T is no longer triggered. The correctness
of the latter step is worth explaining: Suppose site Sj’s
rule-task executor receives an inquiry from site Si asking
whether a rule T is triggered, and suppose T is triggered
at Sj. If Si waits for T to no longer be triggered, then
T cannot trigger itself during its consideration because
Si holds a table-level R lock on T’S trigger table. (Dead-
lock clearly is possible due to this behavior but is not a
significant problem, as explained below.) Consequently,
after considering rule T, Sj knows that r is no longer
triggered.

This protocol guarantees that, for the duration of rule
T’S selection and consideration, no higher priority rules at
other sites are or can become triggered. The cost to guar-
antee this is the possible waiting time to obtain locks,
communication with other sites to determine whether
rules are triggered, and the possible waiting time for
rules to no longer be triggered at other sites.

This protocol is only necessary for considering rules
that have lower priority than rules at other sites; all
other rules can be considered as usual.g Furthermore,
when several rules are eligible for consideration, the rule-
task executor can select a rule based on the existence of
intersite priorities, the availability of locks, and the in-
formation it receives about triggered rules at other sites.
One further optimization is that when a site S receives
an inquiry about whether a given rule T is triggered, if r
is indeed triggered then S can select it for consideration
as soon as possible.

Deadlock based on the R lock requests in this protocol
is possible, but such a deadlock can always be broken
by one site choosing a different rule to select-no rolling
back is necessary.g A “true deadlock”, in which there are
no alternative rules to select at each site participating in
the deadlock, is only possible in the presence of cyclic
rule priorities, which are not allowed.

3.3.2 With Autonomous Start

Now suppose Autonomous Start is used, so some sites
may be processing rules while other sites are still exe-
cuting subtransactions. In this case, during step 1 of the
protocol in the preceding section, a table-level shared SR
lock must be obtained along with the R lock. This en-
sures that, with respect to triggering remote rules that
have higher priority than rules at Si, all other sites’ sub-
transactions logically precede Si’s rule processing (recall
Section 3.2.1). Also note in this paradigm that sites may
receive inquiries about whether rules are triggered while
they are still executing their subtransactions. Until rule

‘Recall from Section 2, however, that rule priorities are
transitive. So, for example, if a rule 71 at site S1 is specified
to have lower priority than a rule 72 at site Sz, then 11 also
has lower priority than all other rules at Sa or elsewhere with
higher priority than 72. Consequently, intersite priorities, as
well as local priorities in the presence of intersite priorities,
must be specified with care.

‘In fact, rule selection algorithms based on static proper-
ties of rule ordering can prevent deadlock entirely.

346

processing begins, these inquiries can be answered nega-
tively; any inconsistency due to a subtransaction trigger-
ing higher priority rules will be detected by the locking
mechanisms.

3.3.3 Correctness

To prove the correctness of our mechanisms for inter-
site rule priorities, we modify the proofs for Multisite
Rules Theorem 3.1 and Autonomous Start Theorem 3.2,
eliminating the assumption in these proofs that there are
no priorities between rules at different sites.

Theorem 3.3 (Intersite Priorities without Auto-
nomous Start) When there are Multisite Rules but No
Autonomous Start, the protocol in Section 3.3.1 guaran-
tees correct distributed rule processing even in the pres-
ence of Intersite Prioritres.

Proof: Omitted due to space constraints; see [CW92].

Theorem 3.4 (Intersite Priorities with Autono-
mous Start) When there are Multisite Rules and Au-
tonomous Start, the modified protocol in Section 3.3.2
guarantees correct distributed rule processing even in the
presence of Intersite Priorities.

Proof: Omitted due to space constraints; see [CW92].

4 Parallel Environments

We consider parallel relational database environments
in which the data resides at some number of separate
nodes. Each table in the database may be horizon-
tally partitioned (or fragmented) across multiple nodes,
so that some rows of the table reside at one node while
other rows reside at other nodes [DGS+SO,OV91]; we
assume that data is not replicated across nodes. Hor-
izontal partitioning usually is defined by a set of mu-
tually exclusive covering predicates. Based on the par-
titioning, user transactions are parallelized to execute
across multiple nodes. The typical requirement to pro-
vide (fragmentation) transparency is that the effect of
parallel transaction execution must be equivalent to the
effect of the original transaction on the corresponding
non-fragmented database.

As in distributed environments, we would like rule pro-
cessing to occur separately at each node, reponding to
the database changes at that node only. If rules are
triggered by changes to table fragments, then the mech-
anisms given in Section 3 for distributed environments
can be directly adapted for parallel environments. How-
ever, this provides no notion of transparency in rule def-
inition (since the rule definer must be aware of the frag-
mentation), and it forces rules to be revised if data is
repartitioned. To provide some transparency, we allow
rules to be defined that are triggered by changes to entire
tables, but these rules must satisfy certain criteria for
partitionability. Based on the fragmentation, each rule
is “partitioned” automatically into multiple rules that
reside at the appropriate nodes. Each partitioned rule
is triggered by, reads, and modifies only table fragments
at its own node. Based on the criteria for partitionabil-
ity, parallel rule processing using the partitioned rules is

provably equivalent to centralized rule processing using
the original rules on the corresponding non-fragmented
database.

Since partitioned rules do not read or modify remote
data, parallel rule processing for partitioned rules corre-
sponds to NO Multisite Rules and No Intersite Priorities
in our distributed environments; Autonomous Start may
be used if desired. (That is, we are considering parallel
versions of Paradigms 1 and 3 in the lattice of Figure 2.)
We note, however, that not all useful rules satisfy our
criteria for partitionability. For maximum flexibility but
at the expense of transparency, it may be preferable to
specify rules directly on table fragments, then apply the
appropriate mechanisms for any paradigm from Figure 2.

4.1 Partitionability

Let N1, Nz, . . , N, denote the n nodes in a parallel
database environment. Consider a rule r that is trig-
gered by, reads, and modifies tables tl, t2,. . ., tj. As
an initial requirement for partitionability, there must
be some group of nodes, call them Nr, Nz, . . . , Nk, over
which each table tl, t2,. . . , tj is fragmented. (That is,
tl, t2,. . , tj are fragmented over the same nodes.) In
practice, this is common for most rules and fragmenta-
tions. Rule r is partitioned as follows: For each node Ni,
1 5 i < k, create a rule ri from r by changing each table
reference t, in r to instead specify the fragment of table
t, that resides at node Ni. If the original rule r satisfies
our criteria for partitionability given below, then each
partitioned rule ri can be installed at its node Ni, and
parallel rule processing will be correct.

To specify the criteria for partitionability, we first in-
troduce some notation. Let table t, be rule r’s trigger
table, and suppose r is triggered and considered dur-
ing rule processing in the non-fragmented environment.
Let A denote the triggering changes to table t,, let C
denote the result of evaluating r’s condition, and let A
denote the effect of executing r’s action. (If r’s condition
is omitted then C = true.) In the fragmented environ-
ment, for a set A of changes to table t,, let Ai denote
the same set of changes projected onto the fragment of
t, that resides at node Ni. If a partitioned rule ri is
considered during rule processing at Ni, let Ci denote
the result of evaluating ri’s condition and let Ai denote
the effect of executing T;‘S action. Finally, let A 1 Ni de-
note the effect of r’s action on the table fragments that
reside at node Ni, and let @ denote an action with no
effect.

Definition 4.1 (Criteria for Partitionability)
Given any database state, any non-fragmented set of
changes A that trigger rule r, and the corresponding
sets of fragmented changes A,, . . . , Ak (that may trig-
ger rr,..., rk), the following four conditions must hold:

1. Partitionability of r’s action:

For all i, 1 5 i 5 Ic, A 1 Ni = Ai

That is, the effect of r’s action on the table fragments
that reside at node Ni is equivalent to the effect of
ri ‘S action at Ni

347

2.

3.

4.

D

Partitionability of r’s condition:

For all i, 1 5 i 2 k, Ci 3 C

That is, if TI’S condition is true at node Ni, then T’S
condition is true on the non-fragmented tables. (Con-
versely, if r’s condition is false on the non-fragmented
tables, then T;‘S condition is false at Ni.)
Not triggered implies no action:

For all i, 1 5 i 5 k, (Ai = 0)) 3 (Ai = @)

That is, if ri has no triggering changes then its action
would have no effect.
False condition implies no action:

For all i, 1 < i 5 k, (Ci = false) =G- (Ai = a)

That is, if T~‘S condition is false then its action would
have no effect.

Further intuition for these criteria is deferred until the
next section, where we give examples of rules that do
and do not satisfy the four conditions. In practice, we
expect the criteria to be satisfied by many, but not all,
fragmentations and rule applications.

The criteria in Definition 4.1 are dynamic properties
of rule behavior based on arbitrary database states and
triggering changes; hence, they can be quite difficult to
verify for complex rules. Many rules obviously do sat-
isfy the criteria, however, as illustrated by our simple
examples below. Not included in this paper, but as very
important future work, we plan to identify static proper-
ties of rules that guarantee the criteria. This will allow
automatic analysis of rule partitionability, freeing the
rule definer from any knowledge of the database frag-
mentation.

Suppose now that the partitionability criteria are sat-
isfied for a set of rules TV, r2,. . , rk. Each rule is parti-
tioned into multiple rules, with one partitioned rule in-
stalled at each relevant node. Any user-defined priorities
between original rules are reflected between partitioned
rules at the same node. That is, if T= has higher priority
than ry, then at each node Ni with both a partitioned
rule r: and a partitioned rule rs, rule rt has higher pri-
ority than ry .

For correctness in this paradigm, it is necessary that
non-prioritized rules are selected for consideration in the
same order across sites. That is, suppose rules rZ and
ry have no relative priority, and let rz and Ty both have
partitioned rules at nodes Ni and Nj. Then Tz’S par-
titioned rule should be selected for consideration before
ry’s partitioned rule when both are triggered at node Ni
if and only if the same is true at node Nj. This can be
achieved by using any valid total ordering of the rules
consistently across sites. Although this may appear to
be a strong requirement, many current database rule sys-
tems perform rule selection in this way [ACLSl].

Finally, observe that we are assuming a scenario in
which all desired rules satisfy the partitionability crite-
ria, hence the rules can be partitioned as described and
will behave correctly (as proven in Section 4.3). Some
applications, however, may require rules that are not

partitionable in this way. If so, such rules can be parti-
tioned “by hand” (by a knowledgeable designer) so they
specify table fragments rather than entire tables, but this
is at the loss of guaranteed equivalence between parallel
rule processing using the partitioned rules and central-
ized rule processing using the original rules.

4.2 Examples

In this section, we give eight examples, one rule that sat-
isfies and one that does not satisfy each of the four crite-
ria in Definition 4.1 of partitionability. We assume some
familiarity with SQL [IBM88], and we ask the reader
to recall the syntax for Starburst production rules from
Section 2. We consider a standard database of employee
information stored in a table called emp; we also assume
there is a copy of table emp called emp-copy, and a ta-
ble high-paid of highly paid employees. For each of the
four rules used to illustrate non-partitionability, notice
that the rule meanwhile does satisfy the other three cri-
teria for partitionability.

Example 4.1 The following rule satisfies Criterion 1,
A 1 Ni = Ai, assuming tables emp and emp-copy are
partitioned based on the same predicate:

create rule r on emp
vhen inserted
then insert into emp-copy

(select * from inserted)

Example 4.2 The rule in Example 4.1 does not satisfy
Criterion 1 if tables emp and emp-copy are partitioned
based on different predicates, since an employee inserted
into a fragment of emp at one node might belong to a
fragment of emp-copy at a different node.

Example 4.3 The following rule satisfies Criterion 2,
ci =2 c:

create rule r on emp
vhen inserted
if exists

(select * from inserted where salary > 50)
then . . .

Example 4.4 The following rule does not satisfy Cri-
terion 2 since the not exists condition may be true for
a fragment of emp at one node but false in the non-
fragmented database.

create rule r on emp
vhen inserted
if not exists

(select * from inserted where salary > 50)
then . . .

Example 4.5 The rule in Example 4.1 satisfies Crite-
rion 3, (Ai = 0) j (Ai = Q).

Example 4.6 The following rule does not satisfy Crite-
rion 3 since salaries should still be increased in fragments
of emp with no deletions:

create rule r on emp
vhen deleted
then update emp set sal = sal + 10

348

Example 4.7 The following rule satisfies Criterion 4,
(Ci = false) 3 (Ai = a):

create rule r on emp
when inserted
if exists

(select * from inserted where salary > 50)
then insert into high-paid

(select * from inserted where salary > 50)

Example 4.8 The following rule does not satisfy Cri-
terion 4 since there may be inserted employees with
salary > 25 in fragments of emp for which there are
no inserted employees with salary > 50:

create rule r on emp
nhen inserted
if exists

(select * from inserted where salary > 50)
then update emp set sal = sal + 10

where emp.id in
(select id from inserted where salary > 25)

In these examples, and in general, we believe that rules
satisfying the partitionability criteria are considerably
more intuitive and realistic than rules not satisfying
these criteria.

4.3 Correctness

For brevity, the proof of correctness assumes No Au-
tonomous Start, i.e. it uses Paradigm 1 in the lattice of
Figure 2. From the proof, it is clear that our mecha-
nisms for Autonomous Start (Section 3.2) can be added
without compromising correctness.

Theorem 4.9 (Parallel Rule Processing) Consider
any set of rules such that all rules satisfy the part,ition-
ability criteria in Definition 4.1, and let each rule be
partitioned as described above. Let T be a transaction
and assume that the effect of T’s parallelized execution
is equivalent to what T would have produced on the cor-
responding non-fragmented database. Any behavior of
parallel rule processing following T’s parallelized execu-
tion is equivalent to some valid behavior of centralized
rule processing following T on the corresponding non-
fragmented database.

Proof: Omitted due to space constraints; see [CW92].

5 Conclusions and Future Work

We have described a number of mechanisms that allow
production rule processing to occur separately at each
site or node in a parallel or distributed database envi-
ronment. Our mechanisms cover a variety of different
restrictions, assumptions: and environments; in ail cases,
parallel or distributed rule processing is provably equiv-
alent to rule processing in the corresponding centralized
environment. We believe this work establishes many new
ideas and useful initial frameworks for parallel and dis-
tributed rule processing. There is, however, substan-
tially more research do be done, both in adapting the
frameworks to particular rule languages and database

environments, and in improving and extending the mech-
anisms in this paper. The remainder of this section in-
troduces a number of topics we plan to consider in the
future.

5.1 Improvements to our mechanisms

More refined locking: Several of our mechanisms rely on
setting table-level shared locks to ensure that rules can-
not become triggered, or that transition tables remain
consistent for triggered rules; see Sections 3.2.1 and 3.3.
Although these mechanisms do work correctly, they may
unnecessarily inhibit parallelism. As an example, sup-
pose a table-level shared lock is set on a table t, pre-
venting all modifications to t. If the lock was set only
to prevent a rule from being triggered by insertions into
t, then deletes and updates on t could still be allowed.
A different notion of locking from the standard shared
and exclusive locks might be used here-one in which it
is possible to lock specific operations on tables.

Optimizing selection and backup: For a number of our
mechanisms, we have suggested that rule selection, task
selection, and backup techniques might be used to mini-
mize lock waiting time and consequently maximize par-
allelism. Clearly, there is interesting work in develop-
ing concrete algorithms for this. A related issue to be
addressed is fairness in task selection, as mentioned in
Section 3.1.1.

5.2 Extensions to our mechanisms

Determining partitionability: We plan to develop a static
analysis framework that can take a rule and a descrip-
tion of horizontal partitioning of the tables referenced
in the rule (specified, e.g., as a set of predicates), then
determine automatically whether the rule satisfies the
partitionability criteria of Definition 4.1. Such methods
are likely to be conservative or example-based, but even
this could prove to be quite useful in practice.

Other notions of partitionability: In Section 4.1, we con-
sidered a notion of rule partitionability in which par-
titioned rules are triggered by, read, and modify table
fragments at a single node. There is a different possible
notion of partitionability, in which partitioned rules are
triggered by table fragments at a single node, but in their
conditions and actions reference entire tables. (Condi-
tions and actions are then parallelized by the query opti-
mizer.) Rule processing in this case would use our mech-
anisms for Multisite Rules. We plan to develop criteria
for this alternative notion of partitionability. It is in-
teresting to note that these criteria are not necessarily
weaker than our criteria in Definition 4.l-some rules
may be partitionable in our current scheme but not in
this scheme, and vice-versa.

Exploiting static rule properties: All of our mechanisms
in Section 3 are based on run-time behavior, such as
locking and communication protocols. Some previous
work on parallelizing OPS5 rule processing (recall Sec-
tion 1.1) has incorporated static properties of rules, e.g.

349

determining that certain rules cannot interfere so coor-
dination is not required. We similarly might be able to
statically identify such rules, then eliminate locking and
communication appropriately.

5.3 Other environments

Replication: We plan to develop mechanisms for rule
processing in parallel or distributed environments with
replicated tables or table fragments.

Vertical fragmentation: We plan to consider rule process-
ing in parallel or distributed environments where tables
are partitioned across sites or nodes by columns. This
might require additional mechanisms, or it might use a
notion of partitionability analogous to that used for hor-
izontal fragmentation in Section 4.

Other transaction paradigms: Our mechanisms are based
on conventional atomic transactions; we would like to
extend our mechanisms to encompass newer distributed
transaction paradigms, such as long-lived transactions
with save points, compensating actions, etc.

5.4 Data organization based on rules

Some database rule applications are particularly rule-
intensive-rules are triggered frequently and rule pro-
cessing may be lengthy and complex, e.g. large-scale in-
ferencing systems. (In other rule applications, such as
traditional database applications using rules as moni-
tors, rules are triggered infrequently and rule processing
is relatively simple.) For rule-intensive applications in
parallel and distributed environments, it may be advis-
able for data organization to conform to rules (rather
than to predicted transactions) as suggested in [BKK87].
(In the ideal situation, of course, it can conform to both.)
In the parallel environment, tables might be fragmented
to ensure that rules are partitionable; in the distributed
environment, tables might be located so that rules need
not read or modify tables at remote sites and intersite
priorities are not required. We are interested in under-
standing design criteria and developing methodologies
for such environments.

5.5 Implementation and experimentation

Finally, to fully develop and accurately assess our mecha-
nisms, it is necessary to implement and experiment with
them in a running system prototype.

Acknowledgements

Thanks to Alex Aiken and Laura Haas for helpful com-
ments on an initial draft and to Mike Olson and Mike
Stonebraker for useful observations on rollback.

References

[ACLSl] R. Agrawal, R.J. Cochrane, and B. Lind-
say. On maintaining priorities in a produc-
tion rule system. In Proceedings of the Sev-
enteenth International Conference on Very
Large Data Bases, pages 479-487, Barcelona,
Spain, September 1991.

[BFKM85] L. Brownston, R. Farrell, E. Kant, and
N. Martin. Programming Expert Systems in
OPS5: An Introduction to Rule-Based Pro-
gramming. Addison-Wesley, Reading, Mas-
sachusetts, 1985.

[BHG87]

[BKK87]

[CW92]

[DGS+SO]

[EGLT76]

[GJ91]

[GR92]

[Gup861

[Han891

P.A. Bernstein, V. Hadzilacos, and N. Good-
man. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Read-
ing, Massachusetts, 1987.

J. Bein, R. King, and N. Kamel. MOBY: An
architecture for distributed expert database
systems. In Proceedings of the Thirteenth In-
ternational Conference on Very Large Data
Bases, pages 13-20, Brighton, England,
September 1987.

S. Ceri and J. Widom. Production rules
in parallel and distributed database environ-
ments. IBM Research Report RJ 8564, IBM
Almaden Research Center, January 1992.

D. Dewitt, S. Ghandeharizadeh, D. Schnei-
der, A. Bricker, H.-I. Hsiao, and R. Ras-
mussen. The Gamma database machine
project. IEEE Transactions on Knowledge
and Data Engineering, 2(l), March 1990.

K.P. Eswaran, J.N. Gray, R.A. Lorie, and
I.L. Traiger. The notions of consistency and
predicate locks in a database system. Com-
munications of the ACM, 19(11):624-633,
November 1976.

N. Gehani and H.V. Jagadish. Ode as an
active database: Constraints and triggers. In
Proceedings of the Seventeenth International
Conference on Very Large Data Bases, pages
327-336, Barcelona, Spain, September 1991.

J. Gray and A. Reuter. Transaction Pro-
cessing: Concepts and Techniques. Morgan
Kaufman, San Mateo, California, 1992.

A. Gupta. Parallelism in Production Sys-
tems. PhD thesis, College of Computer
Science, Carnegie-Mellon University, Pitts-
burgh, Pennsylvania, 1986.

E.N. Hanson. An initial report on the design
of Ariel: A DBMS with an integrated pro-
duction rule system. SIGMOD Record, Spe-
cial Issue on Rule Management and Process-
ing in Expert Database Systems, 18(3):12-19,
September 1989.

350

[HCL+SO] L. Haas, W. Chang, G.M. Lohman,
J. McPherson, P.F. -Wilms, G. Lapis;
B. Lindsay, H. Pirahesh, M. Carey, and
E. Shekita. Starburst mid-flight: As the dust
clears. IEEE Transactions on Knowledge
and Data Engineerzng, 2(1):143-160, March
1990.

[HSL92]

[HW92]

[IBM881

[MD891

[OV91]

[Pas891

[RicSl]

[RSDSl]

[SDLT86]

[Se1891

I.-M. Hsu, M. Singhal, and M.T. Liu. Dis-
tributed rule processing in active databases.
In Proceedings of the Eighth International
Conference on Data Engineering, Tempe,
Arizona, February 1992.

E.N. Hanson and J. Widom. Rule processing
in active database systems. In L. Delcambre
and F. Petry, editors, Advances in Databases
and Artificial Intelligence. JAI Press, Green-
wich, Connecticut, 1992.

IBM Form Number SC26-4348-1. IBM
Systems Application Architecture, Common
Programming Interface: Database Reference,
October 1988.

D.R. McCarthy and U. Dayal. The architec-
ture of an active database management sys-
tem. In Proceedings of the ACM SIGMOD
International Conference on Management of
Data, pages 215-224, Portland, Oregon, May
1989.

T. Ozsu and P. Valduriez. Principles of Dis-
tributed Database Systems. Prentice-Hall,
Englewood Cliffs, New Jersey, 1991.

A.J. Pasik. A Methodology for Program-
ming Production Systems and its Implica-
tions on Parallelism. PhD thesis, Depart-
ment of Computer Science, Columbia Uni-
versity, New York, 1989.

J.E. Richardson. LCK: The lock manager.
Internal document, IBM Almaden Research
Center, San Jose, California, January 1991.

L. Raschid, T. Sellis, and A. Delis. On the
concurrent execution of production rules in
a database implementation. Technical Re-
port CS-TR-2751, Department of Computer
Science, University of Maryland, September
1991.

M.I. Schor, T.P. Daly, H.S. Lee, and B.R.
Tibbitts. Advances in RETE pattern match-
ing. In Proceedings of the Fifth National
Conference on Artificial Intelligence, pages
226-232, Philadelphia, Pennsylvania, Au-
gust 1986.

T. Sellis, editor. Special Issue on Rule Man-
agement and Processing in Expert Database
Systems, SIGMOD Record 18(3), September
1989.

[SG90]

[SHTSO]

[SJGPSO]

[SM84]

[TTC+SO]

[WCLSl]

[WF90]

J.G. Schmolze and S. Goel. A parallel asyn-
chronous distributed production system. In
Proceedings of the AAAI National Confer-
ence on Artificial Intelligence, Boston, Mas-
sachusetts, 1990.

J. Srivastava, K.-W. Hwang, and J.S.E. Tan.
Parallelism in database production systems.
In Proceedings of the Sixth International
Conference on Data Engineering, pages 121-
128, Los Angeles, California, February 1990.

M. Stonebraker, A. Jhingran, J. Goh, and
S. Potamianos. On rules, procedures,
caching and views in data base systems. In
Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data,
pages 281-290, Atlantic City, New Jersey,
May 1990.

S.J. Stolfo and D. Miranker. DADO: A paral-
lel processor for expert systems. In Proceed-
ings of the IEEE International Conference
on Parallel Processing, 1984.

G. Thomas, G.R. Thompson, C.-W. Chung,
E. Barkmeyer, F. Carter, M. Templeton,
S. Fox, and B. Hartman. Heterogeneous
distributed database systems for production
use. ACM Computing Surveys, 22(3):237-
266, September 1990.

J. Widom, R.J. Cochrane, and B.G. Lindsay.
Implementing set-oriented production rules
as an extension to Starburst. In Proceedings
of the Seventeenth International Conference
on Very Large Data Bases, pages 275-285,
Barcelona, Spain, September 1991.

J. Widom and S.J. Finkelstein. Set-oriented
production rules in relational database sys-
tems. In Proceedings of the ACM SIGMOD
International Conference on Management of
Data, pages 259-270, Atlantic City, New Jer-
sey, May 1990.

351

