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Abstract: Active database systems have rules (usually 
called triggers), consisting of an event that causes a 
condition to be evaluated, and if true, results in the 
execution of a predefined action. However, existing 
trigger languages have a few drawbacks. First, the 
proposed semantics do not take advantage of well 
understood and accepted formalisms developed for 
rule-based systems, and thereby do not capitalize on 
existing rule-based technology. Second, trigger 
languages are low-level languages. These languages 
require that the user provides all triggering conditions 
associated with rules. This makes difficult the 
specification of triggers and their maintenance. In this 
paper, we present an extension of a deductive database 
language, namely RDLl, towards active rules. By active, 
we mean rules that react to external events. Rules are 
expressed at a high level so that triggering conditions 
are derived from rules by the system. The semantics of 
our rule language is formally described by means of a 
partial fixpoint operator which encompasses the 
deductive database and active database paradigms. 
We also present an architecture in which the system 
responsible for detecting events issued by application 
programs and triggering rules, is front-ended to a 
relational DBMS. 
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1. Introduction 

Integrating rules within a DBMS has been the focus of 
important research on active database systems IHan89, 
SJGP90, WCL91, CBB+89]. A rule generally consists of 
an event that causes a condition to be evaluated, and if 
true, results in the execution of a predefined action. 
Events are modifications of the database, conditions 
correspond to database queries, and actions perform 
changes to the database. Sometimes the condition is 
omitted. Rules of this kind are often called triggers or 
Event Condition Action rules. They are powerful to 
express integrity constraints like: “the salary of an 

employee can only increase”, or “only those 
departments which have no employee can be deleted”. 

Existing trigger languages suffer from two main 
drawbacks. First, the semantics of an active database 
rule system is not well understood. Different rule 
system semantics have been proposed IWCL91, 
SJGP90, McD89, Han891 using descriptions ranging 
from natural language to pseudo-code procedures. A 
Petri-net model is used in IZB901 to formally compare 
the semantics of active database systems, but the 
model essentially concentrates on couplings between 
events and conditions and actions of rules. An 
imperative database programming language is used in 
[HJ91] to describe the semantics of rules in active 
database systems (e.g., Starburst). Nevertheless, most of 
the proposed semantics do not take advantage of well 
known and accepted formalisms developed for rule- 
based systems such as production systems in AI (e.g., 
OPSS), logic programming languages (e.g., Prolog), or 
deductive databases (Datalog-like languages). Hence, 
active database systems do not capitalize on existing 
rule-based technology (optimization techniques, 
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algorithms, programming environments, etc.) and 
important issues like: when should rules be fired ?, how 
should they be fired ?, how should their effects be 
combined ?, are not given a uniform and formal 
treatment. 

A second weakness of existing active database rule 
languages is that triggers are very similar to daemons or 
database procedures, as specified for instance in 
[Cod73], i.e., trigger languages are low-level languages. 
This makes difficult the specification of triggers and 
their maintenance. It is hard to have a global view of 
what tasks are being performed by a set of triggers, 
because a user-level rule (e.g., an integrity constraint) is 
chopped into many triggers. For instance, consider the 
two relations: 

Emp (name, salary, dept-no, emp-no) 

Dept (deptgo, mgr-no) 

The referential integrity constraint saying that: “every 
employee works in at least one department” will be 
specified by several rules respectively triggered by 
insertions into Emp, updates to Emp or Dept, and 
deletions from Deppt. 

Our starting point is that deductive database languages 
provide a good basis for defining an active database 
rule language. These languages have a simple and fairly 
well understood semantics, formally defined using 
fixpoint operators. They provide a formal basis to other 
rule-based languages like OPSS or Prolog. 
Implementation techniques have been developed in a 
database framework, including optimization algorithms 
(e.g., [SellS9]) Finally, various extensions of Datalog have 
been proposed to obtain powerful languages. Examples 
of deductive database systems are described in [NT89, 
KMS90, BF89, PDR911. 

Deduction rules can always be translated into triggers. 
One solution, described in [W91], is to materialize all 
intensional data defined by deduction rules, and specify 
triggers for maintaining these data whenever 
extensional data are updated. Practically, such 
simulation entails a clear space-time tradeoff. On the 
other hand, triggers cannot always be mapped into 
deduction rules. A major reason is that deductive 
database systems are not designed to manage events 
(like delete or update operations), and deduction rules 
cannot refer to the event’s effects. 

Our first contribution in this paper, is to extend a 
deductive database rule language, namely RDLl 
[KMS90], towards an active database rule language, 
thereby capitalizing on deductive database technology. 
As a result, our language offers three main features 

compared to existing trigger languages. First, rules are 
expressed at a higher level. For instance, an integrity 
constraint does not need to be decomposed into as 
many triggers as the number of events that can violate it 
(a notable exception is Ariel [Han89], which also has this 
feature for static constraints). Second, the meaning of a 
set of rules is formally described by two distinct aspects: 
(i) the coupling between rules and events (including 
transaction boundaries), and (ii) the semantics of a set 
of rules, (on which database state are the rules executed 
?, how are they executed ?). The second aspect is 
common to both deductive and active database rule 
languages. Therefore, we take advantage of the 
formalisms developed within the framework of 
deductive databases to formally characterize rule 
application semantics. Finally, our rule language 
facilitates the integration of deduction rules with ache 
rules. By active rules, we mean rules that react to events. 
We provide a single uniform notion of rule and our rule 
semantics covers both the deductive database and 
active database paradigms. In particular, a set of rules 
whose evaluation is triggered by some events may use 
rules that deduce data in order to perform intermediate 
computations. 

The second contribution of this paper is to propose an 
architecture in which the system responsible for 
detecting events and triggering rules is tightly coupled 
with a relational DBMS. Most existing architectures for 
active database systems integrate a rule-based system 
within a DBMS (e.g., Postgres, Starburst, Alert). Our 
approach does not require any change to an existing 
DBMS. Rules, or more generally modules of rules, can 
be dynamically defined. A newly defined module is first 
compiled into an executable C/SQL procedure. It also 
yields an incremental compilation of an environment 
initialization procedure. These two procedure codes are 
then assembled together within a specific Toolbox. The 
resulting system, called Trigger Monitor, is activated 
whenever an application program is connecting to the 
database system. It analyzes the successive database 
commands issued by the application program and 
automatically triggers the evaluation of rules. This 
coupling approach has the advantage of being flexible, 
and portable on various kinds of DBMSs. However, it 
can be less efficient than the integrated one because it 
cannot take advantage of low-level system features 
provided by the DBMS. 

The paper is organized as follows. Sections 2 and 3 
respectively present the syntax and semantics of our 
rule language. In Section 4, we describe the process and 
functional architectures of the Trigger monitor. The 
Toolbox we have implemented at INRIA is then 
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described in Section 5. Comparisons with related work 
are reported in Section 6. The last section concludes. 

2. A Language for Active Rules 

In this section, we extend a deductive database 
language, namely RDLl IKMS901, towards a language 
that supports active rulesI. The syntax of rules has been 
augmented so that rules can refer to events, and 
couplings between rules and events can be specified. 
We first specify our meaning of events and introduce 
the notion of delta relations. Then, the couplings 
between rules and events is defined. Finally, the general 
syntax of rules is given and illustrated. 

2.1 Events and Delta Relations. 

Throughout this paper, we shall consider that rule 
processing is part of the execution of a given transaction 
which can either be embedded into an application 
program or interactively produced by a user. That is, 
rules are activated and executed as a result of 
operations issued by a transaction. We view a 
transaction as a stream of operations consisting of SQL 
commands (like select, insert, delete, commit, . ..) and 
non SQL database commands. 

Most existing trigger languages require rules to be 
explicitely attached to events for which they can react, 
using a specific statement (e.g., “WHEN <events> . ..‘I) 
preceeding the specification of the rule. In our 
language, triggering events need not be specified by the 
user when defining rules. Instead, they are implicit in 
rule definitions and can be derived by the system at rule 
compile-time. We simply provide system-defined 
relations, called delta relations, that enable to refer to 
the effect of database events within rules’s conditions. 
These relations record the net effects of database 
changes performed by SQL commands: insert, update, 
delete. Similar kind of relations are used in [WF90, 
HJ91, RCBB891. We follow a syntax close to [WCL91] to 
denote delta relations. 

l Delta relations: If T (Al,...,An) is a relation schema, 
then the delta relations associated with T have the 
following schemas: 

inserted-T (Al,...,An) 

deleted-T (Al,...,An) 
updakd-T (oldAl, . . . . oldAn, Al ,..., An) 

1 We shall use the words actim rule instead of the word 
trigger to denote a rule in our active database system. 

Intuitively, inserted-T (Al,...,An) refers to the tuples 
currently inserted into T, deleted-T (Al,...,An) refers to 
the tuples currently deleted from T, and updated-T 
(oldAl, . . . . oldAn, Al,...,An) refers to the tuples currently 
updated in T with their new value. 

l Properties of Delta relations: We impose that delta 
relations satisfy the following: 

1. inserted-T A deleted-T = 0; 

2. deleted-T n TbldAl, . . . . oldAn (updated3 = 0, 

deleted-T n l7~1, . . . . h (updated-T) = 0; 

3. inserted-T n lI~l, . . . . h (updated-T) = 0, and 

in=ted n TbldAl, . . . . oldAn (updated-T) = 0; 
4. The current vahe of T is defined to be: 

T - [deleted-T u TbldAl,...,oldAn (updated-T)] 

U [inserted-T u HAI ,..., An (Updated-T)] 
n u 

2.2 Coupling Rules with Events and 
Transaction Boundaries 

As noted in [ZB90], a crucial point in the specification of 
triggers, is to express how rule execution relates to 
events, including those that mark the transaction 
boundaries (commit, exit, rollback). Different coupling 
modes can be envisaged by stating when the condition 
(or the action) of a rule is evaluated relative to the 
transaction in which the triggering event is signaled. 

A single coupling mode is defined in our rule system. It 
specifies if a rule must be evaluated either when the 
triggering event occurs or when the transaction reaches 
a commit point. In the former case, we say that the 
evaluation is immediate relative to the event that 
triggered it, otherwise we say that the evaluation of the 
rule is deferred until the end of the transaction. We do 
not provide means to specify a coupling mode in which 
rule evaluation is decoupled from the triggering 
transaction as in Hipac (see [ZB9Ol). 

Both immediate and deferred rules are useful. For 
instance, immediate rules enable to detect an 
inconsistent intermediate database state as soon as it 
occurs. An immediate decision can be taken, like 
aborting the transaction, or issuing some compensating 
actions in order to ensure database consistency. 
Typically, the rule saying that: “the salary of an 
employee cannot decrease” can be checked 
immediately. Other rules need to be checked at the end 
of the transaction because they are interested in the 
final database state reached by the transaction 
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(intermediate inconsistent states w.r.t the rule are 
allowed). The referential integrity constraint between 
EMP and DEPT mentioned before is an example of 
deferred rule. Deferred rules can also be checked 
before the end of the transaction at infegrify 
checkpoints (also called assertion points in [ANSIgO]). 
We introduce a “CHECKPOINT” command that can be 
used within a transaction to trigger the evaluation of all 
deferred rules. 

2.3 General Syntax of Rules 

The syntax of our rules is based on that of RDLl 
[KMS90], and incorporates the procedural extensions 
described in [KM91]. A rule consists of an if-then 
statement, where the if-part (also called condition) is a 
tuple relational calculus expression. The then-part (also 
called action) of the rule is a set of elementary actions, 
each being either a database update, a variable 
assignment or a procedural call (which does not involve 
any database update). 

Rules are encapsulated within rule modules. A module 
contains a relation declaration section which defines 
input, output, base, and deduced relations. Base 
relations correspond to relations that are physically 
stored in the database. Input relations can be passed as 
arguments to a module which produces a set of Oupuf 
relations as a result. Input and output relations are 
always extensional. Deduced relations are temporary 
(i.e., intermediate) relations computed by a module 
during execution. We refer to [KMS90] and (KM911 for a 
more detailed presentation of the rule language. 

To support the declaration of active rules, the RDLl 
syntax is enriched in two ways. First, the coupling mode, 
immediate or deferred, can be specified at the module 
level or at the individual rule level. Two key words, 
IMMEDIATE and DEFERRED, can be used just after 
the key word “rules”, or the key-word “is”, as shown in 
the examples below. Second, system-defined relations 
can be referenced in the condition part of rules. 

We now present examples of rule modules and give 
their intuitive semantics. 

Example 2.1: The module below defines a referential 
integrity constraint between relations EMP and DEPT. 

module ref-constraint-emp-dept; 
base EMP (name string, emp-no integer, dept-no 

integer, salary integer); 
DEPT (mgr-no integer, deptgo integer); 

rules 
r is DEFERRED 

if EMP (x) and not exists y in DEPT (x.dept-no = 
y.dept-no) then - EMP (x); 
end module 

In the above rule, tuple variable x ranges over relation 
EMP, and y is a quantified variable ranging over relation 
DEPT. Intuitively, this module defines an active rule 
that is activated whenever the EMP or DEPT relations 
are modified. Here, EMP and DEPT always refer to the 
current values of the employee and department 
relations. Thus, if an employee with no department is 
inserted it will be rejected (i.e., deleted from the set of 
employees to be inserted). If a department that has 
employees working in it is deleted then all its employees 
will be deleted. As said before, triggering events are not 
specified by the user but are rather implicit. A crucial 
point is to determine how triggering events (e.g., insert 
to EMP, delete from DEPT) can be derived from rule 
conditions. 

Next example shows that one can also explicitly refer to 
event’s effects within rules. 

Example 2.2: This example is borrowed from [WCL911. 
We test if any inserted or updated employee has a 
salary greater than 100. If true, the action sets the 
salaries of all inserted employees to 50 and reduces 
each existing employee’s salary by 10% if it is greater 
than 100. 

module salary-control; 
var integer change; 
base EMP (name string, empgo integer, dept-no 
integer, salary integer); 
rules DEFERRED 
rl is 
if (exists z in Inserted-EMP (zsalary > 100)) or (exists 
z in updated_EMP (z. salary > 100)) 
thenonce change = 1; 

r2is 
if inserted_EMP (x) (change = 1) 
thenonce -/+ EMP (x; salary = 50); 

r3 is 
if EMP (x) (change = 1 and xsalary > 100) 
then -/+ EMP (x; salary = .9 * xsalary); 

control priority (rl, r2, r3) 
init (change = 0;) 
end module 

We use a global variable, change, to enable and disable 
the changes to EMP performed by r2 and r3. The 
variable is initialized in the “init” section, and then 
updated in the action part of rule rl. In fact, this variable 
simulates a rule rl saying: “if crl’s condition> then 
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(execute r2; execute r3;)*“. Anticipating the description 
of our procedural control language in Section 3.3, the 
control string “priority (r-1, r2, r3)” indicates that rl has 
priority over r2 which has priority over r3. When the 
module runs, rule rl is fired first. The “thenonce” key- 
word means that if the rule is fired then it will never fire 
again. If the value of variable change is set to 1, rule r2 
fires and all employees in inserted_EMP are updated 
with a salary equal to SO. Then rule r3 recursively 
updates employees who have a salary greater than 100 
in EMP (i.e., the EMP relation and its associated delta 
relations). Notice that here again, triggering events are 
not specified by the user. Instead, the user may refer in 
the rules to the cumulated effect of previous events. 

For instance, suppose the situation is as follows. EMP 
contains two tuples, Bob with salary 90K and Alice with 
salary 120K. Suppose the transaction inserts a new 
employee Joe with salary 1lOK and updates Bob’s salary 
to 110K. What happens ? Rule rl sets the value of 
change to 1. Then, rule r2 deletes Joe from 
inserted_EMP and inserts instead tuple (Joe, XX). Rule 
r3 deletes Bob from updated_EMP and inserts instead 
tuple (Bob, 9OK, Bob, 99K), and inserts tuple (Alice, 
12OK, Alice, 108K) into updated_EMP. Finally, r3 deletes 
Alice from updated_EMP and inserts instead (Alice 
12OK, Alice 97.210. 

3. Semantics of Rules 

As mentioned before, rules are activated and executed 
as a result of events issued by a transaction. The 
semantics of our rule system is described in three steps. 
Fust, in Section 3.1, we describe when rules are activated 
with respect to the events of the transaction. Second, in 
Section 3.2, we define how a given set of activated rules 
is executed using a partial fixpoint operator. Finally, the 
notion of procedural control over a set of rules is 
introduced in Section 3.3 and the control language is 
presented. 

3.1 Activation of Rules 

The way rules are activated with respect to the events of 
a transaction is described by a recursive function 
evaluate, which takes as parameters a stream of events 
and a database state. The execute-imm function 
computes the partial fixpoint of a database instance 
using some immediate rules. Finally, the execute-diff 
function computes the fixpoint of a database instance 
using some deferred rules. In the following, we use the 
abbreviations: Tx for a transaction, R for a rule base, 
and I for a database instance (including delta relations). 
Also, we denote e(1) the database instance where delta 
relations in I have been updated accordingly to event e, 
the notation x.S, means that x is the first element of a 

The last example demonstrates a deduction capability. 

Example 2.3 : We define a deduced relation Manages 
(sup, sub) to contain the management hierarchy of the 
company using the rules rl and r2 (transitive closure of 
a relation obtained by joining relations EMP and DEPT). 

stream S, and [I denotes the empty stream. 

evaluate ([I, I) = execute-diff (R, I) 

evaluate (e.Tx,I) = evaluate (Tx, execute-imm (R, e(I))) 
% at each invokation of evaluate: event e 

module recursive-rule ; 
base EMP (name string, emp-no integer, dept-no 
integer, salary integer); 

% is processed and immediate rules are 
% evaluated 

DEPT (mgr-no integer, dept-no integer); 
deduced MANAGES (sup integer, sub integer) ; 
rules IMMEDIATE 
rl is 
if DEPT (x) and EMP (y) (x.dept-no = y.dept-no) 
then + MANAGES (sup = x.mgr-no, sub = y.emp-no) ; 

r2 is 
if MANAGES (x) and MANAGES (y) (x.sub = y.sup) 
then + MANAGES (sup = x.sup, sub = y.sub) ; 
end module 

The evaluation process can be depicted using a 
graphical notation close to the one of [WF90]. Lti.,‘i 
stand for the initial database state, we denote Ei the 1 
event of transaction Tr, and fix (R, Ij), a fixpoint of 11 
using rules in R (if the rule execution terminates). We 
assume that Tx contains p events and that Ri denotes 
the set of rules actually activated by event Ei. If Ep is the 
event associated with the “commit” action of Tx, then 
Rp is the set of deferred rules. If i # p then Ri is the set of 
immediate rules. 

As in RDLl [KMS90], an SQL select operation on 
MANAGES will immediately activate the two rules. The 
transformation of the select query is detailed in Section 
4.3.2. This example shows that there is a single notion of 
rule for both the deductive database and active 
database paradigms. 

2 Indeed, this is a partial fixpoint because neither the 
termination of the execution nor the unicity of the result 
can be guaranteed for general rule programs [AS91]. For 
simplit%?y, we abusively use the word fixpoint. 
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2. If + T(t) is in Imm-Cons (r,I) and - T(t) is not in 
Imm-Cons (r,I), then: if AT-(t) is not in I then 
AT+(t) is in J otherwise AT(t) is not in J. 

3. If - T(t) is in Imm-Cons (r,I) and + T(t) is not in 
Imm-Cons (r,I), then: if AT+(t) is not in I then AT- 
(t) is in J otherwise Al-+(t) is not in J. 

4. If current-T(t) is in I and - T(t) is not in Imm-Cons 
(r, I), then T(t) is also in J 

10 5 11 +fix (RI, II) 512 -1 fix VP, IP) 

On this diagram, event El maps the initial state into a 
new state II in which delta relations, initially empty, 

may contain some tuples (if the event is an SQL select 
then IO = II). Then, all immediate rules are used to 
compute the fixpoint of II. The next event is then 
processed, and so on so forth, until the end of the 
transaction is reached. 

3.2 Partial Fixpoint Semantics of Rules 

In this section, we concentrate on the meaning of a set 
of rule modules. We first define the notion of 
immediate consequence of a database state using a 
rule instantiation. Let I be a database state, and r be a 
rule. An instantiation of r, henceforth r’, is a rule in 
which every free variable ranging over a relation T has 
been substituted by a tuple in the “current value” of T in 
the state I. If T is not a delta relation, then the “curent 
value” of T, denoted by current-T, in I is: (T - AT-) u AT+ 
where AT- refers to all tuples currently deleted from T, 
AT+ refers to all tuples currently inserted into T. Delta 
relations AT+ and AT- are required to satisfy the 
properties given in Section 2.1, in particular: AT- n AT+ = 
0. Formally, we shall treat an update of a relation T as a 
deletion from T and an insertion into T. 

If r’ is such that its condition part is true in the state I, 
then the action part of r’ is called an immediate 
consequence of I using r’. Given a rule r, Imm-Cons (r,I) 
is defined to be the set of all the immediate 
consequences of I using instantiations of r. 

Note that there is a very simple way of constructing 
Imm-Cons (r,I). Suppose that r’s condition has q free 
variables ranging over relations TI, . . . . Tq (not 

necessarily pairwise distinct& The set of all tuples in the 
product TI X T2 X . . . X Tq that satisfy the condition part 

of r, is first retrieved using a relational query. This 
returns the set of all instantiations of r that satisfy the 
condition part. Imm-Cons (r, I) is then obtained by 
projecting these instantiations on the attributes of the 
relations that appear in the action part of r. 

l Set-oriented semantics. The set of rules R of a module 
defines a relation among database instances as follows. 
For each state I, J = R(I) if for some rule r in R, J is such 
that: 

1. If current-T(t) is in I, and + T(t), - T(t) are both in 
Imm-Cons (r, I), then current-T(t) is in J. 

If the sequence R(I), R(R(I)), . . . has a limit, it is denoted 

fix RI). iI 

Intuitively, this definition reflects the facts that: (i) every 
relation T in the condition part of a rule refers to the 
current value of T, (ii) if both a fact and its negation are 
produced by some rule, the effect of the rule w.r.t. this 
fact is null, and (iii) the delta relations are always 
pairwise disjoint sets for every relation T. Every rule is 
fired deterministically, but the order of firing rules is left 
unspecified, thereby introducing non-determinism in 
the computation. This semantics captures the 
semantics of deductive rules in RDLl JKMS901. 

l Semantics of modules. A module is composed from a 
set of rules R. A set of modules M = (RI, . . . . Rn) defines a 
relation among database instances as follows. For each 
state I, J = M(I) if there exists j, 1 < j I n, such that J = fix 

‘Rp. [I 

Thus, modules are computed one after the other and 
each module is computed up to saturation before 
executing the next one. Ordering between modules is 
described in the next section. 

3.3 Controlling the Execution of Rules 

The execution order of rules that belong to a triggered 
module is specified using a procedural control language 
derived from [MS88]. A similar control language, called 
a rule algebra, has been proposed in [NT891 in the 
framework of the LDL language. Our control language 
includes basic symbols that are rule names and three 
primitives: sequence, saturation, and disjunction. The 
control language is used to declare a control string in 
the “CONTROL” section of a rule module. The syntax of 
the control language is now given. 

cexp> := <rule-name> I <sequence> I <saturation> I 
<disjunct> 

<sequence> := seq (<expI>, . . . . <exp2>) 

<saturation> := [-z.xpl>, . . . . <exmz-1 

<disjunct> := cexpI> + cexp2> 

The sequence primitive means that argument 
expressions are evaluated in their specified order. The 
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saturation primitive means that argument expressions 
are evaluated up to saturation in any order. Finally, the 
disjunct primitive specifies an exclusive “or” between 
argument expressions. More formally, the semantics of 
these primitives is given by the eval function below. 

eval (r) = fire r if r is firable and returns r, nil otherwise 
eval (seq (cexpl>, . . . . cexm>)) = eval (cexpl>); . . . ; 

eval (<expg); . . . 

evd ([-=pl> . . . . <expn>l) = 

repeat eval (cexpi>), i l (1, . . . . n) 

until all cexpi> evaluate to nil 
eval (<expl> + cexp2>) = 

eval (cexpl>l or eval (cexp2>) 
<exp>; nil = cexp> 

Example 3.1: Consider the control string: s = seq (rl + 
r2, r3). This is interpreted as: rl or r2 is first evaluated 
and then r3 is evaluated. [] 

Because priorities between rules are often useful, we 
introduced a special key-word priority such that priority 
(cexp1>, . ..I cexpn>) expresses that <expl> has priority 
over cexp2> which has priority over . . . over <expn>. 

Formally, priority (cexpl>, . . . . <expn>) is defined by: 

b-l (Iseq ([seq . . . (kq @xpl>l, cexp2>)1, . . . . <exp&l 
<-- (n - 1) times --> 

Example 3.2: The control string: s = [priority (rl, r3), 
priority (rl, r2>J, expresses that rl has priority over both 
r2 and r3, but no priority exists between r2 and r3. [I 

Two kinds of default priorities between rules are 
allowed. First, if no control string is specified in a rule 
module, rules are evaluated in their specification order 
and every rule is executed up to saturation. Now, 
suppose that a control string s only contains some of the 
rules composing the module and that rules rl . . . rk do 
not occur in s. The partial-evaal function is defined to 
evaluate such a control string. Formally, we have: 

partial -eval (s) = eval (priority (s, [rll + [r21+ . . . + [rkl)) 

Essentially, the partial-eval function enforces that the 
control string has always priority over the other rules. 
Suppose that s is evaluated up to saturation then s will 
be evaluated again. 

Finally, a default ordering relationship is defined 
between modules triggered at the same time. This 
ordering expresses that the least recently created 
module is executed first. 

Our control language is more powerful than a priority 
system as proposed in Starburst [ACL91, WCL91]. For 
instance, a simple ordering like: “fire rl once, fire r2 
once, fire r3 once, and repeat this up to saturation”, is 
not expressible with priorities as soon as recursive rules 
are allowed. In fact, our language enables to describe 
any sequential computation of a set of rules. 

A limited control language can be compensated by 
expressing control within rules (e.g., using temporary 
relations that play the role of control predicates). Our 
desire to have control separated from rules as much as 
possible has influenced the design of a powerful control 
language. Note that in Example 2.2, we use control both 
within rules and with a control string. 

4. Rule System Implementation 

This section presents the functionality and the 
architecture of an active database system resulting 
from the specification of a set of rule modules. 

4.1 Basic Assumptions and Design 
Decisions 

A number of important decisions underly the 
architecture of our active database system: (i) a rule 
base is compiled into an executable system called 
Trigger Monitor which automatically activates and 
executes rules depending on the actions taken by an 
application program, and (ii) the Trigger Monitor is 
coupled with a relational database system. 

Most current implementations of active database 
systems integrate rule processing within an existing 
DBMS (e.g., Postgres and Starburst rule systems). This 
should yield efficiency because the implementation of 
rule processing can take advantage of low level system 
capabilities like attachments in Starburst [WCLBI], or 
tuple markers in Postgres [Ston90]. 

However, based on our previous experience in 
developing an integrated deductive rule system 
[KMSBO], we believe that the integrated approach 
suffers from two drawbacks. First, the integrated system 
is hard to maintain and to change because its 
implementation is specific to the extended DBMS. 
Active database rule languages differ significantly in 
their semantics, and no sufficient experience has been 
gained in order to agree on a common semantics. 
Existing rule languages are then evolving and changing 
their semantics may require considerable changes in 
the implementation if it is made too dependent on the 
usage of low level system features. A second point is 
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heterogeneity. The integrated approach has the 
drawback of being not portable. On the other hand, the 
coupled approach facilitates the implementation of a 
rule system on different DBMSs that accept a common 
interface protocol like SQL (which is the case of 
relational DBMSs and some object-oriented DBMSs). 
We argue that portability on multiple, existing SQL 
systems is the advantage of our approach. 

We assume a client-server architecture where an 
application program is linked with a library of 
communication procedures to interface a DBMS 
server. We consider a typical library including 
procedures like SqlConnect, SqlDisconnect, SqlRead, 
and SqlExec. The SqlConnect and SqlDisconnect 
procedures respectively open and close a connection 
between the application process and a DBMS process. 
The SqZExec procedure takes an SQL command as 
input and transmits it to the corresponding DBMS 
process. Such communication procedures may vary 
from one DBMS to another. However, our library can be 
easily emulated on existing DBMS. 

4.2 Process Architecture of the Trigger 
Monitor 

The Trigger Monitor is an executable program that 
automatically activates and executes rule modules 
according to the operations performed by an 
application program. This program results from the 
compilation of a rule base. In this section, we describe 
the process architecture. 

Since we assume no change on the underlying DBMS, 
the communication between an application process and 
a DBMS process must be intercepted by the Trigger 
Monitor. This is achieved by using renamed 
communication procedures to establish and relax the 
connection between the application and the DBMS. 
The SqIConnect procedure call is replaced by an 
SqZConnect* procedure call that creates a Trigger 
Monitor process instead of a DBMS process, at 
application start-up time. Communication with a local 
or remote DBMS process is then established by the 
Trigger Monitor. Thereafter, the Trigger Monitor 
intercepts all commands issued by the application to 
the DBMS. A Trigger Monitor process is created for 
every application process and interfaces the DBMS 
process which the application process communicates 
Witl-L 

The Trigger Monitor and the application processes 
reside on the same client workstation. Figure 4.1 depicts 
the run-time process architecture. 

LAN /Conlnl. Sopvare 1 

Client Application 

Figure 4.1 : Run-time Process Architecture. 

4.3 Functional Architecture of the Trigger 
Monitor 

4.3.1 General Structure 

The Trigger Monitor is functionnally decomposed into 
three main components: the environment initialization, 
the event handler, and the rule evaluator. The pseudo- 
code procedure below describes the logical structure of 
the Trigger Monitor. 

Trigger Monitor 
bagin 
crea~~DBlS~rcuzss0; 
init_Environnmt ( ) ; 
while (anSQLF.XITounnmd is not issued by the 

a@i.cation) do 
event = read-(Xient_EventO; 
Handle-Exent ( ) ; 
send_Result~to_Client ( ) ; 

endwhile 
end 

The hit-environment procedure performs two tasks. 
First, it builds a data structure describing all the delta 
relations that should be managed for executing rules in 
the rule base. For instance, if there is a rule referencing 
the EMP relation or any of the delta relations associated 
with EMP then the three delta relations associated with 
EMP have to be managed. The second task is to build a 
data structure containing the names of all the rule 
modules that make the rule base. 

The read-Client-Event procedure is a (simplified) SQL 
parser that analyzes incoming database statements 
(e.g., Sql-Exec). The parser isolates the SQL commands. 
If the command updates the database, it determines 
which relation is updated and which relations 
participate in the command. 

322 



4.3.2 The Event Handler 

The Event Handler performs a case analysis of the SQL 
commands read by the read-client-Event procedure. If 
the command is a SELECT involving deduced relations, 
then all modules participating in the definition of the 
deduced relations are executed. A modified SELECT 
statement in which deduced relations are replaced by 
the temporary relations containing their extensions, is 
sent to the DBMS. If the SELECT only involves base 
relations, it is issued to the DBMS and the result is 
returned to the client application. If the command is an 
UPDATE, it is sent to the DBMS. We assume that the 
result of an SQL data manipulation command can be 
stored as a temporary relation; a special command 
“NAME” assigns a relation name to the last query result. 
In the case of an UPDATE command, the temporary 
relation returned by the system only contains the 
updated tuples. A specific treatment is then necessary 
to build the delta relation associated with updates. 
When the command “NAME” is used, a specific 
variable indicates the number of tuples in the 
temporary relation created by the command. This 
number indicates that an update has changed the 
database state. If so, the Manage-Update procedure 
updates the corresponding delta relations, if any, 
according to the set-oriented semantics described in 
Section 3.2. Then, the Rule Evaluator executes 
immediate rules. 

If the command issued by the application program is a 
COMMIT or a CHECKPOINT, deferred rules are 
evaluated and then the query is sent to the DBMS (only 
in the case of a COMMIT). Below, we give a non- 
exhaustive description of the analysis performed by the 
Event Handler. 

Handle-Event(event) { 
switch (event.type) 

case UPDATE: 
send-Query-to-DBMS(); 
receive-Result-From-DBMSO; 
if (event.result.tupleCount > 0) ( 
manage-Update(event.updatedRelation, 

UPDATE); 
evaluate-rules(event);} 

/* INSERT, DELETE similar to UPDATE */ 
case SELECT: 

if (query involves deduced relations) 
{evaluate-rules(event);modify-query;} 
send-Query-to-DBMSO; 
receive-Result-From-DBMSO; 

case COMMIT: 
execute-deferred-rules; 
send-Query-to-DBMSO; 
receive-Result-From-DBMSO; 

reset-All-EventsO; 
case ROLLBACK: 

send-Query-To-DBMSO; 
receive-Result-From-DBMSO; 
reset-All-EventsO; 

default: 
send-Query-To-DBMSO; 
receive~Result~From~DBMS0: 

4.3.3 Evaluation of Rules 

The evaluation of rules is part of the euaZuate_ruIes and 
execute-deferred-rules procedures. We essentially 
describe the former procedure since the evaluation of 
rules is done similarly in the second procedure. The 
evaluate-rules procedure cycles over the set of 
compiled rule modules and successively invokes the 
program resulting from the compilation of each rule 
module (by the Rule Compiler) until the database does 
not change. 

evaluate-rules (E: event); 
/* E is represented by delta relations */ 
while the database changes { 

execute-module[i] (E), for all modules i;) 

We now detail the execution of a module. Three phases 
are distinguished. First, the sensitivity of the module 
with respect to the current cumulated event is tested. 
This event is represented by the state of the delta 
relations. For instance, if there is a non empty delta 
relation associated with relation T and T occurs in a rule 
r, then the module is sensitive to the event. Notice that 
T may either occur in the condition or action part of r. 
This test is produced by inspection of the rules in the 
module at the time the module is compiled by the Rule 
Compiler. 

If a module is relevant, then the second phase consists 
of building a specific data structure, called Production 
Compilation Network (PCN) in main memory. This 
structure describes the relationships between relations, 
main memory variables, and rule conditions [MS881. 

The third phase is the execution of rules using the PCN 
structure. A rule is selected according to the control 
strategy specified in the module (or the default strategy 
if no strategy has been specified) and evaluated. If the 
rule is fired then delta relations, temporary relations, 
and main memory variables assigned in the rule are 
updated. A next rule is then selected and fired until no 
more rule is firable. Contextual data structures 
(temporary relations, PCN) are then updated. This 
processing is summarized below. 
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execute-module[iI (E: event); { 
test-module-relevance (E); 
init_PCN 0; 
init_Control 0; 
select-firable-rule 0; 
while there exists a firable rule 
/* the choice between immediate and 
deferred depends on the event E l / 

{fire-rule 0; 
update-delta-relations 0; 
monitor changes to main memory 
variables; 
select-firable-rule 0;) 

free temporary relations no longer 
needed; 

maintain_PCN 0;) 

Suppose that a module which has already been 
executed is considered again for execution. The system 
(in the evaluate-rules procedure) checks whether the 
database state over which the module executes has 
changed since its last execution. If not, the system 
considers the next module. 

5. A Toolbox for Generating the 
Trigger Monitor 

In this section, we describe a toolbox which takes as 
input a set of rule modules and generates a Trigger 
Monitor. 

The Toolbox consists of several software components. 
Two levels of compilation are used to generate a Trigger 
Monitor from a set of rule modules. At the first level, a 
Rule Compiler compiles each source module into a 
C/SQL procedure, and an Environment Compiler 
generates the Init-Environment procedure mentioned 
before. The second level of compilation then follows. A 
standard makefile facility is used to generate a Trigger 
Monitor from the output of the first compilation phase, 
the Event Handler, the Interface Procedures (like 
SqlConnect* described before), and user-supplied C 
procedures invoked in rule modules. 

Changes to a rule requires to rebuild the Trigger 
Monitor. Since rules are organized into modules, only 
those modules which have been updated need to be 
recompiled. The initialization procedure has also to be 
recompiled. The Trigger Monitor is then reassembled 
from linking together the set of compiled modules. 

The functional architecture of the Toolbox is depicted 
on Figure 5.1. Square boxes represent the compilers and 
the makefile facility. Grey circle boxes represent the 
user-provided components. 

T*i Env. Cyiler, 

Figure 5.1: Functional Architecture of the Toolbox. 

6. Comparisons with Related Work 

This section briefly surveys previous work on active 
database systems and relates it to our work. 

Alert is an extension architecture designed for 
transforming a passive SQL DBMS into an active 
DBMS ISPAM911. Alert rules are SQL queries (called 
active queries) which are defined over active tables. 
Active tables are append-only tables created by the 
user in order to record events. Therefore, events can be 
general and are not limited to built-in operations like 
SQL insert, . . . Active queries differ from usual SQL 
queries in their cursor behaviour. When a cursor is 
opened for an active query, tuples added to the 
underlying active table after the cursor was opened 
contribute to the query. Thus, rules wait for tuples to be 
appended to the active table and are instantiated with 
each new tuple (i.e., a rule is executed in a tuple- 
oriented fashion). Unlike our system, format of events 
must be declared by the user (in active tables) and rules 
are explicitely attached to these events. Alert provides 
several coupling modes between events and rules. 
Rules can run in the same or in separate transactions as 
the triggering transaction. The triggering transaction 
can be halted for the execution of triggered transaction 
or it can be run in parallel. Finally, a rule can be 
immediate or deferred. Coupling modes are specified 
separately from the rules using a command activate. 
Thus, a rule can be activated with different coupling 
modes. Unlike our system, rules are executed in a tuple- 
oriented fashion however, the semantics of a set of 
rules is not formally defined and interaction between 
rules is not clear. Therefore it is not easy to see how an 
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arbitrary rule system could be supported by the Alert 
architecture. 

Triggers in Starburst [WCL911 are expressed using set- 
oriented production rules where conditions are 
relational expressions and actions consist of sequences 
of SQL commands. Triggering events are associated 
with the built-in operations: update, insert, delete, and 
they are explicitely attached to each rule. Unlike our 
language, all rules are deferred and evaluated at the 
end and as part of the triggering transaction. Events are 
implemented using transition tables that are similar to 
our delta relations. A rule is executed with respect to the 
net effects of the transaction (including the effects of 
rules already executed). However, unlike Hipac and our 
system, the net effects are computed separately for 
each rule according to the last time the rule was 
executed. The idea is to prevent a rule from being fired 
twice with the same tuples in transition tables. This 
semantics is very similar to the notion of refraction used 
in OPS5 [BFMK85]. Our language enables to simulate 
this behaviour using control predicates in rules. Finally, 
control between rules is expressed using a priority 
mechanism [ACL91]. 

In Hipac [DBB+88, CBB+891, triggers are specified as 
event-condition-action statements. Events can be built- 
in (including timing events, hardware signals), or user- 
defined. Events can be composed using a specific event 
language. Changes made by database operations in a 
transaction are kept into delta relations similar to ours. 
Like in our system, delta relations record the net effects 
of database changes. Hipac also offers a rich variety of 
coupling modes (including those of Alert) [ZB90]. 
Howewer, as noted in ISPAM911, it is not clear to see 
which coupling modes are essential and which ones 
simulate some form of control over rules. Hipac’s 
execution model is a nested transaction model, and an 
assignment of condition evaluation and action 
execution to transactions based on coupling modes. As 
a result, there is no conflict resolution policy that 
chooses a single rule to fire, or a serial order to fire the 
rules. Instead, all the rules fire concurrently as 
subtransactions [ZB90]. This semantics makes the 
expression of control between rules difficult to express. 

The Postgres rule language PRSII has a syntax quite 
close to that of Starburst [SJGP90]. Similar to Hipac, 
rules consist of event-condition-action triples and are 
low-level statements. Similar to Starburst, events 
correspond to built-in database operations: select, 
insert, delete, . . . PRSII allows a single coupling mode 
between rules and events: rules are immediate and are 
executed within the triggering transaction. Unlike 
Starburst and Hipac, but like Alert, rules are tuple- 

oriented. When an individual tuple is accessed, 
updated, inserted or deleted in a transaction, then the 
transaction appropriately instantiate the triggered rules 
and execute them concurrently. A special algorithm 
uses special locks to mark tuples or table columns 
whose changes or retrievals would trigger one or more 
rules. Thus, there is no notion of delta relations. Unlike 
our system, PRSII does not provide a control language 
over rules, or a priority system like in Starburst. PRSII 
enables to define a rule as an exception to another rule. 

7. Conclusion 

We have presented an extension of a deductive 
database language, namely RDLI, towards rules that 
react to events. Events consist of built-in database 
operations (select, insert, delete, update). The net 
effects of database operations are recorded into delta 
relations. These relations can be used in rule’s 
conditions. Our language has the following features. 
First, unlike Hipac, Alert, Starburst and PRSII, our rules 
are expressed at a high level. Triggering events are not 
provided by the user but are instead derived from rules 
by the system. Second, our rule system is formally 
described by means of a partial fixpoint operator, which 
encompasses both the deductive database and active 
database paradigms. Hence, a rule module may consist 
of rules that deduce data and rules that modify the 
database as reaction to external events. In this formal 
framework, existing work on rule-based systems can be 
reused. Finally, we presented a control language that 
enables to specify a rich variety of rule execution 
orderings. 

We have also presented a system architecture in which 
the system responsible for detecting events issued by 
application programs and triggering rules is front- 
ended to an existing relational database system. This 
approach can be used over any relational DBMS which 
supports run-time interpretation of SQL commands. A 
major feature of our approach is that it enables to 
rapidly develop rule modules over an existing database. 

Two research issues are envisioned in the next future. 
One is the development of an optimizer integrated 
within our Rule Compiler. Second, we wish to 
incorporate error and exception handling mechanisms 
in the rule language and study various alternative ways 
of implementing them. 

Acknowledgements: We would like to thank 
Rakesh Agrawal, Patrick Valduriez, Allen van Gelder, 
and Jennifer Widom for their detailed comments and 

325 



suggestions that greatly contributed to improve the 
paper. 

References 

[ANSI901 ISO-ANSI Working Draft: Database 
Language SQL2 and SQI.3; X3H2/90/398; ISO/IEC 
JTCl/SC21/WG3,1990. 

[AS911 S. Abiteboul, E. Simon : “Fundamental 
Properties of Deterministic and Non-deterministic 
Extensions of Datalog”, Journal of Theoretical 
Computer Science, 78, pp 137-158,199l. 

[BF89] J. Bocca, J. C. Freytag : “Rules for 
Implementing Very Large Knowledge Base 
Systems”, S&mod Record, 18(3): , Sept. 89. 

[BFKM85] L. Brownston, R. Farrel, E. Kant, N. Martin: 
“Programming Expert Systems in OPS5: An 
introduction to Rule-Based Programming”, 
Addison-Wesley, 1985. 

[CBB+89] S. Chakravarthy, B. Blaustein, A. Buchmann 
et al. : “HIPAC : A Research Project in Active, Time- 
Constrained Database Management. Final 
Technical Report, Xerox Advanced Information 
Technology, May 1989. 

[CW90] S. Ceri, J. Widom : Deriving Production Rules 
for Constraint Maintenance”, in PYOC. of Int. Conf. 
on VLDB, Brisbane, Australia, Aug. 1990. 

[CW91] S. Ceri, J. Widom: “Deriving Production Rules 
for Incremental View Maintenance”, PYOC. of Int. 
Conf. on VL.DB, Barcelona, Spain, Aug. 1991. 

[Cod731 CODASYL Data Description Language 
Committee, CODASYL Data Description 
Language Journal of Development, June 1973 

[DBB+88] U. Dayal, B. Blaustein, A. Buchmann et al. : ” 
The HiPAC Project : Combining Active Databases 
and Timing Constraints”, ACM SlGMOD 
RECORD Vol. 17, N7, March 1988. 

[Han891 E.H. Hanson : “An initial report on the design 
of Ariel : A DBMS with an integrated production 
rule system” in [SeI189] 

[I$911 R. HuII, D. Jacobs : “Language Constructs for 
Programming Active Databases”, Proc of lnt. Conf. 
on VLDB, Barcelona, Spain, Sept. 1991. 

[KMS90] G. Kieman, C. de MaindreviIIe, E. Simon : 
“Making Deductive Database a Practical 
Technology: A Step Forward”, Proc. of Int. Conf. 
SIGMOD, Atlantic City, June. 1990. 

[KM911 G. Kieman, C. de MaindreviIIe : “Compiling a 
Rule Database Program into a C/SQL Application” 
PTOC of 7th international Conference on Data 
Engineering, Kobe Japan, 1991. 

[McD89] D. McCarthy, U. Dayal: ‘The Architecture of 
an Active Database Management System”, Proc. of 
lnt. Conf. SIGMOD, June 89 

[MS%] C. de Maindreville, E. Simon : “Modelling non- 
deterministic Queries and Updates in a Deductive 
Database”, Proc. of lnt. Conf. on VLDB, Los An- 
geles, Aug. 1988. 

[NT891 S. Naqvi, S. Tsur : “A language for Data and 
Knowledge Bases”, book, W.H. Freeman, 1989. 

[PDR91] G. Phipps, M.A. Derr, K.A. Ross: “Glue-Nail: A 
deductive Database System”, Proc. of ACM 
SlGMOD Int. Conf., Denver, Colorado, May 1991. 

[RCBB89] A. Rosenthal, S. Chakravarthy, B. Blaustein, J. 
Blakeley : “Situation Monitoring for Active 
Databases”, in Proc. Int. Conf. on VLDB, 
Amsterdam, Aug. 1989. 

[SeII89] T. Sellis (editor), SIGMOD Record, Special 
Issue on Rule Management and Processing in 
Expert Database Systems, 18 (31, Sept. 1989. 

[SJGP90] M. Stonebraker, A. Jhingran, J. Goh, S. 
Potamianos : ” On Rules, Procedures, Caching and 
Views in Data Base Systems”,Proc. of SIGMOD, At- 
lantic City, June. 1990. 

[SPAMBI] U. Schreier, H. Pirahesh, R. Agrawal, C. 
Mohan : “Alert : An Architecture for Transforming a 
Passive DBMS into an Active DBMS”, PYOC of lnt. 
Conf. on VLDB, Barcelona, Spain, Sept. 1991. 

[WF90] J. Widom, S. Finkelstein : “A Syntax and 
Semantics for Set Oriented Production Rules in 
Relational Databases, ” Proc. of lnt. Conf. 
SlGMOD, Atlantic City, June. 1990. 

[WCL91] J. Widom,R.J. Cochrane, B.G. Lindsay : 
“Implementing set-oriented production rules as an 
extension to Starburst”, Proc of Int. Conf. on VLDB, 
Barcelona, Spain, Sept. 1991. 

[W91] J. Widom : “Deduction in the Starburst 
Production Rule System” IBM Almaden Research 
Report, May 1991. 

[ZB90] D.R. Zertuche, A. Buchmann : “Execution 
Models for Active Database Systems: A 
Comparison”. GTE Research Report TM-O238-01- 
90-165. 

326 


