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Abstract 

Commitment Ordering (CO) is a serializability con- 
cept, that allows global serializability to be effec- 
tively achieved across multiple autonomous Re- 
source Managers (RMs). The RMs may use 
different (any) concurrency control mechanisms. 
Thus, CO provides a solution for the long standing 
global serializability problem. RM autonomy means 
that no concurrency control information is shared 
with other entities, except Atomic Commitment 
(AC) protocol (e.g. Two Phase Commitment - 2PC) 
messages. CO is a necessary condition for guaran- 
teeing global serializability across autonomous 
RMs. CO generalizes the popular Strong-Strict Two 
Phase Locking concept (S-S2PL; “release locks 
applied on behalf of a transaction only after the 
transaction has ended”). While S-S2PL is subject 
to deadlocks, CO exhibits deadlock-free executions 
when implemented as nonblocking (optimistic) 
concurrency control mechanisms. 
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I Introduction 

Distributed transaction management services are in- 
tended to provide coordination for transactions that span 
multiple resource managers (RMs). 

A RM is a software component that manages resources 
under transactions’ control. A resource is any medium 
with well defined states that are being modified and re- 
trieved while obeying transaction’s (“ah or nothing”) se- 
mantics (atomicity). This means that effects of failed 
transactions are undone, which requires that resources’ 
states be recoverable (i.e. if a resource is modified by a 
transaction, the state it had when the transaction started 
can be restored before the transaction ends). A resource 
is typically (but not necessarily) a data item. The scope 
of any specific resource (e.g. granularity units, versions, 
or replications) is defined as a part of a RM’s semantics. 
Examples of resource managers are database systems 
(DBSs), queue managers, cache managers, some types 
of management entities/objects (e.g. see [EMA], [OSI- 
SMO]) etc. 

A RM may impose a certain property of the generated 
transaction histories (transaction event schedules) to 
guarantee correctness and certain levels of fault toler- 
ance. However, the global history, i.e. the combined his- 
tory of all the RMs involved, does not necessarily inherit 
such a property even if it is provided by all the RMs. 
The serializability (SER) property is an example. 
Serializability is the most commonly accepted general 
criterion for the correctness of concurrent transactions 
(e.g. see [Bern 871, [Papa 863, and supported in most 
RMs. When transactions involve more than one RM, 
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this property may be violated in general, unless special 
measures are taken, or certain conditions exist to guar- 
antee it. This issue is dealt with, for example, in [Brei 
901, [Brei 911, [Elma 871, [Geor 911, [Glig 851, [Litw 
891 and rPu 881. [Weih 891 deals with the relationships 
between local and global serializability in the frarne- 
work of abstract data types. Achieving global 
serializability with reasonable performance, especially 
across RMs that implement different concurrency con- 
trol mechanisms, has been considered a difficult prob- 
lem (e.g. [Shet 901, [Silb 913). 

Global serializability can be guaranteed, in principle, by 
several methods if the RMs involved share relevant 
concurrency control information. Timestamp Ordering 
(TO) is an example (e.g. [Bern 871, borne 901). If all 
the RMs involved support TO-based concurrency con- 
trol and share the same timestamps, then the entire sys- 
tem can exhibit a coherent behavior based on TO, which 
guarantees global serializability. However, this technol- 
ogy requires a certain RM synchronization as well as 
timestamp propagation, and is currently unavailable in 
heterogeneous environments. Another known method, 
based on locking, allows RM autonomy. We define a 
RM to be autonomous if it does not share any resources 
and concurrency control information (e.g. timestamps) 
with another entity (external to the RM), and is being 
coordinated (at the nonapplication level’) solely via 
Atomic Commitment (AC) protocols (to achieve global 
atomicity). Most systems that support distributed trans- 
action services provide AC protocols and related inter- 
faces. These protocols guarantee atomicity even in the 
presence of certain types of recoverable failures. It 
means that either a distributed transaction is committed, 
i.e. its effects on all the resources involved become per- 
manent, or it is aborted (rolled back), i.e. its effects on 
all the resources are undone. The most commonly used 
atomic commitment protocols are variants of the Two 
Phase Commitment protocol (2PC - [Gray 781, [Lamp 
761). Examples are Digital Equipment Corporation’s 
Distributed Transaction Manager - DECdtm ([DEC- 
dun]), Logical Unit Type 6.2 of International Business 
Machines Corporation ([LU6.2]), and the IS0 - OS1 
standard for Distributed Transaction Processing ([OSI- 
DTP]). A well known local (i.e. local to each RM) 
concurrency control mechanism that together with AC 

guarantees global serializability is Strong Strict Two 
Phase Locking (S-S2PL; “release locks issued on behalf 
of a transaction only after the transaction has ended”). 
This fact has been known for several years, and has been 
the major correctness foundation for distributed transac- 
tions. Various technical documents about distributed 
transaction management (e.g. [OSI-CCR]) have men- 
tioned it. The observation that local S-S2PL guarantees 
global serializability appears explicitly at least in vu 
881, [Brei 901 and [Brei 9112. The disadvantage of this 
approach is that all the RMs involved have to implement 
S-S2PL based concurrency control, even if other types 
are preferable for some RMs. 

In this paper we examine the relationships between his- 
tories of individual RMs and the global history that 
comprises them, and generalize the above observation. 
We define a history property named Commitment Or- 
dering (CO), and show that guaranteeing it is a neces- 
sary and sufficient condition for guaranteeing global 
serializability under the conditions of RM autonomy. 
CO can be implemented as standalone serializability 
mechanisms as well as being incorporated with other 
concurrency control mechanisms. Since CO can be en- 
forced solely by controlling the order of transactions’ 
commit events, it can be combined with any other 
concurrency control mechanism without affecting the 
mechanism’s resource access scheduling strategy. This 
allows selecting and optimizing concurrency control for 
each RM according to the nature of transactions in- 
volved. Enforcing CO does not require aborting more 
transactions than those needed to be aborted for global 
serializability violation prevention, which is determined 
exclusively by the resource access orders, and is inde- 
pendent of the commit orders. S-S2PL based RMs pro- 
vide CO already, since S-S2PL is a special case of CO. 

In summary, serializability of transaction histories 
across (any) different RM types, which may use differ- 
ent concurrency control mechanisms but provide the CO 
property, is guaranteed without any global coordination 
or services but AC. Thus, the CO solution is fully dis- 
tributed. 

Section 2 is an overview and reformulation of 
serializability theory, which provides the foundation for 
analyzing CO. Section 3 defines CO and describes its 

‘Typically, a RM is unaware of any resource state dependency with states of resources external to the RM, implied by applica- 
tions. This is also true in the cases where RMs are coordinataed by multi-database systems, which provide applications with 
integrated views of resources. 

2 [Brei 911 uses the term rigorousness for S-S2PL. [Brei 911 also redefines CO (naming it strong recoverabifify) and uses it to show that applying 
S-S2PL locally guarantees global serializability. No algorithm for enforcing CO (beyond SS2PL) is given there. 
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properties. Section 4 examines CO schedulers and pre- 
sents generic CO algorithms. Section 5 deals with multi 
RM histories, atomic commitment, and relationships be- 
tween local and global properties. Section 6 shows that 
CO is exactly the property required to guarantee global 
serializability across autonomous RMs. Section 7 pro- 
vides a conclusion. This paper is an abridged version of 
[Raz 903. 

2 Histories and their properties - 
an overview 

This section summarizes and reformulates known con- 
cepts and results of concurrency control theory (see also 
[Bern 87]), as well as introducing some new concepts, 
as a foundation for the following sections. Some refor- 
mulation is required to express and prove results that 
follow. 

2.1 Transactions and histories 
A transaction, informally, is an execution of a set of 
programs that access shared resources. It is required that 
a transaction is atomic, i.e. either the transaction com- 
pletes successfully and its effects on the resources be- 
come permanent’, or all its effects on the resources are 
undone. In the first case, the transaction is committed. In 
the second, the transaction is aborted. Formally, we use 
an abstraction that captures only events and relation- 
ships among them, which are necessary for reasoning 
about concurrency control: 

A single RM transaction Ti is a partial order of events 
(specific events within the above informally defined 
transaction). 
The (binary, asymmetric, transitive, irreflexive) relation 
that comprises the partial order is denoted “<i” . 

Remarks: 

. event, <i eventb reads: eventa precedes eventb 
(in Ti). 

l The subscript i may be omitted when the transac- 
tion’s identifier is known from the context. 

The events of interest are the following2: 

l The operation of reading a resource; ri[x] denotes 
that transaction Ti has retrieved (read) the (partial) 
state of the resource x. 

l The operation of writing a resource; wi[x] means 
that transaction Ti has modified (written) the state 
of the resource x. 

. Ending a transaction; ei means that Ti has ended 
(has been either committed or aborted) and will not 
introduce any further operations. 

A transaction obeys the following transaction rules (axi- 
oms): 

l TRl 
A transaction Ti has exactly a single event ei . 
A value is assigned to ei : ei = c if the transaction 
is committed; ei = a if the transaction is aborted. 
Notation: ei may be denoted Ci or ai when 
ei = C or ei= a, respectively. 

. TR2 
For any operation pi[x] (either ri[x] or wi[x]) 
pi[X] <. e. 1 1 

Two operations on a resource x, pi[X], q.[x] are con- 
flicting if they are noncommutative, i.e. app 1. ymg them in 
different orders results in two different states3 of x. 
A more restrictive4 approach assumes them to be con- 
flicting, if at least one of them is a write operation. 

A complete history H over a set T of transactions is a 
partial order with a relation <H defined according to the 
following history rules (axioms): 

l HIS1 
If Ti is in T and 
eventa cH eventb 

l HIS2 

eventa <i eventb then 

If Ti and Tj are in T then for any two conflicting 
OlXZXiOIlS pi[X], qj[Xl, either pi[X] < q.[X] or 
qj[xl ‘H pi[‘l 

I-I J 

l HIS3 
Let Ti’ T. be transactions in T, where ei = a. 
If Wi[Xj <H rj[x] then either 
rj[Xl CH ei 

ei <H rj[x] or 
(Without this rule a history’s 

’ The tefin permanent is relative and depends on a resource’s volatility (e.g. sensitivity to process or media failure). 
2 More event types such as locking and unlocking may be introduced when necessary. 

3 We deal with states informally only. State distinction, and thus operation commutativity. may depend on the RM’s semantics. 
4 Two write operations on the same resource may commute, e.g. incremenf and decremenl of a counfer. 
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semantics (as reflected by resource states) is not 
uniquely determined, since if ei = a the effect of 
w.[x] is undone; i.e. reading x after e. results in re- 
tri!eving the last state of x that was ditten by other 
(unaborted) transaction than Ti.) 

Remarks: 

l The subscript H in <H may be omitted when H is 
known from the context. 

l The graphic symbol +H may be used instead of 
<H when convenient. 

. <H may be omitted for total orders, i.e., a history 
may be represented by an event sequence. 

For modeling executions with incomplete transactions, 
we define a history to be any prefi? of a complete his- 
tory. 

2.2 On guaranteeing a property 
In the following sections we examine conditions for 
guaranteeing that a system (any collection of interacting 
components or objects) generates histories with certain 
properties. This concept is formalized as follows: 

Definition 2.1 

Let SA be the set of all reachable states of a system A. 

The system A guarantees a property P, if every state in 
SA has property P. 

4 

We concentrate on the case where a system’s state is a 
history generated by the system’. 

2.3 History classes 
Remark: A property’s acronym is also used as the name 
for the class of all histories with this property. 

2.3. I Serializability 

Transaction T2 is in a conjlict with transaction TI if 
P+xl < q*bl for respective conflicting operations 
q*[xl, pg. 

The conflict types are ww, wr, rw, when pl[x], q2[x] 
are write-write, write-read, and read-write, respectively. 

Remark: Note the asymmetry in the definition above. 

There is a conflict equivalence between two histories H 
and H’ (the two are conflict equivalent) if they are both 
defined over the same set of transactions T, and consist 
of the same transaction events (for partially executed 
transactions), and 

Pifxl <H qj['l if and OdJ' if pi[X] <H’ qj[XI 

for XlY conflicting operations pi[X], qj[ll of 3lY commit- 
ted transactions Ti, T. , respectively, m T (i.e. H and 
H’ have the same con hi cts between operations of com- 
mitted transactions). 

A history H over a transaction set T is serial, if for every 
two transactions Ti, Tj in T all the operations and the 
end of one of them precede all the operations and the 
end Of theOther(i.e.,if pi[X] <H qj[Y] Or 
ei <H qj[y] then for aIlY OperatiOUS Si[U], \[v] in H, 
Si[U] <H tj[v] ,alld ei<H tj[v] ). 

The commit projection of a history H, is its projection 
(restriction)3 on its set of committed transactions. 

A history is serializable (SER; is in SER), if its commit 
projection is conflict equivalent to some serial history. 

Transaction states (in addition to committed and 

aborted) are defined as follows: 

A transaction is decided, if it is either aborted or com- 
mitted; otherwise, it is undecided. 

An undecided transaction is ready if it has completed its 
processing, and is prepared either to be committed or 
aborted; otherwise it is active. 

The following diagram defines the possible transitions 
between transaction states: 

’ A pre$x of a partial order P over a set S is a partial order P’ over a set S’s S, with the following properties: 
If be S’ and acpb thenakoae S’ 
If a,bc S’then acpb ifandonlyif acp.b 

2 The related state transition function has a history and an event set as arguments. Its values on a given history and its prefixes, or on a given event 
set and its subsets are compatible. Such a fimaion is neither formalized nor explicitly used in this work. 

3 Let P be a partial order over a set S. A projection (resfricfion) of P on a set S’C S is a partial order P’, a subset of P, that consists of all the 
elements in P, involving elements of S’ only. 
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Figure 2.1: Transaction states and their transitions 

The Serializability Graph of a history H, SG(H), is the 
following directed graph: 

SG(H) = (T, C) where 

l T is the set of all unaborted (i.e. committed 
and undecided) transactions in H 

l c (a subset of TxT) is a set of edges that 
represent transaction conflicts: 
Let T 1, T2 be any two transactions in 3”. 
There is an edge from Tl to T2 ifT2 is 
in a conflict with Tl. 

The Committed Transaction Serializability Graph of a 
history H, CSG(H), is the subgraph of SG(H) with all 
the committed transactions as nodes and all the respec- 
tive edges. 

The Undecided Transaction Serializability Graph of a 
history H, USG(H), is the subgraph of SG(H) with all 
the undecided transactions as nodes and all the respec- 
tive edges. 

Theorem 2.1 provides a criterion for checking 
serializability: 

Theorem 2.1 - The Serializability Theorem 

A history H is serializable (in SER) if and only if 
CSG(I-I) is cycle-free. 

(For a proof see, for example, [Bern 871). 

2.3.2 Recoverability 
This section defines history properties that guarantee 
certain desired behavior patterns when aborts occur (see 
also [Bern 871). 

Recoverability is an essential property of histories when 
aborted transactions are present (i.e., in all real situ- 
ations). Recoverability guarantees that committed trans- 
actions read only resource states written by committed 
transactions, and hence, no committed transactions read 
corrupted states. Recoverability also ensures that a 
serializable history has the same semantics (i.e., the his- 
tory’s outcome as reflected by the resources’ states) as a 
conflict-equivalent serial history (when exists; e.g., for 
complete histories). This may not be true without 
recoverability, if aborted transactions are present. 

Let T1 and T2 be two distinct transactions. We say that 
a transaction T2 reads (a resource x) from (in a read- 
from conflict, or wrf conflict with; wrf is a special case 
of a wr conflict) transaction Tl if T2 reads x before TI 
is aborted (if aborted), and TI is the last transaction to 
write x before being read by T2 (i.e., wI[x] < r2[x] and 
there is no event t such that wl[x] c t < r2[x], where t 
is either al or w3[x] of some T3). 

It is required that for any two transactions TI, T2 in H, 
whenever T2 reads any resource from Tl, aborting TI 
implies aborting T2 (i.e., (T2 reads from T1) implies 
(el = a implies e2 = a) ). To guarantee this, T2 should 
be decided only after Tl has been decided (this is a nec- 
essary condition’). Thus, a history H is defined to be re- 
coverable @EC; in REC) if for any two transactions Tl, 
T2 in H, whenever T2 reads any resource from Tl, TI 
ends before T2 does (el < e2), and aborting Tl implies 
aborting T2. 
Formally, (T2 reads from Tl) implies 

(el < e2 and (el = a implies e2 = a) ). 
The above formulation of recoverability allows it to be 
enforced effectively. 

Aborts caused by transactions reading states written by 
aborted transactions (cascading aborts) are prevented if 
any transaction in H reads only data written by already 
committed transactions (i.e., 
(T2 readsfrom Tl) implies el = c). Avoiding cascading 
aborrs (ACA; cascadelessness) is the property which is 
necessary and sufficient to guarantee the above condi- 
tion*: H is ACA (in ACA), if for any two transactions 

’ The claim is proven by assuming tie contrary, i.e., 5 < el, and having T2 committed, while T, is later aborted. 

* Sufficiency is obvious. Necessity is proven by assuming r&x] c el and having T1 aborted. 
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Tl, T2 in H, (T2 reads x from TI) implies 
(el = c and el < r2[x] ). 

Let Tl, T2 be any two transactions in H. H is strict (ST; 
is in ST, has the strictness property) if 
w1[xl c r$xl implies el < p$xl, 
where p2[x3 iseither r2[x] or w2[x]. 

Strictness simplifies the restoration of a resource’s state 
after aborting transactions that have written that re- 
source. The recovery procedures of most existing data- 
base systems rely on strictness. 

Theorem 2.2 follows immediately from the definitions 
above: 

Theorem 2.2 ([Bern 871) 

RECX ACA 3 ST 
where “1” denotes a strict containment. 

2.3.3 Two Phase Locking 

Two Phase Locking (2PL) is a serializability mechanism 
that implements two types of locks’: write locks and 
read locks. A write lock on a resource blocks both read 
and write operations of that resource, while a read lock 
blocks write operations only. 2PL consists of partition- 
ing a transaction’s duration to two phases: in the first, 
locks are acquired; in the second, locks are released 
([Eswa 761). 

A history is defined to be a 2PL hisrory (it is in the class 
2PL), if it can be generated by the 2PL mechanism. 

When combining strictness (ST) with 2PL we get Srricr 
Two Phase Locking (S2PL = STn2PL). To enforce 
S2PL, write locks issued on behalf of a transaction are 
not released until its end. Read locks, however, can be 
released earlier, after the end of phase one of 2PL. 

The property Strong-S2PL (S-S2PL) requires that all 
locks are not released before the transaction ends (either 
committed or aborted). 

Formally: A history H is S-S2PL (in S-S2PL) if for any 
conflicting operations pI [x], q2[x] in H (of transactions 
Tl. T2 respectively) pI[x] < q2[x] implies el c q2[x]. 

Theorem 2.3 summarizes the relationships among the 
2PL classes: 

Theorem 2.3 

2PL I> S2PL 1 s-S2PL 

2.4 On inherently blocking and 
noninherently blocking properties 
Some history properties can be enforced only by block- 
ing mechanisms. A mechanism is blocking, if in some 
situations it delays some transaction’s event until a cer- 
tain event(s) occurs in some other transaction(s). 

A mechanism is operation-blocking, if in some situ- 
ations it delays a transaction’s operation until a certain 
event(s) occurs in some other transaction(s), or aborts all 
transactions with blocked operations (to avoid 
operation-blocking, that otherwise would occur). 

We define a history property to be inherently-blocking, 
if it can be enforced by operation-blocking mechanisms 
only. Otherwise it is noninherently-blocking. 

Both serializability and recoverability are noninherently- 
blocking, since they can always be guaranteed by abort- 
ing a violating transaction any time before it ends, with- 
out having any operations blocked. This observation is 
the basis for optimistic concurrency control ([Kung 81]), 
where transactions run without blocking each other’s 
operations, and are aborted before ending, if they violate 
serializability or any other desired property. 2PL, ACA 
and their special cases, on the other hand, are inherently- 
blocking. 

Note that the mutual blocking of two or more transac- 
tions is the cause of deadlock situations. Thus, non- 
blocking mechanisms guarantee deadlock-freeness. 

Remark: In this work we deal with blocking and dead- 
locks informally only. 

2.5 On commit-decision 
delegation 
In some situations the decision whether to commit or 
abort a ready transaction is delegated from one system 
(object, component) to another system (object, compo- 
nent) via a notification. This notification is denoted as a 
YES vote on the transaction. 

Definition 2.2 

Let transaction T be in a ready state. System A dele- 
gates the commit decision on a transaction T to system 
B by voting YES on T, if system A is prepared to either 
commit T or abort it, according to the decision taken by 

’ A lock is considered any mechanism that blocks resource-access operations. 
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system B. After voting YES system A cannot affect the 
decision anymore. 

Remark System A can abort transactions. It cannot vote 
YES on a transaction after aborting it. 

Let yi denote the YES voting event by system A on 
transaction Ti, and di the decision event that takes place 
in system B. di takes the values a or c, and may be de- 
noted ai or Ci respectively (when a distinction between 
ei and di is clear by the context). The following commit 
decision delegation (CDD) rules (axioms) involving 
these events hold true: 

CDDl 
pi[X] < yi for any operation pi[X] of Ti (i.e., all the 
transaction’s operations are completed before vot- 
ing YES on the transaction’). 

CDD2 
yi < di (i.e., when commit-decision delegation is 
applied, an explicit vote is required before any deci- 
sion to commit or abort can be made). 

CDD3 
di < ei (i.e., the transaction is ended by system A 
only after being notified of the decision). 

CDD4 
ei = c if and only if di = c (the obedience rule). 

CDDS 
event < di implies event < yi for any event f yi in 
system A (i.e., all such precedence dependencies 
with di are through yi). 

CDD6 
di < event implies ei < event for any event f ei 
in system A (i.e., all such precedence dependencies 
with di are through ei). 

§ 

Note that CDD1,2,3 are consistent with TR2. CDD5,6 
reflect that systems A and B interact through the voting 
mechanism only (to generate interaction history events). 

In some situations, where dependencies exist between 
decision events of different transactions (see sections 
4.4 and 5 below), the following condition is needed to 
guarantee such dependencies: 

Definition 2.3 

A system (object) that delegates commit decisions obeys 
the ymmit-decision delegation, dependency condition 
(CD C) for transactions Tl and T2 , if it votes YES on 
T2 only after commiting or aborting Tl , i.e., the follow- 
ing relationship holds true: 

. CD3C 

el <y2 

Note the asymmetry in the definition above. 

Theorem 2.3 summarizes the conditions for decision 
event dependencies. 

Theorem 2.3 

Let system A delegate the commit decision on transac- 
tions Tl and T2 to system B. 

Then CD3C for Tl and T2 (i.e. el < y2) is a necessary 
and sufficient condition for even+ < event2 , when 
event1 is yI or dl or eI, and event2 is y2 or d2 or e2. 

Proof: 

Follows by CDD. 
§ 

3 Commitment Ordering (CO) 

Commitment Ordering (CO) is a property of histories 
that guarantees serializability. It generalizes S-S2PL. A 
history is CO if the order (c) of any two conflicting op- 
erations in any two committed transactions matches the 
order of the respective commit events. 

After a transaction accesses a resource, S-S2PL blocks 
any conflicting operations on the resource until the end 
of that transaction. CO, on the other hand, allows access 
by conflicting operations, while using any access sched- 
uling strategy. This allows CO to be implemented also 
in a nonblocking manner, which guarantees deadlock- 
freeness. The price for this, however, is the possibility 
of cascading aborts when recoverability is applied. 

‘Commiting Ti by system A after the decision is made may involve the completion of write operations that have been written 
before the voting to a temporary storage, and not to the resource itself. However, in such cases the resource is locked for any 
operation until the transaction ends, and thus CDDl can be assumed also for this case. 
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Definition 3.1 

A history is in CO if for any conflicting operations 
pl[xl, q2[x] of any committed transactions TL, T2 re- 
spectively , P#l < q2bl implies el<e2. 
Formally: 

(el=c and e2=c and p1[x]<q2[x]) implies 
el < e2 

9 

We now show that CO implies serializability: 

Theorem 3.1 

SER ICO 

Proof: 
(i) Let a history H be in CO, and let 
. . . + T. + . . . + T. + . . . be a (directed) path in 
CSG(H)! By the CO definition (definition 3.1) and an 
induction by the order on the path above, we conclude 
that Ci < Cj . 

(ii) Now, suppose that H is not in SER. 
By theorem 2.1 (without loss of generality) there is a cy- 
cle T1 + T2 + . . . -+ T, + T1 in CSG(H), where 
n 2 2. 

First, let Ti and Tj in (i) be T1 and T2 above, respec- 
tively (consider an appropriate prefix of the expression 
representing the cycle above). 
This implies by (i) that c1 < c2. 

NOW, let Ti and Tj in (i) be T2 and T1 above, respec- 
tively (consider an appropriate suffix of the expression 
representing the cycle above). This implies that 
c2 c Cl. However, cl < c2 and c2 < cl contradict 
each other, since the relation “4’ is asymmetric. Hence 
CSG(H) is acyclic, and H is in SER by Theorem 2.1. 

Now examine the following serializable, non CO history 
to conclude that the containment is stricr 
rlbl w2[xl c2 cl 

§ 

The following diagram summarizes the containment re- 
lationships between history classes (some relationships 
are introduced here without proofs). 

Figure 3.1: Class containment relationships 

An arrow from a class A to a class B indicates that class 
A strictly contains B; a lack of a directed path between 
classes means that the classes are incomparable. 

A property is inherently blocking if it can be enforced 
only by blocking transaction’s operations until certain 
events occur in other transactions. 

4 Commitment Ordering 
schedulers 

A scheduler is a RM’s component that schedules certain 
transactions’ events. Commitment Ordering (CO) sched- 
ulers are schedulers that generate CO histories. Generic 
mechanisms, that can be combined in various ways to 
implement CO schedulers are presented in the following 
sections. The algorithms described below provide addi- 
tional (algorithmic) characterizations for the properties 
CO and COnREC. 
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4.1 Schedulers: components and 
classification 
Schedulers typically deal with three types of transaction 
events: 

l Transaction initiation 

l Resource access 

l Transaction termination 

Concentrating on the latter two types’, we model a 
(complete) scheduler as consisting of two components: 

l Resource Access Scheduler (RAS) 
A component that manages the resource access re- 
quests arriving on behalf of transactions, and de- 
cides when to execute which resource access opera- 
tion. 

l Transaction Termination Scheduler (ITS) 
A competent that monitors the set of transactions 
and decides when and which transaction to commit 
or abort. In a multi RM environment this compo- 
nent participates in atomic commitment procedures 
on behalf of its RM and controls (within the respec- 
tive RM) the execution of the decision reached via 
atomic commitment for each relevant transaction. 

A scheduler component is blocking if it executes certain 
transaction’s event requests only after certain events 
have occurred in some other transaction(s). Otherwise, 
it is nonblocking. 

Nonblocking schedulers implement the so called opti- 
mistic concurrency control approach ([Kung 811). When 
a scheduler is nonblocking, it provides deadlock-free 
executions. 

4.2 A “pure” CO TTS - The 
Commitment Order Coordinator 
(COCO) 
The following ‘ITS type, the Commitment Order Coor- 
dinator (COCO), checks for CO only and generates CO 
histories. The generated histories are not necessarily re- 
coverable. Recoverability, if required, can be applied by 
enhancing the COCO (see section 4.2) or by an external 
mechanism (e.g., see section 4.4). 

A COCO maintains a serializability graph, the USG, of 
all undecided transactions. Every new transaction proc- 
essed by the RM is reflected as a new node in the USG; 
every conflict between transactions in the USG is re- 
flected by a directed edge (an edge between two transac- 
tions may represent several conflicts). 

USG(H) = (UT,C) where 

. UT is the set of all undecided transactions in a 
history H 

l c (a subset of UTxUT) is the set of directed 
edges between transactions in UT. There 
is an edge from Tl to T2 , if T2 is in a 
conflict with Tl. 

The set of transactions aborted as a result of committing 
a transaction T (to prevent a future commitment order- 
ing violation) is defined as follows: 

ABORTco(T) = { T’ I The edge T’ + T is in C ) 

These aborts cannot be compromized, as stated by 
lemma 4.1: 

Lemma 4.1 

Aborting all the members of ABORTco(T), after T is 
committed, is necessary for guaranteeing CO (assuming 
that every transaction is eventually decided). 

Proof: 
Suppose that T is committed. Let T’ be some transaction 
in ABORTco(T). Thus T’ is undecided when T is com- 
mitted. If T’ is later committed, then c < c’, where c and 
c’ are the commit events of T and T’ respsctively. How- 
ever, T is in a conflict with T’, and thus, CO is violated. 

P 

Lemma 4.1 is the key for the CO algorithm. 

Algorithm 4.1 - The CO Algorithm 

Repeat the following steps: 

l Select any transaction T in the USG in the ready 
state (using any criteria, such as by priorities as- 
signed to each transaction; a priority can be 
changed dynamically as long as the transaction is in 
the USG), and commit it. 

1 A transaction is usually initiated as soon as computing resources are. available, without considering the effect on the histoxy’s properties. Situations 
where an advantage can be. taken of controlling initiation are ignored here. 
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l Abort all the transactions in the set ABORTCo(T), 
i.e. all the transactions (both ready and active) in 
the USG that have an edge going to T . 

l Remove any decided transaction (T and the aborted 
transactions) from the graph (they do not belong in 
the USG by definition). 

Remark: During each iteration the USG should reflect 
all operations’ conflicts until commit. 

9 

Example 4.1 

The following figure demonstrates one iteration of the 
algorithm: 

Figure 4.1: A USG 
If T5 is selected to be committed, then T3 and T4 are 
aborted; T3, T4 and T5 are then removed from the 
graph. 

§ 

The following theorem states the algorithm’s correct- 
ness: 

Theorem 4.1 

Histories generated by a scheduler involving a COCO 
(algorithm 4.1) are in CO. 

Proof: 

The proof is by induction on the number of iterations by 
the algorithm, starting from an empty history Ho , and 
an empty graph USGO = USG(HO). H0 is CO. 

Assume that the history H, , generated after iteration n, 
is CO. USG, (in its UT component) includes all the un- 
decided transactions in Hn. 

Now perform an additional iteration, number n+l, and 
commit transaction Tl (without loss of generality - wlg) 
in USG,. H,+l includes all the transactions in H, and 

the new (undecided) transactions that have been gener- 
ated after completing step n (and are in USGn+l). 

Examine the following cases after completing iteration 
n+l: 

l Let T2, T3 (wlg) be two committed transactions in 
H,. If T3 is in a conflict with T2 then c2 < c3 since 
H, is CO by the induction hypothesis. 

l Obviously, c2 < cl for every (previously) commit- 
ted transaction T2 in H, with which Tl is in a con- 
flict. 

l Suppose that a committed transaction T2 is in a 
conflict with Tl. This means that Tl is in 
ABORTCo(T2), and thus aborted when T2 was 
committed. A contradiction. 

The cases above exhaust all possible pairs of conflicting 
committed transactions in H,+l. Hence, H,, 1 is CO. 

By theorems 3.1 and 4.1 we conclude the following: 

Corollary 4.1 

Histories generated by a system that includes a COCO 
are serializable. 

Note that aborting the transactions in ABORTco(T) 
when committing T prevents any cycle involving T be- 
ing generated in the CSG in the future. This observation 
is a direct way to show that the algorithm above guaran- 
tees serializability. If a transaction exists, that does not 
reside on any cycle in the USG, then a transaction T ex- 
ists with no edges from any other transaction. T can be 
committed without aborting any other transaction since 
ABORTCOO is empty. If all the transactions in the 
USG are on cycles, at least one transaction has to be 
aborted when committing another one. If the COCO is 
combined with a scheduler (see also section 4.4 below) 
that guarantees (local) serializability, cycles in the USG 
are either prevented or eliminated by the scheduler 
aborting transactions. 

In a multi-RM environment, a COCO decides when to 
vote YES on a transaction in an atomic commitment 
(AC) protocol, rather than deciding when to commit it. 
After a notification to commit has arrived, when com- 
mitting a transaction, the actions taken by the COCO are 
the same as for a single RM environment. When using 
AC, delaying the voting or blocking it usually reduces 
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the number of aborted transactions (see more in section 
5 below). 

4.3 The CO Recoverability 
Coordinator (CORCO) 
A CORCO is a CO ‘ITS generating histories that are 
both CO and recoverable. This TTS is an enhancement 
of the COCO (section 4.2 above), and differs from it 
only in processing additional information to guarantee 
recoverability, and thus, possibly aborting additional 
transactions, to prevent recoverability violations. 

A CORCO maintains an enhanced serializability graph, 
wrf-USG: 

wrfUSG(H) = (lJT,C u Cwr.) where 

. UT is the set of all undecided transactions in 
the history H. 

l c is a set of edges between transactions in 
UT: There is a C edge from TI to T2 , if 
T2 is in a conflict (conflicts) with TI 
but has not read from TI. 

l Cwrf 
is a set of edges between transactions in 
UT as well: There is a Cwr. edge from TI 
to T2 , if T2 has read from TI (and 
possibly is also in conflicts of other types 
with TI). 

Note that C and C ,@are disjoint. 

The set of transactions aborted as a result of committing 
T (to prevent future CO violation) is defined as follows: 

ABORTCo(T) = ( T’ I T’ + T is in C or CwTf 1 

The above definition of ABORTCoQ has the same se- 
mantics as the definition of ABORTco(T) for the 
coca. 

The set of aborted transactions due to recoverability, as 
a result of aborting transaction T’, is defined as follows: 

ABORTEC(T’) = ( T” I T’ + T” is in Cwrf or 
T”’ +T” isin Cw 

% where T”’ is in AI3 RTRl&“) ) 

Note that the definition is recursive. This reflects the na- 
ture of cascading aborts. 

A CORCO executes the following algorithm: 

Algorithm 4.2 

Repeat the following steps: 

l Select any ready transaction T in the wr-USG, that 
does not have any in-coming Cw,.. edge (i.e. such 
that T is not in ABORTRRC(T’) for any transaction 
T’ in ABORTCO(T); this avoids the need to later 
abort T itself ), and commit it. 

l Abort all the transactions T’ (both ready and active) 
in ABORTco(T). 

l Abort all the transactions T” (both ready and active) 
in ABORTREC(T’) for every T’ aborted in the pre- 
vious step (cascading aborts). 

l Remove any decided transaction (T and all the 
aborted transactions) from the graph. 

Remarks: 
During each iteration the wrf-USG should reflect all op- 
erations’ conflicts till commit. 

Transactions on wrf cycles, that are not aborted by the 
algorithm, are aborted asynchronously. 

§ 

Example 4.2 

The following figure demonstrates one iteration of the 
algorithm: 

A C Edge 
A c wti we 

Figure 4.3: A wrf-USG 
If T5 is selected to be committed then T3, T4, T.,, T8 are 
aborted; all committed and aborted transactions are then 
removed from the graph. 

AJ-TCo(T5) = ( T3t T4 1 
ABORTRRC(T3) = 4 (empty set) 
~ORTREctT4> = ( T7, T8 1 

§ 

The algorithm’s correctness is stated as follows: 

Theorem 4.2 

Histories generated by a scheduler involving a CORCO 
(algorithm 4.2) are both CO and recoverable. 
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Proof: 

The histories generated are CO by theorem 4.1, since a 
CORCO differs from a COCO only in possibly aborting 
additional transactions during each iteration (due to the 
recoverability requirement). 

Since all the transactions that can violate recoverability 
(transactions in ABORTEC(T’) for every aborted 
transaction T’ in ABORTco(T) ) are aborted during 
each iteration (i.e. transactions that read resources writ- 
ten by an aborted transaction before the abort), the gen- 
erated histories are recoverable. 

§ 

By theorems 3.1 and 4.2 we conclude the following: 

Corollary 4.2 

Histories generated by a system that includes a CORCO 
are both serializable and recoverable. 

4.4 Combining a CO TTS with a 
RM’s scheduler 
The CO TTSs above can be combined with any RAS or 
a complete scheduler. When a CO ‘ITS is combined 
with a scheduler, the scheduler delegates the commit de- 
cision (see section 2.5 above) to the CO ‘ITS. If all the 
components are non-blocking, then also the combined 
mechanism is non-blocking, and hence ensures 
deadlock-freeness: 

Corollary 4.3 

There exist schedulers incorporating a COCO or 
CORCO that generate deadlock free executions only. 

By Corollaries 4.1 and 4.2 the combined RAS (or sched- 
uler) does not necessarily need to produce serializable 
histories in order to guarantee serializability, since the 
CO TTSs above take care of this. 

Figure 4.3 
The commit/abort decision process using any CO TTS 

combined with a RAS or scheduler 

The combined mechanism executes as follows (See Fig- 
ure 4.3 above): 

First, a transaction interacts with a RAS (or a scheduler). 
Then if unaborted, when ready, the transaction is con- 
sidered by a CO ‘ITS as a candidate to be committed. A 
transaction may be aborted to prevent a CO TTS’s con- 
dition violation. 

An important property of the CO TTSs is their total pas- 
sivity with regard to resource access operations. The 
RAS (or the complete scheduler) can implement any re- 
source access scheduling strategy without being affected 
by a combined CO ITS. The only requirement is that a 
CO TTS has updated conflict information (e.g. a USG or 
a w@USG). 

When a scheduler delegates the commit decision, the 
following statements about recoverability hold true : 

Theorem 4.3 - The Recoverability Inheritance Theo- 
rem 

Let a system consist of a scheduler that guarantees 
recoverability (cascadelessness, strictness) and some 
component to which it delegates the commit decisions 
on all unaborted transactions. Let the scheduler vote 
YES on a transaction when it can be committed (by the 
scheduler) without violating recoverability (cas- 
cadelessness, strictness). Then the above system guar- 
antees recoverability (cascadelessness, strictness re- 
spectively) as well. 

Proof: 

Since the decision notification can arrive any time after 
voting, the scheduler has to guarantee the following 
condition in order to prevent a possible recoverability 
violation (see a definition of recoverability in section 2.3 
above): 
(T2 readsfrom TI) implies 
(el c y2 and (el = a implies e2= a) ) 
Thus, if (T2 reaa3 from Tl) the scheduler does not vote 
YES on T2 before TI is decided (el c y2) and hence 
el < e2 follows by rules CDD2,3. Since e2 follows eI, if 
el = a then (by the above condition) the scheduler can 
and has to enforce (el = a implies 5 = a) by abort- 
ing T2. Thus, (T, readsfrom Tl) implies 

(el < e2 and (el = a implies e = a) ) and 
recoverability is guaranteed. Note that CD 3 C for TI and 
T2 is maintained. 

The cases ACA, ST are straightforward. 
0 
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From theorem 4.3 we conclude corollary 4.4: 

Corollary 4.4 

If guaranteeing both CO and recoverability is required, a 
CORCO is necessary to be combined with a scheduler 
only if the scheduler does not guarantee recoverability 
by itself. Otherwise a COCO is sufficient. 

Remark: Note that if the combined scheduler above is 
S-S2PL based, then the USG of the respective CO TTS 
does not have any edges. This means that no aborts by 
the CO ‘ITS are needed, as one can expect, and the en- 
tire CO TTS is unnecessary. This is an extreme case. 
Other scheduler types may induce other properties of the 
respective USGS. No wrf conflicts are reflected in the 
USG when the scheduler guarantees cascadelessness; no 
ww and WI when it guarantees strictness. 

Theorem 4.4 - The Recoverability Enforcement Con- 
dition 

Let a system consist of a scheduler and some component 
to which the scheduler delegates the commit decisions 
on all unaborted transactions. 

Then 

l Guaranteeing CD3C for any T1 and T2 such that T2 
is in a read-from (wrf, conflict with T1 is a neces- 
sary condition for the system to guarantee 
recoverability. 

l Guaranteeing CD3C for any Tl and T2 such that T2 
is in a WT or WV conflict with T1 is a necessary con- 
dition for the system to guarantee stricmess (ST). 

Proof: 

(i) Suppose that recoverability is guaranteed and that 
CD3C is not guaranteed for all T1, T2 such that T2 has 
read from T1. Thus there may exist Tl and T2 such that 
T2 reads from T1 , where the scheduler has voted YES 
on both transactions before T1 is decided, violating 
CD3C. Now suppose that T1 is aborted by the deciding 
component and then T2 is committed. This is a violation 
of recoverability, contrary to the assumption that the 
system guarantees recoverability. 

(ii) Suppose that stricmess is guaranteed. Let wl[xl, 
p2[x] be conflicting operations of T1, T2 , respectively, 
where p2[x] is either a read or write operation. Due to 
strictness, el < p2[x] (see section 2.3.2). Since 
p2[x] < y2 by CDDl (see definitin 2.2), also el< y2 
follows, which is CD3C. 

Q 

5 Mu/tip/e Resource Manager 
environment 

5.1 The underlying transaction 
model 

Figure 5.1: A multiple RM environment. 
RMs are invoked and coordinated through the DS 

A multi RM environment consists of several (more than 
one) autonomous RMs, and a Distributed Services (DS) 
system component. 

The DS component provides: 

l Application @rograms) execution environment 

l Application communication services 

l Application RM access services 

l Transaction Management services 
(transaction demarcation, RM transaction participa- 
tion registration, synchronization, atomic commit- 
ment, etc.) 

No distinction is made between a centralized RM (i.e. 
confined to a single node) or a distributed one (i.e. exe- 
cuting and accessing resources on several nodes). 

Note that the RMs’ autonomy implies resource partition- 
ing among the RMs. 

The following terminology and notation are used as 
well: 

. An environment is a DS and a set of RMs, where a 
transaction can span any subset. The RMs involved 
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with a transaction are the participants in the trans- 
action. 

Each RM in an environment has an identifier (e.g. 
RM 2). 

Events are qualified by both a transaction’s identi- 
fier and a RM’s identifier (e.g. w3 2[x] means a 
write operation of resource x by RM ‘2 on behalf of 
transaction T3). 

A multiple RM transaction is a generalization of a single 
RM transaction: 

Definition 5.1 

A transaction Ti consists of one or more local subtrans- 
actions’. 
A local subtransaction Tij accesses all the resources un- 
der the control of a participating RM j, that Ti needs to 
access, and only these resources (i.e. all its events are 
qualified with j). 

A local subtransaction obeys the definition of a transac- 
tion and rules TRl, TR2 in section 2. 

A local subtransaction has states as defined in section 2. 

A transaction Ti has ~II event di of deciding whether Ti 
is committed or aborted. di is usually distinct from any 
event ei . of any local subtransaction Tij and takes place 
in the D !I componen?. 

Q 

A distinction between an individual RM’s history and 
the global history is required as well: 

Definition 5.2 

A local history is generated by a single RM, and defined 
over the set of its local subtransactions. 

A local history obeys the definition of a history in sec- 
tion 2. 

Notation: Hi is the history generated by RM i . 
§ 

A global history obeys the definition of a history in sec- 
tion 2. 

It is assumed that an atomic commitment (AC) protocol 
is applied to guarantee atomicity in the distributed envi- 
ronment. An AC protocol implements the following 
general scheme each time a transaction is decided: 

l AC 
Each participating RM delegates the commit deci- 
sion by voting either YES or NO (also absence of a 
vote within a time limit may be considered NO) af- 
ter its respective local subtransaction has reached 
the ready state, or votes NO if unable to reach the 
ready state. The transaction is committed by all 
RMs if and only if all have voted YES. Otherwise it 
is aborted by all RMs. 

Remarks: 

The YES vote is an obligation to end the local sub- 
transaction (commit or abort) as decided by the AC 
protocol. After voting YES, a RM cannot affect the 
decision. 

After voting NO, a local subtransaction may be 
aborted immediately (thus a NO vote may be repre- 
sented by the event e. Ij = a). 

Note that 2PC ([Gray 781, [Lamp 761) is a special 
case of AC. 

The AC protocol type determines under what failure 
and recovery conditions atomicity is guaranteed 
(e.g. see [Bern 871). No specific AC protocols are 
dealt with here. 

AC enforces the following atomic commitment rules 
(axioms) in addition to the rules CDD (see section 2.5): 

AC1 
If di = c then 
subtransac tion 

Yi,j exists and yi j c di for all 1OCd 
T; ; (i.e. a transa&on is decided to 

be committed or$ after receiving YES votes from 
all the local subtransactions). 

AC2 
If di = c then di < ei . for all local subtransaction 
T. . (i.e. all local 
o ilf 

su transactions d are committed 
y after the AC protocol has decided to commit 

the transaction). 

For environments that implement AC we conclude the 
following: 

’ Local subtransactions reflect transaction partitioning over RMs, and are independent of a possible explicit transaction’s partitioning into nested 
subtransactions by an application. 

* A local transaction is a transaction that consists of a single local subtransaction; a global transaction consists of two or more. Although a local 
transaction Ti can be decided locally by some RM j (and not necessarily in the DS), assume for convenience. that yi j, di exist and obey CDD. 
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Lemma 5.1- The Commit Fusion Lemma 

Let Tl and T2 be any transactions decided via an AC 
protocol. 
If dl = c then 

. event < dl if and only if event < yl . for some j, 
for any event distinct from yI,j and d 1. 

l dl < event if and only if elj <: event for some j, 
for any event distinct from elj and dl. 

l For event1 and event2 of Tl and T2 respectively, 
where even+ i=1,2 is either yi 
enforces’ 

q or di or ei ., RM j 
event, < event, $ ! -1 and only i it en- 

(i.e. ED% for T 
lj and T2,j; 

Thus if di = c then di and all the events yi j and ei j, for 
every participating RM j, can be fused together into a 
single event without affecting order relations among 
other events. 

Proof: 

Follows by the rules CDD and AC. 

The commitment fusion lemma allows in many situations 
a simplified transaction model to be used. This model 
ignors the AC mechanism and assumes that a (commit- 
ted) multi RM transaction (like a single RM transaction) 
has a single commitment event. Note that this assump- 
tion is not valid for the abort events in a multi-RM trans- 
action. 

Example 5.1 

The following two transactions both access resources x 
and y. 
x, y are under the control of RMs I,2 respectively. 

T2,1. w2.rril %,I 

T&2 ‘w32V~ $2 

Figure 5.2: Tl and T2 and their local subtransactions 

The RMs generate the following histories (yij events 
are omitted): 

RMl: HI rr,l~x’ w2,+4 c2,1 Cl I , 

RM2: H2 5,2Iy1 c2,2 rl,zly’ cl,z 

Figure 5.3: The local histories Hl and H2 

Note that the history Hl violates CO, which results in a 
(global) serializability violation. 

The respective global history H is the following: 

Figure 5.4: The history H and its CSG. 
Since the transactions are committed, end-transaction 
events can be fused with respective decision events (by 
the fusion lemma). 

0 

5.2 Local and global properties 
This section examines the relationship between proper- 
ties of histories generated by the individual RMs and the 
global history generated in the environment. History 
properties are redefined in a way that allows definitions 
and results for single RM histories also to be used in the 
multi-RM case. 

Definition 5.3 - Global Properties 

Let X be a history property, well defined for a single 
RM’s histories. Let X’, the associated property of X, be 
a (global) history property defined by a modified defini- 
tion of X, where every event of ending a committed 
transaction (ei) in the definition of X is replaced with 
the respective commit-decision event (di). 

A global history H has property X (is in X) if property 
X’ is well defined and H has property X’ (i.e. H obeys 

’ “Enforces” means that actions taken by RM j generate events that reflect or imply such an order. 
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the definition of X’). 
8 

Remarks: 

l Let X be a history property. In what follows, X also 
denotes the class of global histories with property 
X. 

l Note that if a property X does not impose con- 
straints on the order of events ei, then the defini- 
tions of X a-id X’ are identical (e.g. serializability). 

l Note that when the fusion lemma (5.1) is imple- 
mented, the properties X and X’ are identical. 

Example 5.2 

CO’, the associated property of CO, is defmed as fol- 
lows: 

A history is in CO’ if for any conflicting operations 
Pl,j[Xl, qzj[x] of any committed transactions Tl, T2 re- 
spectively , Pl,j[‘l < S2j[‘l implies dl < d2. 

Thus if a (global) history is in CO’ , it is also in CO by 
definition 5.3. 

Usually (e.g. for all the history properties that we have 
explicitly defined) Local-X 2 X , i.e. if a global history 
is in X, it is in Local-X. In particular, the following rela- 
tionships exist as well: 

4 Theorem 5.2 

The following is a representative example for a result of 
definition 5.3 : 

Corollary 5.1 

SER 1 CO (i.e. theorem 3.1 is valid also for global 
history classes). 

LcKal-x = x (i.e. a (global) history is in X if and 
only if it is in Local-X), 
where X is any of the following properties: 

. REX, ACA, ST, CO, S-S2PL 

Proof outline: 

The other class containment releationships described in 
section 3 follow similarly for global history classes. 

By lemma 5.1 and the definition of CO we also con- 
clude the following: 

Theorem 5.1 - The Global CO Enforcement Condi- 
tion 

l Let H be a global history. Then CD3C for any com- 
mitted Tlj and T2 
is in a conflict wi 

. (i.e. elj < y2,j), such that T2j 
3.i T 

cient condition for H tol& 1 Eifcessory and ‘@- 

and thus 

l Guaranteeing CD3C for any Tlj and T2j , such 
that T2,j is in a conflict with Tl ., and ylj exists al- 
ready, 1s a necessary and suf zcient condition for s’ 
guaranteeing CO. 

(Without guaranteeing CD3C, CO may be violated, and 
vise versa.) 

We now define properties of global histories that reflect 
properties of their respective local histories: 

Definition 5.4 - Local-X 

Let H be global history generated in some environment, 
and H. its respective local history generated by RM j in 
the enlvironment. 

H’j, the augmented history of a local history H. , is a 
history defined over the local subtransactions o f' . RM J, 
where each local subtransaction Tij is augmented with 
the event di, 

Let X be a history property, well defined for single RM 
histories, and X’ the associated property of X (see def. 
5.3). H is in Local-X (is locally X) if H’j of every RM j 
in the environment is in X’, 

The theorem follows by the definitions of global proper- 
ties (5.3), Local-X (5.4), the commitment fusion lemma 
(5.1), the RMs’ resource partitioning, and the definitions 
of REC, ACA, ST, CO and S-S2PL. 
A proof is demonstrated below for the case X = CO 
(without using the fusion lemma; it is trivial with the 
lemma): 

Let H be a global history and Hj its respective local his- 
tory of RM j, and let H’. be the augmented history of H.. 
With out loss of genera&, let Tl and T2 be committed 
transactions in H. 
Let H be in CO. Suppose that for some RM j , T2 j is in 
a conflict with TIj. This means that T2 is in a conflict 
with Tl , which implies dl < d2 (CO and definition 5.3). 
Thus for every RM j , H’j is in CO’ (see definition 5.4) 
and H is in Local-CO. 
Now let H be in Local-CO. If T2 is in a conflict with TI 
3 it means that for some RM j , T is in a conflict with 

25 
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TIj. Since H’. is in CO’ &ocal-CO; definition 5.4) this 
implies that d-l1 < d2. Thus H is in CO (definition 5.3). 

0 

Theorem 5.3 

Local-X 2 X (i.e. being in Local-X does not imply 
that a history is in X ), 
where X is any of the following properties: 

l SER, 2PL, S2PL 

Proof: 

Local-X 2 X is true for SER (using theorem 2.1) and 
2PL (follows by definition). 
It is also true for strictness: 
If H is a global history in ST then (Wi .[x] < pkj[x] im- 
plies di < pkj[x]) for any relevant R il. J by definition 
5.3. Thus by definition 5.4 H is in Local-ST. 
Thus the contaiment is also true for S2PL = STn2PL. 

Now let H be the history in example 5.1 above. 

The history H is in Local-SER, Local-2PL and Local- 
S2PL since both H’I and H’2 are in SER’, 2PL’ and 
S2PL’. 

However H is not in SER, 2PL or S2PL: 

l CSG(H) has a cycle, so by theorem 2.1 H is not in 
SER. 

l If it is in 2PL or S2PL it is also in SER, and we 
have a contradiction. 

0 

5.3 On generating global CO 
histories 
This section describes how the Commitment Order Co- 
ordinator (COCO) defined in section 4.2 takes part in 
AC to guarantee global CO histories. (The CORCO de- 
scribed in section 4.3 is handled similarly.) 

In a multi-RM environment that implements AC, a 
COCO typically receives a request via an AC protocol 
to commit some transaction T in the USG. If the COCO 
can commit the transaction, it votes YES on it via AC, 
which is an obligation to either commit or abort accord- 
ing to the decision reached by the AC protocol. Later, 
after being notified of the decision, if T is committed, all 
transactions in ABORTCO(T) need to be aborted (by al- 
gorithm 4.1). Thus the COCO (say, of RM i) has to de- 
lay its YES vote on T, if it has voted YES on any trans- 
action in ABORTco(T) (CD3C by theorem 5.1). When 

YES vote on T is possible, the COCO may either choose 
to do so immediately upon being requested (the non- 
blocking without delays approach), or to delay the vot- 
ing for a given, predetermined amount of time (non- 
blocking with delays). During the delay the set 
ABORTCO(T) may become smaller or empty, since its 
members may be decided and removed from the USG, 
and since ABORTCO(T) cannot increase after T has 
reached the ready state. 
Instead of immediately voting, or delaying the voting for 
a given amount of time (which may still result in aborts) 
the COCO can block the voting on T until all transac- 
tions in ABORTCo(T) are decided. However, if another 
RM in the environment also blocks, this may result in a 
global deadlock (e.g., if T’ is in ABORTco(T) for one 
RM, and T is in ABORTCo(T’) for another RM). 
Aborting transactions by timeout is a common mecha- 
nism for resolving such deadlocks. Controlling the time- 
out by the AC protocol, rather than aborting independ- 
ently by the RMs, is preferable for preventing 
unnecessary aborts. 
Note that aborting transactions by the COCO is neces- 
sary only if a local cycle in its USG is not eliminated by 
some external entity (e.g. a scheduler that generates a 
cycle-free local USG or one that uses aborts to resolve 
local cycles), or if a global cycle (across two or more lo- 
cal USGS) is generated. Since the cycles are generated 
exclusively by the way the RASs operate and are inde- 
pendent of the commit order, the COCO does not have 
to abort more transactions that need to be aborted (also 
when using any other concurrency control) for 
serializability violation prevention. 

6 Guaranteeing global 
serializability by Local 
Commitment Ordering 

This section shows necessary and sufficient conditions 
for guaranteeing global serializability when the RMs are 
autonomous, i.e. the only exchanges between them for 
the purpose of transaction management are those of 
atomic commitment protocols (with no piggy-backing of 
any additional concurrency control information; e.g. 
transaction timestamps). 
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6.1 Local-CO is sufficient for 
global serializability 
The following is a consequence of theorem 3.1 (corol- 
lary 5.1) and theorem 5.2 : 

Theorem 6.1 

SER 3 Local-CO (i.e. if a history is in Local-CO 
then it is globally serializable). 

Remark: Local-CO is maintained, if all the RMs in the 
environment use any types (possibly different, e.g. 
CORCO and S-S2PL based) of CO mechanisms. 

6.2 Conditions when Local-CO is 
necessary to guarantee global 
serializability 
Theorem 6.1 states that local CO is a sufficient condition 
for global serializability. We now use (informally) 
Knowledge Theory based arguments (see for example 
[Halp 871, [Hadz 871) to prove that Local-CO is also 
necessary for guaranteeing global serializability in a 
multi-RM environment, when the RMs support local 
serializability and use atomic commitment exchanges 
only for coordination. (necessary for guaranteeing 
means that otherwise a violation may occur, see defini- 
tion 2.1.) 

The necessity in CO is proven by requiring that each 
RM avoid committing any transaction that can poten- 
tially cause a serializability violation when committed. 
If it is clear that a transaction remains in such a situation 
forever (based on knowledge available to the RM lo- 
cally), the transaction is aborted. We name such a trans- 
action a permanent risk (PR). The PR property is rela- 
tive to a RM. The above requirement implies that each 
RM in the environment has to implement the following 
commitment strategy (CS): 

l cs 

- Starting from a history with no decided transac- 
tions, commit any ready transaction via an AC 
protocol. Every other transaction that is a PR is 
aborted’. 

- Repeat (asynchronously when possible) the fol- 
lowing procedure: 
Commit (via AC) any ready transaction, that 
cannot cause a serializability violation, and 
abort all the PR transactions. 

The resulting global histories are proven to be in CO. 

Theorem 6.2 

. If all the RMs in the environment are autonomous 
and provide local serializability, then CS is a neces- 
sary strategy for each RM, in order to guarantee 
global serializability. 

. If CS is implemented by all the RMs, the global his- 
tories generated are in Local-CO., 

Proof: 

The Serializability Theorem (theorem 2.1) implies that 
the serializability graph provides all the necessary infor- 
mation about serializability. We assume that every RM, 
say RM i, “knows” its local serializability graph SGi (it 
includes all the committed and undecided transactions) 
and its subgraphs CSGi (includes committed transac- 
tions only) and USGi (includes all undecided aansac- 
tions). We also assume (based on AC) that each RM has 
committed a transaction, if and only if it has voted Yes, 
and “knows” that all other RMs participating in a trans- 
action have voted Yes, and will eventually commit it. 

The goal for each RM is to guarantee a cycle-free 
(global) CSG (committed transaction serializability 
graph), by avoiding any action that may create a global 
cycle (local cycles in CSGi are eliminated by RM i, 
since local serializability is assumed in the theorem). 

First, CS is trivially necessary for the following reasons: 
since a PR transaction remains PR for ever (by defini- 
tion), it cannot be committed and thus must be aborted 
to free computing resources. On the other hand, any 
ready transaction that cannot cause a serializability vio- 
lation can be committed. 

We now need to identify PR transactions, while imple- 
menting CS. We show that this implies that each RM 
executes algorithm 4.1. 

Each RM implements CS as follows: 

’ A hidden axiom is assumed, that computing resources are not held unnecessarily. Otherwise, PR transactions can be marked and kept undecided 
forever. Aborting such transactions and reexecutiug them also supports a general concept of fuirness that requests a transaction’s successful com- 
pletion within a reasonable time interval. 
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l Base stage: 
Assume that CSGi does not include any transaction. 
Commit any ready transaction T (via AC). 
Suppose that prior to committing T there is an edge 
T’ + T in USGi. It is possible that there exists an 
edge T + T’ in some USGj of some RM j, j#i, but 
RM i, though, cannot verify this (due to the auton- 
omy requirement). This means that committing T’ 
later may cause a cycle in CSG. Since committing T 
cannot be reversed (see transaction state transitions 
in section 2), no future event can change this situ- 
ation. Hence T’ is a PR (in RM i), and RM i must 
abort it (by voting No via AC) upon committing T. 

. Inductive stage: 
Suppose that CSGi includes at least one transaction. 
We show that no ready transaction can cause a 
serializability violation if committed, and hence can 
be committed (provided that a consensus to commit 
is reached by all the participating RMs via AC): 
Commit any ready transaction T. 
(i) Examine any undecided transactions T’ (in 
USGi). 
Suppose that prior to committing T there is an edge 
T’ + T in USGi. Using again the arguments given 
for the base stage, T’ is a PR, and RM i must abort 
it. If there is no edge from T’ to T, there is no path 
possibly left from T’ to T, after aborting the PR 
transactions above. Thus no additional T’ is a PR 
and no decision on T’ is taken at this stage. 
(ii) Examine now any previously committed trans- 
action T” (in CSGi). 
It is impossible to have a path T +... + T” in CSGi 
or in CSGj for any RM j, j#i , since, if this path ex- 
isted at the stage when T” was committed, it would 
have been disconnected during that stage, when 
aborting all the PR transactions (with edges to T”; 
using (i) above), and since no incoming edges to T” 
could have been generated after T” has been com- 
mitted. Hence, only a path T” +... + T can exist in 
CSGi or in CSG. for any RM j, j#i. This means that 
no cycle in CS d through T and T” can be created, 
and no T” needs to be aborted (which is impossible 
since T” is committed, and would fail the strategy). 
The arguments above ensure that no ready transac- 
tion can cause a serializability violation when com- 
mitted at the beginning of an inductive stage, as was 
assumed, and hence (any ready transaction) T could 
have been committed. Note that committing a trans- 
action can start before the commit process is com- 
pleted for a previous one (i.e. a concurrent imple- 

mentation of the strategy), as long as CD3C is 
maintained for T’ and T, where there exists an edge 
T’ + T in USGi. Without enforcing CD3C, a 
committed transaction can be identified later as a 
PR in RM i, and can cause a serializability viola- 
tion. 

In the CS implementation above, all the PR transactions 
are identified and aborted at each stage. Examining this 
implementation we conclude that it resuhs in exactly 
performing algorithm 4.1 in each RM (at the stage when 
T is committed in RM j, the set of all PR transactions is 
exactly the set ABORTco(T) ). Hence, by theorem 4.1 
eve 

jr 
RM involved guarantees CO, and by enforcing 

CD C, also CO’. This means that the generated (global) 
history is in Local-CO. The only possible deviation from 
the implementation above is by aborting additional 
transactions at each stage. Such a deviation still main- 
tains the generated history in Local-CO. 

0 

Theorems 6.1 and 6.2 imply the following: 

Corollary 6.1 

Guaranteeing Local-CO is a necessary and s@cient 
condition for guaranteeing (global) serializability in an 
environment of autonomous RMs. 

7 Conclusion 

This work generalizes a previously known result, that 
Strong Strict Two Phase Locking (S-S2PL) together 
with Two Phase Commit (2PC) guarantee global 
serializability in a multi resource manager (RM) envi- 
ronment. The new concept defined here, Commitment 
Ordering (CO), provides additional ways to achieve 
global serializability, through different concurrency con- 
trol mechanisms, that may provide deadlock-free execu- 
tions. This allows the levels of concurrency to be con- 
trolled by local trade-offs between blocking 
implementations of CO (e.g. S-S2PL), which are subject 
to deadlocks, and deadlock-free CO implementations, 
which are subject to cascading aborts. To guarantee 
global serializability, no services, but those of atomic 
commitment, are necessary for the coordination of trans- 
actions across RMs, if each RM supports CO. Another 
result shown is that guaranteeing CO is necessary for 
guaranteeing global serializability, when the RMs in- 
volved are autonomous (i.e. when only atomic commit- 
ment is used for RM coordination). 
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The relationships between various properties of the his- 
tories generated by the individual RMs and respective 
properties of the respective global history are examined, 
and assuming that atomic commitment is used, it is 
shown which properties, CO in particular, are preserved 
globally when applied locally by the RMs. 

Generic CO enforcing mechanisms are described as 
well, and their behavior in a multi-RM environment is 
examined. Since CO can be enforced locally in each RM 
(most existing commercial database systems are S-S2PL 
based, and already provide CO), no change in existing 
atomic commitment protocols and interfaces is required 
to utilize the CO solution. 

The study presented in this work suggests that CO is a 
practical, fully distributed solution for the global 
serializability problem in a distributed, high- 
performance transaction-processing environment (see 
also [Raz 91a] for implementation-oriented aspects of 
CO). 

Autonomy implies that a RM has no knowledge of 
whether a transaction is local, i.e. confined to the RM, 
or global, i.e. spanning more than one RM. If a RM is 
coordinated with other RMs via AC protocols only, and 
in addition can identify its local transactions (e.g. by no- 
tifications from applications (either implicitly or explic- 
itly), or through AC protocols), it is said to have ex- 
tended knowledge autonomy (EKA). Since local 
transactions do not need to be coordinated across RMs 
via AC protocols, they do not need to obey the CO con- 
dition for the purpose of global serializability. Under 
EKA a more general property, Extended Commitment 
Ordering (ECO), is necessary to guarantee global 
serializability (see [Raz 91b]). EC0 reduces to CO when 
all the transactions are assumed to be global. 
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