
The Principle of Commitment Ordering,
or

Guaranteeing Serializability in a Heterogeneous Environment
of Multiple Autonomous Resource Managers

Using Atomic Commitment

Yoav Raz

Digital Equipment Corporation, 151 Taylor St. (TAYI), Littleton, Ma 01460

Abstract

Commitment Ordering (CO) is a serializability con-
cept, that allows global serializability to be effec-
tively achieved across multiple autonomous Re-
source Managers (RMs). The RMs may use
different (any) concurrency control mechanisms.
Thus, CO provides a solution for the long standing
global serializability problem. RM autonomy means
that no concurrency control information is shared
with other entities, except Atomic Commitment
(AC) protocol (e.g. Two Phase Commitment - 2PC)
messages. CO is a necessary condition for guaran-
teeing global serializability across autonomous
RMs. CO generalizes the popular Strong-Strict Two
Phase Locking concept (S-S2PL; “release locks
applied on behalf of a transaction only after the
transaction has ended”). While S-S2PL is subject
to deadlocks, CO exhibits deadlock-free executions
when implemented as nonblocking (optimistic)
concurrency control mechanisms.

Permission IO copy withoti fee all or part of this material is granted
provided that copies are MI ma& or dislributed for direct commercial
advantage, the VLDB copyright notice and the ti!le of the publication
and its dale appear, and nolice ir given thal copying is by permission
of the Very Large Database Endowment. To copy olherwise, or IO re-
pubbh, requires a fee and/or special permission from the endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

I Introduction

Distributed transaction management services are in-
tended to provide coordination for transactions that span
multiple resource managers (RMs).

A RM is a software component that manages resources
under transactions’ control. A resource is any medium
with well defined states that are being modified and re-
trieved while obeying transaction’s (“ah or nothing”) se-
mantics (atomicity). This means that effects of failed
transactions are undone, which requires that resources’
states be recoverable (i.e. if a resource is modified by a
transaction, the state it had when the transaction started
can be restored before the transaction ends). A resource
is typically (but not necessarily) a data item. The scope
of any specific resource (e.g. granularity units, versions,
or replications) is defined as a part of a RM’s semantics.
Examples of resource managers are database systems
(DBSs), queue managers, cache managers, some types
of management entities/objects (e.g. see [EMA], [OSI-
SMO]) etc.

A RM may impose a certain property of the generated
transaction histories (transaction event schedules) to
guarantee correctness and certain levels of fault toler-
ance. However, the global history, i.e. the combined his-
tory of all the RMs involved, does not necessarily inherit
such a property even if it is provided by all the RMs.
The serializability (SER) property is an example.
Serializability is the most commonly accepted general
criterion for the correctness of concurrent transactions
(e.g. see [Bern 871, [Papa 863, and supported in most
RMs. When transactions involve more than one RM,

292

this property may be violated in general, unless special
measures are taken, or certain conditions exist to guar-
antee it. This issue is dealt with, for example, in [Brei
901, [Brei 911, [Elma 871, [Geor 911, [Glig 851, [Litw
891 and rPu 881. [Weih 891 deals with the relationships
between local and global serializability in the frarne-
work of abstract data types. Achieving global
serializability with reasonable performance, especially
across RMs that implement different concurrency con-
trol mechanisms, has been considered a difficult prob-
lem (e.g. [Shet 901, [Silb 913).

Global serializability can be guaranteed, in principle, by
several methods if the RMs involved share relevant
concurrency control information. Timestamp Ordering
(TO) is an example (e.g. [Bern 871, borne 901). If all
the RMs involved support TO-based concurrency con-
trol and share the same timestamps, then the entire sys-
tem can exhibit a coherent behavior based on TO, which
guarantees global serializability. However, this technol-
ogy requires a certain RM synchronization as well as
timestamp propagation, and is currently unavailable in
heterogeneous environments. Another known method,
based on locking, allows RM autonomy. We define a
RM to be autonomous if it does not share any resources
and concurrency control information (e.g. timestamps)
with another entity (external to the RM), and is being
coordinated (at the nonapplication level’) solely via
Atomic Commitment (AC) protocols (to achieve global
atomicity). Most systems that support distributed trans-
action services provide AC protocols and related inter-
faces. These protocols guarantee atomicity even in the
presence of certain types of recoverable failures. It
means that either a distributed transaction is committed,
i.e. its effects on all the resources involved become per-
manent, or it is aborted (rolled back), i.e. its effects on
all the resources are undone. The most commonly used
atomic commitment protocols are variants of the Two
Phase Commitment protocol (2PC - [Gray 781, [Lamp
761). Examples are Digital Equipment Corporation’s
Distributed Transaction Manager - DECdtm ([DEC-
dun]), Logical Unit Type 6.2 of International Business
Machines Corporation ([LU6.2]), and the IS0 - OS1
standard for Distributed Transaction Processing ([OSI-
DTP]). A well known local (i.e. local to each RM)
concurrency control mechanism that together with AC

guarantees global serializability is Strong Strict Two
Phase Locking (S-S2PL; “release locks issued on behalf
of a transaction only after the transaction has ended”).
This fact has been known for several years, and has been
the major correctness foundation for distributed transac-
tions. Various technical documents about distributed
transaction management (e.g. [OSI-CCR]) have men-
tioned it. The observation that local S-S2PL guarantees
global serializability appears explicitly at least in vu
881, [Brei 901 and [Brei 9112. The disadvantage of this
approach is that all the RMs involved have to implement
S-S2PL based concurrency control, even if other types
are preferable for some RMs.

In this paper we examine the relationships between his-
tories of individual RMs and the global history that
comprises them, and generalize the above observation.
We define a history property named Commitment Or-
dering (CO), and show that guaranteeing it is a neces-
sary and sufficient condition for guaranteeing global
serializability under the conditions of RM autonomy.
CO can be implemented as standalone serializability
mechanisms as well as being incorporated with other
concurrency control mechanisms. Since CO can be en-
forced solely by controlling the order of transactions’
commit events, it can be combined with any other
concurrency control mechanism without affecting the
mechanism’s resource access scheduling strategy. This
allows selecting and optimizing concurrency control for
each RM according to the nature of transactions in-
volved. Enforcing CO does not require aborting more
transactions than those needed to be aborted for global
serializability violation prevention, which is determined
exclusively by the resource access orders, and is inde-
pendent of the commit orders. S-S2PL based RMs pro-
vide CO already, since S-S2PL is a special case of CO.

In summary, serializability of transaction histories
across (any) different RM types, which may use differ-
ent concurrency control mechanisms but provide the CO
property, is guaranteed without any global coordination
or services but AC. Thus, the CO solution is fully dis-
tributed.

Section 2 is an overview and reformulation of
serializability theory, which provides the foundation for
analyzing CO. Section 3 defines CO and describes its

‘Typically, a RM is unaware of any resource state dependency with states of resources external to the RM, implied by applica-
tions. This is also true in the cases where RMs are coordinataed by multi-database systems, which provide applications with
integrated views of resources.

2 [Brei 911 uses the term rigorousness for S-S2PL. [Brei 911 also redefines CO (naming it strong recoverabifify) and uses it to show that applying
S-S2PL locally guarantees global serializability. No algorithm for enforcing CO (beyond SS2PL) is given there.

293

properties. Section 4 examines CO schedulers and pre-
sents generic CO algorithms. Section 5 deals with multi
RM histories, atomic commitment, and relationships be-
tween local and global properties. Section 6 shows that
CO is exactly the property required to guarantee global
serializability across autonomous RMs. Section 7 pro-
vides a conclusion. This paper is an abridged version of
[Raz 903.

2 Histories and their properties -
an overview

This section summarizes and reformulates known con-
cepts and results of concurrency control theory (see also
[Bern 87]), as well as introducing some new concepts,
as a foundation for the following sections. Some refor-
mulation is required to express and prove results that
follow.

2.1 Transactions and histories
A transaction, informally, is an execution of a set of
programs that access shared resources. It is required that
a transaction is atomic, i.e. either the transaction com-
pletes successfully and its effects on the resources be-
come permanent’, or all its effects on the resources are
undone. In the first case, the transaction is committed. In
the second, the transaction is aborted. Formally, we use
an abstraction that captures only events and relation-
ships among them, which are necessary for reasoning
about concurrency control:

A single RM transaction Ti is a partial order of events
(specific events within the above informally defined
transaction).
The (binary, asymmetric, transitive, irreflexive) relation
that comprises the partial order is denoted “<i” .

Remarks:

. event, <i eventb reads: eventa precedes eventb
(in Ti).

l The subscript i may be omitted when the transac-
tion’s identifier is known from the context.

The events of interest are the following2:

l The operation of reading a resource; ri[x] denotes
that transaction Ti has retrieved (read) the (partial)
state of the resource x.

l The operation of writing a resource; wi[x] means
that transaction Ti has modified (written) the state
of the resource x.

. Ending a transaction; ei means that Ti has ended
(has been either committed or aborted) and will not
introduce any further operations.

A transaction obeys the following transaction rules (axi-
oms):

l TRl
A transaction Ti has exactly a single event ei .
A value is assigned to ei : ei = c if the transaction
is committed; ei = a if the transaction is aborted.
Notation: ei may be denoted Ci or ai when
ei = C or ei= a, respectively.

. TR2
For any operation pi[x] (either ri[x] or wi[x])
pi[X] <. e. 1 1

Two operations on a resource x, pi[X], q.[x] are con-
flicting if they are noncommutative, i.e. app 1. ymg them in
different orders results in two different states3 of x.
A more restrictive4 approach assumes them to be con-
flicting, if at least one of them is a write operation.

A complete history H over a set T of transactions is a
partial order with a relation <H defined according to the
following history rules (axioms):

l HIS1
If Ti is in T and
eventa cH eventb

l HIS2

eventa <i eventb then

If Ti and Tj are in T then for any two conflicting
OlXZXiOIlS pi[X], qj[Xl, either pi[X] < q.[X] or
qj[xl ‘H pi[‘l

I-I J

l HIS3
Let Ti’ T. be transactions in T, where ei = a.
If Wi[Xj <H rj[x] then either
rj[Xl CH ei

ei <H rj[x] or
(Without this rule a history’s

’ The tefin permanent is relative and depends on a resource’s volatility (e.g. sensitivity to process or media failure).
2 More event types such as locking and unlocking may be introduced when necessary.

3 We deal with states informally only. State distinction, and thus operation commutativity. may depend on the RM’s semantics.
4 Two write operations on the same resource may commute, e.g. incremenf and decremenl of a counfer.

294

semantics (as reflected by resource states) is not
uniquely determined, since if ei = a the effect of
w.[x] is undone; i.e. reading x after e. results in re-
tri!eving the last state of x that was ditten by other
(unaborted) transaction than Ti.)

Remarks:

l The subscript H in <H may be omitted when H is
known from the context.

l The graphic symbol +H may be used instead of
<H when convenient.

. <H may be omitted for total orders, i.e., a history
may be represented by an event sequence.

For modeling executions with incomplete transactions,
we define a history to be any prefi? of a complete his-
tory.

2.2 On guaranteeing a property
In the following sections we examine conditions for
guaranteeing that a system (any collection of interacting
components or objects) generates histories with certain
properties. This concept is formalized as follows:

Definition 2.1

Let SA be the set of all reachable states of a system A.

The system A guarantees a property P, if every state in
SA has property P.

4

We concentrate on the case where a system’s state is a
history generated by the system’.

2.3 History classes
Remark: A property’s acronym is also used as the name
for the class of all histories with this property.

2.3. I Serializability

Transaction T2 is in a conjlict with transaction TI if
P+xl < q*bl for respective conflicting operations
q*[xl, pg.

The conflict types are ww, wr, rw, when pl[x], q2[x]
are write-write, write-read, and read-write, respectively.

Remark: Note the asymmetry in the definition above.

There is a conflict equivalence between two histories H
and H’ (the two are conflict equivalent) if they are both
defined over the same set of transactions T, and consist
of the same transaction events (for partially executed
transactions), and

Pifxl <H qj['l if and OdJ' if pi[X] <H’ qj[XI

for XlY conflicting operations pi[X], qj[ll of 3lY commit-
ted transactions Ti, T. , respectively, m T (i.e. H and
H’ have the same con hi cts between operations of com-
mitted transactions).

A history H over a transaction set T is serial, if for every
two transactions Ti, Tj in T all the operations and the
end of one of them precede all the operations and the
end Of theOther(i.e.,if pi[X] <H qj[Y] Or
ei <H qj[y] then for aIlY OperatiOUS Si[U], \[v] in H,
Si[U] <H tj[v] ,alld ei<H tj[v]).

The commit projection of a history H, is its projection
(restriction)3 on its set of committed transactions.

A history is serializable (SER; is in SER), if its commit
projection is conflict equivalent to some serial history.

Transaction states (in addition to committed and

aborted) are defined as follows:

A transaction is decided, if it is either aborted or com-
mitted; otherwise, it is undecided.

An undecided transaction is ready if it has completed its
processing, and is prepared either to be committed or
aborted; otherwise it is active.

The following diagram defines the possible transitions
between transaction states:

’ A pre$x of a partial order P over a set S is a partial order P’ over a set S’s S, with the following properties:
If be S’ and acpb thenakoae S’
If a,bc S’then acpb ifandonlyif acp.b

2 The related state transition function has a history and an event set as arguments. Its values on a given history and its prefixes, or on a given event
set and its subsets are compatible. Such a fimaion is neither formalized nor explicitly used in this work.

3 Let P be a partial order over a set S. A projection (resfricfion) of P on a set S’C S is a partial order P’, a subset of P, that consists of all the
elements in P, involving elements of S’ only.

295

Figure 2.1: Transaction states and their transitions

The Serializability Graph of a history H, SG(H), is the
following directed graph:

SG(H) = (T, C) where

l T is the set of all unaborted (i.e. committed
and undecided) transactions in H

l c (a subset of TxT) is a set of edges that
represent transaction conflicts:
Let T 1, T2 be any two transactions in 3”.
There is an edge from Tl to T2 ifT2 is
in a conflict with Tl.

The Committed Transaction Serializability Graph of a
history H, CSG(H), is the subgraph of SG(H) with all
the committed transactions as nodes and all the respec-
tive edges.

The Undecided Transaction Serializability Graph of a
history H, USG(H), is the subgraph of SG(H) with all
the undecided transactions as nodes and all the respec-
tive edges.

Theorem 2.1 provides a criterion for checking
serializability:

Theorem 2.1 - The Serializability Theorem

A history H is serializable (in SER) if and only if
CSG(I-I) is cycle-free.

(For a proof see, for example, [Bern 871).

2.3.2 Recoverability
This section defines history properties that guarantee
certain desired behavior patterns when aborts occur (see
also [Bern 871).

Recoverability is an essential property of histories when
aborted transactions are present (i.e., in all real situ-
ations). Recoverability guarantees that committed trans-
actions read only resource states written by committed
transactions, and hence, no committed transactions read
corrupted states. Recoverability also ensures that a
serializable history has the same semantics (i.e., the his-
tory’s outcome as reflected by the resources’ states) as a
conflict-equivalent serial history (when exists; e.g., for
complete histories). This may not be true without
recoverability, if aborted transactions are present.

Let T1 and T2 be two distinct transactions. We say that
a transaction T2 reads (a resource x) from (in a read-
from conflict, or wrf conflict with; wrf is a special case
of a wr conflict) transaction Tl if T2 reads x before TI
is aborted (if aborted), and TI is the last transaction to
write x before being read by T2 (i.e., wI[x] < r2[x] and
there is no event t such that wl[x] c t < r2[x], where t
is either al or w3[x] of some T3).

It is required that for any two transactions TI, T2 in H,
whenever T2 reads any resource from Tl, aborting TI
implies aborting T2 (i.e., (T2 reads from T1) implies
(el = a implies e2 = a)). To guarantee this, T2 should
be decided only after Tl has been decided (this is a nec-
essary condition’). Thus, a history H is defined to be re-
coverable @EC; in REC) if for any two transactions Tl,
T2 in H, whenever T2 reads any resource from Tl, TI
ends before T2 does (el < e2), and aborting Tl implies
aborting T2.
Formally, (T2 reads from Tl) implies

(el < e2 and (el = a implies e2 = a)).
The above formulation of recoverability allows it to be
enforced effectively.

Aborts caused by transactions reading states written by
aborted transactions (cascading aborts) are prevented if
any transaction in H reads only data written by already
committed transactions (i.e.,
(T2 readsfrom Tl) implies el = c). Avoiding cascading
aborrs (ACA; cascadelessness) is the property which is
necessary and sufficient to guarantee the above condi-
tion*: H is ACA (in ACA), if for any two transactions

’ The claim is proven by assuming tie contrary, i.e., 5 < el, and having T2 committed, while T, is later aborted.

* Sufficiency is obvious. Necessity is proven by assuming r&x] c el and having T1 aborted.

296

Tl, T2 in H, (T2 reads x from TI) implies
(el = c and el < r2[x]).

Let Tl, T2 be any two transactions in H. H is strict (ST;
is in ST, has the strictness property) if
w1[xl c r$xl implies el < p$xl,
where p2[x3 iseither r2[x] or w2[x].

Strictness simplifies the restoration of a resource’s state
after aborting transactions that have written that re-
source. The recovery procedures of most existing data-
base systems rely on strictness.

Theorem 2.2 follows immediately from the definitions
above:

Theorem 2.2 ([Bern 871)

RECX ACA 3 ST
where “1” denotes a strict containment.

2.3.3 Two Phase Locking

Two Phase Locking (2PL) is a serializability mechanism
that implements two types of locks’: write locks and
read locks. A write lock on a resource blocks both read
and write operations of that resource, while a read lock
blocks write operations only. 2PL consists of partition-
ing a transaction’s duration to two phases: in the first,
locks are acquired; in the second, locks are released
([Eswa 761).

A history is defined to be a 2PL hisrory (it is in the class
2PL), if it can be generated by the 2PL mechanism.

When combining strictness (ST) with 2PL we get Srricr
Two Phase Locking (S2PL = STn2PL). To enforce
S2PL, write locks issued on behalf of a transaction are
not released until its end. Read locks, however, can be
released earlier, after the end of phase one of 2PL.

The property Strong-S2PL (S-S2PL) requires that all
locks are not released before the transaction ends (either
committed or aborted).

Formally: A history H is S-S2PL (in S-S2PL) if for any
conflicting operations pI [x], q2[x] in H (of transactions
Tl. T2 respectively) pI[x] < q2[x] implies el c q2[x].

Theorem 2.3 summarizes the relationships among the
2PL classes:

Theorem 2.3

2PL I> S2PL 1 s-S2PL

2.4 On inherently blocking and
noninherently blocking properties
Some history properties can be enforced only by block-
ing mechanisms. A mechanism is blocking, if in some
situations it delays some transaction’s event until a cer-
tain event(s) occurs in some other transaction(s).

A mechanism is operation-blocking, if in some situ-
ations it delays a transaction’s operation until a certain
event(s) occurs in some other transaction(s), or aborts all
transactions with blocked operations (to avoid
operation-blocking, that otherwise would occur).

We define a history property to be inherently-blocking,
if it can be enforced by operation-blocking mechanisms
only. Otherwise it is noninherently-blocking.

Both serializability and recoverability are noninherently-
blocking, since they can always be guaranteed by abort-
ing a violating transaction any time before it ends, with-
out having any operations blocked. This observation is
the basis for optimistic concurrency control ([Kung 81]),
where transactions run without blocking each other’s
operations, and are aborted before ending, if they violate
serializability or any other desired property. 2PL, ACA
and their special cases, on the other hand, are inherently-
blocking.

Note that the mutual blocking of two or more transac-
tions is the cause of deadlock situations. Thus, non-
blocking mechanisms guarantee deadlock-freeness.

Remark: In this work we deal with blocking and dead-
locks informally only.

2.5 On commit-decision
delegation
In some situations the decision whether to commit or
abort a ready transaction is delegated from one system
(object, component) to another system (object, compo-
nent) via a notification. This notification is denoted as a
YES vote on the transaction.

Definition 2.2

Let transaction T be in a ready state. System A dele-
gates the commit decision on a transaction T to system
B by voting YES on T, if system A is prepared to either
commit T or abort it, according to the decision taken by

’ A lock is considered any mechanism that blocks resource-access operations.

297

system B. After voting YES system A cannot affect the
decision anymore.

Remark System A can abort transactions. It cannot vote
YES on a transaction after aborting it.

Let yi denote the YES voting event by system A on
transaction Ti, and di the decision event that takes place
in system B. di takes the values a or c, and may be de-
noted ai or Ci respectively (when a distinction between
ei and di is clear by the context). The following commit
decision delegation (CDD) rules (axioms) involving
these events hold true:

CDDl
pi[X] < yi for any operation pi[X] of Ti (i.e., all the
transaction’s operations are completed before vot-
ing YES on the transaction’).

CDD2
yi < di (i.e., when commit-decision delegation is
applied, an explicit vote is required before any deci-
sion to commit or abort can be made).

CDD3
di < ei (i.e., the transaction is ended by system A
only after being notified of the decision).

CDD4
ei = c if and only if di = c (the obedience rule).

CDDS
event < di implies event < yi for any event f yi in
system A (i.e., all such precedence dependencies
with di are through yi).

CDD6
di < event implies ei < event for any event f ei
in system A (i.e., all such precedence dependencies
with di are through ei).

§

Note that CDD1,2,3 are consistent with TR2. CDD5,6
reflect that systems A and B interact through the voting
mechanism only (to generate interaction history events).

In some situations, where dependencies exist between
decision events of different transactions (see sections
4.4 and 5 below), the following condition is needed to
guarantee such dependencies:

Definition 2.3

A system (object) that delegates commit decisions obeys
the ymmit-decision delegation, dependency condition
(CD C) for transactions Tl and T2 , if it votes YES on
T2 only after commiting or aborting Tl , i.e., the follow-
ing relationship holds true:

. CD3C

el <y2

Note the asymmetry in the definition above.

Theorem 2.3 summarizes the conditions for decision
event dependencies.

Theorem 2.3

Let system A delegate the commit decision on transac-
tions Tl and T2 to system B.

Then CD3C for Tl and T2 (i.e. el < y2) is a necessary
and sufficient condition for even+ < event2 , when
event1 is yI or dl or eI, and event2 is y2 or d2 or e2.

Proof:

Follows by CDD.
§

3 Commitment Ordering (CO)

Commitment Ordering (CO) is a property of histories
that guarantees serializability. It generalizes S-S2PL. A
history is CO if the order (c) of any two conflicting op-
erations in any two committed transactions matches the
order of the respective commit events.

After a transaction accesses a resource, S-S2PL blocks
any conflicting operations on the resource until the end
of that transaction. CO, on the other hand, allows access
by conflicting operations, while using any access sched-
uling strategy. This allows CO to be implemented also
in a nonblocking manner, which guarantees deadlock-
freeness. The price for this, however, is the possibility
of cascading aborts when recoverability is applied.

‘Commiting Ti by system A after the decision is made may involve the completion of write operations that have been written
before the voting to a temporary storage, and not to the resource itself. However, in such cases the resource is locked for any
operation until the transaction ends, and thus CDDl can be assumed also for this case.

298

Definition 3.1

A history is in CO if for any conflicting operations
pl[xl, q2[x] of any committed transactions TL, T2 re-
spectively , P#l < q2bl implies el<e2.
Formally:

(el=c and e2=c and p1[x]<q2[x]) implies
el < e2

9

We now show that CO implies serializability:

Theorem 3.1

SER ICO

Proof:
(i) Let a history H be in CO, and let
. . . + T. + . . . + T. + . . . be a (directed) path in
CSG(H)! By the CO definition (definition 3.1) and an
induction by the order on the path above, we conclude
that Ci < Cj .

(ii) Now, suppose that H is not in SER.
By theorem 2.1 (without loss of generality) there is a cy-
cle T1 + T2 + . . . -+ T, + T1 in CSG(H), where
n 2 2.

First, let Ti and Tj in (i) be T1 and T2 above, respec-
tively (consider an appropriate prefix of the expression
representing the cycle above).
This implies by (i) that c1 < c2.

NOW, let Ti and Tj in (i) be T2 and T1 above, respec-
tively (consider an appropriate suffix of the expression
representing the cycle above). This implies that
c2 c Cl. However, cl < c2 and c2 < cl contradict
each other, since the relation “4’ is asymmetric. Hence
CSG(H) is acyclic, and H is in SER by Theorem 2.1.

Now examine the following serializable, non CO history
to conclude that the containment is stricr
rlbl w2[xl c2 cl

§

The following diagram summarizes the containment re-
lationships between history classes (some relationships
are introduced here without proofs).

Figure 3.1: Class containment relationships

An arrow from a class A to a class B indicates that class
A strictly contains B; a lack of a directed path between
classes means that the classes are incomparable.

A property is inherently blocking if it can be enforced
only by blocking transaction’s operations until certain
events occur in other transactions.

4 Commitment Ordering
schedulers

A scheduler is a RM’s component that schedules certain
transactions’ events. Commitment Ordering (CO) sched-
ulers are schedulers that generate CO histories. Generic
mechanisms, that can be combined in various ways to
implement CO schedulers are presented in the following
sections. The algorithms described below provide addi-
tional (algorithmic) characterizations for the properties
CO and COnREC.

299

4.1 Schedulers: components and
classification
Schedulers typically deal with three types of transaction
events:

l Transaction initiation

l Resource access

l Transaction termination

Concentrating on the latter two types’, we model a
(complete) scheduler as consisting of two components:

l Resource Access Scheduler (RAS)
A component that manages the resource access re-
quests arriving on behalf of transactions, and de-
cides when to execute which resource access opera-
tion.

l Transaction Termination Scheduler (ITS)
A competent that monitors the set of transactions
and decides when and which transaction to commit
or abort. In a multi RM environment this compo-
nent participates in atomic commitment procedures
on behalf of its RM and controls (within the respec-
tive RM) the execution of the decision reached via
atomic commitment for each relevant transaction.

A scheduler component is blocking if it executes certain
transaction’s event requests only after certain events
have occurred in some other transaction(s). Otherwise,
it is nonblocking.

Nonblocking schedulers implement the so called opti-
mistic concurrency control approach ([Kung 811). When
a scheduler is nonblocking, it provides deadlock-free
executions.

4.2 A “pure” CO TTS - The
Commitment Order Coordinator
(COCO)
The following ‘ITS type, the Commitment Order Coor-
dinator (COCO), checks for CO only and generates CO
histories. The generated histories are not necessarily re-
coverable. Recoverability, if required, can be applied by
enhancing the COCO (see section 4.2) or by an external
mechanism (e.g., see section 4.4).

A COCO maintains a serializability graph, the USG, of
all undecided transactions. Every new transaction proc-
essed by the RM is reflected as a new node in the USG;
every conflict between transactions in the USG is re-
flected by a directed edge (an edge between two transac-
tions may represent several conflicts).

USG(H) = (UT,C) where

. UT is the set of all undecided transactions in a
history H

l c (a subset of UTxUT) is the set of directed
edges between transactions in UT. There
is an edge from Tl to T2 , if T2 is in a
conflict with Tl.

The set of transactions aborted as a result of committing
a transaction T (to prevent a future commitment order-
ing violation) is defined as follows:

ABORTco(T) = { T’ I The edge T’ + T is in C)

These aborts cannot be compromized, as stated by
lemma 4.1:

Lemma 4.1

Aborting all the members of ABORTco(T), after T is
committed, is necessary for guaranteeing CO (assuming
that every transaction is eventually decided).

Proof:
Suppose that T is committed. Let T’ be some transaction
in ABORTco(T). Thus T’ is undecided when T is com-
mitted. If T’ is later committed, then c < c’, where c and
c’ are the commit events of T and T’ respsctively. How-
ever, T is in a conflict with T’, and thus, CO is violated.

P

Lemma 4.1 is the key for the CO algorithm.

Algorithm 4.1 - The CO Algorithm

Repeat the following steps:

l Select any transaction T in the USG in the ready
state (using any criteria, such as by priorities as-
signed to each transaction; a priority can be
changed dynamically as long as the transaction is in
the USG), and commit it.

1 A transaction is usually initiated as soon as computing resources are. available, without considering the effect on the histoxy’s properties. Situations
where an advantage can be. taken of controlling initiation are ignored here.

300

l Abort all the transactions in the set ABORTCo(T),
i.e. all the transactions (both ready and active) in
the USG that have an edge going to T .

l Remove any decided transaction (T and the aborted
transactions) from the graph (they do not belong in
the USG by definition).

Remark: During each iteration the USG should reflect
all operations’ conflicts until commit.

9

Example 4.1

The following figure demonstrates one iteration of the
algorithm:

Figure 4.1: A USG
If T5 is selected to be committed, then T3 and T4 are
aborted; T3, T4 and T5 are then removed from the
graph.

§

The following theorem states the algorithm’s correct-
ness:

Theorem 4.1

Histories generated by a scheduler involving a COCO
(algorithm 4.1) are in CO.

Proof:

The proof is by induction on the number of iterations by
the algorithm, starting from an empty history Ho , and
an empty graph USGO = USG(HO). H0 is CO.

Assume that the history H, , generated after iteration n,
is CO. USG, (in its UT component) includes all the un-
decided transactions in Hn.

Now perform an additional iteration, number n+l, and
commit transaction Tl (without loss of generality - wlg)
in USG,. H,+l includes all the transactions in H, and

the new (undecided) transactions that have been gener-
ated after completing step n (and are in USGn+l).

Examine the following cases after completing iteration
n+l:

l Let T2, T3 (wlg) be two committed transactions in
H,. If T3 is in a conflict with T2 then c2 < c3 since
H, is CO by the induction hypothesis.

l Obviously, c2 < cl for every (previously) commit-
ted transaction T2 in H, with which Tl is in a con-
flict.

l Suppose that a committed transaction T2 is in a
conflict with Tl. This means that Tl is in
ABORTCo(T2), and thus aborted when T2 was
committed. A contradiction.

The cases above exhaust all possible pairs of conflicting
committed transactions in H,+l. Hence, H,, 1 is CO.

By theorems 3.1 and 4.1 we conclude the following:

Corollary 4.1

Histories generated by a system that includes a COCO
are serializable.

Note that aborting the transactions in ABORTco(T)
when committing T prevents any cycle involving T be-
ing generated in the CSG in the future. This observation
is a direct way to show that the algorithm above guaran-
tees serializability. If a transaction exists, that does not
reside on any cycle in the USG, then a transaction T ex-
ists with no edges from any other transaction. T can be
committed without aborting any other transaction since
ABORTCOO is empty. If all the transactions in the
USG are on cycles, at least one transaction has to be
aborted when committing another one. If the COCO is
combined with a scheduler (see also section 4.4 below)
that guarantees (local) serializability, cycles in the USG
are either prevented or eliminated by the scheduler
aborting transactions.

In a multi-RM environment, a COCO decides when to
vote YES on a transaction in an atomic commitment
(AC) protocol, rather than deciding when to commit it.
After a notification to commit has arrived, when com-
mitting a transaction, the actions taken by the COCO are
the same as for a single RM environment. When using
AC, delaying the voting or blocking it usually reduces

301

the number of aborted transactions (see more in section
5 below).

4.3 The CO Recoverability
Coordinator (CORCO)
A CORCO is a CO ‘ITS generating histories that are
both CO and recoverable. This TTS is an enhancement
of the COCO (section 4.2 above), and differs from it
only in processing additional information to guarantee
recoverability, and thus, possibly aborting additional
transactions, to prevent recoverability violations.

A CORCO maintains an enhanced serializability graph,
wrf-USG:

wrfUSG(H) = (lJT,C u Cwr.) where

. UT is the set of all undecided transactions in
the history H.

l c is a set of edges between transactions in
UT: There is a C edge from TI to T2 , if
T2 is in a conflict (conflicts) with TI
but has not read from TI.

l Cwrf
is a set of edges between transactions in
UT as well: There is a Cwr. edge from TI
to T2 , if T2 has read from TI (and
possibly is also in conflicts of other types
with TI).

Note that C and C ,@are disjoint.

The set of transactions aborted as a result of committing
T (to prevent future CO violation) is defined as follows:

ABORTCo(T) = (T’ I T’ + T is in C or CwTf 1

The above definition of ABORTCoQ has the same se-
mantics as the definition of ABORTco(T) for the
coca.

The set of aborted transactions due to recoverability, as
a result of aborting transaction T’, is defined as follows:

ABORTEC(T’) = (T” I T’ + T” is in Cwrf or
T”’ +T” isin Cw

% where T”’ is in AI3 RTRl&“))

Note that the definition is recursive. This reflects the na-
ture of cascading aborts.

A CORCO executes the following algorithm:

Algorithm 4.2

Repeat the following steps:

l Select any ready transaction T in the wr-USG, that
does not have any in-coming Cw,.. edge (i.e. such
that T is not in ABORTRRC(T’) for any transaction
T’ in ABORTCO(T); this avoids the need to later
abort T itself), and commit it.

l Abort all the transactions T’ (both ready and active)
in ABORTco(T).

l Abort all the transactions T” (both ready and active)
in ABORTREC(T’) for every T’ aborted in the pre-
vious step (cascading aborts).

l Remove any decided transaction (T and all the
aborted transactions) from the graph.

Remarks:
During each iteration the wrf-USG should reflect all op-
erations’ conflicts till commit.

Transactions on wrf cycles, that are not aborted by the
algorithm, are aborted asynchronously.

§

Example 4.2

The following figure demonstrates one iteration of the
algorithm:

A C Edge
A c wti we

Figure 4.3: A wrf-USG
If T5 is selected to be committed then T3, T4, T.,, T8 are
aborted; all committed and aborted transactions are then
removed from the graph.

AJ-TCo(T5) = (T3t T4 1
ABORTRRC(T3) = 4 (empty set)
~ORTREctT4> = (T7, T8 1

§

The algorithm’s correctness is stated as follows:

Theorem 4.2

Histories generated by a scheduler involving a CORCO
(algorithm 4.2) are both CO and recoverable.

302

Proof:

The histories generated are CO by theorem 4.1, since a
CORCO differs from a COCO only in possibly aborting
additional transactions during each iteration (due to the
recoverability requirement).

Since all the transactions that can violate recoverability
(transactions in ABORTEC(T’) for every aborted
transaction T’ in ABORTco(T)) are aborted during
each iteration (i.e. transactions that read resources writ-
ten by an aborted transaction before the abort), the gen-
erated histories are recoverable.

§

By theorems 3.1 and 4.2 we conclude the following:

Corollary 4.2

Histories generated by a system that includes a CORCO
are both serializable and recoverable.

4.4 Combining a CO TTS with a
RM’s scheduler
The CO TTSs above can be combined with any RAS or
a complete scheduler. When a CO ‘ITS is combined
with a scheduler, the scheduler delegates the commit de-
cision (see section 2.5 above) to the CO ‘ITS. If all the
components are non-blocking, then also the combined
mechanism is non-blocking, and hence ensures
deadlock-freeness:

Corollary 4.3

There exist schedulers incorporating a COCO or
CORCO that generate deadlock free executions only.

By Corollaries 4.1 and 4.2 the combined RAS (or sched-
uler) does not necessarily need to produce serializable
histories in order to guarantee serializability, since the
CO TTSs above take care of this.

Figure 4.3
The commit/abort decision process using any CO TTS

combined with a RAS or scheduler

The combined mechanism executes as follows (See Fig-
ure 4.3 above):

First, a transaction interacts with a RAS (or a scheduler).
Then if unaborted, when ready, the transaction is con-
sidered by a CO ‘ITS as a candidate to be committed. A
transaction may be aborted to prevent a CO TTS’s con-
dition violation.

An important property of the CO TTSs is their total pas-
sivity with regard to resource access operations. The
RAS (or the complete scheduler) can implement any re-
source access scheduling strategy without being affected
by a combined CO ITS. The only requirement is that a
CO TTS has updated conflict information (e.g. a USG or
a w@USG).

When a scheduler delegates the commit decision, the
following statements about recoverability hold true :

Theorem 4.3 - The Recoverability Inheritance Theo-
rem

Let a system consist of a scheduler that guarantees
recoverability (cascadelessness, strictness) and some
component to which it delegates the commit decisions
on all unaborted transactions. Let the scheduler vote
YES on a transaction when it can be committed (by the
scheduler) without violating recoverability (cas-
cadelessness, strictness). Then the above system guar-
antees recoverability (cascadelessness, strictness re-
spectively) as well.

Proof:

Since the decision notification can arrive any time after
voting, the scheduler has to guarantee the following
condition in order to prevent a possible recoverability
violation (see a definition of recoverability in section 2.3
above):
(T2 readsfrom TI) implies
(el c y2 and (el = a implies e2= a))
Thus, if (T2 reaa3 from Tl) the scheduler does not vote
YES on T2 before TI is decided (el c y2) and hence
el < e2 follows by rules CDD2,3. Since e2 follows eI, if
el = a then (by the above condition) the scheduler can
and has to enforce (el = a implies 5 = a) by abort-
ing T2. Thus, (T, readsfrom Tl) implies

(el < e2 and (el = a implies e = a)) and
recoverability is guaranteed. Note that CD 3 C for TI and
T2 is maintained.

The cases ACA, ST are straightforward.
0

303

From theorem 4.3 we conclude corollary 4.4:

Corollary 4.4

If guaranteeing both CO and recoverability is required, a
CORCO is necessary to be combined with a scheduler
only if the scheduler does not guarantee recoverability
by itself. Otherwise a COCO is sufficient.

Remark: Note that if the combined scheduler above is
S-S2PL based, then the USG of the respective CO TTS
does not have any edges. This means that no aborts by
the CO ‘ITS are needed, as one can expect, and the en-
tire CO TTS is unnecessary. This is an extreme case.
Other scheduler types may induce other properties of the
respective USGS. No wrf conflicts are reflected in the
USG when the scheduler guarantees cascadelessness; no
ww and WI when it guarantees strictness.

Theorem 4.4 - The Recoverability Enforcement Con-
dition

Let a system consist of a scheduler and some component
to which the scheduler delegates the commit decisions
on all unaborted transactions.

Then

l Guaranteeing CD3C for any T1 and T2 such that T2
is in a read-from (wrf, conflict with T1 is a neces-
sary condition for the system to guarantee
recoverability.

l Guaranteeing CD3C for any Tl and T2 such that T2
is in a WT or WV conflict with T1 is a necessary con-
dition for the system to guarantee stricmess (ST).

Proof:

(i) Suppose that recoverability is guaranteed and that
CD3C is not guaranteed for all T1, T2 such that T2 has
read from T1. Thus there may exist Tl and T2 such that
T2 reads from T1 , where the scheduler has voted YES
on both transactions before T1 is decided, violating
CD3C. Now suppose that T1 is aborted by the deciding
component and then T2 is committed. This is a violation
of recoverability, contrary to the assumption that the
system guarantees recoverability.

(ii) Suppose that stricmess is guaranteed. Let wl[xl,
p2[x] be conflicting operations of T1, T2 , respectively,
where p2[x] is either a read or write operation. Due to
strictness, el < p2[x] (see section 2.3.2). Since
p2[x] < y2 by CDDl (see definitin 2.2), also el< y2
follows, which is CD3C.

Q

5 Mu/tip/e Resource Manager
environment

5.1 The underlying transaction
model

Figure 5.1: A multiple RM environment.
RMs are invoked and coordinated through the DS

A multi RM environment consists of several (more than
one) autonomous RMs, and a Distributed Services (DS)
system component.

The DS component provides:

l Application @rograms) execution environment

l Application communication services

l Application RM access services

l Transaction Management services
(transaction demarcation, RM transaction participa-
tion registration, synchronization, atomic commit-
ment, etc.)

No distinction is made between a centralized RM (i.e.
confined to a single node) or a distributed one (i.e. exe-
cuting and accessing resources on several nodes).

Note that the RMs’ autonomy implies resource partition-
ing among the RMs.

The following terminology and notation are used as
well:

. An environment is a DS and a set of RMs, where a
transaction can span any subset. The RMs involved

304

with a transaction are the participants in the trans-
action.

Each RM in an environment has an identifier (e.g.
RM 2).

Events are qualified by both a transaction’s identi-
fier and a RM’s identifier (e.g. w3 2[x] means a
write operation of resource x by RM ‘2 on behalf of
transaction T3).

A multiple RM transaction is a generalization of a single
RM transaction:

Definition 5.1

A transaction Ti consists of one or more local subtrans-
actions’.
A local subtransaction Tij accesses all the resources un-
der the control of a participating RM j, that Ti needs to
access, and only these resources (i.e. all its events are
qualified with j).

A local subtransaction obeys the definition of a transac-
tion and rules TRl, TR2 in section 2.

A local subtransaction has states as defined in section 2.

A transaction Ti has ~II event di of deciding whether Ti
is committed or aborted. di is usually distinct from any
event ei . of any local subtransaction Tij and takes place
in the D !I componen?.

Q

A distinction between an individual RM’s history and
the global history is required as well:

Definition 5.2

A local history is generated by a single RM, and defined
over the set of its local subtransactions.

A local history obeys the definition of a history in sec-
tion 2.

Notation: Hi is the history generated by RM i .
§

A global history obeys the definition of a history in sec-
tion 2.

It is assumed that an atomic commitment (AC) protocol
is applied to guarantee atomicity in the distributed envi-
ronment. An AC protocol implements the following
general scheme each time a transaction is decided:

l AC
Each participating RM delegates the commit deci-
sion by voting either YES or NO (also absence of a
vote within a time limit may be considered NO) af-
ter its respective local subtransaction has reached
the ready state, or votes NO if unable to reach the
ready state. The transaction is committed by all
RMs if and only if all have voted YES. Otherwise it
is aborted by all RMs.

Remarks:

The YES vote is an obligation to end the local sub-
transaction (commit or abort) as decided by the AC
protocol. After voting YES, a RM cannot affect the
decision.

After voting NO, a local subtransaction may be
aborted immediately (thus a NO vote may be repre-
sented by the event e. Ij = a).

Note that 2PC ([Gray 781, [Lamp 761) is a special
case of AC.

The AC protocol type determines under what failure
and recovery conditions atomicity is guaranteed
(e.g. see [Bern 871). No specific AC protocols are
dealt with here.

AC enforces the following atomic commitment rules
(axioms) in addition to the rules CDD (see section 2.5):

AC1
If di = c then
subtransac tion

Yi,j exists and yi j c di for all 1OCd
T; ; (i.e. a transa&on is decided to

be committed or$ after receiving YES votes from
all the local subtransactions).

AC2
If di = c then di < ei . for all local subtransaction
T. . (i.e. all local
o ilf

su transactions d are committed
y after the AC protocol has decided to commit

the transaction).

For environments that implement AC we conclude the
following:

’ Local subtransactions reflect transaction partitioning over RMs, and are independent of a possible explicit transaction’s partitioning into nested
subtransactions by an application.

* A local transaction is a transaction that consists of a single local subtransaction; a global transaction consists of two or more. Although a local
transaction Ti can be decided locally by some RM j (and not necessarily in the DS), assume for convenience. that yi j, di exist and obey CDD.

305

Lemma 5.1- The Commit Fusion Lemma

Let Tl and T2 be any transactions decided via an AC
protocol.
If dl = c then

. event < dl if and only if event < yl . for some j,
for any event distinct from yI,j and d 1.

l dl < event if and only if elj <: event for some j,
for any event distinct from elj and dl.

l For event1 and event2 of Tl and T2 respectively,
where even+ i=1,2 is either yi
enforces’

q or di or ei ., RM j
event, < event, $! -1 and only i it en-

(i.e. ED% for T
lj and T2,j;

Thus if di = c then di and all the events yi j and ei j, for
every participating RM j, can be fused together into a
single event without affecting order relations among
other events.

Proof:

Follows by the rules CDD and AC.

The commitment fusion lemma allows in many situations
a simplified transaction model to be used. This model
ignors the AC mechanism and assumes that a (commit-
ted) multi RM transaction (like a single RM transaction)
has a single commitment event. Note that this assump-
tion is not valid for the abort events in a multi-RM trans-
action.

Example 5.1

The following two transactions both access resources x
and y.
x, y are under the control of RMs I,2 respectively.

T2,1. w2.rril %,I

T&2 ‘w32V~ $2

Figure 5.2: Tl and T2 and their local subtransactions

The RMs generate the following histories (yij events
are omitted):

RMl: HI rr,l~x’ w2,+4 c2,1 Cl I ,

RM2: H2 5,2Iy1 c2,2 rl,zly’ cl,z

Figure 5.3: The local histories Hl and H2

Note that the history Hl violates CO, which results in a
(global) serializability violation.

The respective global history H is the following:

Figure 5.4: The history H and its CSG.
Since the transactions are committed, end-transaction
events can be fused with respective decision events (by
the fusion lemma).

0

5.2 Local and global properties
This section examines the relationship between proper-
ties of histories generated by the individual RMs and the
global history generated in the environment. History
properties are redefined in a way that allows definitions
and results for single RM histories also to be used in the
multi-RM case.

Definition 5.3 - Global Properties

Let X be a history property, well defined for a single
RM’s histories. Let X’, the associated property of X, be
a (global) history property defined by a modified defini-
tion of X, where every event of ending a committed
transaction (ei) in the definition of X is replaced with
the respective commit-decision event (di).

A global history H has property X (is in X) if property
X’ is well defined and H has property X’ (i.e. H obeys

’ “Enforces” means that actions taken by RM j generate events that reflect or imply such an order.

306

the definition of X’).
8

Remarks:

l Let X be a history property. In what follows, X also
denotes the class of global histories with property
X.

l Note that if a property X does not impose con-
straints on the order of events ei, then the defini-
tions of X a-id X’ are identical (e.g. serializability).

l Note that when the fusion lemma (5.1) is imple-
mented, the properties X and X’ are identical.

Example 5.2

CO’, the associated property of CO, is defmed as fol-
lows:

A history is in CO’ if for any conflicting operations
Pl,j[Xl, qzj[x] of any committed transactions Tl, T2 re-
spectively , Pl,j[‘l < S2j[‘l implies dl < d2.

Thus if a (global) history is in CO’ , it is also in CO by
definition 5.3.

Usually (e.g. for all the history properties that we have
explicitly defined) Local-X 2 X , i.e. if a global history
is in X, it is in Local-X. In particular, the following rela-
tionships exist as well:

4 Theorem 5.2

The following is a representative example for a result of
definition 5.3 :

Corollary 5.1

SER 1 CO (i.e. theorem 3.1 is valid also for global
history classes).

LcKal-x = x (i.e. a (global) history is in X if and
only if it is in Local-X),
where X is any of the following properties:

. REX, ACA, ST, CO, S-S2PL

Proof outline:

The other class containment releationships described in
section 3 follow similarly for global history classes.

By lemma 5.1 and the definition of CO we also con-
clude the following:

Theorem 5.1 - The Global CO Enforcement Condi-
tion

l Let H be a global history. Then CD3C for any com-
mitted Tlj and T2
is in a conflict wi

. (i.e. elj < y2,j), such that T2j
3.i T

cient condition for H tol& 1 Eifcessory and ‘@-

and thus

l Guaranteeing CD3C for any Tlj and T2j , such
that T2,j is in a conflict with Tl ., and ylj exists al-
ready, 1s a necessary and suf zcient condition for s’
guaranteeing CO.

(Without guaranteeing CD3C, CO may be violated, and
vise versa.)

We now define properties of global histories that reflect
properties of their respective local histories:

Definition 5.4 - Local-X

Let H be global history generated in some environment,
and H. its respective local history generated by RM j in
the enlvironment.

H’j, the augmented history of a local history H. , is a
history defined over the local subtransactions o f' . RM J,
where each local subtransaction Tij is augmented with
the event di,

Let X be a history property, well defined for single RM
histories, and X’ the associated property of X (see def.
5.3). H is in Local-X (is locally X) if H’j of every RM j
in the environment is in X’,

The theorem follows by the definitions of global proper-
ties (5.3), Local-X (5.4), the commitment fusion lemma
(5.1), the RMs’ resource partitioning, and the definitions
of REC, ACA, ST, CO and S-S2PL.
A proof is demonstrated below for the case X = CO
(without using the fusion lemma; it is trivial with the
lemma):

Let H be a global history and Hj its respective local his-
tory of RM j, and let H’. be the augmented history of H..
With out loss of genera&, let Tl and T2 be committed
transactions in H.
Let H be in CO. Suppose that for some RM j , T2 j is in
a conflict with TIj. This means that T2 is in a conflict
with Tl , which implies dl < d2 (CO and definition 5.3).
Thus for every RM j , H’j is in CO’ (see definition 5.4)
and H is in Local-CO.
Now let H be in Local-CO. If T2 is in a conflict with TI
3 it means that for some RM j , T is in a conflict with

25

307

TIj. Since H’. is in CO’ &ocal-CO; definition 5.4) this
implies that d-l1 < d2. Thus H is in CO (definition 5.3).

0

Theorem 5.3

Local-X 2 X (i.e. being in Local-X does not imply
that a history is in X),
where X is any of the following properties:

l SER, 2PL, S2PL

Proof:

Local-X 2 X is true for SER (using theorem 2.1) and
2PL (follows by definition).
It is also true for strictness:
If H is a global history in ST then (Wi .[x] < pkj[x] im-
plies di < pkj[x]) for any relevant R il. J by definition
5.3. Thus by definition 5.4 H is in Local-ST.
Thus the contaiment is also true for S2PL = STn2PL.

Now let H be the history in example 5.1 above.

The history H is in Local-SER, Local-2PL and Local-
S2PL since both H’I and H’2 are in SER’, 2PL’ and
S2PL’.

However H is not in SER, 2PL or S2PL:

l CSG(H) has a cycle, so by theorem 2.1 H is not in
SER.

l If it is in 2PL or S2PL it is also in SER, and we
have a contradiction.

0

5.3 On generating global CO
histories
This section describes how the Commitment Order Co-
ordinator (COCO) defined in section 4.2 takes part in
AC to guarantee global CO histories. (The CORCO de-
scribed in section 4.3 is handled similarly.)

In a multi-RM environment that implements AC, a
COCO typically receives a request via an AC protocol
to commit some transaction T in the USG. If the COCO
can commit the transaction, it votes YES on it via AC,
which is an obligation to either commit or abort accord-
ing to the decision reached by the AC protocol. Later,
after being notified of the decision, if T is committed, all
transactions in ABORTCO(T) need to be aborted (by al-
gorithm 4.1). Thus the COCO (say, of RM i) has to de-
lay its YES vote on T, if it has voted YES on any trans-
action in ABORTco(T) (CD3C by theorem 5.1). When

YES vote on T is possible, the COCO may either choose
to do so immediately upon being requested (the non-
blocking without delays approach), or to delay the vot-
ing for a given, predetermined amount of time (non-
blocking with delays). During the delay the set
ABORTCO(T) may become smaller or empty, since its
members may be decided and removed from the USG,
and since ABORTCO(T) cannot increase after T has
reached the ready state.
Instead of immediately voting, or delaying the voting for
a given amount of time (which may still result in aborts)
the COCO can block the voting on T until all transac-
tions in ABORTCo(T) are decided. However, if another
RM in the environment also blocks, this may result in a
global deadlock (e.g., if T’ is in ABORTco(T) for one
RM, and T is in ABORTCo(T’) for another RM).
Aborting transactions by timeout is a common mecha-
nism for resolving such deadlocks. Controlling the time-
out by the AC protocol, rather than aborting independ-
ently by the RMs, is preferable for preventing
unnecessary aborts.
Note that aborting transactions by the COCO is neces-
sary only if a local cycle in its USG is not eliminated by
some external entity (e.g. a scheduler that generates a
cycle-free local USG or one that uses aborts to resolve
local cycles), or if a global cycle (across two or more lo-
cal USGS) is generated. Since the cycles are generated
exclusively by the way the RASs operate and are inde-
pendent of the commit order, the COCO does not have
to abort more transactions that need to be aborted (also
when using any other concurrency control) for
serializability violation prevention.

6 Guaranteeing global
serializability by Local
Commitment Ordering

This section shows necessary and sufficient conditions
for guaranteeing global serializability when the RMs are
autonomous, i.e. the only exchanges between them for
the purpose of transaction management are those of
atomic commitment protocols (with no piggy-backing of
any additional concurrency control information; e.g.
transaction timestamps).

308

6.1 Local-CO is sufficient for
global serializability
The following is a consequence of theorem 3.1 (corol-
lary 5.1) and theorem 5.2 :

Theorem 6.1

SER 3 Local-CO (i.e. if a history is in Local-CO
then it is globally serializable).

Remark: Local-CO is maintained, if all the RMs in the
environment use any types (possibly different, e.g.
CORCO and S-S2PL based) of CO mechanisms.

6.2 Conditions when Local-CO is
necessary to guarantee global
serializability
Theorem 6.1 states that local CO is a sufficient condition
for global serializability. We now use (informally)
Knowledge Theory based arguments (see for example
[Halp 871, [Hadz 871) to prove that Local-CO is also
necessary for guaranteeing global serializability in a
multi-RM environment, when the RMs support local
serializability and use atomic commitment exchanges
only for coordination. (necessary for guaranteeing
means that otherwise a violation may occur, see defini-
tion 2.1.)

The necessity in CO is proven by requiring that each
RM avoid committing any transaction that can poten-
tially cause a serializability violation when committed.
If it is clear that a transaction remains in such a situation
forever (based on knowledge available to the RM lo-
cally), the transaction is aborted. We name such a trans-
action a permanent risk (PR). The PR property is rela-
tive to a RM. The above requirement implies that each
RM in the environment has to implement the following
commitment strategy (CS):

l cs

- Starting from a history with no decided transac-
tions, commit any ready transaction via an AC
protocol. Every other transaction that is a PR is
aborted’.

- Repeat (asynchronously when possible) the fol-
lowing procedure:
Commit (via AC) any ready transaction, that
cannot cause a serializability violation, and
abort all the PR transactions.

The resulting global histories are proven to be in CO.

Theorem 6.2

. If all the RMs in the environment are autonomous
and provide local serializability, then CS is a neces-
sary strategy for each RM, in order to guarantee
global serializability.

. If CS is implemented by all the RMs, the global his-
tories generated are in Local-CO.,

Proof:

The Serializability Theorem (theorem 2.1) implies that
the serializability graph provides all the necessary infor-
mation about serializability. We assume that every RM,
say RM i, “knows” its local serializability graph SGi (it
includes all the committed and undecided transactions)
and its subgraphs CSGi (includes committed transac-
tions only) and USGi (includes all undecided aansac-
tions). We also assume (based on AC) that each RM has
committed a transaction, if and only if it has voted Yes,
and “knows” that all other RMs participating in a trans-
action have voted Yes, and will eventually commit it.

The goal for each RM is to guarantee a cycle-free
(global) CSG (committed transaction serializability
graph), by avoiding any action that may create a global
cycle (local cycles in CSGi are eliminated by RM i,
since local serializability is assumed in the theorem).

First, CS is trivially necessary for the following reasons:
since a PR transaction remains PR for ever (by defini-
tion), it cannot be committed and thus must be aborted
to free computing resources. On the other hand, any
ready transaction that cannot cause a serializability vio-
lation can be committed.

We now need to identify PR transactions, while imple-
menting CS. We show that this implies that each RM
executes algorithm 4.1.

Each RM implements CS as follows:

’ A hidden axiom is assumed, that computing resources are not held unnecessarily. Otherwise, PR transactions can be marked and kept undecided
forever. Aborting such transactions and reexecutiug them also supports a general concept of fuirness that requests a transaction’s successful com-
pletion within a reasonable time interval.

309

l Base stage:
Assume that CSGi does not include any transaction.
Commit any ready transaction T (via AC).
Suppose that prior to committing T there is an edge
T’ + T in USGi. It is possible that there exists an
edge T + T’ in some USGj of some RM j, j#i, but
RM i, though, cannot verify this (due to the auton-
omy requirement). This means that committing T’
later may cause a cycle in CSG. Since committing T
cannot be reversed (see transaction state transitions
in section 2), no future event can change this situ-
ation. Hence T’ is a PR (in RM i), and RM i must
abort it (by voting No via AC) upon committing T.

. Inductive stage:
Suppose that CSGi includes at least one transaction.
We show that no ready transaction can cause a
serializability violation if committed, and hence can
be committed (provided that a consensus to commit
is reached by all the participating RMs via AC):
Commit any ready transaction T.
(i) Examine any undecided transactions T’ (in
USGi).
Suppose that prior to committing T there is an edge
T’ + T in USGi. Using again the arguments given
for the base stage, T’ is a PR, and RM i must abort
it. If there is no edge from T’ to T, there is no path
possibly left from T’ to T, after aborting the PR
transactions above. Thus no additional T’ is a PR
and no decision on T’ is taken at this stage.
(ii) Examine now any previously committed trans-
action T” (in CSGi).
It is impossible to have a path T +... + T” in CSGi
or in CSGj for any RM j, j#i , since, if this path ex-
isted at the stage when T” was committed, it would
have been disconnected during that stage, when
aborting all the PR transactions (with edges to T”;
using (i) above), and since no incoming edges to T”
could have been generated after T” has been com-
mitted. Hence, only a path T” +... + T can exist in
CSGi or in CSG. for any RM j, j#i. This means that
no cycle in CS d through T and T” can be created,
and no T” needs to be aborted (which is impossible
since T” is committed, and would fail the strategy).
The arguments above ensure that no ready transac-
tion can cause a serializability violation when com-
mitted at the beginning of an inductive stage, as was
assumed, and hence (any ready transaction) T could
have been committed. Note that committing a trans-
action can start before the commit process is com-
pleted for a previous one (i.e. a concurrent imple-

mentation of the strategy), as long as CD3C is
maintained for T’ and T, where there exists an edge
T’ + T in USGi. Without enforcing CD3C, a
committed transaction can be identified later as a
PR in RM i, and can cause a serializability viola-
tion.

In the CS implementation above, all the PR transactions
are identified and aborted at each stage. Examining this
implementation we conclude that it resuhs in exactly
performing algorithm 4.1 in each RM (at the stage when
T is committed in RM j, the set of all PR transactions is
exactly the set ABORTco(T)). Hence, by theorem 4.1
eve

jr
RM involved guarantees CO, and by enforcing

CD C, also CO’. This means that the generated (global)
history is in Local-CO. The only possible deviation from
the implementation above is by aborting additional
transactions at each stage. Such a deviation still main-
tains the generated history in Local-CO.

0

Theorems 6.1 and 6.2 imply the following:

Corollary 6.1

Guaranteeing Local-CO is a necessary and s@cient
condition for guaranteeing (global) serializability in an
environment of autonomous RMs.

7 Conclusion

This work generalizes a previously known result, that
Strong Strict Two Phase Locking (S-S2PL) together
with Two Phase Commit (2PC) guarantee global
serializability in a multi resource manager (RM) envi-
ronment. The new concept defined here, Commitment
Ordering (CO), provides additional ways to achieve
global serializability, through different concurrency con-
trol mechanisms, that may provide deadlock-free execu-
tions. This allows the levels of concurrency to be con-
trolled by local trade-offs between blocking
implementations of CO (e.g. S-S2PL), which are subject
to deadlocks, and deadlock-free CO implementations,
which are subject to cascading aborts. To guarantee
global serializability, no services, but those of atomic
commitment, are necessary for the coordination of trans-
actions across RMs, if each RM supports CO. Another
result shown is that guaranteeing CO is necessary for
guaranteeing global serializability, when the RMs in-
volved are autonomous (i.e. when only atomic commit-
ment is used for RM coordination).

310

The relationships between various properties of the his-
tories generated by the individual RMs and respective
properties of the respective global history are examined,
and assuming that atomic commitment is used, it is
shown which properties, CO in particular, are preserved
globally when applied locally by the RMs.

Generic CO enforcing mechanisms are described as
well, and their behavior in a multi-RM environment is
examined. Since CO can be enforced locally in each RM
(most existing commercial database systems are S-S2PL
based, and already provide CO), no change in existing
atomic commitment protocols and interfaces is required
to utilize the CO solution.

The study presented in this work suggests that CO is a
practical, fully distributed solution for the global
serializability problem in a distributed, high-
performance transaction-processing environment (see
also [Raz 91a] for implementation-oriented aspects of
CO).

Autonomy implies that a RM has no knowledge of
whether a transaction is local, i.e. confined to the RM,
or global, i.e. spanning more than one RM. If a RM is
coordinated with other RMs via AC protocols only, and
in addition can identify its local transactions (e.g. by no-
tifications from applications (either implicitly or explic-
itly), or through AC protocols), it is said to have ex-
tended knowledge autonomy (EKA). Since local
transactions do not need to be coordinated across RMs
via AC protocols, they do not need to obey the CO con-
dition for the purpose of global serializability. Under
EKA a more general property, Extended Commitment
Ordering (ECO), is necessary to guarantee global
serializability (see [Raz 91b]). EC0 reduces to CO when
all the transactions are assumed to be global.

Acknowledgments

Many thanks are due to several people for useful dis-
cussions on the subject of this work or comments on an
early version of this paper: Rob Abbott, Phil Bernstein,
Edward Braginsky, Jeff East, Bill Emberton, Maurice
Herlihy, Mei Hsu, Walt Kohler, Dave Lomet, Bob Tay-
lor, Vijay Trehan and Mark Tuttle.
Special thanks are due to Vijay Trehan for continued en-
couragement and support.

References

[Bern 871 P. Bernstein, V. Hadzilacos, N. Goodman,
Concurrency Control and Recovery in Data-base Sys-
tems, Addison-Wesley, 1987.

[Brei 901, Y. Breibart, A. Silberschatz, G. Thomp-
son, “Reliable Transaction Management in a Multida-
tabase System”, in Proc. of the ACM SIGMOD Int.
Conf. on Management of Data, Atlantic City, New Jer-
sey, June 1990

[Brei 911, Y. Breibart, Dimitrios Georgakopoulos,
Marek Rusinkiewicz, A. Silberschatz, “On Rigorous
Transaction Scheduling”, IEEE Trans. Soft. Eng., Vol
17, No 9, September 1991.

[DECdtm] J. Johnson, W. Laing, R. Landau, “Trans-
action Management Support in the VMS Operating Sys-
tem Kernel”, Digital Technical Journal, Vol 3, no. 1,
Winter 1991.

Philip A. Bernstein, William T. Ember-
ton, Vijay Trehan, “DECdta - Digital’s Distributed
Transaction Processing Architecture”, Digital Technical
Journal, Vol3, no. 1, Winter 1991.

[EM Al Enterprise Management Architecture -
General Description, Digital Equipment Corporation,
EK-DEMAR-GD-001.

[Elma 901 A. Elmagannid, W. Du, “A Paradigm for
Concurrency Control in Heterogeneous Distributed Da-
tabase Systems”, Proc. of the Sixth Int. Con& on Data
Engineering, Los Angeles, California, February 1990.

[Eswa 761 Eswaran, K.P., Gray, J.N., Lorie, R.A.,
Traiger, I.L., “The Notions of Consistency and Predicate
Locks in a Database System”, Comm. ACM 19(11), pp.
624633,1976.

[Gear 911 Dimitrios Georgakopoulos, Marek Rus-
inkiewicz, Amit Sheth, “On serializability of Multi data-
base Transactions Through Forced Local Conflicts”, in
Proc. of the Seventh Int. Co& on Data Engineering,
Kobe, Japan, April 1991.

[Glig 851 V. Gligor, R. Popescu-Zeletin,
“Concurrency Control Issues in Distributed Heterogene-
ous Database Management Systems”, in F. A. Schreiber,
W. Litwin editors, Distributed Data Sharing Systems,
pp. 43-56, North Holland, 1985.

[Gray 781 Gray, J. N., “Notes on Database Operat-
ing Systems”, Operating Systems: An Advanced Course,

311

Lecture Notes in Computer Science 60, pp. 393-481,
Springer-Verlag, 1978.

[Hadz 871 Vassos Hadzilacos, “A Knowledge Theo-
retic Analysis of Atomic Commitment Protocols”, Proc.
of the Sixth ACM Symposium on Principles of Database
Systems, pp. 129-134, March 23-251987.

[Halp 871 Joseph Y. Halpem, “Using Reasoning
about Knowledge to Analyze Distributed Systems”, Re-
search Report RJ 5522 (56421) 3/3/87, Computer Sci-
ence, IBM Almaden Research Center, San Jose, Cahfor-
nia, 1987.

[Kung 811 Kung, H. T., Robinson, J. T., “On Opti-
mistic Methods for Concurrency Control”, ACM Tras.
on Database Systems 6(2), pp. 213-226, June 1981.

[Lamp 761 Lampson, B., Sturgis, H., “Crash Recov-
ery in a Distributed Data Storage System”, Technical
Report, Xerox, Palo Alto Research Center, Palo Alto,
California, 1976.

[Litw 891 Litwin, W., H. TilTi, “Flexible
Concurrency Control Using Value Date”, in Integration
of Information Systems: Bridging Heterogeneous Data-
bases, ed. A. Gupta, IEEE Press, 1989.

[Lome 903 David Lomet, “Consistent Timestamping
for Transactions in Distributed Systems”, Technical Re-
port CRL 90/3, Digital Equipment Corporation, Cam-
bridge Research Lab, September 1990.

[LU6.2] System Network Architecture - Format
and Protocol Reference Manual: Architecture Logic for
LU Type 6.2, SC30-3269-3, International Business Ma-
chines Corporation, 1985.

[OSI-CCR] ISO/IEC IS 9804, 9805, JTCl/SC21, In-
formation Processing Systems - Open Systems Intercon-
nection - Commitment, Concurrency and Recovery serv-
ice element, October 1989.

ISO/IEC JTCl/SC21 N4611 Addendum,
CCR Tutorial - Annex C of IS0 9804, August 1990.

[OSI-SMO] ISO/IEC DP 10040, JTCl/SC21, Informa-
tion Processing Systems - Open Systems Interconnection
- System Management Overview, September 1989.

[OSI-DTP] ISO/IEC DIS 10026 (1,2,3), JTCl/SC21,
Information Processing Systems - Open Systems Inter-
connection - Distributed Transaction Processing, @to-
ber 1989.

[Papa 863 Papadimitriou, C. H., The Theory of
Concurrency Control, Computer Science Press, 1986.

Ipu 881 Calton Pu, “Transactions across Heteroge-
neous Databases: the Superdatabase Architecture”,
Technical Report No. CUCS-243-86 (revised June
1988), Department of Computer Science, Columbia
University, New York, NY.

[Raz 901 Yoav Raz, “The Principle of Commitment
Ordering, or Guaranteeing Serializability in a Heteroge-
neous Environment of Multiple Autonomous Resource
Managers”, DEC-TR 841, Digital Equipment Corpora-
tion, November 1990, revised April 1992.

[Raz 91al Yoav Raz, “The Commitment Order Co-
ordinator (COCO) of a Resource Manager, or Architec-
ture for Distributed Commitment Ordering Based
Concurrency Control”, DEC-TR 843, Digital Equipment
Corporation, December 1991, revised April 1992.

[Raz 91bl Yoav Raz, “Extended Commitment Or-
dering, or Guaranteeing Global Serializability by Apply-
ing Commitment Order Selectively to Global Transac-
tions”, DEC-TR 842, Digital Equipment Corporation,
November 199 1, revised April 1992.

[Shet 901 Amit Sheth, James Larson, “Federated
Database Systems”, ACM Computing Surveys, Vol. 22,
No 3, pp. 183-236, September 1990.

[Silb 911 Avi Silberschatz, Michael Stonebraker,
Jeff Ullman, “Database Systems: Achievements and Op-
portunities”, Communications of the ACM, Vol. 34, No.
10, October 1991.

[Weih 891 William E. Weihl, “Local Atomicity
Properties: Modular Concurrency Control for Abstract
Data Types”, ACM Transactions on Programming Lan-
guages and Systems, Vol. 11, No. 2, pp. 249-282, April
1989.

312

