
MultiView: A Methodology for Supporting Multiple Views in
Object-Oriented Databases

Elke A. Rundensteinert
Department of Information and Computer Science

University of California, Irvine: CA 92717-3425
Tundenst@ics.uci.edu

Abstract

A view in object-oriented databases (OODB) corre-
sponds to virtual schema graph with possibly restruc-
tured generalization and decomposition hierarchies.
We propose a methodology. called MultiView? for sup-
porting multiple such view schemata. Mu&View rep-
resents a simple yet powerful approach achieved by
breaking view specification into independent tasks:
class derivation, global schema integration, view class
selection, and view schema generation. Novel features
of MultiView include an object algebra for class cus-
tomization; an algorithm for the integration of vir-
tual classes into the global schema: a view definition
language for view class selection, and the automatic
generation of a view class hierarchy. In addition, we
present algorithms that verify the closure property of
a view and: if found to be incomplete, transform it into
a closed. yet minimal! view. Lastly, we introduce the
fundamental concept of view independence and show
MultiView to be view independent.

1 Introduction

Relational views have been of limited use, because
in many systems they cannot be updated. Views in
OODBs are more likely to play an important role for
defining customized interfaces for advanced applica-
tions. since updates can be handled better due to:

1. object identity; maintaining the unique identity
of an object even if its external characteristics are
modified and/or hidden (in a view), and

2. abstract data types; associating type-specific (up-
date) operations with the encapsulated object.

t The author’s current address is University of Michigan,
Ann Arbor. Dept. of EECS, Ann Arbor, MI 48109-2122.

Permission to copy without fee all OT part of this mateCal is

granted pTOVided that the copies are not made OT dish-ibated
for diTed commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear.
and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, OT

to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

While the concept of views has been studied ex-
tensively in the context of the relational model, it is
largely unexplored for OODBs. Initial proposals of
views on OODBs have emerged that define a view to
be a virtual class derived by an object-oriented query
[HeilSO, Scho91, Kim89]. An object-oriented schema
is a complex structure of classes interrelated via var-
ious relationships, such as, the generalization and de-
composition hierarchies [Kim89, Bane87]. An object-
oriented view should thus be defined to be a virtual,
possibly restructured, subschema graph of the global
schema [Tana88]. This raises a number of challeng-
ing research issues in terms of how to restructure such
view schema graphs and how to relate them with the
global schema.

In this paper, we propose a methodology, called
MultiView, for supporting multiple view schemata that
successfully solves these problems. MultiView breaks
view specification into three tasks: (1) customization
of virtual classes, (2) integration of virtual classes
into one consistent global schema and (3) the speci-
fication of arbitrarily complex view schemata on this
global schema. MuZtiTriew’s division of view specifi-
cation into a number of well-defined tasks, some of
which have been successfully automated, makes it a
powerful tool for supporting the specification of views
by non-database experts while enforcing view consis-
tency. In this paper, we outline the overall approach
and present a solution to the first task of MultiView,
while solutions to the second and third task are given
in [Rund92d] and [Rund92c], respectively.

Though MultiView is independent of particulars
of the class derivation operators, we define a set of
object algebra operators for the purpose of this work
[Rund92b]. We study in particular the class relation-
ships between the virtual and the source classes, since
this is required for solving MultiView’s second task.

Class integration, the second task of MultiView,
tackles the problem of how a virtual class relates to,
and can be integrated with: the remaining classes in
the global schema [Rund92d]. In the relational model,
where each relation is physically independent from all
other relations, the integration of a virtual relation
with the global schema corresponds to simply adding
it to the list of existing relations. In the context of
OODBs, however, this is less straightforward. A class
in an object schema is interrelated with other classes
via an is-a hierarchy (for property inheritance) and
via a property decomposition hierarchy (for forming

187

complex objects). Class integration needs to guaran-
tee the consistency of these class relationships when
adding new classes [Rund92d].

We cannot modify the existing schema so that it
suits the requirements of one user. Instead, we need
to support a number of diflerent? potentially conjlict-
ing, view schemata of the same schema. We thus are
concerned with the virtual restructuring of the global
schema for each view: rather than with permanently
changing the global database as is done in schema evo-
lution [Bane87].

We solve the third task of MultiView by divid-
ing it into two subtasks: first the explicit selection of
view classes from the global schema and second the
generation of a view class hierarchy for these selected
classes. For the former: we have developed a view def-
inition language that can be used by the view definer
to specify the desired view classes. For the latter, we
have developed algorithms that automatically generate
a consistent view generalization hierarchy [Rund92c].

We have developed criteria for the closure of the
property decomposition and for the consistency of the
generalization hierarchies of a view. In this paper. we
present an algorithm for checking the closure prop-
erty of a view schema. Given a non-closed view, this
algorithm is guaranteed to transform the non-closed
view into a closed: yet minimal, view schema (Section
7). We present proofs of correctness and a complexity
analysis for the closed-view generation algorithm.

Lastly, we introduce the concept of view indepen-
dence, which we argue to be a fundamental require-
ment for any OODB view mechanism - similar to the
well-known concept of data independence. In Section
8, we show MultiView to be view independent.

In Sections 2 and 3, we introduce object-oriented
concepts and describe MultiView, respectively. The
object algebra is presented in Section 4? while class
integration is discussed in Section 5. We introduce
the view specification language and the closed-view-
generation algorithm in Sections 6 and 7, respectively.
MultiView is shown to be view independent in Section
8. We present related work and conclusions in Sections
9 and 10, respectively.

2 Object-Oriented Concepts

2.1 The Object Data Model

Let P be an infinite set of property functions. Each p
E P can be a value from a simple enumeration type,
an object instance from some class, an arbitrarily com-
plex function, or an object method. Each p E P has
a name and signature (i.e., domain types). For sim-
plicity, we assume that all p E P have unique property
identifierr. Let T be the set of all types. For t E T,
properties, corresponds to the set of property func-
tions oft and doman+ denotes the domain of p in t.

lTo determine whether two property functions are identical
is equally hard to proving that two programs are equivalent. We
therefore ensure uniqueness of properties by associating a unique
property identifier with each newly defined property [Rund92b].

Let C be the set of all classes. A class C; E C
has a unique class name, a type description and a set
membership. The type associated with a class corre-
sponds to a common interface for all instances of the
class. We refer to the name of the type associated
with a class C by type(C) and to the set of property
functions defined for C by properties(type(C)), or
short, properties(C). If p E P is a property function
defined for C. then we refer to the domain of p for C
by domain,(C). A class is also a container for a set
of objects. Let 0 be an infinite set of object instances.
The collection of objects that belong to a class C is
denoted by content(C) = {o 1 o E C} with the predi-
cate “E” defined based on object identities [Rund93].

Definition 1. For two classes Cl and C2 E C, Cl is
called a subset of C2, denoted by Cl C_ C2, if and
only if (Q 0 E 0) ((oEC1) j (oEC2)).

Definition 2. For two classes Cl and C2 E C, Cl
is called a subtype of C2, denoted by Cl 5 C2,
if and only if (properties(C1) 2 properties(C2))
and (V p E properties(C2)) (domain, g
domainr(C2)).

Definition 3. FOT two classes Cl and C2 E C, Cl is
called a subclass of C2, denoted by Cl is-a C2, if and
only if (Cl 5 C2) and (Cl G C2).

Definition 4. Let Cl and C2 be two classes with the
types tl and t2 in T, respectively. Then U is a func-
tion from p + T that defines a new type t3 = tl u
t2. The property functions of t3 are defined by prop-
erties(t3) = properties(t1) U properties(t2.). For
each property function p E properties(t3)) we define
domainJt3) = domain, n domainr(t2).

Definition 5. Let Cl and C2 be two classes with the
types tl and t2 in T, respectively. Then 17 is a function
from Ta + T that defines a new type t3 = tl ll t2. The
property functions of t3 are defined by properties(t3)
= properties(t1) fl properties(t2). For each prop-
erty p E properties(t3); we define domainr(t3) =
domain, U domainr(t2).

Definitions 4 and 5 define the greatest common sub-
type and the lowest common supertype of two classes,
respectively.

Let S = { Ci] i = 1,n.} be a set of classes.
We call Ci a direct subclass of C, and C,, a direct
superclass of Ci if (Cl is-a Cn) and (Ci # C,) and
there are no other classes Ck, E S (with j=l: m)
for which the following is-a relationships hold: (Cl is-
a Ckl) and (Ck, is-a C,,) and . . . (Ck, is-a Cn). Ci
is called an indirect subclass of C,, and C, an indirect
superclass of Cr if there are one or more classes Ck,
E S for which the above is-a relationships hold. The
direct subclass relationship is denoted by (Cl is-ad Cn)
and the indirect one by (Cl is-a* Cn).

188

Definition 6. An object schema is a directed
acyclic graph2 S=(V,E), where V is a finite set of ver-
tices and E is a finite set of directed edges. Each el-
ement in V corresponds to a class Ci. while E corre-
sponds to a binary relation on V x V that represents
all direct is-a relationships between all pairs of classes
in V. In particular, each directed edge efrom Cl to C2,
denoted by e = <Cl. Cz>, represents the direct is-a re-
lationship between the two classes (Cl is-a CZ). There
is one designated root node, called Object, which con-
tains all object instances of the database and its type
description is empty3.

We refer to the set of is-a relationships of a schema
as the generalization hierarchy. A class is related
to other classes via property relationships. For ex-
ample? if Cl has defined a property function p with
domain,(Cl)=C2. then we say that there is a prop-
erty decomposition arc between Cl and C2 labeled ‘p’.

Definition 7. Let S=(V.E) be an object schema. Let
L be a set of labels that correspond to the names of the
property functions in P. Then the property decom-
position hierarchy of S is defined to be a directed
graph PD=(V>A:L) with V the set of vertices and A
the set of arcs. A is a ternary relation on V x V x
L, called the property decomposition edges. An edge
a = (Cl:C2,1) E A if and only if there is a property
function defined for class Cl with the property label 1
and the domain class C2.

A property decomposition hierarchy consists of
one or more disconnected subgraphs with possibly
loops. self-loops, and multi-edges.

2.2 Object-Oriented Views

We distinguish between base and virtual classes.
Base classes are defined during the initial schema def-
inition and their object instances are explicitly stored
as base objects. Virtual classes are defined during
the lifetime of the database using some object-oriented
queries, i.e., their definitions are dynamically added to
the existing schema. A virtual class has an associated
membership derivation function that will determine its
membership based on the state of the database. The
content of a virtual class is generally not explicitly
stored, but rather computed upon demand.

Definition 8. The base schema (BS) is an object
schema S=(V.E). where all classes in V correspond to
base classes with stored rather than derived instances.

2A schema without multiple inheritance corresponds to a tree
rather than a DAG.

3Tl~e schema root class provides a unique entry point into
the database. Note that this definition is not limiting, since in
reality the database schema may correspond to a set of DAGs
(some of which may of course be isolated classes) - with their
interconnection to the Object root possibly hidden to the user.

Definition 9. The global schema (GS) is an ezten-
sion of the base schema BS augmented by the collection
of all virtual classes defined during the lifetime of the
database as well as their is-a relationships.

A subgraph of the global schema which contains only
virtual classes is commonly called a virtual schema
[TanaM, AbitSl].

Definition 10. Given a global schema GS=(V>E),
then a view schema (KS), or short, a view, is de-
fined to be a schema VS= (VV,VE) with:

1. KS’ has a unique view identifier < VS >,

2. VV E V, and

3. VE C transitive-closure(E).

The first condition states that each view schema is
uniquely identifiable. The second states that all classes
of VS also have to be classes of GS. The third states
that the view schema maintains only is-a relationships
among its view classes that are directly derivable from
GS. We call the classes in a view schema (both the
base and the virtual ones) view classes and the is-a
relationships view is-a relationships.

(a) Bass Schema BS and Class Derivations. (b) Global Schema GS.

(d) View schema VS2.

Figure 1: Base, Global & View Schemata Examples.

Example 1. Figure 1 shows (a) the base schema BS,
(b) the global schema GS, and (c) and (d) two view
schemata. We depict base and virtual classes by cir-
cles and dotted circles, respectively. GS in Figure 1.b

189

is derived from BS in Figure 1.a by adding the vir-
tual classes Minor and TeenageBoy and by inter-
connecting them with the remaining classes. The view
schemata in Figure 1.c and 1.d are derived from GS
by selecting a subset of its classes and interconnecting
them into a valid schema using view is-a arcs.

2.3 The Closure of the View Property
Decomposition Hierarchy

This section addresses the consistency of the property
decomposition hierarchy [Tana@ HeilSO], while the
consistency of the generalization hierarchy is handled
in [Rund92c]. Let the function Uses(C) represent the
set of classes that are used by c”s type interface. For
example, if p corresponds to an object pointer defined
by domain,(C)=C2. then Uses(C) contains C2.

Definition 11. Let C be a finite set of classes, L
a finite set of property labels, PD=(C.A>L) a pTOp-

erty decomposition hierarchy. Then lJses.6’ -----f 2’
is a function defined by: FOT Ci,Cj E C, for pk
E L7 Uses(Ci)={Cj E Claij =< Ci,Cj,pk >E
Al. FOT S c C, Uses(S)= UciEsUses(Ci).
We define the closure operator * by Uses*(Ci)
= UK\ Usesj(Ci) with UsesI = Uses(Ci) and
USeSi (ci) = Uses(Usesi-’ (ci)) for j > 1.

Uses(Ci) (Uses*(Ci)) corresponds to the classes
that are directly (directly or indirectly via transitive
closure) used by the class Ci.

Definition 12. A view schema VS=(VV,VE) is de-
fined to be a closed view if the following holds: VV =
(U c,Evv(Uses’(Ci))) U VV.

The closure criterion assures that all classes that
are being used in a view (i.e., whose class names are
visible in the Uses* set of a view class) are also defined
within the view (i.e.. they themselves are view classes).

Figure 2: Examples of Closed and Non-Closed Views.

Example 2. Figure 2 depicts is-a and property de-
composition relationships by bold arrows without and
by regular arrows with labels, respectively. A (view)
schema is denoted by encircling its (view) classes by
a dotted line. The views VSl and VS2’ are closed.
The view VS2 = (Statenode2, Statetrans2) is not
closed, since the ‘actions-in-state’ property defined
for the view class Statenode has the domain class
Datailow, which is not contained in VS2.

3 The MultiView Methodology

MultiView is a methodology for supporting multi-
ple view schemata in OODBs. MultiView breaks view
specification into three independent tasks:

1. the customization of types and object sets by de-
riving virtual classes via object-oriented queries,

2. the integration of derived classes into one consis-
tent global schema graph, and

3. the specification of arbitrarily complex view
schemata composed of both base and virtual
classes on top of the augmented global schema.

The separation of the view design process into a
number of well-defined tasks has several advantages.
First, it simplifies view specification. since each of the
tasks can be solved independently from the others.
Second, it increases the level of support by allowing for
the automation of some of the tasks. We present algo-
rithms for automating the second task and the third
task in [Rund92d] and in [Rund92c], respectively.

The first task of MultiView supports the vir-
tual customization of existing classes by deriving new
classes with a modified type description and/or mem-
bership content. MultiView uses these class deriva-
tion mechanisms for different purposes, e.g., to cus-
tomize type descriptions, to limit the access to prop-
erty functions, to collect object instances into groups
meaningful for the task at hand, and so on. Since
there is no generally agreed-upon object algebra, we
define our own object algebra for this work (and for
the first prototype of MultiView) in Section 4. It is
similar in flavor to the ones proposed in the literature
[Kim89, Heil90: SchoSl].

MultiView supports the integration of vir-
tual classes into one comprehensive global schema
[Rund92d]. Th is integration takes care of the main-
tenance of explicit class relationships between stored
and derived classes. This is useful for sharing prop-
erty functions and object instances consistently among
classes without unnecessary duplication. Class inte-
gration also assures the consistency of all views with
the global schema and with one another. Last but not
least, it is a necessary basis for the third task of Multi-
View, namely, for the formation of arbitrarily complex
view schema graphs composed of both base and virtual
classes. If the virtual classes are not integrated with

190

(a) Base Schema BS. (b) Class Customization. (c) Class Integration into the Global Scheme GS. (d) view class selection. (e) view Schema Generatim

Figure 3: The MultiView Approach: From Base over Global to View Schemata.

the classes in the global schema, then a view would cor-
respond to a collection of possibly ‘unrelated’ classes
rather than a schema graph (Definition 6).

The third task of MultiView utilizes the aug-
mented global schema for the selection of both base
and virtual classes and for arranging these view classes
into a consistent class hierarchy. This supports the vir-
tual restructuring of the generalization and the prop-
erty decomposition hierarchies by allowing us to hide
from and to expose classes within a view schema. For
the explicit selection of view classes, we have devel-
oped a view definition language that can be used by
the view definer to specify the classes required for a
particular view (see Section 6).

We also present an algorithm for checking the
closure property of a view schema. Given a non-
closed view, the algorithm will automatically generate
a closed view schema that contains the minimal num-
ber of view classes required to make the view closed
(Section 7). We now give an example of the tasks in-
volved in constructing a view schema in MultiView.

Example 3. Given the global schema GS in Fig-
ure 3.a, the view definer specifies the two vir-
tual classes Minor and TeenageBoy using object-
oriented queries (Figure 3.b). The integration of the
two virtual classes into GS is given in Figure 3.~. View
sch,ema definition now pTOCeedS by selecting a subset of
classes from the augmented GS (Figure 3.d). Lastly,
the chosen view classes are interconnected into one
view schema (Figure 3.e).

4 Class Customization Using
Object Algebra

The MultiView methodology is independent from the
particular object algebra chosen for the class deriva-
tion task. However, since there is no agreed-upon stan-
dard, we present a representative set of algebra opera-
tors. We have shown the distinction between the type
and the set aspect of a class to be a valuable tool
for characterizing the semantics of query operators on
object-based data models [Rund92b]. In this vein, we
define the semantics of the operators by characteriz-
ing their manipulation of the type and the set aspect

of the source class. We also focus on the subset, sub-
type and subclass relationships among the source and
result classes, since this is a necessary foundation for
successfully addressing the, generally ignored, class in-
tegration problem. Table 1 summarizes the object al-
gebra operators, in particular, it gives their syntax,
semantics and the resulting class relationships.

The hide operator modifies the type descrip-
tion of a class by hiding some of its property
functions - similar to the project operator in rela-
tional algebra. It has the syntax “<virtual-class>
= hide [<prop-functions>] from (<source-class>)”
with <prop-functions> being one or more property
functions defined for <source-class>. It removes the
property functions listed in the set <prop-functions>
from the source class while preserving all others. The
set content of the virtual class is equal to the set con-
tent of the source class.

The refine operator is a type-manipulating op-
erator that refines an existing type description by
adding additional property functions. It has the syn-
tax “<virtual-class> = refine [<prop-function-defs>]
for (<source-class>)” with <prop-function-def> be-
ing the definition of a new property function in the
form of a new property name and a function body with
the latter a legal arithmetic, boolean or set expression.
The property functions in <prop-function-defs> are
assumed to be distinct from all others in the global
schema and therefore get assigned a unique property
identifier. The set content of the virtual class is equal
to the set content of the source class.

The select operator is a set-manipulating oper-
ator that selects a subset of object instances from
a given set of objects - similar to the select oper-
ator of relational algebra [DateSO]. It has the syn-
tax “<virtual-class> = select from (<source-class>)
where (<predicate>)” with <predicate> being some
possibly complex function on the source class and its
type description. Its semantics are to return a subset
of object instances of the source class based on the
evaluation of the associated predicate, namely, all ob-
ject instances that satisfy the predicate are collected
into the virtual class. The type stays the same.

Set operators manipulate both the type descrip-
tion and the set membership of their two source
classes. A detailed analysis of these set operators for

191

hide I syntax I <virtuaLclass> := hide /<won-functions>1 from (<source-class>)
L. I

semantics type(<vitiual-class>) := IpEP 1 pEproperties(<source-class>) A p@<prop-functions>}
extent(<vitiual-class>) := extent(<source-class>)

class rels <source-class> 5 <virtuaLclass>
<source-class> C <virtual-class>
<source-class> i&-a <virtuaLclass>

refine syntax <virtuaLclass> := refine [<prop-function-defs>] for (<source-class>)
semantics type(<vitiuaGclass>) := {PEP / pEproperties(<source-class>) V pE<prop-function-def>}

extent(<vitiual-class>) := extent(<source-class>)
class rels <virtzlaGclass>

1 <virtual-class> C <source-class>
<virtuaLclass> is-a <source-class>

select syntax <virtuaLclass> := select from (<source-class>) where (<predicate>)
semantics type(<vitiuadclass>) := type(<source-class>)

extent(<vitiual-class>) := (060 1 oE< source-class> A <predicate>(o)=true}
class rels <wirtuabclass> + <source-class>

<virtual-class> C <source-class>
<virtual-class> is-a <source-class>

union syntax <virtuaLclass> := union(<source-classl>,<sowce-class2>)
semantics type(<virtuabclass>) := type(<source-classl>) ll type(<source-class2>)

extent(<virtuadclass>) := {oEO / oE<source-classl> V oE<sourceclass2>}
class rels <source-classl> 5 <virtuaLclass> A <source-class2> -< <virtu4Gclass> -

) <source-classl> 5 <virtual-class> A <source-class2> 5 <virtuaLclass>
<source-classl> w-a <virtual-class> A <source-class2> is-a <virtual-class>

intersect syntax <vitiuaGclass> := intersect(<source-classl>.<source-class2>)
semantics type(<virtuadclass>) := type(<source-classl>) U type(<source-class2>)

extent(<virtuaGclass>) := {oEO 1 oE< source-classl> A oE<source-class2>}
class rels <virtuaLclass> 5 <source-classl> A <virtuaGclass> 5 <source-class2>

<v&w&class> C <source-classl> A <virtual-class> 2 <source-class2>
<virtual-class> is-a <source-classl> A <virtuaGclass> is-a <source-class2>

diff syntax <virtuaLclass> := diff(<source-classl>.<source-class2>)
semantics type(<vitiuabclass>) := type(<source-classl>)

extent(<virtual-class’>) :L jo;O] oE<source-ciassl> A o@<source-class2>}
class rels 1 <virtual-class> 5 <source-classl>

I <vitiuabclass> C <source-classl>
<virtual-class> is-a <source-classl>

Table 1: The Object Algebra Operators: Syntax. Semantics and Class Relationships.

OODBs can be found in [Rund92b]. The semantics
of the union operator are to return a set of object
instances composed of the members of either or both
of the source classes. The resulting type description
is equal to the lowest common supertype of the two
sources classes (Definition 5). The intersect operator
returns a set of object instances that are members of
both source classes. Furthermore, the type description
of the resulting virtual class is equal to the greatest
common subtype of the two sources classes (Definition
4). Lastly, the difference operator returns a set of ob-
ject instances that are members of the first but not of
the second source class. The resulting type description
is equal to the description of the first source class.

Example 4. In Figure 4, the is-a relationships be-
tween the virtual and the sources classes are indicated
by bold arrows. Figure 4.a depicts the query “Behav-
iorGraph = hide [SetState, GetState] fi-om (State-
Graph) “. Then extent (BehaviorGraph) = ex-
tent(StateGraph) and type(BehaviorGraph) =
[Domain, NodeOp].

In Figure 4. b,, the query “Comps2 = refine [Area
= Height * Width] for (Camps)” derives Comps2.

We have extent (Comps2) = extent (Comps). The
type of Comps2 has been extended by the new method
Aera, hence Comps2 5 Comps. Comps2 is inte-
grated into GS by placing Comps2 below Comps as
direct subclass.

In Figure 4.q the query “Adders = select
from (Comps) where (Plus in Comps.Ops)” de-
rives Adders from Comps. The Adders class con-
sists of all object members of Comps that imple-
ment the Plus operator, thus Adders g Comps.
Type(Adders) = type(Comps).

In Figure 4.d, the query “GraphConstructs =
union(DataFlow,ControlFlow)” derives Graph-
Constructs. Then extent(GraphConstructs)
- extent(DataFlow) Uextent(ControlFlow) =
(ol,D2,03, Cl, C2}.Alsotype(GraphConstructs)
= type(DataFlow) il type(ControlFlow) = [Do-
main]. The is-a relationships are indicated by the edges
(DataFlow is-a GraphConstructs) and (Con-
trolFlow is-a GraphConstructs).

In Figure 4.e, the intersect operator is used in
the query FexLayout = inter-
sect (DataPathUnits,RandomLogicUnits). Then
extent (FexLayout) = extent (DataPathUnits) n

192

extent @andomLogicUnits) = {01,02}.
And type(FexLayout) = type(DataPathUnits)
Li type@andomLogicUnits)= [Comp-Type, DF-
Construct: CF-Construct, get-DF-Graph].

In Figure 4.f. the diff operator is used in “Al-
1OtherComps = diff(Components,ALUs)” to de-
rive AllOtherComps from Components that are
not in ALUs. We have extent(AllOtherComps)
- extent (Components) - extent(ALUs) =
(03,04.05}. And type(AllOtherComps) =
type(Components) = [Get-Name, Comp-Type].
The relationship (AllOtherComps is-u Compo-
nents) has been added to Figure 4.f.

(d) IJnbn operator.

Figure 4: Examples of Class Derivation.

5 Class Integration

MultiView integrates all virtual classes derived for dif-
ferent views into one global schema in order to explic-
itly represent the generalization relationships between
virtual and base classes. In this section we sketch an
overall approach for the class integration problem. A
detailed treatment of this topic is beyond the scope of
this paper and can be found elsewhere [Rund92d].

Class integration is concerned with finding the
most .appropriate’ location in the schema graph G for
a virtual class VC in terms of property inheritance
and subset relationships between classes. For this, the
classifier determines the is-u relationships between the
virtual class VC and all other classes in GS by com-
paring their type descriptions and their membership
predicates. The algorithm for finding the correct posi-
tion for VC in G=(V,E) can be summarized as follows.

First, we find all classes in G that are the direct su-
perclasses of VC defined by direct-parents = {C;
1 (VC is-a Ci)A($Cj E V)(j # i)((VCis-a Cj)A(Cjis-
a Ci))}. Similarly, we find all classes in G that are the
direct subclasses of VC defined by direct-children(VC)
= {Ci 1 (Ciis-a VC) A (/!Cj E V)(j # i)((C&a
Cj) A (Cjis-a VC))}. VC is placed directly below all
classes in the direct-parents set and directly above all
classes in the direct-children set. Edges connecting
classes in the direct-children(VC) set with classes in
the direct-parents set are removed. since these
relationships are now represented indirectly via VC.

In general, the classification problem is not de-
cidable for OODB models since it may involve the
comparison of arbitrary functions and predicates. In
the worst case, if some is-u relationship is not discov-
ered, then the virtual class is placed higher in the class
hierarchy than would theoretically be possible. This
would be a correct but not the most informative class
arrangement.

The above described algorithm is inefficient since
it always searches through all classes in the schema
graph. This process can be optimized by fine-tuning
it for each object algebra operator [Rund92a]. For in-
stance, for the refine operator, which produces a vir-
tual class with a new property function p: this algo-
rithm can be reduced to a simple 0(1) algorithm re-
quiring no search. The reader is referred to [Rund92d]
for more details. We complete this section by demon-
strating the classification process on an example.

Figure 5: Integrating the Class Women Into GS.

Example 5. In Figure 5, the virtual class Women is
derived by the query “‘Women = select from (Pea-
ple) where Sex=female)“. From Section 4, we can
deduce the following class relationships: (Women C
People), (Women 5 People), and (Women is-a
People). We therefore insert the edge (Women is-a
People) into GS. Next, we search for the most special-
ized classes that are still is-a related with the Women
class. The type relationship Female-Professor 5
Women) holds, because the Female-Professor class
inherits the additional property function ‘Position’
from the Employees class. We can also establish the
subset relationship (Female-Professor C Women)

193

can thus add the is-a relationship Female-Professor
is-a Women) in form of an edge to the graph.

6 View Schema Specification

Next, we discuss the third task of MultiView, namely,
the definition of a view schema on top of the global
schema. We divide view specification into two sub-
tasks:

1. the selection of view classes, and

2. the generation of view relationships between the
view classes.

This separation into two subtasks reduces view spec-
ification to a simple activity. For the first subtask.
we define a view definition language that can be uti-
lized by the view definer for the specification of view
schemata. For the second subtask, we have developed
algorithms that will automatically generate a gener-
alization hierarchy from a given set of view classes.
This automatic generation of view is-a arcs is prefer-
able over their manual entry since it simplifies the task
of the view designer and guarantees the consistency of
the resulting view schema. Details about the view defi-
nition language and the automatic view generation can
be found in [Rund92c], while below we introduce the
underlying ideas.

The view definition language consists of two
groups of operators: the first group either initiates or
terminates a transaction on a view schema while the
second group discussed in the next paragraph modi-
fies a given view schema. The DEFINE-VIEW command
for instance initializes a new view schema and assigns
a unique view identifier to it: while the MODIFY-VIEW
command prepares an already defined view schema for
modification. All operators specified within a view
definition transaction, i.e., after a DEFINE-VIEW or a
MODIFY-VIEW command and before the terminating
END-VIEW command, will modify only the one desig-
nated view schema VS. The view definers conclude the
view definition phase by issuing the SAVE-VIEW com-
mand. MultiView then automatically augments the set
of classes by the necessary view is-a arcs [Rund92c].

The second group of commands modifies the
view VS by either adding or deleting view
classes. The “ADD-CLASS(<class-name>)” command
adds a class <class-name> in GS to VS. The
“ADD-CLASS-DAG (< class-name> 1” command adds all
classes to VS that are classes in the subschema of
GS rooted at the class with the name <class-name>.
Finally, the “ADD-VIEW-SCHEMA(<view-name>)” com-
mand adds all classes of the view <view-name> to VS.
The commands REMOVE-CLASS, REMOVE-CLASS-DAG,
and REMOVE-VIEW-SCHEMA do the same as the just de-
scribed operators but rather than adding they delete
the respective classes. Lastly, the “RENAME-CLASS
command renames a view class of VS by replacing
its name <old-class-name> by the new name <new-
class-name > .

Example 6. A view creation script for the view
VS depicted in Figure 3.e is given below.

DEFINE-VIEW VS
class Minor = select (P: Person)

where (P.Agec21);
class TeenageBoy = select (M:Minor)

where (M.Age>=13) and (M.Sex=male);
ADD-CLASS (TeenageBoy) ;
ADD-VIEW-SCHEMA CBS);
SAVE-VIEW;

END-VIEW

First, the DEFINE- VIEW VS command creates
an empty view schema with the identifier VS. We then
dejne the virtual classes Minor and TeenageBoy
(Figure 3.b) and integrate them into GS (Figure 3.~).
TeenageBoy is added to the view with the command
ADD-CLASS(TeenageBoy) . Then the three classes of
the base schema are added to VS using the command
ADD-VIEW-SCHEMACBS). The selected view classes are
shown in Figure 3.d. When VS is saved, the is-a arcs
shown in Figure 3.e are derived automatically by Mul-
ti View [Rund92c].

7 Automatic Generation of a
Closed View Schema

7.1 The Minimality Criterion

The closure criterion of a view schema can be verified
only after the selection of all view classes, since it is a
function of (the relationships among all classes in) the
complete schema. As indicated in Section 2.3, instead
of checking whether a given view is closed or not, it is
more useful to also transform a view that is found to
be not closed into a closed view schema. The Closed-
View-Generation algorithm presented in this section
solves this problem. In particular, it determines the
minimal4 set of classes by which the view VS has to
be extended in order for VS to be closed. We describe
this minimal set below.

Theorem 1.
(Correctness) Given a view schema VS=(VV,VE)
defined on the global schema GS=(V,E). Then MIN =
(U c,Evv(Uses*(C;))) - VV is the minimal subset of
classes from V that have to be added to the view VS to
make it closed.

4We assume that all classes initially selected for the view are
indeed required, i.e., none of the view classes can be dropped in
order to make the view closed.

194

Proof: We prove Theorem 1 in two parts. Part I show
the sufficiency and part II the necessity of MIN for
closure. These two facts together imply the correctness
of Theorem 1.
Part I: ,4dding MIN = (UC cvv(uses*(C;))) - VV
to the view VS makes the vie’; closed.

Case 1.a: Let VS=(VV.VE) be a view that
is already closed. By Definition 12. VV = VV
” (U cz,vv(VsesX(Ci))). By subtracting the set
VV from both sides of the equation. we derive
U c,Evv(uses’(Ci)) - VV = 0. This implies MIN =
(U c EVV (Vses*(Ci))) - VV = 0. Since VS is assumed
to bk closed. no classes need to be added to VS.

Case 1.b: Let VS=(VV,VE) be a view that is
not closed. Then create a new view VS’=(VV’,VE’)
with VV’ = VV U MIN. Then VV’ = VV U MIN
= vv ” uc,@w (Usef(Ci))) - VV) = VV U

(U c,EvvWseS’(G))).

U c,EVVJ(Uses”Wi))

= UC,EiVV”U ckE,.,.(u~e~*ick))) (Uses”(Ci))

= u(C*~~V)“(c,~~~k~,,,.(U~es’(C,)))i (uses-(ci))

=U .,,,,(~sesx(G)) U

Uc*t(u ck+,vw3es~GH~
(Uses-(G))

=U c,~vvwe~‘m
c vv ” (UC,EVV (Uses-(Ci))) = VV’.

Finally, Uc,EVv,(Uses’(C;)) C VV’ implies VV’

= VV ” (UC,~VV’ (uses”(C;))). By Definition 12, we
thus have shown that VS’ is closed. n
Part II: MIN is the minimal set of classes required to
make the view VS closed.

Case 1I.a: Let VS=(VV.VE) be a view that is
closed. Then. by part 1.a. MIN = 0. By default, the
empty set is equal to the smallest possible set of classes
that has to be added to make the view closed.

Case 1I.b: Part II follows directly from Defini-
tion 12 for a view VS that is not closed. Namely.
all classes that are in the transitive closure of the
lises’ relationship of VS. iJc,Evv(Uses*(Ci)), must
also be part of VS in order for VS to be closed. On
the other hand, classes that are already part of VS
do not have to be added again. Therefore. all classes
in UczEvv(Uses’(Ci)) - VV. which is equal to MIN.
must be added to VV. n

7.2 CVG Algorithm and Examples

An algorithm for Closed-View-Generation (CVG) is
given in Figure 6. CVG determines whether a view
is closed or not. If the view VS is not closed then
the algorithm automatically determines the minimal
set of classes by which VS has to be extended in order
to be closed. This is done by recursively exploring
the Uses relationships of classes. Note that the Uses
relationships of a class C are independent from the
class of the schema by which C has been reached. This
observation reduces the complexity of the transitive
closure portion of the algorithm from cube to linear

complexity. Once we have processed a class Ci by
checking its Uses relationships. it need not be checked
anymore (it then is placed into CVG-done).

Data Structures and Variables:
Set of classes: CVG-tmp. CVG-done:
Classes: Ci. Ck:
Boolean flag: Closed;

Procedures and Functions:
get-and-remotle-nezt(set-of-classes) -+ class:
not-element(class.set-of-classes) -+ boolean:
add-to-set(class,set-of-classes):

Input:
Global and View schemata GS = (V, E), VS=(VV. VE)

output:
Closed: flag to indicate whether the view is closed.
CVG-done: set of classes required for closure of VS.

Algorithm CVG:Closed-View-Generation Algorithm.
algorithm CVG(GS. Vs)
return (set-of-classes,boolean-flag) is

CVG-done = 0; CVG-tmp = VV: Closed = true;
while (Ci=get-and-remove-nezt(CVG-tmp)) do

if (not-eZement(Ci,VV)) then
Closed = false:
add-to-set(Ci,CVG-done):

endif:
for all Ck in Uses(Ci) do

if (not-element(Ck.CVG-done)
and not-element(Ck,CVG-tmp)
and not-element(Ck.VV)) then

add-to-set(Ck.CVG-tmp);
endif:

endfor:
endwhile
return (CVG-done,Closed);

end algorithm;

Figure 6: The Closed-View-Generation Algorithm.

CVG maintains all classes reached via the Uses
relationship that still have to be processed in CVG-
tmp. While there are any classes left to be processed
in CVG-tmp, the algorithm picks one of them, say Ci.
If Ci is not in the view, then the view is not closed
and the flag Closed is set to false. The algorithm also
adds Ci to CVG-done: this assures that Ci will not be
processed again, and second, it collects all classes that
need to be added to the view to make it closed. Next.
the algorithm checks for all classes Ck in Uses(Ci).
whether they have to be processed for closure. They do
not have to be processed for closure. if either they have
already been processed (i.e.. are in CVG-done) or if
they are guaranteed to be processed at some later time
(i.e.. are in VV or in CVG-tmp). If they still have to be
processed then they are added to CVG-tmp. The algo-
rithm terminates when all classes reachable from the
view classes of VS have been processed. i.e.. CVG-tmp
is empty. If the view is closed (not closed), then the
algorithm returns “Closed=true” and “CVG-done=0”
(‘Closed=false” and “CVG-done# 0.‘). CVG-done

195

contains all classes that have to be added to VS to
make it closed, i.e., CVG-done = MIT\; (Theorem 1).

Example 7. CVG is applied to the view V’S1 in Fig-
ure 2. CVG first initializes CVG-tmp={Cl. C3). FOT
the first while-loop iteration with Ci=Cl, the first if-
statem,ent evaluates to false and is skipped. Due the
‘state-transition’ property defined for Cl. Uses(C1) =
(C3) Therefore, the for-loop is executed but once with
Ck = C3. The second if-statement evaluates to false,
since (C3 E VV). For the second while-loop iteration
with Ci=C3, the first if-statement is again skipped.
Uses(C3) = {Cl}. Th e second if-statement is false,
since (Cl E VV). CVG terminates with (Closed=tTue)
and (CVG-done=B). VSl thus is closed.

Example 8. CVG is applied to the view VS2 in Fig-
UTe 2. CVG first initializes CVG-tmp=(C2. C4).
FOT the first while-loop iteration with Ci=CZ, the if-
statement evaluates to false and is skipped. Since
uses(c2) = {C4.C5}, the for-loop has two iterations.
FOT Ck=Cd, the if-statement is skipped. FOT Ck=C5.
the if-statement evaluates to true and C5 is added to
CVG-tmp fOT further processing. FOT the second while-
loop iteration with Ci=Cd, the first if-statement is
skipped. The two for-loop iterations with Uses(C4)
= (C2.C5} both are skipped. For the third while-
loop iteration with Ci=C5: the first if-statement eval-
uates to true since C5 $2 VV. Therefore, C5 is added
to CVG-done Closed is set to false. Since Uses(C5)
= {C2.C8}, the for-loop has two iterations. FOT the
second iteration with Ck=C8, the if-statement evalu-
ates to true and C8 is added to CT/G-tmp. FOT the
fourth and last while-loop iteration with Ci=CB, the
first if-statement evaluates to true and C8 is added to
CVG-done. Since Uses(C8) = {}, the for-loop is not
executed. CVG terminates with (Closed=false) and
(CVG-done=(C5, C8)). Adding CVG-done to VS2 Te-
suits in, the closed view VS2’.

7.3 The Correctness and Complexity
of Closed-View-Generation

Theorem 2. (Correctness) Given a view schema
VS=(VV,VE) defined on GS=(V>E), then the closed-
view generation algorithm CVG in Figure 6 correctly
generates a closed view VS’. In particular, CVG re-
turns Closed=true if VS is closed, and Closed=false,
otherwise. If VS is not closed, then CVG also gen-
erates the minimal set of classes that have to be
added to VS to make it closed, namely, CVG-done =
(U c,Evv(USesx(Ci))) - VV.

Proof: We prove the correctness of CVG in two
parts. In part I. we show that the algorithm cor-
rectly determines whether a view is closed or not, i.e.,
(Closed=true) u (VS is closed). In part II: we show
that the algorithm actually generates the set of addi-
tional classes needed to make VS closed, i.e., CVG-
done = MIN. Proofs for part I and part II are beyond
the scope of this paper and can be found in [Rund92a].
Finally. part I and II together prove Theorem 2. n

Theorem 3. (Complexity) Given
view schema VS=(VV. VE) defined on GS=(V,E) wit;
PGS=(V,A.L) the property decomposition hierarchy of
GS. The complexity of the CVG algorithm for VS is
equal to O(min(/VI,IAl)) with IAl the number of prop-
erty decomposition arcs in PGS.

Proof: The detailed proof for Theorem 3 can be
found in [Rund92a], while below we outline the key
observations. First, we can show that all functions
(and thus the two if-statements) used by CVG have
constant complexity. Next. we can show that each
class Ci of GS is placed at most once into CVG-tmp,
and hence the while-loop is executed at most once
for each Ci. Third, the for-loop has exactly one it-
eration for each class Ck in the Uses(Ci) set of Ci.
IUses(Ci)l 5 # arcs(Ci) with #arcs(Ci) equal to the
number of outgoing property decomposition arcs of
Ci. Complexity(CVG) 5 O(&,Ev(lUses(Ci)()) 5

O(CciEv(#arcS(Ci))) = ~(minWl,l4))~ n

8 View Independence Concept

The concept of data independence developed for the
relational model is defined as the “immunity of ap-
plications to change in storage structure and access
technique” [DateSO]. This is achieved by separating
the interface to the database (the conceptual data
model) from the actual implementation (the physical
data model). A system provides logical data indepen-
dence by supporting a view mechanism that lets the
users define their own view schema on top of the com-
mon logical schema. Data independence does not pro-
tect the user from having to update the specification
of possibly all existing views when the underlying data
model is extended and/or reorganized.

Definition 13. A database system provides view in-
dependence if the specification and the semantics of
existing view schemata are not affected by the defini-
tion of new view schemata.

The concept of view independence is an impor-
tant requirement for OODB systems: since the under-
lying base schema is restructured with the definition
of possibly each new view schema. A redefinition of all
existing views for whenever a new view schema is in-
troduced would be unacceptable. View independence
does not have any significance in relational databases
where the definition of new views has no affect on the
underlying base schema.

Definition 14. Let G* be the set of all schemata, C
the set of all classes, 0 the set of all object instances,
and P the set of all properties. Let GS=(V,E) be a
global schema and VS=(VV,VE) a view schema de-
fined on GS. Let VS* be the set of all view schemata
defined on GS. Let II: G* + G* be a function that
applies a class derivation operator to GS and then re-
structures GS by integrating the resulting virtual class

196

into Gp. Let GS’ = (V/‘.E y be the global schema and
VS’=(VV’: VE!) the view schema derked from VS af-
ter the integration of virtual classes into GS using the
fun&ion II. i.e.. GS’ = II and VS’ = II(

(a) The view classes VV of VS are preserved
through the application of the function II to GS iff the
following holds:

l 3 a one-to-one mapping m: C + C: such
that (V’ci E C)((Ci E VV) a (3!Ci’ E
VV’)(Ci ‘=m(Ci)). and vice versa: (VC,! E C)((Ct
E VV’) * (3!Ci E VV)(Ci=m-1(C,!))6.

0 (VCi E VV) (VO E 0) ((0 E Ci) in VV e (0 E
m(C,)) in VV’).

l (Qp E P)(QCi E VV) ((p E properties in
VS) U (p E properties(m(C,)) in VS:)).

(b) The view is-a relationships VE for VV are
preserved through the application of the function II
to GS iff the following holds: (YCi.Cj E VV) (((Ci is-a
* Cj) E VE) _ ((m(Ci) is-a * m(Cj)) E 1/E’)).

(c) The view VS is preserved through the re-
structuring of GS using the function II iff the type de-
scription and set membership of all classes in VV are
preserved as defined in (a) and the view is-a rela-
tionships VE are preserved as defined in (b).

(d) MultiView is view independent if all view
schemata in VS* are preserved as defined in (c).

For Multi View to be view independent means that
view generation does not affect the types and contents
of view classes of existing views nor their view is-a
relationships.

Theorem 4. Let VS* be the set of all view schemata
defined on GS. MultiView preserves the view classes
of all view schemata in VS* through the restructuring
of GS using the function II (Definition 14.a)7

The proof for Theorem 4 can be found in
[RundgSa], while below we give the intuitive reason-
ing. MultiView determines the type description and
the set membership of a view class directly from the
global schema. Therefore, we can reduce the prob-
lem of view class preservation from the view to the
global schema. We thus need to show that all Ci of
GS are preserved when integrating new classes into

5For this report. we assume that the function II corresponds
to the object algebra operators and the integration algorithm
presented earlier in this paper. Without loss of generality, other
operators or integration algorithms could be substituted.

6This one-to-one mapping m is simply the equality opera-
tor on the class identifiers. since each class has a unique class
identifier and VV c V.

‘We define the type of a class to be the union of its defined
and its inherited property functions. Turning a defined property
into an inherited property is not considered to be a change of
the class type. Similarly. we define the set membership of a
class, denoted by content(C) = {o 1 o E C}, to be the union of
its direct and indirect instances.

GS. Recall that the integration algorithm follows the
principle that VC is inserted directly below its direct
superclasses and directly above its direct subclasses in
GS (Section 5). Due to (1) VC being is-a related to
both sets of classes and (2) the transitivity of the is-a
relationship. we can deduce that classes in these sets
were is-a related to one another before the insertion of
VC. more precisely, (VCi E direct-parents((VC,
E direct-children(VC)) (Cj is-a * Ci). Clearly, the in-
sertion of VC does not modify the content of existing
classes, i.e., part II of Definition 14.a holds. The inser-
tion of VC also does not modify their types. All classes
that are made subclasses of VC in the modified GS are
also subtypes of VC; i.e., their types will be preserved.
This shows part III of Definition 14.a. n

Theorem 5. Let GS be a global schema and VS* be
the set of all view schemata defined on GS. MultiView
preserves the view is-a relationships among the view
classes of each view in I’S* through the restructuring
of GS using the function II (Definition 14.b).

A proof for Theorem 5 can be found in [Rund92a].
MultiView derives the is-a relationships of view classes
directly from their is-a relationships in GS, i.e., (V
Ci.Cj E VV) ((Ci is-a Cj E GS) w (Ci is-a Cj E
VS)). Consequently. if we can show that the relative
is-a relationships are maintained for all pairs of classes
in GS, then we have also shown that they are main-
tained for all pairs of classes in VS. As shown in The-
orem 4. we can deduce that the classes in the direct-
parents and the direct-children(VC) set were is-a
related before the insertion of VC. Therefore. the in-
sertion of VC does not add any new is-a relationships.
Obviously. it does not remove any either. We have thus
shown the preservation of is-a relationships in GS.

Theorem 6. MultiView is view independent.

Proof: Theorems 4 and 5 show respectively that Mul-
tiView preserves the view classes and the view is-a re-
lationships of all view schemata defined on GS through
the restructuring of GS. By Definition 14, this proves
the view independence of MultiView. n

9 Related Work

Most initial proposals for defining views for OODBs
suggest the use of the query language defined for their
respective object model to derive a virtual class, e.g..
[Kim89], [HeilSO]? [KaulSO], [SchoSl], and [AbitSl].
Most of them do not discuss the integration of derived
classes into the global schema. Instead. the derived
classes are treated as ‘stand-alone’ objects [HeilSO] or
they are attached directly as subclasses of the schema
root [Kim89]. Scholl et al.‘s recent work [SchoSl] is
one of the exceptions; they discuss the classification of
virtual classes derived by the query language COOL
into one schema. They do however not consider the

197

problem of generating multiple view schemata or of
enforcing the consistency of the view schema.

Tanaka et al.? work [Tana88] on schema virtual-
ization does not distinguish between the task of inte-
grating derived classes into a common schema and the
task of generating view schemata. Also, they allow for
the manual addition of is-a edges in a virtual schema,
which may lead to an inconsistent schema, rather than
supporting automatic view generation as done in Mul-
tiView. They point out that work is needed for de-
veloping a definition language for view schemata. In
this paper? we have provided a solution for this. In
summary, Multi View is a more systematic solution ap-
proach compared to their rather ad-hoc proposal.

Shilling and Sweeney [Shi189] extend the conven-
tional concept of a class from having one type to having
multiple interfaces. We accomplish the same goal by
using the type refinement capability of the generaliza-
tion hierarchy. Our work is simpler, since it does not
require the extension of the traditional class concept.
Furthermore, they approach the problem from the pro-
gramming language point of view, and thus they do
not handle the object instances associated with a class.
Lastly, their approach focuses on one class only, and
the effects of multiple interfaces on the class general-
ization hierarchy are not addressed.

Gilbert’s proposal [GilbSO], similar to [Shi189], is
also based on the idea of defining multiple interfaces
for a class object. However, while our approach allows
for the direct application of the class derivation mech-
anisms proposed in the literature, the use of general
query operators is currently not handled by [GilbSO].

10 Conclusions

In this paper, we have presented a simple yet pow-
erful approach for supporting multiple view schemata
in OODBs! called MultiView. MultiView allows for
the customization of a view schema by virtually re-
structuring both the generalization and the property
decomposition hierarchies of the global schema. In
addition, we have defined an object algebra that can
be used to customize the type structure and object
membership of classes. We have also proposed an al-
gorithm for integrating these derived classes into the
global schema. MultiView provides support for view
design by automating some tasks of the view specifi-
cation process and by supplying automatic tools for
enforcing the consistency of a view schema. For in-
stance? we have presented an algorithm that not only
verifies the closure property of a view schema but, if
found incomplete, will transform the view schema into
a minimal, yet closed, view. We have also introduced
the concept of view independence, which we argue to
be a fundamental requirement for any view mechanism
developed for object-oriented databases. We prove
MultiView to be view independent,

Acknowledgements. I want to thank Lubomir
Bit and Daniel D. Gajski for providing me with advice,
encouragement, and financial support.

References
[AbitSl] Abiteboul, S., and Banner, A., “Objects and

Views,” in PTOC. SIGMOD, May 1991, pp. 238 - 247.
[Bane871 Banerjee, J., Kim, W., Kim, H. J., and Korth, F.,

“Semantics and Im lementation of Schema Evolution
in Object-Oriented %
1987, pp. 311- 322.

atabases,” PTOC. of SIMOD, May

[DateSO] Date, C. J., An Introduction to Database Sys-
tems, Vol. I: Fifth Ed., Addison-Wesley, 1990.

[GiibSO] Gilbert, J. P., “Supporting User Views”, PTOC.
OODB Taal; GTOU~ Workshop, Canada, Oct. 1990.

[HeilSO] Heiler, S., and Zdonik, S. B., “Object views: Ex-
tendin
Feb. 1 f

the vision”, in PTOC. IEEE Data Eng. Conf.,
90! pp. 86 - 93.

[KaulSO] Kaul, M., Drosten, K., and Neuhold, E.J.,
Heterogeneous Information

Views”, in PTOC. IEEE Data

[Kim891 Kim, W., “A model of queries in object-oriented
databases,” in PTOC. Int. Con .
Databases, Aug. 1989, pp. 423 - 4 !i 2.

on Veery Large

[Rund92a] Rundensteiner, E. A., “MultiView: A Method-
ology for Supporting Multiple View Schemata in
Ob ect-Oriented Databases”, Univ. of Cal., Irvine,
Tee . Rep. #92-07, Jan. 1992. h

[Rund92b] Rundensteiner, E. A., and Bit, L.? “Set Opera-
tions in Ob’ect-Based Data Models”, in IEEE Trana-
action on d
June 1992.

ata and Knowledge Eng., vol. 4, issue 3,

[Rund92c] Rundensteiner, E. A. and Bit, L., “Automatic
View Generation in Object-Oriented Databases”,
Univ. of Cal., Irvine, Tech. Rep. #92-15, Feb. 1992.

[Rund92d] Rundensteiner, E. A., “A Class Integration Al-

8
orithm and its A plication For Supporting Consistent
bject Views, ” 8

50, May 1992.
mv. of Cal., Irvine, Tech. Rep. #92-

iRund931 Rundensteiner, E. A., Bit, L.. Gilbert, J.. and
Yin ’ M.-Y., “Set-Restricted Semantic Groupings,” in
IE&E Trans. on Data and Knowledge Eng., to appear
in April 1993.

[Schm83] Schmolze, J. G., and Lipkis, T. A., “Classifica-
tion in the KL-ONE Knowledge Re
tem,” in The Int. Joint Conf. on Arti

resentation Sys-

Aug. 1983, ~01.1, pp. 330 - 332.
F cial Intelligence,

[SchoSl] Scholl, M. H., Laasch, C. and Tresch, M., “Up-
datable Views in Ob’ect-Oriented Databases,” in PTOC.
2nd DOOD Conf., Germany, Dec. 1991.

[Shi189] Shilling, J. J., and Sweeney, P. F., “Three Steps
to Views: Extendin the Ob’ect-Oriented Paradigm,”
in PTOC. OOPSLA, ep. 198 , pp. 353 - 361. 5 d

iTana881 Tanaka. K.. Yoshikawa. M..
and’ Ishihara; K., “Schema Virtualization’ in Ob’ect:
Oriented Databases,” in PTOC. IEEE Data Eng. CJ
Feb. 1988> pp. 23 - 30.

onf.,

]Yu9I] Yu and Osborn, “An Evaluation Framework for
Al ebraic Object-Oriented Quer
I&E Data Eng. Conf., Feb. 1991

Models,” in PTOC.

198

