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Abstract 

A view in object-oriented databases (OODB) corre- 
sponds to virtual schema graph with possibly restruc- 
tured generalization and decomposition hierarchies. 
We propose a methodology. called MultiView? for sup- 
porting multiple such view schemata. Mu&View rep- 
resents a simple yet powerful approach achieved by 
breaking view specification into independent tasks: 
class derivation, global schema integration, view class 
selection, and view schema generation. Novel features 
of MultiView include an object algebra for class cus- 
tomization; an algorithm for the integration of vir- 
tual classes into the global schema: a view definition 
language for view class selection, and the automatic 
generation of a view class hierarchy. In addition, we 
present algorithms that verify the closure property of 
a view and: if found to be incomplete, transform it into 
a closed. yet minimal! view. Lastly, we introduce the 
fundamental concept of view independence and show 
MultiView to be view independent. 

1 Introduction 

Relational views have been of limited use, because 
in many systems they cannot be updated. Views in 
OODBs are more likely to play an important role for 
defining customized interfaces for advanced applica- 
tions. since updates can be handled better due to: 

1. object identity; maintaining the unique identity 
of an object even if its external characteristics are 
modified and/or hidden (in a view), and 

2. abstract data types; associating type-specific (up- 
date) operations with the encapsulated object. 
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While the concept of views has been studied ex- 
tensively in the context of the relational model, it is 
largely unexplored for OODBs. Initial proposals of 
views on OODBs have emerged that define a view to 
be a virtual class derived by an object-oriented query 
[HeilSO, Scho91, Kim89]. An object-oriented schema 
is a complex structure of classes interrelated via var- 
ious relationships, such as, the generalization and de- 
composition hierarchies [Kim89, Bane87]. An object- 
oriented view should thus be defined to be a virtual, 
possibly restructured, subschema graph of the global 
schema [Tana88]. This raises a number of challeng- 
ing research issues in terms of how to restructure such 
view schema graphs and how to relate them with the 
global schema. 

In this paper, we propose a methodology, called 
MultiView, for supporting multiple view schemata that 
successfully solves these problems. MultiView breaks 
view specification into three tasks: (1) customization 
of virtual classes, (2) integration of virtual classes 
into one consistent global schema and (3) the speci- 
fication of arbitrarily complex view schemata on this 
global schema. MuZtiTriew’s division of view specifi- 
cation into a number of well-defined tasks, some of 
which have been successfully automated, makes it a 
powerful tool for supporting the specification of views 
by non-database experts while enforcing view consis- 
tency. In this paper, we outline the overall approach 
and present a solution to the first task of MultiView, 
while solutions to the second and third task are given 
in [Rund92d] and [Rund92c], respectively. 

Though MultiView is independent of particulars 
of the class derivation operators, we define a set of 
object algebra operators for the purpose of this work 
[Rund92b]. We study in particular the class relation- 
ships between the virtual and the source classes, since 
this is required for solving MultiView’s second task. 

Class integration, the second task of MultiView, 
tackles the problem of how a virtual class relates to, 
and can be integrated with: the remaining classes in 
the global schema [Rund92d]. In the relational model, 
where each relation is physically independent from all 
other relations, the integration of a virtual relation 
with the global schema corresponds to simply adding 
it to the list of existing relations. In the context of 
OODBs, however, this is less straightforward. A class 
in an object schema is interrelated with other classes 
via an is-a hierarchy (for property inheritance) and 
via a property decomposition hierarchy (for forming 
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complex objects). Class integration needs to guaran- 
tee the consistency of these class relationships when 
adding new classes [Rund92d]. 

We cannot modify the existing schema so that it 
suits the requirements of one user. Instead, we need 
to support a number of diflerent? potentially conjlict- 
ing, view schemata of the same schema. We thus are 
concerned with the virtual restructuring of the global 
schema for each view: rather than with permanently 
changing the global database as is done in schema evo- 
lution [Bane87]. 

We solve the third task of MultiView by divid- 
ing it into two subtasks: first the explicit selection of 
view classes from the global schema and second the 
generation of a view class hierarchy for these selected 
classes. For the former: we have developed a view def- 
inition language that can be used by the view definer 
to specify the desired view classes. For the latter, we 
have developed algorithms that automatically generate 
a consistent view generalization hierarchy [Rund92c]. 

We have developed criteria for the closure of the 
property decomposition and for the consistency of the 
generalization hierarchies of a view. In this paper. we 
present an algorithm for checking the closure prop- 
erty of a view schema. Given a non-closed view, this 
algorithm is guaranteed to transform the non-closed 
view into a closed: yet minimal, view schema (Section 
7). We present proofs of correctness and a complexity 
analysis for the closed-view generation algorithm. 

Lastly, we introduce the concept of view indepen- 
dence, which we argue to be a fundamental require- 
ment for any OODB view mechanism - similar to the 
well-known concept of data independence. In Section 
8, we show MultiView to be view independent. 

In Sections 2 and 3, we introduce object-oriented 
concepts and describe MultiView, respectively. The 
object algebra is presented in Section 4? while class 
integration is discussed in Section 5. We introduce 
the view specification language and the closed-view- 
generation algorithm in Sections 6 and 7, respectively. 
MultiView is shown to be view independent in Section 
8. We present related work and conclusions in Sections 
9 and 10, respectively. 

2 Object-Oriented Concepts 

2.1 The Object Data Model 

Let P be an infinite set of property functions. Each p 
E P can be a value from a simple enumeration type, 
an object instance from some class, an arbitrarily com- 
plex function, or an object method. Each p E P has 
a name and signature (i.e., domain types). For sim- 
plicity, we assume that all p E P have unique property 
identifierr. Let T be the set of all types. For t E T, 
properties, corresponds to the set of property func- 
tions oft and doman+ denotes the domain of p in t. 

lTo determine whether two property functions are identical 
is equally hard to proving that two programs are equivalent. We 
therefore ensure uniqueness of properties by associating a unique 
property identifier with each newly defined property [Rund92b]. 

Let C be the set of all classes. A class C; E C 
has a unique class name, a type description and a set 
membership. The type associated with a class corre- 
sponds to a common interface for all instances of the 
class. We refer to the name of the type associated 
with a class C by type(C) and to the set of property 
functions defined for C by properties(type(C)), or 
short, properties(C). If p E P is a property function 
defined for C. then we refer to the domain of p for C 
by domain,(C). A class is also a container for a set 
of objects. Let 0 be an infinite set of object instances. 
The collection of objects that belong to a class C is 
denoted by content(C) = {o 1 o E C} with the predi- 
cate “E” defined based on object identities [Rund93]. 

Definition 1. For two classes Cl and C2 E C, Cl is 
called a subset of C2, denoted by Cl C_ C2, if and 
only if (Q 0 E 0) ((oEC1) j (oEC2)). 

Definition 2. For two classes Cl and C2 E C, Cl 
is called a subtype of C2, denoted by Cl 5 C2, 
if and only if (properties(C1) 2 properties(C2)) 
and (V p E properties(C2)) (domain, g 
domainr(C2)). 

Definition 3. FOT two classes Cl and C2 E C, Cl is 
called a subclass of C2, denoted by Cl is-a C2, if and 
only if (Cl 5 C2) and (Cl G C2). 

Definition 4. Let Cl and C2 be two classes with the 
types tl and t2 in T, respectively. Then U is a func- 
tion from p + T that defines a new type t3 = tl u 
t2. The property functions of t3 are defined by prop- 
erties(t3) = properties(t1) U properties(t2.). For 
each property function p E properties(t3)) we define 
domainJt3) = domain, n domainr(t2). 

Definition 5. Let Cl and C2 be two classes with the 
types tl and t2 in T, respectively. Then 17 is a function 
from Ta + T that defines a new type t3 = tl ll t2. The 
property functions of t3 are defined by properties(t3) 
= properties(t1) fl properties(t2). For each prop- 
erty p E properties(t3); we define domainr(t3) = 
domain, U domainr(t2). 

Definitions 4 and 5 define the greatest common sub- 
type and the lowest common supertype of two classes, 
respectively. 

Let S = { Ci ] i = 1, . . ..n.} be a set of classes. 
We call Ci a direct subclass of C, and C,, a direct 
superclass of Ci if (Cl is-a Cn) and (Ci # C,) and 
there are no other classes Ck, E S (with j=l: . . . . m) 
for which the following is-a relationships hold: (Cl is- 
a Ckl) and (Ck, is-a C,,) and . . . (Ck, is-a Cn). Ci 
is called an indirect subclass of C,, and C, an indirect 
superclass of Cr if there are one or more classes Ck, 
E S for which the above is-a relationships hold. The 
direct subclass relationship is denoted by (Cl is-ad Cn) 
and the indirect one by (Cl is-a* Cn). 
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Definition 6. An object schema is a directed 
acyclic graph2 S=(V,E), where V is a finite set of ver- 
tices and E is a finite set of directed edges. Each el- 
ement in V corresponds to a class Ci. while E corre- 
sponds to a binary relation on V x V that represents 
all direct is-a relationships between all pairs of classes 
in V. In particular, each directed edge efrom Cl to C2, 
denoted by e = <Cl. Cz>, represents the direct is-a re- 
lationship between the two classes (Cl is-a CZ). There 
is one designated root node, called Object, which con- 
tains all object instances of the database and its type 
description is empty3. 

We refer to the set of is-a relationships of a schema 
as the generalization hierarchy. A class is related 
to other classes via property relationships. For ex- 
ample? if Cl has defined a property function p with 
domain,(Cl)=C2. then we say that there is a prop- 
erty decomposition arc between Cl and C2 labeled ‘p’. 

Definition 7. Let S=(V.E) be an object schema. Let 
L be a set of labels that correspond to the names of the 
property functions in P. Then the property decom- 
position hierarchy of S is defined to be a directed 
graph PD=(V>A:L) with V the set of vertices and A 
the set of arcs. A is a ternary relation on V x V x 
L, called the property decomposition edges. An edge 
a = (Cl:C2,1) E A if and only if there is a property 
function defined for class Cl with the property label 1 
and the domain class C2. 

A property decomposition hierarchy consists of 
one or more disconnected subgraphs with possibly 
loops. self-loops, and multi-edges. 

2.2 Object-Oriented Views 

We distinguish between base and virtual classes. 
Base classes are defined during the initial schema def- 
inition and their object instances are explicitly stored 
as base objects. Virtual classes are defined during 
the lifetime of the database using some object-oriented 
queries, i.e., their definitions are dynamically added to 
the existing schema. A virtual class has an associated 
membership derivation function that will determine its 
membership based on the state of the database. The 
content of a virtual class is generally not explicitly 
stored, but rather computed upon demand. 

Definition 8. The base schema (BS) is an object 
schema S=(V.E). where all classes in V correspond to 
base classes with stored rather than derived instances. 

2A schema without multiple inheritance corresponds to a tree 
rather than a DAG. 

3Tl~e schema root class provides a unique entry point into 
the database. Note that this definition is not limiting, since in 
reality the database schema may correspond to a set of DAGs 
(some of which may of course be isolated classes) - with their 
interconnection to the Object root possibly hidden to the user. 

Definition 9. The global schema (GS) is an ezten- 
sion of the base schema BS augmented by the collection 
of all virtual classes defined during the lifetime of the 
database as well as their is-a relationships. 

A subgraph of the global schema which contains only 
virtual classes is commonly called a virtual schema 
[TanaM, AbitSl]. 

Definition 10. Given a global schema GS=(V>E), 
then a view schema (KS), or short, a view, is de- 
fined to be a schema VS= (VV,VE) with: 

1. KS’ has a unique view identifier < VS >, 

2. VV E V, and 

3. VE C transitive-closure(E). 

The first condition states that each view schema is 
uniquely identifiable. The second states that all classes 
of VS also have to be classes of GS. The third states 
that the view schema maintains only is-a relationships 
among its view classes that are directly derivable from 
GS. We call the classes in a view schema (both the 
base and the virtual ones) view classes and the is-a 
relationships view is-a relationships. 

(a) Bass Schema BS and Class Derivations. (b) Global Schema GS. 

(d) View schema VS2. 

Figure 1: Base, Global & View Schemata Examples. 

Example 1. Figure 1 shows (a) the base schema BS, 
(b) the global schema GS, and (c) and (d) two view 
schemata. We depict base and virtual classes by cir- 
cles and dotted circles, respectively. GS in Figure 1.b 
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is derived from BS in Figure 1.a by adding the vir- 
tual classes Minor and TeenageBoy and by inter- 
connecting them with the remaining classes. The view 
schemata in Figure 1.c and 1.d are derived from GS 
by selecting a subset of its classes and interconnecting 
them into a valid schema using view is-a arcs. 

2.3 The Closure of the View Property 
Decomposition Hierarchy 

This section addresses the consistency of the property 
decomposition hierarchy [Tana@ HeilSO], while the 
consistency of the generalization hierarchy is handled 
in [Rund92c]. Let the function Uses(C) represent the 
set of classes that are used by c”s type interface. For 
example, if p corresponds to an object pointer defined 
by domain,(C)=C2. then Uses(C) contains C2. 

Definition 11. Let C be a finite set of classes, L 
a finite set of property labels, PD=(C.A>L) a pTOp- 

erty decomposition hierarchy. Then lJses.6’ -----f 2’ 
is a function defined by: FOT Ci,Cj E C, for pk 
E L7 Uses(Ci)={Cj E Claij =< Ci,Cj,pk >E 
Al. FOT S c C, Uses(S)= UciEsUses(Ci). 
We define the closure operator * by Uses*(Ci) 
= UK\ Usesj(Ci) with UsesI = Uses(Ci) and 
USeSi (ci) = Uses(Usesi-’ (ci)) for j > 1. 

Uses(Ci) (Uses*(Ci)) corresponds to the classes 
that are directly (directly or indirectly via transitive 
closure) used by the class Ci. 

Definition 12. A view schema VS=(VV,VE) is de- 
fined to be a closed view if the following holds: VV = 
(U c,Evv(Uses’(Ci))) U VV. 

The closure criterion assures that all classes that 
are being used in a view (i.e., whose class names are 
visible in the Uses* set of a view class) are also defined 
within the view (i.e.. they themselves are view classes). 

Figure 2: Examples of Closed and Non-Closed Views. 

Example 2. Figure 2 depicts is-a and property de- 
composition relationships by bold arrows without and 
by regular arrows with labels, respectively. A (view) 
schema is denoted by encircling its (view) classes by 
a dotted line. The views VSl and VS2’ are closed. 
The view VS2 = (Statenode2, Statetrans2) is not 
closed, since the ‘actions-in-state’ property defined 
for the view class Statenode has the domain class 
Datailow, which is not contained in VS2. 

3 The MultiView Methodology 

MultiView is a methodology for supporting multi- 
ple view schemata in OODBs. MultiView breaks view 
specification into three independent tasks: 

1. the customization of types and object sets by de- 
riving virtual classes via object-oriented queries, 

2. the integration of derived classes into one consis- 
tent global schema graph, and 

3. the specification of arbitrarily complex view 
schemata composed of both base and virtual 
classes on top of the augmented global schema. 

The separation of the view design process into a 
number of well-defined tasks has several advantages. 
First, it simplifies view specification. since each of the 
tasks can be solved independently from the others. 
Second, it increases the level of support by allowing for 
the automation of some of the tasks. We present algo- 
rithms for automating the second task and the third 
task in [Rund92d] and in [Rund92c], respectively. 

The first task of MultiView supports the vir- 
tual customization of existing classes by deriving new 
classes with a modified type description and/or mem- 
bership content. MultiView uses these class deriva- 
tion mechanisms for different purposes, e.g., to cus- 
tomize type descriptions, to limit the access to prop- 
erty functions, to collect object instances into groups 
meaningful for the task at hand, and so on. Since 
there is no generally agreed-upon object algebra, we 
define our own object algebra for this work (and for 
the first prototype of MultiView) in Section 4. It is 
similar in flavor to the ones proposed in the literature 
[Kim89, Heil90: SchoSl]. 

MultiView supports the integration of vir- 
tual classes into one comprehensive global schema 
[Rund92d]. Th is integration takes care of the main- 
tenance of explicit class relationships between stored 
and derived classes. This is useful for sharing prop- 
erty functions and object instances consistently among 
classes without unnecessary duplication. Class inte- 
gration also assures the consistency of all views with 
the global schema and with one another. Last but not 
least, it is a necessary basis for the third task of Multi- 
View, namely, for the formation of arbitrarily complex 
view schema graphs composed of both base and virtual 
classes. If the virtual classes are not integrated with 
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(a) Base Schema BS. (b) Class Customization. (c) Class Integration into the Global Scheme GS. (d) view class selection. (e) view Schema Generatim 

Figure 3: The MultiView Approach: From Base over Global to View Schemata. 

the classes in the global schema, then a view would cor- 
respond to a collection of possibly ‘unrelated’ classes 
rather than a schema graph (Definition 6). 

The third task of MultiView utilizes the aug- 
mented global schema for the selection of both base 
and virtual classes and for arranging these view classes 
into a consistent class hierarchy. This supports the vir- 
tual restructuring of the generalization and the prop- 
erty decomposition hierarchies by allowing us to hide 
from and to expose classes within a view schema. For 
the explicit selection of view classes, we have devel- 
oped a view definition language that can be used by 
the view definer to specify the classes required for a 
particular view (see Section 6). 

We also present an algorithm for checking the 
closure property of a view schema. Given a non- 
closed view, the algorithm will automatically generate 
a closed view schema that contains the minimal num- 
ber of view classes required to make the view closed 
(Section 7). We now give an example of the tasks in- 
volved in constructing a view schema in MultiView. 

Example 3. Given the global schema GS in Fig- 
ure 3.a, the view definer specifies the two vir- 
tual classes Minor and TeenageBoy using object- 
oriented queries (Figure 3.b). The integration of the 
two virtual classes into GS is given in Figure 3.~. View 
sch,ema definition now pTOCeedS by selecting a subset of 
classes from the augmented GS (Figure 3.d). Lastly, 
the chosen view classes are interconnected into one 
view schema (Figure 3.e). 

4 Class Customization Using 
Object Algebra 

The MultiView methodology is independent from the 
particular object algebra chosen for the class deriva- 
tion task. However, since there is no agreed-upon stan- 
dard, we present a representative set of algebra opera- 
tors. We have shown the distinction between the type 
and the set aspect of a class to be a valuable tool 
for characterizing the semantics of query operators on 
object-based data models [Rund92b]. In this vein, we 
define the semantics of the operators by characteriz- 
ing their manipulation of the type and the set aspect 

of the source class. We also focus on the subset, sub- 
type and subclass relationships among the source and 
result classes, since this is a necessary foundation for 
successfully addressing the, generally ignored, class in- 
tegration problem. Table 1 summarizes the object al- 
gebra operators, in particular, it gives their syntax, 
semantics and the resulting class relationships. 

The hide operator modifies the type descrip- 
tion of a class by hiding some of its property 
functions - similar to the project operator in rela- 
tional algebra. It has the syntax “<virtual-class> 
= hide [<prop-functions>] from (<source-class>)” 
with <prop-functions> being one or more property 
functions defined for <source-class>. It removes the 
property functions listed in the set <prop-functions> 
from the source class while preserving all others. The 
set content of the virtual class is equal to the set con- 
tent of the source class. 

The refine operator is a type-manipulating op- 
erator that refines an existing type description by 
adding additional property functions. It has the syn- 
tax “<virtual-class> = refine [<prop-function-defs>] 
for (<source-class>)” with <prop-function-def> be- 
ing the definition of a new property function in the 
form of a new property name and a function body with 
the latter a legal arithmetic, boolean or set expression. 
The property functions in <prop-function-defs> are 
assumed to be distinct from all others in the global 
schema and therefore get assigned a unique property 
identifier. The set content of the virtual class is equal 
to the set content of the source class. 

The select operator is a set-manipulating oper- 
ator that selects a subset of object instances from 
a given set of objects - similar to the select oper- 
ator of relational algebra [DateSO]. It has the syn- 
tax “<virtual-class> = select from (<source-class>) 
where (<predicate>)” with <predicate> being some 
possibly complex function on the source class and its 
type description. Its semantics are to return a subset 
of object instances of the source class based on the 
evaluation of the associated predicate, namely, all ob- 
ject instances that satisfy the predicate are collected 
into the virtual class. The type stays the same. 

Set operators manipulate both the type descrip- 
tion and the set membership of their two source 
classes. A detailed analysis of these set operators for 
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hide I syntax I <virtuaLclass> := hide /<won-functions>1 from (<source-class>) 
L. I 

semantics type(<vitiual-class>) := IpEP 1 pEproperties(<source-class>) A p@<prop-functions>} 
extent(<vitiual-class>) := extent(<source-class>) 

class rels <source-class> 5 <virtuaLclass> 
<source-class> C <virtual-class> 
<source-class> i&-a <virtuaLclass> 

refine syntax <virtuaLclass> := refine [<prop-function-defs>] for (<source-class>) 
semantics type(<vitiuaGclass>) := {PEP / pEproperties(<source-class>) V pE<prop-function-def>} 

extent(<vitiual-class>) := extent(<source-class>) 
class rels <virtzlaGclass> 

1 <virtual-class> C <source-class> 
<virtuaLclass> is-a <source-class> 

select syntax <virtuaLclass> := select from (<source-class>) where (<predicate>) 
semantics type( <vitiuadclass>) := type( <source-class>) 

extent(<vitiual-class>) := (060 1 oE< source-class> A <predicate>(o)=true} 
class rels <wirtuabclass> + <source-class> 

<virtual-class> C <source-class> 
<virtual-class> is-a <source-class> 

union syntax <virtuaLclass> := union(<source-classl>,<sowce-class2>) 
semantics type(<virtuabclass>) := type(<source-classl>) ll type(<source-class2>) 

extent(<virtuadclass>) := {oEO / oE<source-classl> V oE<sourceclass2>} 
class rels <source-classl> 5 <virtuaLclass> A <source-class2> -< <virtu4Gclass> - 

) <source-classl> 5 <virtual-class> A <source-class2> 5 <virtuaLclass> 
<source-classl> w-a <virtual-class> A <source-class2> is-a <virtual-class> 

intersect syntax <vitiuaGclass> := intersect(<source-classl>.<source-class2>) 
semantics type(<virtuadclass>) := type(<source-classl>) U type(<source-class2>) 

extent(<virtuaGclass>) := {oEO 1 oE< source-classl> A oE<source-class2>} 
class rels <virtuaLclass> 5 <source-classl> A <virtuaGclass> 5 <source-class2> 

<v&w&class> C <source-classl> A <virtual-class> 2 <source-class2> 
<virtual-class> is-a <source-classl> A <virtuaGclass> is-a <source-class2> 

diff syntax <virtuaLclass> := diff(<source-classl>.<source-class2>) 
semantics type( <vitiuabclass>) := type( <source-classl>) 

extent(<virtual-class’>) :L jo;O ] oE<source-ciassl> A o@<source-class2>} 
class rels 1 <virtual-class> 5 <source-classl> 

I <vitiuabclass> C <source-classl> 
<virtual-class> is-a <source-classl> 

Table 1: The Object Algebra Operators: Syntax. Semantics and Class Relationships. 

OODBs can be found in [Rund92b]. The semantics 
of the union operator are to return a set of object 
instances composed of the members of either or both 
of the source classes. The resulting type description 
is equal to the lowest common supertype of the two 
sources classes (Definition 5). The intersect operator 
returns a set of object instances that are members of 
both source classes. Furthermore, the type description 
of the resulting virtual class is equal to the greatest 
common subtype of the two sources classes (Definition 
4). Lastly, the difference operator returns a set of ob- 
ject instances that are members of the first but not of 
the second source class. The resulting type description 
is equal to the description of the first source class. 

Example 4. In Figure 4, the is-a relationships be- 
tween the virtual and the sources classes are indicated 
by bold arrows. Figure 4.a depicts the query “Behav- 
iorGraph = hide [SetState, GetState] fi-om (State- 
Graph) “. Then extent (BehaviorGraph) = ex- 
tent(StateGraph) and type(BehaviorGraph) = 
[Domain, NodeOp]. 

In Figure 4. b,, the query “Comps2 = refine [Area 
= Height * Width] for (Camps)” derives Comps2. 

We have extent (Comps2) = extent (Comps). The 
type of Comps2 has been extended by the new method 
Aera, hence Comps2 5 Comps. Comps2 is inte- 
grated into GS by placing Comps2 below Comps as 
direct subclass. 

In Figure 4.q the query “Adders = select 
from (Comps) where (Plus in Comps.Ops)” de- 
rives Adders from Comps. The Adders class con- 
sists of all object members of Comps that imple- 
ment the Plus operator, thus Adders g Comps. 
Type(Adders) = type(Comps). 

In Figure 4.d, the query “GraphConstructs = 
union(DataFlow,ControlFlow)” derives Graph- 
Constructs. Then extent(GraphConstructs) 
- extent(DataFlow) Uextent(ControlFlow) = 
(ol,D2,03, Cl, C2}.Alsotype(GraphConstructs) 
= type(DataFlow) il type(ControlFlow) = [Do- 
main]. The is-a relationships are indicated by the edges 
(DataFlow is-a GraphConstructs) and (Con- 
trolFlow is-a GraphConstructs). 

In Figure 4.e, the intersect operator is used in 
the query FexLayout = inter- 
sect (DataPathUnits,RandomLogicUnits). Then 
extent (FexLayout) = extent (DataPathUnits) n 
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extent @andomLogicUnits) = {01,02}. 
And type(FexLayout) = type(DataPathUnits) 
Li type@andomLogicUnits)= [Comp-Type, DF- 
Construct: CF-Construct, get-DF-Graph]. 

In Figure 4.f. the diff operator is used in “Al- 
1OtherComps = diff(Components,ALUs)” to de- 
rive AllOtherComps from Components that are 
not in ALUs. We have extent(AllOtherComps) 
- extent (Components) - extent(ALUs) = 
(03,04.05}. And type(AllOtherComps) = 
type(Components) = [ Get-Name, Comp-Type ]. 
The relationship (AllOtherComps is-u Compo- 
nents) has been added to Figure 4.f. 

(d) IJnbn operator. 

Figure 4: Examples of Class Derivation. 

5 Class Integration 

MultiView integrates all virtual classes derived for dif- 
ferent views into one global schema in order to explic- 
itly represent the generalization relationships between 
virtual and base classes. In this section we sketch an 
overall approach for the class integration problem. A 
detailed treatment of this topic is beyond the scope of 
this paper and can be found elsewhere [Rund92d]. 

Class integration is concerned with finding the 
most .appropriate’ location in the schema graph G for 
a virtual class VC in terms of property inheritance 
and subset relationships between classes. For this, the 
classifier determines the is-u relationships between the 
virtual class VC and all other classes in GS by com- 
paring their type descriptions and their membership 
predicates. The algorithm for finding the correct posi- 
tion for VC in G=(V,E) can be summarized as follows. 

First, we find all classes in G that are the direct su- 
perclasses of VC defined by direct-parents = {C; 
1 (VC is-a Ci)A($Cj E V)(j # i)((VCis-a Cj)A(Cjis- 
a Ci))}. Similarly, we find all classes in G that are the 
direct subclasses of VC defined by direct-children(VC) 
= {Ci 1 (Ciis-a VC) A (/!Cj E V)(j # i)((C&a 
Cj) A (Cjis-a VC))}. VC is placed directly below all 
classes in the direct-parents set and directly above all 
classes in the direct-children set. Edges connecting 
classes in the direct-children(VC) set with classes in 
the direct-parents set are removed. since these 
relationships are now represented indirectly via VC. 

In general, the classification problem is not de- 
cidable for OODB models since it may involve the 
comparison of arbitrary functions and predicates. In 
the worst case, if some is-u relationship is not discov- 
ered, then the virtual class is placed higher in the class 
hierarchy than would theoretically be possible. This 
would be a correct but not the most informative class 
arrangement. 

The above described algorithm is inefficient since 
it always searches through all classes in the schema 
graph. This process can be optimized by fine-tuning 
it for each object algebra operator [Rund92a]. For in- 
stance, for the refine operator, which produces a vir- 
tual class with a new property function p: this algo- 
rithm can be reduced to a simple 0( 1) algorithm re- 
quiring no search. The reader is referred to [Rund92d] 
for more details. We complete this section by demon- 
strating the classification process on an example. 

Figure 5: Integrating the Class Women Into GS. 

Example 5. In Figure 5, the virtual class Women is 
derived by the query “‘Women = select from (Pea- 
ple) where Sex=female)“. From Section 4, we can 
deduce the following class relationships: (Women C 
People), (Women 5 People), and (Women is-a 
People). We therefore insert the edge (Women is-a 
People) into GS. Next, we search for the most special- 
ized classes that are still is-a related with the Women 
class. The type relationship Female-Professor 5 
Women) holds, because the Female-Professor class 
inherits the additional property function ‘Position’ 
from the Employees class. We can also establish the 
subset relationship (Female-Professor C Women) 
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can thus add the is-a relationship Female-Professor 
is-a Women) in form of an edge to the graph. 

6 View Schema Specification 

Next, we discuss the third task of MultiView, namely, 
the definition of a view schema on top of the global 
schema. We divide view specification into two sub- 
tasks: 

1. the selection of view classes, and 

2. the generation of view relationships between the 
view classes. 

This separation into two subtasks reduces view spec- 
ification to a simple activity. For the first subtask. 
we define a view definition language that can be uti- 
lized by the view definer for the specification of view 
schemata. For the second subtask, we have developed 
algorithms that will automatically generate a gener- 
alization hierarchy from a given set of view classes. 
This automatic generation of view is-a arcs is prefer- 
able over their manual entry since it simplifies the task 
of the view designer and guarantees the consistency of 
the resulting view schema. Details about the view defi- 
nition language and the automatic view generation can 
be found in [Rund92c], while below we introduce the 
underlying ideas. 

The view definition language consists of two 
groups of operators: the first group either initiates or 
terminates a transaction on a view schema while the 
second group discussed in the next paragraph modi- 
fies a given view schema. The DEFINE-VIEW command 
for instance initializes a new view schema and assigns 
a unique view identifier to it: while the MODIFY-VIEW 
command prepares an already defined view schema for 
modification. All operators specified within a view 
definition transaction, i.e., after a DEFINE-VIEW or a 
MODIFY-VIEW command and before the terminating 
END-VIEW command, will modify only the one desig- 
nated view schema VS. The view definers conclude the 
view definition phase by issuing the SAVE-VIEW com- 
mand. MultiView then automatically augments the set 
of classes by the necessary view is-a arcs [Rund92c]. 

The second group of commands modifies the 
view VS by either adding or deleting view 
classes. The “ADD-CLASS(<class-name>)” command 
adds a class <class-name> in GS to VS. The 
“ADD-CLASS-DAG (< class-name> 1” command adds all 
classes to VS that are classes in the subschema of 
GS rooted at the class with the name <class-name>. 
Finally, the “ADD-VIEW-SCHEMA(<view-name>)” com- 
mand adds all classes of the view <view-name> to VS. 
The commands REMOVE-CLASS, REMOVE-CLASS-DAG, 
and REMOVE-VIEW-SCHEMA do the same as the just de- 
scribed operators but rather than adding they delete 
the respective classes. Lastly, the “RENAME-CLASS 
command renames a view class of VS by replacing 
its name <old-class-name> by the new name <new- 
class-name > . 

Example 6. A view creation script for the view 
VS depicted in Figure 3.e is given below. 

DEFINE-VIEW VS 
class Minor = select (P: Person) 

where (P.Agec21); 
class TeenageBoy = select (M:Minor) 

where (M.Age>=13) and (M.Sex=male); 
ADD-CLASS (TeenageBoy) ; 
ADD-VIEW-SCHEMA CBS); 
SAVE-VIEW; 

END-VIEW 

First, the DEFINE- VIEW VS command creates 
an empty view schema with the identifier VS. We then 
dejne the virtual classes Minor and TeenageBoy 
(Figure 3.b) and integrate them into GS (Figure 3.~). 
TeenageBoy is added to the view with the command 
ADD-CLASS(TeenageBoy) . Then the three classes of 
the base schema are added to VS using the command 
ADD-VIEW-SCHEMACBS). The selected view classes are 
shown in Figure 3.d. When VS is saved, the is-a arcs 
shown in Figure 3.e are derived automatically by Mul- 
ti View [Rund92c]. 

7 Automatic Generation of a 
Closed View Schema 

7.1 The Minimality Criterion 

The closure criterion of a view schema can be verified 
only after the selection of all view classes, since it is a 
function of (the relationships among all classes in) the 
complete schema. As indicated in Section 2.3, instead 
of checking whether a given view is closed or not, it is 
more useful to also transform a view that is found to 
be not closed into a closed view schema. The Closed- 
View-Generation algorithm presented in this section 
solves this problem. In particular, it determines the 
minimal4 set of classes by which the view VS has to 
be extended in order for VS to be closed. We describe 
this minimal set below. 

Theorem 1. 
(Correctness) Given a view schema VS=(VV,VE) 
defined on the global schema GS=(V,E). Then MIN = 
(U c,Evv(Uses*(C;))) - VV is the minimal subset of 
classes from V that have to be added to the view VS to 
make it closed. 

4We assume that all classes initially selected for the view are 
indeed required, i.e., none of the view classes can be dropped in 
order to make the view closed. 
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Proof: We prove Theorem 1 in two parts. Part I show 
the sufficiency and part II the necessity of MIN for 
closure. These two facts together imply the correctness 
of Theorem 1. 
Part I: ,4dding MIN = (UC cvv(uses*(C;))) - VV 
to the view VS makes the vie’; closed. 

Case 1.a: Let VS=(VV.VE) be a view that 
is already closed. By Definition 12. VV = VV 
” (U cz,vv(VsesX(Ci))). By subtracting the set 
VV from both sides of the equation. we derive 
U c,Evv(uses’(Ci)) - VV = 0. This implies MIN = 
(U c EVV (Vses*(Ci))) - VV = 0. Since VS is assumed 
to bk closed. no classes need to be added to VS. 

Case 1.b: Let VS=(VV,VE) be a view that is 
not closed. Then create a new view VS’=(VV’,VE’) 
with VV’ = VV U MIN. Then VV’ = VV U MIN 
= vv ” uc,@w (Usef(Ci))) - VV) = VV U 

(U c,EvvWseS’(G))). 

U c,EVVJ(Uses”Wi)) 

= UC,EiVV”U ckE,.,.(u~e~*ick))) (Uses”( Ci)) 

= u(C*~~V)“(c,~~~k~,,,.(U~es’(C,)))i (uses-(ci)) 

=U .,,,,(~sesx(G)) U 

Uc*t(u ck+,vw3es~GH~ 
(Uses-(G)) 

=U c,~vvwe~‘m 
c vv ” (UC,EVV (Uses-(Ci))) = VV’. 

Finally, Uc,EVv,(Uses’(C;)) C VV’ implies VV’ 

= VV ” (UC,~VV’ (uses”(C;))). By Definition 12, we 
thus have shown that VS’ is closed. n 
Part II: MIN is the minimal set of classes required to 
make the view VS closed. 

Case 1I.a: Let VS=(VV.VE) be a view that is 
closed. Then. by part 1.a. MIN = 0. By default, the 
empty set is equal to the smallest possible set of classes 
that has to be added to make the view closed. 

Case 1I.b: Part II follows directly from Defini- 
tion 12 for a view VS that is not closed. Namely. 
all classes that are in the transitive closure of the 
lises’ relationship of VS. iJc,Evv(Uses*(Ci)), must 
also be part of VS in order for VS to be closed. On 
the other hand, classes that are already part of VS 
do not have to be added again. Therefore. all classes 
in UczEvv(Uses’(Ci)) - VV. which is equal to MIN. 
must be added to VV. n 

7.2 CVG Algorithm and Examples 

An algorithm for Closed-View-Generation (CVG) is 
given in Figure 6. CVG determines whether a view 
is closed or not. If the view VS is not closed then 
the algorithm automatically determines the minimal 
set of classes by which VS has to be extended in order 
to be closed. This is done by recursively exploring 
the Uses relationships of classes. Note that the Uses 
relationships of a class C are independent from the 
class of the schema by which C has been reached. This 
observation reduces the complexity of the transitive 
closure portion of the algorithm from cube to linear 

complexity. Once we have processed a class Ci by 
checking its Uses relationships. it need not be checked 
anymore (it then is placed into CVG-done). 

Data Structures and Variables: 
Set of classes: CVG-tmp. CVG-done: 
Classes: Ci. Ck: 
Boolean flag: Closed; 

Procedures and Functions: 
get-and-remotle-nezt(set-of-classes) -+ class: 
not-element(class.set-of-classes) -+ boolean: 
add-to-set(class,set-of-classes): 

Input: 
Global and View schemata GS = (V, E), VS=( VV. VE) 

output: 
Closed: flag to indicate whether the view is closed. 
CVG-done: set of classes required for closure of VS. 

Algorithm CVG:Closed-View-Generation Algorithm. 
algorithm CVG( GS. Vs) 
return (set-of-classes,boolean-flag) is 

CVG-done = 0; CVG-tmp = VV: Closed = true; 
while (Ci=get-and-remove-nezt( CVG-tmp)) do 

if (not-eZement(Ci,VV)) then 
Closed = false: 
add-to-set(Ci,CVG-done): 

endif: 
for all Ck in Uses(Ci) do 

if (not-element(Ck.CVG-done) 
and not-element(Ck,CVG-tmp) 
and not-element(Ck.VV)) then 

add-to-set(Ck.CVG-tmp); 
endif: 

endfor: 
endwhile 
return (CVG-done,Closed); 

end algorithm; 

Figure 6: The Closed-View-Generation Algorithm. 

CVG maintains all classes reached via the Uses 
relationship that still have to be processed in CVG- 
tmp. While there are any classes left to be processed 
in CVG-tmp, the algorithm picks one of them, say Ci. 
If Ci is not in the view, then the view is not closed 
and the flag Closed is set to false. The algorithm also 
adds Ci to CVG-done: this assures that Ci will not be 
processed again, and second, it collects all classes that 
need to be added to the view to make it closed. Next. 
the algorithm checks for all classes Ck in Uses(Ci). 
whether they have to be processed for closure. They do 
not have to be processed for closure. if either they have 
already been processed (i.e.. are in CVG-done) or if 
they are guaranteed to be processed at some later time 
(i.e.. are in VV or in CVG-tmp). If they still have to be 
processed then they are added to CVG-tmp. The algo- 
rithm terminates when all classes reachable from the 
view classes of VS have been processed. i.e.. CVG-tmp 
is empty. If the view is closed (not closed), then the 
algorithm returns “Closed=true” and “CVG-done=0” 
( ‘Closed=false” and “CVG-done# 0.‘). CVG-done 
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contains all classes that have to be added to VS to 
make it closed, i.e., CVG-done = MIT\; (Theorem 1). 

Example 7. CVG is applied to the view V’S1 in Fig- 
ure 2. CVG first initializes CVG-tmp={Cl. C3). FOT 
the first while-loop iteration with Ci=Cl, the first if- 
statem,ent evaluates to false and is skipped. Due the 
‘state-transition’ property defined for Cl. Uses(C1) = 
(C3) Therefore, the for-loop is executed but once with 
Ck = C3. The second if-statement evaluates to false, 
since (C3 E VV). For the second while-loop iteration 
with Ci=C3, the first if-statement is again skipped. 
Uses(C3) = {Cl}. Th e second if-statement is false, 
since (Cl E VV). CVG terminates with (Closed=tTue) 
and (CVG-done=B). VSl thus is closed. 

Example 8. CVG is applied to the view VS2 in Fig- 
UTe 2. CVG first initializes CVG-tmp=(C2. C4). 
FOT the first while-loop iteration with Ci=CZ, the if- 
statement evaluates to false and is skipped. Since 
uses(c2) = {C4.C5}, the for-loop has two iterations. 
FOT Ck=Cd, the if-statement is skipped. FOT Ck=C5. 
the if-statement evaluates to true and C5 is added to 
CVG-tmp fOT further processing. FOT the second while- 
loop iteration with Ci=Cd, the first if-statement is 
skipped. The two for-loop iterations with Uses(C4) 
= (C2.C5} both are skipped. For the third while- 
loop iteration with Ci=C5: the first if-statement eval- 
uates to true since C5 $2 VV. Therefore, C5 is added 
to CVG-done Closed is set to false. Since Uses(C5) 
= {C2.C8}, the for-loop has two iterations. FOT the 
second iteration with Ck=C8, the if-statement evalu- 
ates to true and C8 is added to CT/G-tmp. FOT the 
fourth and last while-loop iteration with Ci=CB, the 
first if-statement evaluates to true and C8 is added to 
CVG-done. Since Uses(C8) = {}, the for-loop is not 
executed. CVG terminates with (Closed=false) and 
(CVG-done=(C5, C8)). Adding CVG-done to VS2 Te- 
suits in, the closed view VS2’. 

7.3 The Correctness and Complexity 
of Closed-View-Generation 

Theorem 2. (Correctness) Given a view schema 
VS=(VV,VE) defined on GS=(V>E), then the closed- 
view generation algorithm CVG in Figure 6 correctly 
generates a closed view VS’. In particular, CVG re- 
turns Closed=true if VS is closed, and Closed=false, 
otherwise. If VS is not closed, then CVG also gen- 
erates the minimal set of classes that have to be 
added to VS to make it closed, namely, CVG-done = 
(U c,Evv(USesx(Ci))) - VV. 

Proof: We prove the correctness of CVG in two 
parts. In part I. we show that the algorithm cor- 
rectly determines whether a view is closed or not, i.e., 
(Closed=true) u (VS is closed). In part II: we show 
that the algorithm actually generates the set of addi- 
tional classes needed to make VS closed, i.e., CVG- 
done = MIN. Proofs for part I and part II are beyond 
the scope of this paper and can be found in [Rund92a]. 
Finally. part I and II together prove Theorem 2. n 

Theorem 3. (Complexity) Given 
view schema VS=(VV. VE) defined on GS=(V,E) wit; 
PGS=(V,A.L) the property decomposition hierarchy of 
GS. The complexity of the CVG algorithm for VS is 
equal to O(min(/VI,IAl)) with IAl the number of prop- 
erty decomposition arcs in PGS. 

Proof: The detailed proof for Theorem 3 can be 
found in [Rund92a], while below we outline the key 
observations. First, we can show that all functions 
(and thus the two if-statements) used by CVG have 
constant complexity. Next. we can show that each 
class Ci of GS is placed at most once into CVG-tmp, 
and hence the while-loop is executed at most once 
for each Ci. Third, the for-loop has exactly one it- 
eration for each class Ck in the Uses(Ci) set of Ci. 
IUses(Ci)l 5 # arcs(Ci) with #arcs(Ci) equal to the 
number of outgoing property decomposition arcs of 
Ci. Complexity(CVG) 5 O(&,Ev(lUses(Ci)()) 5 

O(CciEv(#arcS(Ci))) = ~(minWl,l4))~ n 

8 View Independence Concept 

The concept of data independence developed for the 
relational model is defined as the “immunity of ap- 
plications to change in storage structure and access 
technique” [DateSO]. This is achieved by separating 
the interface to the database (the conceptual data 
model) from the actual implementation (the physical 
data model). A system provides logical data indepen- 
dence by supporting a view mechanism that lets the 
users define their own view schema on top of the com- 
mon logical schema. Data independence does not pro- 
tect the user from having to update the specification 
of possibly all existing views when the underlying data 
model is extended and/or reorganized. 

Definition 13. A database system provides view in- 
dependence if the specification and the semantics of 
existing view schemata are not affected by the defini- 
tion of new view schemata. 

The concept of view independence is an impor- 
tant requirement for OODB systems: since the under- 
lying base schema is restructured with the definition 
of possibly each new view schema. A redefinition of all 
existing views for whenever a new view schema is in- 
troduced would be unacceptable. View independence 
does not have any significance in relational databases 
where the definition of new views has no affect on the 
underlying base schema. 

Definition 14. Let G* be the set of all schemata, C 
the set of all classes, 0 the set of all object instances, 
and P the set of all properties. Let GS=(V,E) be a 
global schema and VS=(VV,VE) a view schema de- 
fined on GS. Let VS* be the set of all view schemata 
defined on GS. Let II: G* + G* be a function that 
applies a class derivation operator to GS and then re- 
structures GS by integrating the resulting virtual class 
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into Gp. Let GS’ = (V/‘.E y be the global schema and 
VS’=(VV’: VE!) the view schema derked from VS af- 
ter the integration of virtual classes into GS using the 
fun&ion II. i.e.. GS’ = II and VS’ = II( 

(a) The view classes VV of VS are preserved 
through the application of the function II to GS iff the 
following holds: 

l 3 a one-to-one mapping m: C + C: such 
that (V’ci E C)((Ci E VV) a (3!Ci’ E 
VV’)(Ci ‘=m(Ci)). and vice versa: (VC,! E C)((Ct 
E VV’) * (3!Ci E VV)(Ci=m-1(C,!))6. 

0 (VCi E VV) (VO E 0) ((0 E Ci) in VV e (0 E 
m(C,)) in VV’). 

l (Qp E P)(QCi E VV) ((p E properties in 
VS) U (p E properties(m(C,)) in VS:)). 

(b) The view is-a relationships VE for VV are 
preserved through the application of the function II 
to GS iff the following holds: (YCi.Cj E VV) (((Ci is-a 
* Cj) E VE) _ ((m(Ci) is-a * m(Cj)) E 1/E’)). 

(c) The view VS is preserved through the re- 
structuring of GS using the function II iff the type de- 
scription and set membership of all classes in VV are 
preserved as defined in (a) and the view is-a rela- 
tionships VE are preserved as defined in (b). 

(d) MultiView is view independent if all view 
schemata in VS* are preserved as defined in (c). 

For Multi View to be view independent means that 
view generation does not affect the types and contents 
of view classes of existing views nor their view is-a 
relationships. 

Theorem 4. Let VS* be the set of all view schemata 
defined on GS. MultiView preserves the view classes 
of all view schemata in VS* through the restructuring 
of GS using the function II (Definition 14.a)7 

The proof for Theorem 4 can be found in 
[RundgSa], while below we give the intuitive reason- 
ing. MultiView determines the type description and 
the set membership of a view class directly from the 
global schema. Therefore, we can reduce the prob- 
lem of view class preservation from the view to the 
global schema. We thus need to show that all Ci of 
GS are preserved when integrating new classes into 

5For this report. we assume that the function II corresponds 
to the object algebra operators and the integration algorithm 
presented earlier in this paper. Without loss of generality, other 
operators or integration algorithms could be substituted. 

6This one-to-one mapping m is simply the equality opera- 
tor on the class identifiers. since each class has a unique class 
identifier and VV c V. 

‘We define the type of a class to be the union of its defined 
and its inherited property functions. Turning a defined property 
into an inherited property is not considered to be a change of 
the class type. Similarly. we define the set membership of a 
class, denoted by content(C) = {o 1 o E C}, to be the union of 
its direct and indirect instances. 

GS. Recall that the integration algorithm follows the 
principle that VC is inserted directly below its direct 
superclasses and directly above its direct subclasses in 
GS (Section 5). Due to (1) VC being is-a related to 
both sets of classes and (2) the transitivity of the is-a 
relationship. we can deduce that classes in these sets 
were is-a related to one another before the insertion of 
VC. more precisely, (VCi E direct-parents( (VC, 
E direct-children(VC)) (Cj is-a * Ci). Clearly, the in- 
sertion of VC does not modify the content of existing 
classes, i.e., part II of Definition 14.a holds. The inser- 
tion of VC also does not modify their types. All classes 
that are made subclasses of VC in the modified GS are 
also subtypes of VC; i.e., their types will be preserved. 
This shows part III of Definition 14.a. n 

Theorem 5. Let GS be a global schema and VS* be 
the set of all view schemata defined on GS. MultiView 
preserves the view is-a relationships among the view 
classes of each view in I’S* through the restructuring 
of GS using the function II (Definition 14.b). 

A proof for Theorem 5 can be found in [Rund92a]. 
MultiView derives the is-a relationships of view classes 
directly from their is-a relationships in GS, i.e., (V 
Ci.Cj E VV) ((Ci is-a Cj E GS) w (Ci is-a Cj E 
VS)). Consequently. if we can show that the relative 
is-a relationships are maintained for all pairs of classes 
in GS, then we have also shown that they are main- 
tained for all pairs of classes in VS. As shown in The- 
orem 4. we can deduce that the classes in the direct- 
parents and the direct-children(VC) set were is-a 
related before the insertion of VC. Therefore. the in- 
sertion of VC does not add any new is-a relationships. 
Obviously. it does not remove any either. We have thus 
shown the preservation of is-a relationships in GS. 

Theorem 6. MultiView is view independent. 

Proof: Theorems 4 and 5 show respectively that Mul- 
tiView preserves the view classes and the view is-a re- 
lationships of all view schemata defined on GS through 
the restructuring of GS. By Definition 14, this proves 
the view independence of MultiView. n 

9 Related Work 

Most initial proposals for defining views for OODBs 
suggest the use of the query language defined for their 
respective object model to derive a virtual class, e.g.. 
[Kim89], [HeilSO]? [KaulSO], [SchoSl], and [AbitSl]. 
Most of them do not discuss the integration of derived 
classes into the global schema. Instead. the derived 
classes are treated as ‘stand-alone’ objects [HeilSO] or 
they are attached directly as subclasses of the schema 
root [Kim89]. Scholl et al.‘s recent work [SchoSl] is 
one of the exceptions; they discuss the classification of 
virtual classes derived by the query language COOL 
into one schema. They do however not consider the 
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problem of generating multiple view schemata or of 
enforcing the consistency of the view schema. 

Tanaka et al.? work [Tana88] on schema virtual- 
ization does not distinguish between the task of inte- 
grating derived classes into a common schema and the 
task of generating view schemata. Also, they allow for 
the manual addition of is-a edges in a virtual schema, 
which may lead to an inconsistent schema, rather than 
supporting automatic view generation as done in Mul- 
tiView. They point out that work is needed for de- 
veloping a definition language for view schemata. In 
this paper? we have provided a solution for this. In 
summary, Multi View is a more systematic solution ap- 
proach compared to their rather ad-hoc proposal. 

Shilling and Sweeney [Shi189] extend the conven- 
tional concept of a class from having one type to having 
multiple interfaces. We accomplish the same goal by 
using the type refinement capability of the generaliza- 
tion hierarchy. Our work is simpler, since it does not 
require the extension of the traditional class concept. 
Furthermore, they approach the problem from the pro- 
gramming language point of view, and thus they do 
not handle the object instances associated with a class. 
Lastly, their approach focuses on one class only, and 
the effects of multiple interfaces on the class general- 
ization hierarchy are not addressed. 

Gilbert’s proposal [GilbSO], similar to [Shi189], is 
also based on the idea of defining multiple interfaces 
for a class object. However, while our approach allows 
for the direct application of the class derivation mech- 
anisms proposed in the literature, the use of general 
query operators is currently not handled by [GilbSO]. 

10 Conclusions 

In this paper, we have presented a simple yet pow- 
erful approach for supporting multiple view schemata 
in OODBs! called MultiView. MultiView allows for 
the customization of a view schema by virtually re- 
structuring both the generalization and the property 
decomposition hierarchies of the global schema. In 
addition, we have defined an object algebra that can 
be used to customize the type structure and object 
membership of classes. We have also proposed an al- 
gorithm for integrating these derived classes into the 
global schema. MultiView provides support for view 
design by automating some tasks of the view specifi- 
cation process and by supplying automatic tools for 
enforcing the consistency of a view schema. For in- 
stance? we have presented an algorithm that not only 
verifies the closure property of a view schema but, if 
found incomplete, will transform the view schema into 
a minimal, yet closed, view. We have also introduced 
the concept of view independence, which we argue to 
be a fundamental requirement for any view mechanism 
developed for object-oriented databases. We prove 
MultiView to be view independent, 
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