
High Throughput Escrow Algorithms for Replicated Databases*

(Extended Abstract)

Narayanan Krishnakumar Arthur J. Bernstein
Dept. of Computer Science, SUNY at Stony Brook,

Stony Brook, NY 117944400.

email : {nkris,art}@sbcs.sunysb.edu
tel: (516) 632-8434

Abstract

The traditional correctness criterion in replicated
databases is one-copy serializability. However, this
criterion is sometimes restrictive and degrades per-
formance. Recent research has therefore focused on
utilising application semantics to increase transaction
throughput in certain high-performance applications.
One such application involves resource allocation. To
improve concurrency in such a system, the transac-
tion escrow (TE) and site escrow (SE) algorithms have
been proposed. In this paper, we present a general-
ized site escrow algorithm (GSE) that provides high
site autonomy and throughput. GSE requires only a
loose synchronization between sites, and employs the
mechanisms of quorum locking and background gos-
sip messages. We perform a comparison between GSE
and TE, and outline regions in which GSE performs
better. We also propose a family of hybrid algorithms
that switch between GSE and TE under appropriate

*This work was supported by NSF Grants No. CCR6701671
and No. CCR8901966

Permission to copy without fee all or part of this material ir
granted provided that the copies are not made or distributed
for direct commercial adoantage, the VLDB copyright no-
tice and the title of the publication and itr date appear,
and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or
to republish, requirea a fee and/or special permission from

the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

circumstances so that the benefits of both algorithms
can be utilized. Finally, we present a variant of GSE
that does not use locking.

Keywords : replication, resource allocation, replica
control, escrow.

1 Introduction

Distributed databases can exhibit better performance
than centralized databases since transactions can ex-
ecute concurrently at different sites. However, data
may then have to be accessed at a remote site, and
this can result in message passing delays. Replicat-
ing the data reduces these delays: when a transaction
wishes to read the data, an expensive remote access is
not required. Replication also increases the availabil-
ity of the data, since the data can be accessed even if a
few sites fail. Thus, databases are often replicated for
reasons of increased performance and availability. The
correctness criterion commonly used by concurrency
control techniques in replicated databases is the notion
of one-copy serializability [BHG87] of transactions. In
some applications, however, we can improve transac-
tion throughput beyond what is realizable with the
above approach. This paper deals with such applica-
tiops and the techniques used to obtain high through-
put in a replicated database.

The class of applications that we consider involves
resource allocation. Assume that there is a single re-
source type, of which there are several indistinguish-
able instances. Let allocd denote the number of in-
stances that have been allocated at any time, and let
the total number of instances be denoted by tot. The
statement of the problem is to ensure that the follow-

175

ing allocation constraint holds : allocd 5 tot.

The above resource allocation problem can arise in
several application domains. Such applications usually
involve aggregate fields which are updated by positive
or negative incremental changes (e.g. inventory control
systems, airline reservation systems, banking applica-
tions). In an airline reservation system the seats are
the resources and ideally, overbooking of these seats
should not be possible. Another application is in re-
lational database systems with integrity constraints.
Suppose an integrity constraint states that there must
exist at least one tuple in a given relation R satisfying
a property P (existential quantification). If there are
several tuples in R satisfying P, they can be considered
available resource instances. The allocation constraint
here is that the number of tuples satisfying P should
be greater than or equal to one. (The ideas we present
are easily extensible to the dual problem where there
is a lower bound on the number of allocated resource
instances.)

Transactions request and release resources using al-
locate and deallocate operations. A typical allocate
operation is as follows, where n is the number of re-
sources requested by a transaction.

PROCEDURE Allocate (n : integer)

IF (allocd +n 5 tot)

THEN allocd := allocd + n

ELSE print “Unable to allocate”

END Allocate

A deallocate operation decrements allocd uncondi-
tionally.

Suppose transactions frequently access allocd to allo-

cate and deallocate resources (i.e. allocd is a ‘hot-spot’
data item). Consider two long-running transactions
that each contain allocate operations, and assume that
locking is used for concurrency control. Since allocd is

read and modified by both transactions, one of the
transactions may have to wait for the other to re-
lease its lock on allocd. A traditional locking algorithm
would allow the release of locks only at commit time,
which implies that the waiting transaction could be de-
layed for a long time. To increase throughput in such
situations, the ideas of transaction escrow [ONe86] and
site escrow [KS88, SS90] have been proposed. These
methods make use of the semantics of the applica-
tion, and allow transactions to co-ordinate access to
hot-spot data items without having to wait till other
transactions commit. In this paper, we extend these

techniques. The algorithms that we present use the
mechanisms of background gossip messages and quo-
rum consensus to co-ordinate transaction execution.

2 Related work

Consider an airline reservation system with 9 sites and
a single flight which can carry at most 200 passengers.
Let resrvd-seats be a data item denoting the num-
ber of seats reserved on the flight and assume that
resrvd-seats is replicated at all sites. The allocation
constraint is given by {resrvd-seats < 200).

Let us review the approaches that have been pro-
posed to increase concurrency in such a situation :

1. The Transaction Escrow Algorithm [ONe86]:

The transaction escrow algorithm (TE) has been pro-
posed for access to hot-spots in a single copy database.
In this algorithm, a transaction executes an escrow op-
eration to try to place in reserve the resources that it
will (potentially) use. All successful escrow operations
are logged. Before executing an escrow operation, each
transaction accesses the log and sees the total escrow
quantities of all uncommitted transactions. The trans-
action then makes a worst-case decision to determine
whether it can proceed. For instance, in the airline ex-
ample, assume that the number of seats reserved due
to committed transactions is 20. Suppose there are
two uncommitted transactions each reserving one seat.
Let transaction T wishing to reserve ten seats now be
initiated. Since the log indicates that resrvd-seats is

at most 22, T can proceed irrespective of whether the
other two transactions commit or abort: the allocation
constraint is maintained in any case.

Note that when transaction T executes an escrow
operation, T (short-term) locks the data item to ac-
cess/update the log and releases the lock after the log
has been updated (the lock release need not wait for
the commit or abort of T as in a traditional transaction
execution). This feature allows long-running transac-
tions that contain escrow operations to run concur-
rently so that throughput is increased.

A solution for the replicated case is not proposed
in [ONe86]. Let us extrapolate the method to allow
for replication. We use quorum locking [Her871 for the
purpose of giving a decentralized solution. Before ex-
ecuting an escrow operation from transaction T, site
i (short-term) locks a quorum of sites. Members of

176

the quorum send their logs to i. T then uses the allo-
cations of previously committed transactions and the
escrow quantities of all uncommitted transactions to
determine whether it can proceed. Ifit can, i records
the escrow operation in the log, sends this log to the
quorum sites and unlocks the quorum sites (the locks
are not held until commit/abort time). Observe that
T has to see the requests of all committed and uncom-
mitted transactions that “precede” it, so the quorums
of these transactions must intersect with T’s quorum.
Since all the quorums are of the same size, each site has
to lock a majority of sites. This lack of site autonomy
can result in delays in processing transactions.

2. Site Escrow Algorithms : In TE, each trans-
action places in escrow the resources that it is attempt-
ing to acquire. In the site escrow algorithms (SE), each
site places resources in escrow. A transaction can suc-
cesfully complete at a site only if the number of re-
sources escrowed at that site exceeds the number of
resources that the transaction requires. The escrowed
quantity is then adjusted to reflect the consumption
of resources by the transaction. This approach results
in more site autonomy than TE, since each site can
deplete its escrowed resources independently without
having to consult any other site.

[KS88, Har88, SS90, BG91] present SE algorithms
for maintaining the following classes of constraints,
where B is a replicated numeric object, and B,,,in

and Bma, are constants: (a) B > Bmin, and (b)

B I &uz,. We discuss the solution given in [KS881
to preserve the second constraint. The global state
of the system is computed periodically by executing a
global snapshot algorithm. Let M be the total num-
ber of sites in the network, and let Bgrob indicate the
value of B in the last recorded global state. The es-
crow quantity, es;, allotted to each site i immediately
after i has been informed of the global state is :

B naaa e8j = - B,w
M

If i cannot execute a transaction on the basis of esi, i
requests other sites to donate a portion of their escrow
quantities for its use.

Since transactions cannot be processed while (one
phase of) the global state algorithm is being executed,
it is desirable not to execute it frequently. On the
other hand, it is also desirable to have the algorithm
executed frequently so that sites have a fairly accurate
estimate of the global state:

1. Since esi varies dynamically, the algorithm is
adaptive : even if one site is doing most of the
allocations, it can do so with a high degree of au-
tonomy if frequent global snapshots are taken.

2. If there are decrements to B, the escrow quantities
at all sites can be increased, so that site auton-
omy can be increased. However, the increase in
the escrowed quantity can be done only when the
global state is recomputed. The sooner the algo-
rithm is executed, the sooner the increase in site
autonomy, and hence better performance.

Thus for the purpose of performance, the global
state algorithm has to be executed as frequently as
possible, whereas the frequent execution of the algo-
rithm may itself degrade performance. We attempt to
address such shortcomings in this paper.

In [KB91], we introduced the notion of bounded ig-
norance, which allows a transaction to be ignorant of
the effects of a limited number of transactions that
precede it in the serial order. This increases concur-
rency at the cost of a bounded violation of the in-
tegrity constraints of the system. For instance, in a re-
lational database with a student-advisor relation, the
constraint that every student has an advisor (universal
quantification) can be relaxed to the constraint that at
most k students do not have an advisor. We can treat
this as a resource allocation problem in which k is the
total number of resource instances. By using escrow-
based ideas, we can dynamically change the level of
concurrency of updates to the student-advisor relation
and this can result in higher throughput. We thus find
that a traditional application can sometimes be cast
into a resource allocation-style problem, and our tech-
niques help improve site autonomy and concurrency in
such applications.

3 The Model

We assume that the system consists of a set of sites
that communicate by sending messages over a com-
munication network. For simplicity, we assume that
there are no site/communication failures (our algo-
rithms, however, function correctly even in the pres-
ence of such failures). Suppose there is a single re-
source type, r. The allocation constraint is given by
allocd 2 tot, where tot is the total number of indis-
tinguishable instances of r and allocd is a data item

177

denoting the number of instances of 7 allocated glob-
ally at any time.

In order that sites can make autonomous decisions
concerning resource allocation, allocd is replicated at
all sites. We refer to the value of a particular replica
at a site as the site view at that site. A site view need
not necessarily be up-to-date: it may be missing the
updates of (a limited number of) transactions which
have executed at other sites. Since we are interested
in how the allocation constraint is maintained, we con-
centrate on the allocate and deallocate operations that
are embedded in a larger transaction and loosely refer
to these operations individually as allocate and deallo-
cate transactions. (The results can easily be extended
to the general we where there are several resource
types, and transactions contain several steps that allo-
cate and/or deallocate resources or access non-resource
type data items.)

Suppose transaction T is executed at site i. We de-
note the number of resources which can be allocated
(deallocated) by T as req(T). We say that T has been
submitted at i when T first begins execution at i. Ex-
ecution proceeds in the following steps:

1.

2.

3.

4.

A communication phase with some sites may be
required to ensure that i’s site view is ignorant
of only a limited number of allocations that have
executed at other sites.

The read phase of T, RPT, is executed during
which i’s site view is read. RPT generates an
unconditional update wr that preserves the con-
straint if executed on the site view. We say that
T is initiated when RPT starts execution,

UT is installed atomically in the local log for re-
source T.

A communication phase with some sites might be
required to ensure that UT is also installed in the
log for T at those sites. UT is also asynchronously
broadcast to all other sites.

Observe that the update UT is ‘externalized’ to other
transactions, as in TE, before the larger transaction in
which T is embedded commits. (If the larger trans-
action aborts, UT has to be purged from the sites at
which it has been logged. We do not discuss any de-
tails of how this takes place.)

For convenience, we assume that the state of the
database is represented by a history - the logged se-
quence of updates. (It is sufficient to use a compacted

version of the entire history, but the details are beyond
the scope of this paper.) If T’ and T are transactions,
we say that RPT~ seea the update UT (or equivalently
T itself) if TQ is in the history corresponding to the
site view read by RPT~. We define a happened-before
partial ordering, -+, between transactions: T + T’ if
RP=j sees UT. (In general, transactions can consist of
updates to several resource-type data items. For each
such data item, there is an independent happened-
before ordering over the updates that modify that data
item.) A transaction T is said to be concurrent with
T’, denoted T cone T’, H T f, T’ and T’ j+ T. We
assume that the broadcast mechanism for disseminat-
ing updates satisfies the property that sites learn of
updates which have been generated at other sites in
accordance with +. Thus, if a site knows of an update
UT it also knows of all updates generated by transac-
tions T’ such that T’ + T.

The transactions are ordered by a linear order <I,

which is a linearization of -+. <r is constructed using
timestamps assigned to the transactions. If TS(T) de-
notes the timestamp of transaction T, then TX + T2

implies TS(Tl) < TS(Tz), and TI <I T2 if and only
if TS(Tl) < TS(T2). Although updates might arrive
at different sites in different orders (but satisfying +),
it follows that if the same set of updates arrives at two
sites, they will yield the same site view since incre-
ment/decrement updates commute.

The global state of the database at any time t is the
state that includes all updates that have occurred at
all sites until time t. We say that the system is cor-
rect if the allocation constraint is true of the global
state at all times. To ensure that the system does not
behave ‘incorrectly’, a replica/concurrency control al-

gorithm is required to co-ordinate concurrent access
to the replicas by several transactions. In our case,
the generalised site escrow algorithm described in Sec-
tion 4 places a bound on how out of date the site view
is allowed to be when a transaction is initiated. Step
1 above delays the read phase of the transaction when
this bound is exceeded.

4 The Generalized Site Escrow
algorithm

The Generalised Site Escrow (GSE) algorithm modi-
fies the notion of site escrow in [KS88], and eliminates

178

the need for a global state algorithm to replenish the
escrow quantity. Consider a particular scenario to mo-
tivate the approach. Assume that only a single site, i,
is executing allocate transactions, and that i periodi-
cally broadcasts the allocations it has made to other
sites. Suppose the escrow quantity at each site is com-
puted using esi = w, where Availi is the number
of resources that are recorded as available in i’s site
view. i then knows that the escrow quantity at each
other site is dynamically being reduced as more al-
locate transactions are executed at i. If i can place
a lower bound on what other sites know about alloca-
tions it has made, it can place an upper bound on their
current escrow quantities and thereby dynamically re-
plenish its own escrow quantity. i can then continue
to allocate resources without stopping to execute the
global state algorithm. Thus, to initiate a transaction
using GSE, it is sufficient for i to know that other sites
know of all but a certain number of past allocations
seen at i. The synchronisation required here is weak
compared to that required by SE and this can result
in high throughput.

The escrow quantity allotted to each site determines

the site’s autonomy and hence the level of synchroniza-
tion between sites. To implement this synchronization
GSE employs two mechanisms : (a) quorum locking

[Her871 to control the number of allocations that can
simultaneously be performed across the network and
(b) broadcast using gossip messages to limit the extent
to which a site may be ignorant of the effects of prior
transactions done elsewhere.

In TE the quorums of two transactions have to in-
tersect, and thus a quorum has to contain at least a
majority of sites. In GSE quorums need not necessarily
intersect, and hence can contain less than a majority
of sites. This allows multiple allocations/deallocations
to be occurring simultaneously in the net.

Gossip messages are background messages which can
be used to propagate information regarding what a site
knows to other sites in the network. Gossip messages
ensure that a site learns of updates in the --) order.
Several algorithms have been proposed which allow a
site to maintain information about the state of another
site’s knowledge ([WB84, HHW89]). The technique
involving the use of a timetable is described in [WB84].
The timetable at site i, TT:, can be characterized as
follows:

1. TTi[i,i] is a counter incremented whenever a

0. QT = {i}
1. (Receive gossip messages)

2. es; = py$* IQTIJ

3. Compute &

4. IF es: < req(T) + Teq(Z.4)
THEN IF (IQ=1 < M)

THEN

Lock a site j and add to QT.

Goto Step 1
5. Increment TTi[i, i] and create a timestamp for T.
6. Execute RPT on i’s view and append UT to view.

7. Unlock quorum sites.

Figure 1: Algorithm GSE executed by i to initiate T

2.

transaction T is initiated at site i. Denote the
IP row of Tz as Tz[k]. T!Q[i] is assigned as the
vector timestamp, TS(T), of T.

If TTi[j, k] = z, then site i knows that site j
knows of all transactions initiated at site k when
TTk[k, k] ~8s less than or equal to z.

Assume that a gossip message m is sent from site j
to site i. Site i merges the update information in m
into its local history on the basis of the timestamps.
TTi

Ml.

is updated in the following fashion:

M2.

Vp E SZ do TZ[i,p] := muz(TTi[i,p],STjU,p]).
This indicates that for each site p, site i now
knows the updates of all the transactions initi-
ated at p that site j knew about (when the gossip
message was sent).

(VP E SZ) (Vn E ST) do TZ[p, n] :=
~z(TT~ [p, n], STj[p, u]). This indicates that the
transactions that j knew were initiated at n and

Each gossip message sent by site j to site i at time t
contains a snapshot, STj, of TTj, and all the updates
that j has seen up to time t. We can optimize the
amount of information sent in a message [WB84] by
(1) using the timetable to reason about the knowledge
state of the destination site (i.e. if j knows that i
knows of some updates, then it need not include those
updates in its gossip message to i), and (2) sending
only a portion of the timetable. In a system with a
large number of sites and in which a large number of
updates occur, only the optimized approach is feasible.
We do not however discuss such optimizations here.

179

have been seen at p (when j sent the gossip mes-
sage), are also known by i to have been seen at
p. Thus, i is brought up-to-date concerning the
knowledge states at the other sites.

Lemma 1 Suppose site i knows at (global) time t that
site j knows of some update uT. Then there ezista
a chain of gossip messages from j to i such the jirst
message in the chain was sent from j after it knew of
UT and the last message is received at i before t.

Proof of Lemma 1: See [KBSl]. n

The following lemma lets a site use its timetable to
reason about what it knows of the state at other sites.
Let a and b be two vectors. Define a 2 b if and only if
a is elementwise less than or equal to b.

Lemma 2 Consider a transaction T and a site i.
TS(T) 5 TT;[k] if and only if i knows that uT is in

the site view of k.

Proof of Lemma 2: See [KB91]. n

The mechanisms of quorum locking and gossip mes-
sages are integrated into GSE in the following fashion.
The messages that are propagated in the system as
part of the quorum algorithm are : (a) Lock request,
(b) Lock grant, (c) Lock release, and (d) Lock deny.
Gossip messages are piggy-backed onto these messages.
We assume that gossip messages are also transmitted
periodically by a site to neighboring sites independent
of the quorum messages.

GSE is presented in Figure 1. The total number of
sites in the system is denoted by M. esi is the escrow
quantity at site i, and Avail; is the number of available
resources corresponding to i’s view of tot -al&d. The
values of Avail; and es; are recomputed at the begin-
ning of each iteration of the loop in Steps 1 through 4.
We assume that gossip messages can be received only
at Step 1, but there is no restriction on when gossip
messages can be sent from i (the restriction on the re-
ceives is for clarity only: Steps 2 and 3 are steps that
compute values based on the site view at Step 1. i can
in fact receive gossip messages while trying to lock j
in Step 4). For simplicity, we assume that each site
includes itself in its quorum so that a site can only
initiate one transaction at a time.

Suppose i wishes to execute transaction T. We de-
note T’s quorum by QT (the size of the quorum is
(QT I). Initially, only i is in QT. If all sites were com-
pletely up-to-date then, for all i and j, Avail; =
Availj and each would take 1-j as its escrow

quantity. Site i can utilize the escrow quantities of
sites in QT since they are locked and hence esi is given

by 1 w * lQTl].

Unfortunately, sites are not up-to-date concerning
transactions that have executed at other sites and
hence i must make a conservative estimate of the es-
crow available to it to ensure that concurrent alloca-
tions do not cause a violation of the allocation con-
straint. It does this by using an upper bound on
the possible escrow values seen by non-quorum sites.
There are two factors that can cause the escrow seen
at non-quorum sites to be larger than esi : (1) allo-
cate transactions known to i that are unknown at non-
quorum sites and (2) deallocate transactions known
at non-quorum sites but unknown at i. With respect
to factor (2), a transaction deallocating u resource in-
stances at non-quorum site j only enlarges esj by l&J
(j’s portion of the deallocated quantity). Hence any
resulting additional allocation performed at j concur-
rent to T cannot cause a violation of the constraint.

We now deal with factor (1). Let & denote the set
of all allocate transactions, T, such that T’ is known
to i and i is not certain that T’ is known to all the
non-quorum sites i.e. from Lemma 2, there exists a
non-quorum site k such that (TS(T’) 2 TT;[k]). For
a set of transactions S, let ?eq(S) denote c req(T’).

T’ES
Note that if T is executed, the allocation of as many as

v$4) + req(T) resources might be unknown to non-
quorum sites. As a result, the non-quorum sites might
have overestimated their respective escrow quantities
and executed transactions concurrent with T on the
basis of those escrows. By ensuring that req(&) +
teq(T) is not larger than 19 * IQTIJ (which is i’s
available escrow quantity, ey), we can guarantee that
the allocation constraint is preserved (as proved in Sec-
tion 6). Thus, before T can be initiated, i confirms in
Step 4 that all but at most the last esi -req(T) alloca-
tions seen at i are known to all non-quorum sites (i.e.
+eq(&$) 5 esi - req(T)). If the inequality in Step 4
is true, then i’s escrow is insufficient and i has to en-
large QT by locking additional sites. esi and U+ are
then recalculated, and the test is again made to see if
the escrow quantity is enough. In the worst case, all
M sites are in QT, at which point T can be initiated.
(We propose some optimizations later in the paper to
decrease the size of QT.)

For simplicity, our description of GSE assumes
that i locks quorum sites in a sequential manner.

180

i can, however, accumulate the quorum in paral-
lel. i estimates the required quorum size as]QT] =

and locks]QT] - 1 (other) sites in

parallel to fo;rn. the quorum. If the resulting quorum
is insufficient it is enlarged by locking additional sites.

Note that site i is tightly synchronized with other
sites in QT, but only loosely synchronized with non-
quorum sites.

5 Discussion

The benefits of GSE are as follows :

GSE requires no global synchronization points at
which the escrows are recalculated, hence an al-
gorithm that explicitly computes the global state
is not required. Using background messages, GSE
assures a lower bound on what a site knows about
transactions executed at other sites.

A quorum is frequently smaller than a majority
of sites (unlike in TE). The exact quorum size de-
pends on Availi, and its minimum value occurs
when & is null. In that case, GSE requires that
eei simply be greater than or equal to +eq(T). If
Availi 2 req(T) * M, the minimum quorum size
is one. If 9 > Availi 2 v, where q
is an integer larger than 1, the minimum quorum
size is q. Consider the airline example where at
most 200 seats can be reserved and M = 9. A
transaction at site i wishing to reserve a single
seat need only include i in its quorum if Availi

is less than 191 and & is null. If a transaction
wishes to reserve 3 seats when Avail; is 183, then
only 2 sites need to be in its quorum. In most
cases where the number of allocations being re-
quested by a transaction is small and there are
several available resource instances, only the site
initiating the transaction is in the quorum. Thus
we expect the average execution time of transac-
tions to be small.

The larger the value of req(&), the larger the
value of eei required and hence larger the de-
lay before T can be initiated. By increasing
the frequency with which gossip messages are ex-
changed, these allocations become known to other
sites more quickly, thereby reducing the required
value Of e&. As a result, the quorum size and
consequently the response time for T is reduced.

4. GSE adapts to a situation in which a single site,
i, does most of the allocations. Here, Avail; does
not change significantly as a result of informa-
tion about new allocations at other sites, and
veq(&) is small if gossip messages are frequent
enough. i is then able to execute transactions
with a high degree of autonomy. SE [KS881 also
adapts to such an unbalanced allocation distribu-
tion. In fact, GSE reduces to SE in the special
case that gossip message exchange is restricted to
periodic intervals during which transaction execu-
tion is halted and in that interval the exchange of
gossip messages brings all sites up-to-date.

In our description of GSE, deallocate transactions are
not included in &, and deallocations at i can be done
without consulting any site. If, however, there is
a lower bound, low, on the number of allocated re-
sources, deallocate transactions can be synchronized
independently through a dual of GSE: esi is evalu-
ated using the formula [*ot-l~~AvairC *]QT]] , and &
is the set of deallocate transactions that i believes is
not known to non-quorum sites.

6 Correctness Proof

In this section, we show that GSE preserves the alloca-
tion constraint at all times. We say that a transaction,
T,, is a mazimal element of + if there exists no trans-
action T’ such that T, + T’. Consider the set, M,

of maximal elements of -+. By definition, any two el-
ements in M are concurrent to one another and their
quorums are disjoint: if T and T’ are distinct elements
in M such that QT n QT~ # 4, then either T + T’ or

T’ --t T, which is a contradiction. Let Ti, 1 < i 5 n,
be the elements of M, and assume that Ti is initiated
at site i (at most one element of M can be initiated at
site i). For simplicity, we assume that aJl transactions
in the system are allocate transactions (the results do
not change if deallocate transactions are also consid-
ered).

Let S; be the set of transactions seen by Ti (at Step 5
of GSE). Then the set of all transactions executed in

the system is fi Sj U fi{Ti]. Thus, the allocation
j=l j=l

constraint for the system can be written as :

tot L red (j Sj) + fed rj CM) (6.1)
jZ1 jgl

181

Let SSi be the set of all transactions T’ such that T’
is in Si and i knows before Step 5 of the algorithm
that all the non-quorum sites know about T’. Thus
Teq(&) = req(SSi) + Teq(U+). At most esi - +eq(Ti)

allocations from Si are not known to the non-quorum
sites when Ti is initiated: veq(&) 5 t?8i - peq(Ti).

Thus Teq(Si) 5 ?eq(SSi) + esi - req(Ti). Denote by
RS the quantity req(UTzl SSj). From (6.1), the allo-
cation constraint is satisfied if

tot > Teq(fi SSj) + k(esj - req(T’)) + 2 ?eq(Tj)
j=l j=l j=l

i.e. tot 1 RS + ee*j
j=l

(6.2)

Note that a particular transaction might be included
in both w and Uj, i # j, and therefore be included
in both esi and esj. Thus the transaction may be
counted twice in the above summation. However, it is
sufficient that (6.2) be maintained for the allocation
constraint to hold.

Observe that for each j # i, 1 5 j 5 n, all the trans-
actions in the set SSj are known to i before Ti is initi-
ated. To see this, assume the contrary: there edits a
transaction, T’, such that i knows of T’ only after UT~
has been logged. By definition, j knows that SSj is
known to i before it initiates Tj. Then from Lemma 1
and our assumption, Ti is known to j before Tj is ini-

tiated, and Ti -+ Tj which is contrary to assumption
that both Ti and Tj are maximal elements in -+. Thus

for all j, 1 5 j 5 n, SSj c Si, SO that fi SSj E Si.
j=l

Therefore, peq(Si) 2 Teq(fi SSj) = RS. Since
j=l

before initiating Ti, Availi = tot - req(Si), we have
Avail; 5 tot - RS. Hence, at Step 5, esi satisfies

e8 < cot - RS) * IQT.1 i-
M * *

and the algorithm guarantees that for all i, 1 5 i 5 n,

tot 1 es< * & + RS (6.3)

By comparing (6.2) and (6.3), it can be seen that (6.2)
is true if for some i,

or

e8i * (5 - 1) 2 gesj (6.4)

Without loss of generality, let site 1 be such that for
all sites j (2 5 j 5 n),

This implies that

Since the quorums of the elements of M are mutually
disjoint, we have that CT=, 10~~1 5 M - IQT~I, which
yields the required result (6.4).

Theorem 1 Algorithm GSE preserves the allocation
concrtraint. n

7 Comparison of GSE and TE

We can compare GSE and TE approximately by eval-
uating the times required to execute a transaction T

(from submission of T to when T’s site of initiation
knows that sites in QT have been unlocked).

We assume that each message is the same length.
Let muj denote IF] + 1, and C(n) the (communica-
tion) time required by any site to send messages to
or receive messages from n other sites. We assume
that C is a linear function of n. (This is a worst-case
assumption that is true when the network has a lin-
ear topology.) We assume that the time required to
execute RPT and append 21~ to the log is negligible
compared to the communication time.

Assume that T executes at site i. In TE, a majority
quorum is locked before T is initiated. The minimum
time required to execute T is the time for locking and
unlocking the quorum sites and is given by 4*C(maj-
1). In GSE, site i makes an estimate of the required
quorum size based on its current site view, and then
locks that many sites in parallel. We assume that the
estimate is accurate with high probability. Thus, in
GSE, the time required to execute T is 4 * C(~QTI- 1).
(In both cases, we have not taken into account the
time that i might spend in waiting for a lock at a
possible quorum site to be released. We assume that

182

I* 7

GSE(1) +
GSE(6) +

12 _ GSE(14) +
TE -K-.

10 -

E 4 8 ;&----*---)(--
vi

5
;: 2 6-

4 -

--

0' I I , I
0 50 100 150 200

Number of seats reserved globally

Figure 2: Simulation of GSE on 14site network -
GSE(n) indicates n sites can generate transactions si-
multaneously

this time is the same in both cases on the average.) If
the quorum size is less than a majority, GSE performs
better than TE. However, GSE requires that at least
a majority of sites be included in the quorum when
Avails < 2 * (zeq(T) + ?eq(&)). In this region, GSE

performs worse than TE. To improve the efficiency of
GSE in such cases, we propose some optimizations in
the next section to reduce IQTI.

When Avail; 2 (zeq(T) + req(&)) * M, QT = {i}.
This case occurs when the total number of available re-

sources is large compared to both veq(T) and M, and
the gossip messages are propagated frequently. No-
tice that in this important case, the time required to
execute T is only the time for executing RPT and ap-
pending UT to the log. Consider an instance of the
airline example where resrvdseats+ is 50 and T wishes
to reserve 5 seats. Let i know about 11 seat alloca-
tions that it is not sure all other sites know about i.e.
?eq(U;) = 11. Then +eq(T) + req(&$) = 16, and the
quorum size required is 1 (QT = {i}).

Figure 2 shows the results of a simulation on a 14 site
network (in which each site has at most degree 4). We
plot IQT 1 as a function of the number of seats reserved

globally (resrvd~eats), with the number, n, of sites
simultaneously generating transactions as a parame-
ter. Transactions are generated at equal frequency at
these sites, and gossip messages are transmitted from
all sites at twice this frequency. The number of seats
reserved in each transaction is a random number be-
tween 1 and 5. It can be seen from the plots that if
n = 1 (only one site is initiating transactions), IQTI
remains 1 until resrvd-seats becomes ~150. If n = 14,
IQTI remains 1 until resrvd-seats becomes -50 and re-
mains less than muj (= 8 sites) until resrvd-seats be-
comes -130.

8 Optimizations

8.1 Using information about other
sites to reduce quorum size

The size of the quorum required to execute a transac-
tion can be reduced by making use of the timetable,
which bounds the knowledge state of other sites.

Assume that transaction T has been submitted at
site i and that i has locked at least maj sites, but the
quorum is still not sufficient. Let Availi indicate the
number of available resources seen at i at this stage.
For simplicity, assume that T is not concurrent to any
deallocate transaction (the result holds even if this as-
sumption is not true). Using its timetable, i can place
a lower bound on which transactions are known at each
non-quorum site, and hence place an upper bound on
Avdj for each non-quorum site j as follows. Denote
by MA the maximum of these upper bounds. Let Di
indicate the number of deallocations that i has seen
but which i is not sure that all the non-quorum sites
have seen. Then, for any non-quorum site j, MA + Di
is an upper bound on Availj. Since M - IQTI is the
number of non-quorum sites, lv * (M - IQTI)J
is an upper bound on the sum of the escrow quan-
tities at the non-quorum sites, and hence indicates
the m&mum number of allocations that can occur
at non-quorum sites concurrent to T. If the number of
available resources seen at i is at least the sum of the
escrow quantities at non-quorum sites, the allocation
constraint is preserved. Thus, if

Availi - Teq(T) 2
I

MAi Oi * (M - IQTI)J (8.1)

is satisfied, i can initiate T. (The idea depends on

183

the fact that at most one site can be doing the opti-
mization, since at most one site can have locked muj
sites.)

Example 1 : To illustrate the result, consider the
following scenario of the airline reservation system for
the case MA = Availi (similar scenarios can be given
for MA < Avail< and MA > Availi). Assume that i
knows that the site view (resrvd-seats) at every other
site is at least 199. If transaction T at site i wishes to
reserve the last seat, then using GSE, all 9 sites in the
system have to be in QT. Using (8.1), however, i needs
to lock only 5 (=muj) sites. The intuition behind this
situation is that any transaction that tries to reserve
the last seat must lock at least a majority of sites, and
locking a majority is sufficient for correctness.

Theorem 2 Suppose site i wishes to initiate transac-
tion T and haa locked at least maj sites. If (8.1) is
true, i can initiate T and the allocation constraint is
still preserved. n

8.2 Switching between GSE and TE

The optimization in the previous section is based on
(8.1) being satisfied and thus cannot guarantee that
a quorum consists of at most maj sites. However, by
placing an additional restriction on the system, we can
design hybrid algorithms in which a site switches from
GSE to TE and back depending on its site view. We
can then guarantee that a site needs to be synchronized
with no more than nurj sites before it can initiate a
transaction.

Assume two positive integers bl and b2 such that for
any T, req(T) < bl and the initiation of T is delayed if
req&) exceeds bz. (The extent of the delay can be re-
duced by increasing the frequency of gossip messages.)
Let b = b1 + b2. Notice that esi needs to be only as
large as b for T to be initiated. Under these assump-
tions, a site i using GSE requires a quorum of at least
muj sites only when Availi < 2 * b. TO avoid using
more than maj sites, consider an algorithm in which i
switches to TE at this point. Note that another site j
might still be using GSE since Availi and Availj need
not be equal.

In this context, given a set of algorithms, we can
associate an eficiency predicate with each to indi-
cate which algorithm(s) is best to use for a particu-
lar site view. For instance, we can associate the ef-
ficiency predicate { Availi 1 2 * b } with GSE and

{ Availi < 2 * b } with TE. Denote an algorithm A
with an efficiency predicate P by the tuple (A, P). As-
sume that a site uses A if P is true of its site view.
Given (Al, Pl) and (A2, P2), each site can use one of
Al or A2 depending on whether Pl or P2 is true of its
view (if both Pl and P2 are true, either algorithm can
be used). Since site views can differ, some sites could
be using Al and others A2 at the same time. We say
that (Al, Pl) is compatible with (A2, P2) if some sites
can be using Al at the same time as others are using
A2, and the allocation constraint is still preserved.

lf (Al, Pl) and (A2, P2) are incompatible, switching
cannot occur since the allocation constraint can be vi-
olated. Example 2 shows that (GSE, { Avail; >_ 2+b })
is incompatible with (TE, { Availi < 2 * b }):

Example 2 : Consider the following scenario of the
airline example. Assume that b = 5, so that a site i
switches to TE when it detects that Avail; < 10. Let
the global state be 191 (seats reserved) and let all site
views see this state. Subsequently, let 5 seat cancel-
lations occur and assume all become included in the
site views of sites 6 through 9. Thus Avail; = 9 for
lsi<5whileAvai&=14for6<is9. Nowassume
T is submitted at site 1 such that req(T) = 5. Then
using TE, site 1 can successfully reserve 5 seats by
locking sites 1 through 5 (a majority). Site 1 can then
execute another transaction reserving 4 seats using TE
while locking sites 1 through 5. Thus Availi = 0 for
1 < i 5 5. If the allocation constraint is to be main-
tained, we have to show that the sites 6 to 9 cannot
reserve more than 5 seats, which is exactly the num-
ber of cancellations that have been seen by them. As-
sume now that sites 6 and 8 each want to reserve 3
seats. They will use GSE with a quorum of sixe 2 since
Avail6 = Avails = 14. Site 6 can include site 7 in
its quorum, and likewise site 8 can include site 9 in
its quorum. The resultant state has 201 reserved seats
which is a violation of the allocation constraint. n

In fact, it can be shown [KB92] that there exists no
positive integer h such that (GSE, { Avail; > h }) is
compatible with (TE, { Avail; < h }).

Consider the algorithm, MAJ, which is exactly GSE
except that QT always has exactly nmj sites, and if the
condition in Step 4 of GSE is true, then either i waits
for the condition to become false (it does not include
more sites in the quorum) or aborts the transaction.
Note that MAJ is less efficient than GSE since it locks
more sites than GSE would. Furthermore, in contrast

184

Figure 3: State transition diagram for HE at site i

to TE, MAJ cannot allow a transaction to be initiated
if it has locked maj sites but the condition in Step 4
is true.

For all predicates Pl and P2, it can be shown that
(MAJ, Pl) is compatible with (GSE, P2). This is be-
cause MAJ behaves exactly like GSE, except that it
locks more sites than GSE (when the transaction is
successfully initiated). Similarly, for all predicates Pl
and P2, (MAJ,Pl) is compatible with (TE, P2). This
follows from the observation that the quorums of two
transactions that are executed using TE and MAJ in-
tersect, so that they cannot execute concurrently, and
the allocation constraint is preserved. Thus, a hybrid
algorithm, HE, can be constructed that uses MAJ as
an intermediate algorithm when a site wishes to switch
from GSE to TE: a site first switches from GSE to MAJ
and then from MAJ to TE (and vice versa). The switch
is performed in such a way that TE and GSE are never
used by different sites concurrently.

In HE (Figure 3), site i can be in one of four alg-type
states : GSE, MAJT, MAJo and TE, which each
indicate the algorithm that i is currently using. i uses
GSE until Avail; becomes less than a threshold h. At
this point, i enters state MAJT and starts using MAJ.
We assume that in HE, i’s current alg-type state is
included in each gossip message sent from i. If a site
j discovers that site i is in MAJT, it enters MAJT
too, regardless of the value of Availj. When a site in
MAJT knows that every other site is also in MAJT
or TE, it can enter TE. Thus i ‘forces’ each site to
switch to MAJ, and switches to TE when it knows that
all sites are using MAJ or TE.

i can switch back to state GSE from state TE when
Avail; becomes greater than or equal to a threshold h’.
First i enters MAJG and starts using MAJ. Observe
that every other site j is either in MAJT or in TE
when i enters MAJG. When j discovers that i has

switched to MAJG, j also enters MAJG (if j is still
in MAJT, it now knows that since i was in TE, it
can also enter TE. It then immediately moves on to
MAJG). i can transit to GSE when it knows that
all sites have entered MAJG or GSE. In fact, i can
enter GSE when it knows that a majority of sites have
entered MAJG or GSE (in contrast to the transition
from MAJT to TE). This is because any site j in TE
or MAJT will have to consult a majority of sites before
it initiates a transaction. and hence will discover that
other sites have entered either MAJG or GSE. j will
change to MAJG as a result. Thus when site i wishes
to switch to GSE, it ‘forces’ each other site to also
switch to MAJ (and then GSE).

The efficiency of HE depends on the thresholds h and
h’. It is desirable that h be chosen as 2 * 6. However,
choosing h equal to h’ can lead to thrashing, since sites
can frequently switch back and forth between GSE and
TE. To avoid this, we could introduce some ‘hysteresis’
by choosing h to be 2 * b - c and h’ to be 2 * b + c’,
where c and c’ are (small) positive integer constants.

Theorem 3 Algorithm HE preserves the allocation
constraint. n

8.3 Algorithm GSE without locking

We outline a variant of GSE, VGSE, that does not in-
volve locking, but in which more sites may have to be
consulted than in GSE before a transaction can be ini-
tiated. VGSE does not however suffer from deadlocks
as GSE or TE might.

Since quorum sites are not locked, a site can simulta-
neously be in several quorums. To include another site
j in QT, i sends a quorum request message to j contain-
ing Teq(T). On receiving this message, j logs zeq(T)
as a requisition (as opposed to an update UT where
the resources have been granted). j then sends its lo-
cal site view of updates and requisitions in a quorum
grant message to i. Let 7& denote the set of requisi-
tions that i sees after it merges the quorum grant mes-
sages. The condition for a transaction to be initiated
is now esi 2 req(T)+Teq(&)+Teq(YQ). Furthermore,
suppose the quorums of T and T’ intersect at j and
the requisition of T’ has been included iu R (the req-
uisition for T’ was sent in the quorum grant message
from j). Assume T’ was submitted at site le. Then
before T can be initiated, i must ensure (by waiting)
that either i knows of UTI (so that T’ is accounted for

185

in Avail;) or teq(T) has been included in Zk before
T’ is initiated (but not both). The requisition for T is
upgraded at the quorum sites to the update UT after
RPT has been executed and the quorum sites informed
of uT. The details of the algorithm and the proof of
correctness can be found in [KB92].

The benefit of VGSE over GSE is that a site can be
in the quorum of several transactions simultaneously,
and can (intuitively) allow those transactions to divide
its unused escrow quantity amongst themselves. The
drawback of VGSE is the assumption that a requisi-
tion is expected to succeed eventually. Thus if i sees
a requisition, the escrow that can be used by i is re-
duced. Hence, site i might be better off including in
its quorum a site that is not currently in another quo-
rum. Notice that in GSE, i would have to include only
such a site in its quorum, since sites currently in the
quorums of other transactions are locked.

9 Conclusions

We have presented the Generalized Site Escrow algo-
rithm which allows decentralized decision-making in a
resource allocation application. The algorithm makes
use of the semantics of the application and uses the
mechanisms of quorum locking and gossip messages to
provide a loose synchronization between sites (with re-
spect to the allocations that they have each seen). We
have shown that GSE performs well when the quorum
size is less than a majority. We have also suggested
techniques for optimizing GSE to reduce quorum sizes.

We have thus outlined a suite of algorithms that pro-
vide high site autonomy and throughput in executing
transactions in a replicated system. We do not provide
serializable executions, but show that the allocation
constraint is preserved at all times. We believe that
concurrency can be improved in certain traditional ap
plications by recasting them as resource allocation ap
plications, and then using techniques described here.

References

[BG91] Barbara, D. and Garcia-Molina, H. The De-
marcation Protocol : A technique for main-
taining arithmetic constraints in distributed
database systems. Technical Report CS-TR-
320-91, Princeton University, Apr. 1991.

[BHG87] Bernstein, P.A., Hadzilacos, V., and Good-
man, N. Concurrency Control and Recovery
in Database Systems. Addison Wesley Pub-
lishing Company, 1987.

[Har88] Htider, T. Handling hot spot data in
db-sharing systems. Information Systems,
13(2):155-166,1988.

[Her871 Herlihy, M.P. Concurrency vs. availability:

atomicity mechanisms for replicated data.

ACM Transactions on Computer Systems,
5(3):249-274, Aug. 1987.

[HHW89] Heddaya, A., Hsu, M., and Weihl, W.E.
Two phase gossip : managing distributed
event histories. Information Sciences,
49(1):35-57, 1989.

[KB91] Krishnakumar, N. and Bernstein, A.J.
Bounded ignorance in replicated systems.
In Proceedings of the 10th A CM SIGACT-
SIGMOD Symposium on Principles of

Database Systems, pages 63-74, 1991. An
extended version appears as Technical Re-
port SUSB-TR-90-29 (Oct.1990, revised
Aug. 1991), SUNY at Stony Brook.

[KB92] K ’ h ak r1s n umar, N. and Bernstein, A. J. High
Throughput Escrow Algorithms for Repli-
cated Databases. Technical Report SUSB-
TR-92-09, SUNY at Stony Brook, May
1992.

[KS881 Kumar, A. and Stonebraker, M. Seman-
tics based transaction management tech-

niques for replicated data. In Proceedings
of the ACM SIGMOD International Con-
ference on Management of Data, pages 379-
388,1988.

[ONe86] O’Neil, P.E. The escrow transactional
model. ACM Bansactions on Database Sys-
tems, 11(4):405-430, Dec. 1986.

[SS90] Soparkar, N. and Silberschatz, A. Data-
value partitioning and virtual messages.
In Proceedings of the 9th A CM SIGACT-
SIGMOD Symposium on Principles of

Database Systems, pages 357-367, 1990.

[WB84] Wuu, G.T.J. and Bernstein, A. Efficient so-
lutions to the replicated log and dictionary
problems. In Proceedings of the 3rd An-
nual A CM Symposium on Principles of Dis-
tributed Computing, pages 233-244,1984.

186

