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Abstract 

Redundant storage of data can make a multiprocessor 
database system tolerant of single processor failures. 
The D3 algorithm described here enables such a sys- 
tem to dynamically reorganize after a failure in order 
to protect itself against further failures, without inter- 
ruption of service. The algorithm also permits addi- 
tion or removal of a processor, and data migration for 
load balancing, without interruption of service. 

1 Introduction 

Multiprocessor database systems provide a number 
of advantages over uniprocessors, including increased 
capacity and modular growth. An important class 
of multiprocessor systems is based on the “shared- 
nothing” approach, in which several processors, each 
with its own memory and disk storage, manage a 
shared database by exchanging messages. In such a 
system, fault-tolerance can be improved by replication 
of data. If each block of data is replicated on two pro- 
cessors, the system can survive any single failure with- 
out loss of data or interruption of service. However, 
after a single failure, some of the data in the system 
no longer has a second copy, and so the system is not 
protected against subsequent failures. This problem is 
typically dealt with in one of the following ways: 
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The system continues running, operating on the 
surviving copy of the missing data. All changes 
that would have been applied to the data on the 
failed processor are recorded in a log. When the 
failed processor rejoins the system, it applies the 
log to its data in order to “catch up” to a state 
consistent with the other processors. The disad- 
vantages of this approach are that the log can be- 
come quite lengthy, and the system is unprotected 
until the failed processor is back online. 

The system is halted at some planned time, and 
its data is reorganized in such a way that all data 
is once again replicated and the load on the sur- 
viving processors is properly balanced. The dis- 
advantage of this approach is that it requires an 
interruption of service. 

This paper proposes a new approach to the reorga- 
nization of data after a single failure, called Dynamic 
Data Distribution (D3). In the D3 approach, the sur- 
viving copies of lost data blocks automatically repli- 
cate themselves and migrate to new processors with- 
out operator intervention, and the system returns it- 
self to a “protected” state without any interruption of 
service. The approach also permits processors to be 
added to or deleted from the system without an in- 
terruption of service. The O3 approach is well-suited 
for transaction-processing environments that have at 
least one of the following properties: 

1. Any interruption of service is extremely costly or 
undesirable, including “planned” shutdowns to re- 
configure the system after a failure, or for load- 
balancing, or to add capacity to the system. 

2. The system is required to provide reliable service 
without operator intervention over a long period 
of time which may span multiple processor fail- 
ures. 

Immediately after a processor failure, there is an in- 
terval of time during which replication of data takes 
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place. During this interval, transaction processing con- 
tinues but an additional processor failure would re- 
quire the system to stop and recover data from a log. 
If a higher degree of fault tolerance is needed, the D3 
algorithm easily generalizes to maintain three or more 
copies of each data block, thus tolerating two or more 
simultaneous failures without interruption of service. 

The D3 algorithm assumes that a cluster of proces- 
sors (“nodes”) is acting as a network server, accepting 
and processing database transactions. The objectives 
of the algorithm are as follows: 

1. 

2. 

3. 

4. 

5. 

6. 

Single image: To a client, the cluster of nodes 
should appear like a single machine. The distri- 
bution of data across nodes should be invisible to 
clients. 

Modular growth: The system should permit 
new nodes to be added, increasing throughput and 
capacity without any interruption in service. 

Fault tolerance: If a single node fails or is re- 
moved from the cluster, throughput may go down 
but there should be no loss of data or interruption 
of service. 

Self-repair: After the failure of a single node, the 
cluster may be temporarily in an “unprotected” 
state in which the failure of another node would 
require interruption of service and offline recovery. 
The system should redistribute its data to return 
to a “protected” state quickly and automatically. 
The system should know when its state is “pro- 
tected”. 

Safe restart: After an interruption of service due 
to multiple failures (e.g., a power loss) the system 
should be able to restart with minimal operator 
intervention. 

Transaction semantics: All database access 
should consist of a series of transactions, with the 
usual guarantees of isolation, atomicity, and re- 
coverability. 

Scalability: There should be no bottleneck that 
limits the addition of new nodes to the cluster. 

Symmetry: No node should be more critical to 
continued operation than any other. 

Dynamic load balancing: The system should 
automatically redistribute data to balance the 
load on the nodes for optimum performance. This 
should be done without interruption of service. 

The rest of this paper is organized as follows: Sec- 
tion 2 states the assumptions on which the algorithm 
is based. Section 3 gives an overview of the algo- 
rithm and a discussion of the the problems unique to 
the Dynamic Data Distribution approach. Sections 
4-9 describe the steps of the algorithm in more de- 
tail. Sections 10 and 11 give an outline for a proof 
of correctness and suggest possible extensions to the 
algorithm. The paper concludes with a comparison to 
related work and references. 

2 Assumptions 

The D3 algorithm is based on the following assump- 
tions: 

1. 

2. 

3. 

4. 

5. 

6. 

Messages between nodes in the cluster are cheap, 
fast, and reasonably reliable (lost messages are 
tolerated but cause a degradation of performance 
similar to a node failure.) 

Nodes fail by becoming unresponsive (they stop 
replying to messages). If a node does respond to 
a message, we assume the reply is correct. 

Each message transmitted between nodes results 
in a reply or acknowledgement. The sending node 
may engage in other work while waiting for the re- 
ply to a message. If a reply is not received within 
a designated time, the sending node assumes that 
the receiving node has failed. 

Each node has a unique NodeID, and there is a 
natural ordering among NodeID’s. 

The database consists of a set of records, each 
of which has a unique name called its record- 
identifier (RecID). Groups of records (or potential 
records, represented by unused RecID’s) are stati- 
cally assigned to blocks, each of which has a unique 
name called its block-identifier (BlockID). There 
is a simple mapping from RecID to BlockID (e.g., 
BlockID could be a prefix of RecID). A record is 
the unit of user access to data, and the unit of 
locking. A block is the unit of data distribution 
and migration between nodes. No assumption 
is made about the number of records per block. 
The motivation for assigning multiple records to a 
block is to keep the lockable unit small (to increase 
concurrency) and the migratable unit larger (to 
reduce message traffic). 

Each individual node implements local transac- 
tion semantics, providing the following guaran- 
tees: 
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Local isolation: Each node prevents mul- 
tiple transactions from interfering with each 
other by acquiring locks on modified records. 
Higher degrees of isolation could also be 
supported (e.g., locks could be acquired on 
records when they are read as well as when 
they are modified.) 

Local atomicity: Each node ensures that 
all local updates made by a given transaction 
are committed or rolled back as an atomic 
act. 

Local recoverability: If a node fails, 
an off-line recovery procedure is available 
whereby the data in that node can be re- 
covered to a transaction-consistent state. 

We assume that the nodes participating in the D3 
algorithm implement these local guarantees using 
a standard technique [Gray 81, Mohan 891. The 
D3 algorithm builds on the local guarantees to 
ensure isolation, atomicity, and recoverability for 
the system as a whole. 

3 Overview 

Initially, each block of data is stored in two different 
nodes, called the storage sites for the block. There is 
a partition function (PF) which maps a BlockID to its 
storage sites. The PF can be used to find the loca- 
tions of an existing block, or to select two sites for a 
new block. When a transaction updates a record the 
update is sent to both nodes that store the block con- 
taining the record. Record locking and a two-phase 
distributed commit protocol are used to ensure trans- 
action isolation and atomicity. 

If there were no failures and no need for load balanc- 
ing, the initial data distribution would never change. 
Load balancing, however, requires blocks to migrate 
between nodes, and a failure requires new copies to 
be created of those blocks for which the failed node 
was one of the two storage sites (in order to protect 
against subsequent failures.) For this purpose, one of 
the nodes, the one with the lowest NodeID, is desig- 
nated the Coordinator. The Coordinator gathers load 
statistics and information about failures from the other 
nodes and decides when a new partition function needs 
to be created to balance the load, to reconfigure after 
a node has failed, or to integrate a new node into the 
system. The details of the new PF are left to the 
Coordinator, but in order to minimize movement of 
data, each new PF should resemble the previous PF 
as closely as possible. 

The Coordinator transmits each new PF to all the 
other nodes. When a node receives a new PF it be- 
gins scanning through all its blocks, using background 
cycles. For each block, the node applies the new PF 
to determine the new storage sites for the block. If 
the new sites differ from the current storage sites, the 
node sends a copy of the block to the new sites and 
deletes the local copy (unless the node itself is one of 
the new sites.) The protocol for distributing a new 
PF and for migrating blocks is described in more de- 
tail below. When a node finds that all its blocks are 
stored according to the most recent PF, it declares it- 
self “Up-T-Date” and stops scanning until a new PF 
is distributed. 

When all nodes are Up-To-Date the reconfiguration 
is complete, and there are again two copies of all data 
blocks, including the ones that were stored at the failed 
node. At this time the system is protected against a 
subsequent failure. Note that the D3 algorithm does 
not maintain a separate log of “missed updates” that 
a failed node could use to bring itself up-to-date after 
it has recovered from its failure. Instead, a failed node 
that has been repaired is treated like a new node: it is 
assigned a new NodeID, the Coordinator creates a new 
PF that includes the node, and data begins migrating 
back to the repaired node. 

During reconfiguration after a failure the system is 
unprotected: if a second failure occurs before the re- 
configuration is complete, some data blocks may be 
unavailable. In this case the Coordinator will shut 
down the system and must wait until the second failed 
node has come back online and has recovered its data 
from its local log. 

In the absence of block migration, i.e., without fail- 
ures or load balancing, the distributed commit proto- 
col alone would be sufficient to guarantee consistency 
between the two copies of a block. Block migration 
and reconfiguration after a failure introduce two prob- 
lems that are unique to the Dynamic Data Distribution 
approach: 

1. Finding data blocks: After a new PF has been 
distributed and blocks begin to migrate, there are 
no longer only two nodes at which a copy of a 
block may be stored. In fact, during the transition 
to a new PF, there may be more than two copies 
of a block. When a record is updated, the algo- 
rithm needs to ensure that all copies of the block 
containing the record are found and updated, and 
that no block is missed while it is “in transit” from 
one node to another. Similarly, when processing 
a read request, all potential storage sites need to 
be contacted before deciding that a record and 
the block to which the record belongs do not yet 
exist. 
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2. Detecting “stale” data: As described earlier, 
a node that comes back online after a failure dis- 
cards all its data and rejoins the system under a 
new NodeID. This is done because, due to updates 
the node missed while it was down, its data may 
have become stale. During recovery from multi- 
ple failures (e.g., when the system restarts after 
a power failure), however, no data should be dis- 
carded, except for data on nodes that had failed 
even earlier (e.g., before the power loss). Hence, a 
node that restarts after a failure must be able to 
reliably decide whether its data is up-to-date and 
should be retained or potentially stale and should 
be discarded. 

Below we describe how these problems are solved in 
the O3 algorithm. 

Finding Blocks: Every node keeps a list of all Ac- 
tive PF’s, i.e., all PF’s that still control the storage 
of one or more blocks at some node. Each node in- 
forms the Coordinator when a PF no longer has any 
blocks stored according to it at that node. This allows 
the Coordinator to determine when a PF is no longer 
active. The Coordinator will then send a message to 
all nodes informing them that the PF can be removed 
from the list of active PF’s. 

In order to find all copies of a block, a node ap- 
plies all PF’s in its list of Active PF’s to the BlockID, 
yielding the NodeID’s of all nodes that might have a 
copy of the block. This list of NodeID’s is called the 
trail of the block. The nodes on the trail are ordered 
from oldest PF to newest PF, and duplicates are not 
eliminated. When a transaction running at Node N 
reads or updates a record, the node follows the trail of 
the block containing the record, sending a message to 
each node on the trail until the desired block has been 
found (in case of a read request) or all copies have been 
updated (in case of an update request). 

A two-phase protocol is used by the Coordinator to 
distribute a new PF to all nodes: First, the Coordina- 
tor sends a Prepare for new PF message, describing the 
new PF, to every node. The Coordinator waits for an 
acknowledgement from all nodes and then sends an Ac- 
tivate New PF message to each node. Block migration 
and creation are suspended during the distribution of 
a new PF, i.e., after receiving a new PF a node waits 
for the Activate New PF message before migrating or 
creating any new blocks. This ensures that no blocks 
are stored according to a new PF until all nodes have 
received that PF. 

When a block migrates from a node Nr to Nz, Ni 
places a Migration Lock lock on the block until N2 has 
acknowledged the receipt of the block. If node Nr re- 
ceives a read or update request from node N affecting 
a migrating block, Ni will wait for the migration lock 

to be released before replying “block not here” to N. 
Thus N will not send its request to N2 until the block 
has been received by N2. (Since nodes on the trail are 
ordered from oldest PF to newest, N1 must precede 
N2 in the trail.) This ensures that N does not miss 
the block while it is in transit from Ni to N2. 

Detecting Stale Data: To explain how a node 
decides whether its data might be stale, we need to 
describe in more detail how the Coordinator decides 
whether the system can continue to operate after a 
failure or needs to shut down. As described above, the 
Coordinator keeps track of all PF’s that are currently 
active. We call the set of nodes on which data blocks 
are stored under a given PF the Participation Set of 
the PF. If the Participation Set of any active PF con- 
tains two or more nodes that have failed since the PF 
was created, then it is possible that some data block 
is unavailable because its only two copies were stored 
at failed nodes. If, on the other hand, the Participa- 
tion Set of each active PF contains at most one failed 
node, then every data block must have at least one 
copy stored at a node that is still available. 

Data at a failed node becomes stale when a transac- 
tion that updates blocks that were stored at the failed 
node is committed. During the distribution of a new 
PF commit processing is suspended, i.e., after receiv- 
ing a new PF from the Coordinator, a node will not 
process any commit requests until it has received the 
Activate new PF message. Therefore, data at a failed 
node N cannot become stale until a PF with a Par- 
ticipation Set excluding N has been activated at at 
least one node. Hence when N recovers it can de- 
cide whether its data might be stale by determining 
whether there is any node that has activated a PF 
from which N was excluded. 

Notice that it is possible that new nodes were added 
to the system since N had failed. However, as the fol- 
lowing argument will show, it is sufficient for N to 
contact only nodes that were active at the time N 
failed, i.e., those nodes that are in the Participation 
Set of the most recent PF f known to N. At the time 
of N’s failure f was in the list of active PF’s at all 
nodes. Therefore, the next PF created by the Coordi- 
nator must include all nodes in the Participation Set of 
f, except for N; otherwise, by the rules give above, the 
Coordinator would have shut down the system instead. 
Hence, because of the two-phase protocol for PF dis- 
tribution, a PF excluding N will not be activated at 
any node until all other nodes in the Participation Set 
off have received the new PF. 
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4 Primary Messages 

In this and the following sections we describe the steps 
of the O3 algorithm in more complete detail. 

Incoming requests from applications to the database 
system are grouped into transactions. Each transac- 
tion is assigned to a particular node, called its T-node. 
A transaction may be thought of as sending primary 
messages to the data manager in its T-node. These 
primary messages define the client interface of the reli- 
able storage implemented by the O3 algorithm. While 
processing primary messages on behalf of a transac- 
tion, a T-node may send additional messages, called 
seconda y messages, to other nodes. 

When a T-node receives a primary message to Get, 
Store, or Delete a record with a given RecID, it maps 
the RecID into a BlockID and computes the trail for 
that block. The T-node then follows the trail of the de- 
sired block, sending secondary messages to each node 
on the trail, including itself. If any of these secondary 
messages results in a lock conflict, the receiving node 
returns a “Lock Wait” response, causing the T-node 
to suspend the transaction until it it is notified that 
the lock has been released. After reaching the end of 
the trail, the T-node checks to see if the trail has been 
extended by the addition of a new PF; if so, it con- 
tinues to send secondary messages to the nodes on the 
extended trail until it reaches the end and verifies that 
the trail has not been extended. 

We can see the reason for following the trail from 
oldest PF to newest PF, and for not eliminating du- 
plicate nodes on the trail, if we visualize how a block 
may be migrating at the same time that a T-node is 
searching for it. The migration will always proceed 
from an older to a newer PF, and a lock will be held 
on the block at the migrate-from site until the block 
is safely stored at the migrate-to site. Therefore, a 
T-node that follows the trail of the block from old- 
est to newest PF, including duplicates, is guaranteed 
to “catch up” to a migrating block. By following the 
complete trail, the T-node can ensure that an opera- 
tion such as update or delete is applied to all existing 
copies of a record. 

The primary messages, and the secondary messages 
that arise from them, are as follows: 

l Begin Transaction: The node receiving this 
message assigns a TranID to the transaction and 
becomes its T-node. The TranID is included in all 
secondary messages sent on behalf of this trans- 
action. During the life of the transaction, the 
T-node keeps a list of all nodes at which data 
has been modified by this transaction (including 
nodes that failed before responding to a request 
to modify data). 

Get (‘IhdD, RecID): The intent is to retrieve 
the content of the record with the given RecID. 
The T-node sends a Simple Get secondary mes- 
sage to each node on the trail, in order. Simple 
Get causes the receiving node to search its store 
and to return one of the following outcomes: (a) 
the desired record; (b) a “No Such Record” code 
if the block is present but the record does not ex- 
ist; or (c) a “Block Not Here” code. As soon as 
the T-node receives outcome (a) or (b) from some 
node on the trail, it can return to the application 
without following the remainder of the trail. 

Store (‘FranID, RecID, Data): The intent is 
to replace the record with the given RecID, or, 
if this record does not exist, to create it. The T- 
node sends a Simple Update secondary message to 
each node on the trail, in order. Simple Update 
causes the receiving node to search its store for 
the block containing RecID. If the block is found 
and the record exists, the receiving node updates 
it (unless it is locked) and returns a “Success” 
code. If the block is found and the record does not 
exist, the receiving node creates a new record with 
the given RecID and data (unless its absence is 
locked) and returns a “Success” code. If the block 
is not found, the receiving node returns “Block 
Not Here”. 

When the T-node arrives at the end of the tra.il, if 
one or more nodes responded to a Simple Update 
message with a “Success” code, the T-node adds 
these nodes to the modified-nodes-list for the cur- 
rent transaction, and returns a success-code to the 
application. However, if no “Success” response 
was received, the given block does not yet exist, 
and must be created. In this case, the T-node de- 
termines the two storage sites for the given block 
according to the Current PF, sends a Simple Cre- 
ate secondary message to each of them, and adds 
them to the modified-nodes-list. The Simple Cre- 
ate messages cause the receiving nodes to create 
a new block, insert a new record with the given 
RecID and data, and to lock the new record on 
behalf of the requesting transacti0n.i 

Delete (TranID, RecID): The intent is to 
delete the record with the given RecID. The T- 
node sends a Simple Delete secondary message to 

1 Under certain circumstances, a node receiving a Simple Cre- 
ate request from some T-node A may discover that the given 
block already exists, because a transaction running at another 
T-node B has created it in the interval since “Block Not Here” 
was reported to T-node A. In this case, the receiving node sim- 
ply creates the new record in the existing block, waiting for a 
lock to be released if necessary. 
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each node on the trail, in order. Simple Delete 
causes the receiving node to search its store, delet- 
ing the given record if it exists and is not locked, 
and to return a code indicating “Deleted,” “NO 
Such Record,” or “Block Not Here.” When the 
end of the trail is reached, if one or more nodes 
responded “Deleted” to the Simple Delete request, 
the T-node adds these nodes to the modified- 
nodes-list for the current transaction. 

Commit Transaction (‘BanID): The T-node 
commits a transaction by means of a standard 
two-phase commit protocol [Gray 791 involving 
all the nodes on the modified-node-list for the 
transaction. A Prepare to Commit Local Trans- 
action secondary message is sent to all participat- 
ing nodes (including the T-node itself), causing 
each participating node to force the necessary log 
pages to disk and to confirm that the transaction 
can be committed. When all participating nodes 
have responded affirmatively, the T-node sends a 
Commit Local Transaction message to all partici- 
pating nodes (including itself), causing each node 
to log the commit action, release all locks held on 
behalf of the transaction, and send Lock Released 
messages to the nodes that are waiting for these 
locks. As a result of the lock releases, some blocks 
may become free to migrate. 

If any node on the modified-node-list for the given 
transaction has failed, the T-node does not com- 
mit the transaction until a new PF that excludes 
the failed node has been distributed and acti- 
vated. As explained above, this is necessary to 
ensure that that if the failed node “wakes up”, it 
will be able to detect that its data is stale. 

After each participating node has locally commit- 
ted a transaction, the node continues to remem- 
ber the transaction-ID and status as a committed 
transaction. This information may be needed if 
the transaction’s T-node fails before all partici- 
pating nodes have locally committed. In this case, 
the Coordinator will take over as T-node for the 
transaction, and will determine the status of the 
transaction by polling the other nodes. The ID of 
a committed transaction is retained by each par- 
ticipating node until the T-node sends it a Flush 
Transaction ID message, confirming that all par- 
ticipating nodes have committed or aborted the 
transaction (these Flush messages can be batched 
together and distributed periodically, or piggy- 
backed on other messages.) 

l Rollback Transaction (‘FranID): When a 
Rollback Transaction is received from the appli- 

cation, or when any node responds negatively to 
the two-phase commit protocol, the T-node sends 
a Rollback Local Transaction message to all par- 
ticipating nodes, and returns a Rollback code to 
the application. The Rollback Local Transaction 
message causes each node to undo all data mod- 
ifications made by the given transaction, log the 
rollback action, release all locks held by the trans- 
action and send Lock Released messages to the 
nodes that are waiting for them. Nodes that per- 
form local rollbacks also retain the transaction-ID 
and status of the rolled-back transaction until a 
Flush message is received from its T-node. 

A T-node also rolls back a transaction if it has 
been suspended for more than a designated time 
limit, presuming the transaction to be deadlocked. 
When the application receives a Rollback code, it 
can choose to resubmit the transaction. 

5 Node Failures 

Whenever a node fails to respond to a message within 
a designated interval, it is presumed to have failed. 
The node that detects the failure is called the detect- 
ing node. The detecting node sends a Failed Node 
(NodeID) message to the Coordinator (which may be 
the detecting node itself). However, if the failed node 
is the Coordinator, the detecting node finds the Co- 
ordinator’s successor, which is the next-largest non- 
failed NodeID after the Coordinator, and sends this 
successor node a message, You’re the New Coordina- 
tor (NodeID failed). Having performed the proper no- 
tification, the detecting node can now go on about its 
business. The messages generated by the detecting 
node are processed as follows: 

l You’re the New Coordinator (NodeID 
failed): This message may be received multiple 
times, as many nodes discover that the old Coor- 
dinator has failed (the second and subsequent no- 
tifications are ignored.) The node receiving this 
message must prepare itself to take over the Co- 
ordinator’s job. The new Coordinator, like all 
nodes, has a complete list of Active PF’s; but to 
serve as Coordinator, it needs to know which PF’s 
are active at each node. The new Coordinator re- 
constructs this data by sending a message, Report 
Status, to all nodes in the system, to which each 
node responds by listing its locally active PF’s. 
The newly elected node now has all the infor- 
mation it needs to serve as Coordinator, and it 
can proceed as if it had just received the message, 
Failed Node (NodeID), containing the NodeID of 
the old Coordinator. 
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l Failed Node (NodeID): This message is re- 
ceived by the Coordinator, whose first responsi- 
bility is to determine whether the system can con- 
tinue to operate. If any PF on the list of Active 
PF’s has a Participation Set that includes more 
than one failed node, some data blocks may no 
longer be available, and the system must stop and 
perform a log-based recovery. In this case, the Co- 
ordinator sends a Shutdown message to all nodes 
(including itself), and prints a message to the op- 
erator: “NodeID failed, log recovery required.” 

If all Active PF’s have at least two operating 
nodes and no more than one failed node in their 
Participation Sets, the system can continue to op- 
erate. In this case, the Coordinator prints an 
operator message, “NodeID failed, no recovery 
needed,” informing the operator that the given 
node can be switched off and removed from the 
system. The system will continue operating with 
no interruption of service. When the failed node is 
repaired, its disks can be erased and it can rejoin 
the system as a new node with a new NodeID. 

After a node failure that does not require log 
recovery, the Coordinator protects the system 
against additional failures by making up a new PF 
that includes in its Participation Set only those 
nodes that are still in operation, and propagating 
this new PF to all the surviving nodes by means 
of a two-phase protocol, as follows: 

1. First, the Coordinator sends a Prepare for 
new PF message, describing the new PF, to 
every node. Each node accepts the new PF, 
retains the previous PF in its active-PF list, 
and goes into a PF-TRANSITION state in 
which it temporarily refuses to process com- 
mit request and to store any new blocks. 
Each node also responds with a list of all 
the transactions it knows about for which 
the failed node is the T-node, and the sta- 
tus of each (in progress, aborted, prepared 
to commit, or committed.) 

2. When the Coordinator has confirmed that 
all nodes have received the new PF and are 
in PF-TRANSITION state, it sends an Acti- 
vate New PF message to each node, caus- 
ing it to resume storing blocks according 
to the new PF and to reactivate any of its 
own transactions that are waiting for locks 
in the failed node. The Coordinator also 
“takes over” as T-node for all transactions 
whose T-node was the failed node. If such a 
transaction is locally committed at any node, 

the Coordinator instructs all nodes to com- 
mit the transaction; otherwise it instructs all 
nodes to abort the transaction. 

If the Coordinator fails during the transition to a 
new PF, only a subset of all nodes may receive the 
the Prepare for new PF message. However, the new 
Coordinator will generate an even newer PF, and all 
surviving nodes must receive this new PF before block 
migration is resumed. This ensures that a block is 
never stored according to a partially distributed PF. 

The mechanism described above treats the PF as a 
small database that is replicated at every site and kept 
consistent by a two-phase distribution protocol. This 
ensures that all processes see a consistent PF, regard- 
less of the node(s) at which they execute. However, 
even if the PF is changed at all sites as an atomic act, 
the stored data requires some time to migrate to new 
sites according to the new PF. This is the reason for 
the concept of a trail, introduced earlier, and for the 
data migration algorithm described below. 

Upon receiving an Activate New PF message, each 
node begins (or resumes) a scan through all the blocks 
in its store, looking for blocks that are not stored ac- 
cording to the latest PF. A mark containing the new 
PF-id is placed at the starting point of this scan; when 
the scan cycles back to this mark, the node will know 
that no PF’s earlier than this PF-id remain active at 
this node. When the scan encounters a block that is 
stored according to an old PF, the block is sent to 
its two storage sites under the Current PF. However, 
if the block that needs to migrate contains any locked 
records, it is placed on a migration-pending list, where 
it remains until the locks are released. 

When a block is free to migrate, the node holding 
the block locks it (preventing T-nodes that are search- 
ing for records in this block from missing the block 
while it is in transit), and sends the block in a Migrate 
message to its two new storage sites (if the current 
node is one of the new sites, it simply retains a copy 
of the block.) A node receiving a Migrate message 
searches its own store for an existing block with the 
given BlockID. If no such block is found, the receiv- 
ing node accepts the new block into its data store. 
If an existing block is found with the same BlockID, 
the receiving node simply keeps the existing block and 
ignores the incoming block (returning a normal reply 
to the Migrate message.) This condition may occur 
when both old storage sites send a copy of the block 
to both new storage sites. These multiple messages are 
not harmful; in fact, they are the mechanism by which 
surviving copies of blocks replicate themselves after a 
failure. The migrating block contains no uncommit- 
ted updates-otherwise the modified records would be 
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locked and the block would not be migrating. The 
copy of the block that already exists at the receiv- 
ing node may contain some updates that are not yet 
present in the migrating block; therefore, the receiving 

node keeps the existing copy of the block rather than 
the migrating copy. 

When the origin node of a migrating block has re- 
ceived confirming replies from the two new storage 
sites, it unlocks the block and deletes it from its store 
(unless it is also one of the new storage sites.) 

In the process of scanning stored records, if a mark 
is encountered containing a PF-id, the scanning node 
knows that all earlier PF’s are no longer active at this 
node. The node reports this fact to the Coordina- 
tor in an Inactive PF message. If only the Current 
PF remains active at this node, the node suspends its 
background scanning process. 

The Coordinator maintains a list of the PF’s that 
are active at each node. When the Coordinator dis- 
covers that a given PF is no longer active at any node, 
it sends a Delete Old PF message to all nodes, causing 
them to delete the given PF from the list of Active 
PF’s. If the Coordinator sees that there are no Active 
PF’s other than the current one, it prints a message 
to the operator: “The system is now protected.” The 
system can now sustain another node failure without 
interrupting service. 

6 Communication Failures 

We can now examine the effects on the system of un- 
reliable communication between nodes. Like node fail- 
ures, communication failures can lead to system reor- 
ganization or shutdown but will not cause data to be 
lost or database integrity to be compromised. If a mes- 
sage to (or reply from) node N is lost, the sender of the 
message will conclude that node N has failed and will 
notify the Coordinator. To minimize system reorgani- 
zations due to temporary communication outages, the 
sending node can resend a message one or more times 
before declaring the receiving node to have failed. 

As described earlier, when the Coordinator is in- 
formed that node N has failed, it distributes a new 
PF that excludes node N, and instructs the operator 
to take node N offline. The other nodes stop commu- 
nicating with node N, and replicate its data. Node 
N will soon discover that it has been shut down, since 
all nodes respond with a “shutdown” code to messages 
from nodes that are not in the Current PF. When com- 
munications are m-established, node N can rejoin the 
system as an empty node with a new NodeID. 

Multiple communication failures have the same re- 
sults as multiple node failures, possibly causing the 

system to shut down and perform log-based recov- 
ery. If communication failures cause the system to be 
partitioned into two parts, neither partition will have 
enough nodes to continue processing (except in the 
degenerate case where one partition contains a single 
node.) 

Long delays in responding to messages, possibly due 
to queuing delays as the system becomes overloaded, 
may also be interpreted as node failures and may lead 
to system reorganization or shutdown. This possibility 
can be minimized by adjusting the length of time that 
a node waits for a reply to a message before deciding 
that the target node has failed. 

7 Multiple Failures 

If a node fails while the system is in an unprotected 
state, it may be necessary to stop the system and re- 
cover data from the log of the failed node. As described 
earlier, this condition is discovered when the Coordi- 
nator node receives a Failed Node message, and finds 
that some Active PF now has a Participation Set that 
includes more than one failed node. The Coordina- 
tor then sends a Shutdown message to all surviving 
nodes in the system, and prints a message to the op- 
erator: “NodeID failed, log recovery required.” When 
each surviving node receives the Shutdown message, it 
performs local rollback processing for all unprepared 
transactions (undoing their data changes), and releases 
all locks. It then enters a SHUTDOWN state, in which 
it no longer accepts database access requests. 

Another important scenario is the case in which mul- 
tiple nodes fail simultaneously, perhaps due to a com- 
mon cause such as failure of a power supply. As in the 
“second individual failure” scenario above, the surviv- 
ing nodes (if any) appoint a new Coordinator (if nec- 
essary) and enter the SHUTDOWN state. 

Operator intervention is needed to resume process- 
ing after the system has shut down. As each failed 
node becomes ready for service, the operator allows it 
to rejoin the network in the SHUTDOWN state. The 
disk storage of such a newly-reactivated node may not 
be in a transaction-consistent state, since the node 
may have failed while transactions were in progress. 
In addition, the node’s data may be “stale”, since this 
node may have been the first to fail and the other 
nodes may have continued processing, allowing more 
transactions to commit. 

When a sufficient number of nodes are operational 
for the system to resume processing,2 the operator 
sends a Reset command to all operational nodes, caus- 

2At least 7t - 1 nodes, where n is the number of active nodes 
when the system was last in a protected state. 
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ing each node to decide whether its data is “stale”. 
When a given node N receives a Reset command, it 
polls all the nodes in its most recent PF, asking each 
node to respond with the latest PF that it knows 
about. If any node responds with an activated PF 
that does not include N, node N knows that its data 
is stale and must be discarded. It prints a message 
instructing the operator to erase the disks of node N, 
give it a new NodeID higher than any existing node, 
and let it rejoin the system as a new, empty node. 

If, on the other hand, the poll does not reveal any 
active PF that excludes N, node N knows that its data 
is not stale and should be retained. It proceeds by us- 
ing its local log to abort any unprepared transactions, 
and remains in the SHUTDOWN state, waiting for 
further instructions. The fate of transactions whose 
local status is “prepared” will be propagated in a later 
message from the Coordinator node. 

When all recovering nodes have processed a Reset 
command, the system is ready to resume operation. 
All nodes are in the SHUTDOWN state. The opera- 
tor gives a Resume command to the node with the low- 
est NodeID among all the nodes that have recovered. 
This node is the Coordinator, and it takes responsi- 
bility for putting the system back in operation. First, 
the Coordinator polls all the nodes in the current Par- 
ticipation Set, asking each node to reply with a list of 
all PF’s that are locally active, and a list of all known 
transactions that have not yet been flushed, and the 
local status of each. After the poll is completed, the 
Coordinator takes the following action: 

l If more than one node in the Participation Set 
of any Active PF fails to respond, the Coordi- 
nator prints a message, “Not enough machines 
to resume operation”, and remains in the SHUT- 
DOWN state. 

l If all nodes in the Participation Sets of all Active 
PF’s respond, the Coordinator sends a Continue 
message to each node. The system is now back 
in operation and protected against a subsequent 
failure. The Continue message propagates infor- 
mation that the Coordinator has collected about 
the status of pending transactions, causing trans- 
actions that have been locally committed at some 
node to be committed at all nodes, just as in the 
case of an Activate New PF message. 

l If exactly one node in the Participation Set of 
some Active PF fails to respond, the Coordinator 
will restart the system in an unprotected state. If 
that PF was not the Current PF, the Coordina- 
tor sends a Continue message to each node, prop- 
agating transaction-status information as above. 

Otherwise, it makes up a new PF with a Partic- 
ipation Set that excludes the node that failed to 
respond, and distributes it (by the two-phase pro- 
tocol of Prepare for New PF and Activate New PF 
messages) to all the nodes in its Participation Set. 
The system is now back in operation. 

Upon receiving a Continue or Activate New PF mes- 
sage, the participating nodes resume normal message 
processing. Nodes that have more than one locally- 
active PF resume the background scan for block mi- 
gration. 

8 System Reconfiguration 

The algorithm described here gives the system opera- 
tor great flexibility to reconfigure the system by adding 
or deleting nodes without interruption of service. 

To start up the system initially, the operator gives 
each participating node an Initialize command which 
informs it of its NodeID and the NodeID’s of other 
participating nodes, and places it in the SHUTDOWN 
state. The operator then gives a Resume command to 
the node with lowest NodeID, causing it to assume the 
role of Coordinator, generate a PF, and distribute it 
to all the other nodes. The system is then in operation 
and ready to be loaded with data. 

To add a node to the system while it is running, the 
operator gives the new node an Initialize command, 
assigning it a NodeID higher than any existing node. 
The operator then gives the Coordinator an Add Node 
command, informing it of the NodeID of the new node. 
The Coordinator responds by sending the new node an 
Active PF’s message, informing it of the list of Active 
PF’s. The Coordinator then makes up a new PF that 
includes the new node and distributes it to all nodes, 
using Prepare for New PF and Activate New PF mes- 
sages. In time, data will migrate into the new node 
based on the new PF. Service is not interrupted, and 
the protection-state of the system is not degraded dur- 
ing this process. 

To delete a node from a running system, the opera- 
tor gives a Delete Node command to the Coordinator, 
informing it of the NodeID to be deleted. The Co- 
ordinator prints an operator message, “Wait for con- 
firmation,” and then makes up and distributes a new 
PF with a Participation Set that does not include the 
node to be deleted. The Coordinator then waits until 
the various nodes report that older PF’s are no longer 
active. When the Coordinator finds that the only PF’s 
remaining active are ones that exclude the node to be 
deleted, it prints an operator message “NodeID may 
now be taken offline”. All the data in the indicated 
node has now migrated elsewhere, and the node may 
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be removed from the system. Service is not inter- 
rupted, and the protection-state of the system is not 
degraded during this process. 

In addition to the explicit actions taken by the sys- 
tem operator, the Coordinator node can automatically 
generate a new PF periodically, to rebalance the load 
on the various nodes. First, the Coordinator measures 
the average load on each node by sending a Report 
Load Statistics message to all nodes in the system. 
Then, if the Coordinator decides that data needs to 
be redistributed for load-balancing purposes, it makes 
up a new PF and distributes it by means of Prepare 
for New PF and Activate New PF messages. This 
process does not interrupt the system or degrade its 
protection-state. 

9 Notes on Performance and 
Availability 

Although at any given time one node is designated as 
Coordinator, this node does not play a central role that 
might limit either the performance or the availability 
of the system. Any node is capable of becoming the 
Coordinator at any time. The Coordinator plays no 
special role in the processing of normal messages; its 
role differs from that of the other nodes only in the 
event of a node failure. 

In normal operation, the system will be in a pro- 
tected state, and all data will be stored according to 
the Current PF; thus incoming Get, Store, and Delete 
messages can be forwarded immediately to the node(s) 
that hold the relevant data, at a cost of one message 
for Get and two messages for Store and Delete. Even 
after a failure, the “trail” of a record is not very long. 
At worst, a node failure may occur shortly after a new 
load-balancing PF was introduced, resulting in three 
Active PF’s: the original one, the load-balancing one, 
and the one resulting from the node failure. 

The process of scanning for misplaced data and mi- 
grating it to the proper node causes CPU load and 
message traffic. This scanning process takes place only 
in the aftermath of a node failure or load rebalance, 
and uses low-priority “background” cycles. When the 
migration of data is complete, the scanning process 
stops. The D3 approach is designed for environments 
in which the overhead of migrating data is justified by 
the importance of protecting the system against inter- 
ruptions due to multiple failures. 

A migration priority switch could be added to the 
D3 algorithm, permitting dynamic control over the 
tradeoff between transaction throughput and quick re- 
covery to a protected state after a failure. These goals 
are in conflict because a block cannot migrate from 

one node to another while one of its records is locked. 
If there are many records per block and a high rate of 
record updates, this may lead to delays in migration of 
blocks. Setting a migration priority switch would pre- 
vent transactions from acquiring new locks on records 
in a block that is waiting to migrate. When the ex- 
isting locks in the block are released, the block is free 
to migrate. This policy would speed up the process 
of recovering from a failure, but would increase the 
probability of transactions waiting for a lock. 

10 Proof of Correctness 

A proof of correctness of the D3 algorithm has been 
constructed by showing that, for any execution of 
D3, there exists a valid execution of a standard 
read-one/write-many algorithm with a two-phase dis- 
tributed commit protocol [Bern 831 that produces the 
same results. We refer to the standard algorithm as 
Si. For a given execution of D3, we define the historic 
trail of a block as the set of all nodes that have stored 
the block at some time during the execution. We map 
an execution of D3 into an execution of S’ by assum- 
ing that, in the S1 execution, each block is statically 
assigned to all nodes on its historic trail. Nodes never 
fail in the hypothetical S1 execution, so no messages 
relating to node failure or data migration exist in Si. 
Each D3 message that modifies the content of a block 
(Simple Create, Simple Delete, or Simple Update) is 
mapped into a set of equivalent 5” messages to all the 
storage sites of the block (all the nodes on its historic 
trail). Similarly, commit protocol messages (Prepare 
to Commit, Commit, and Rollback Local Transaction) 
in the D3 execution are propagated, in the S’ exe- 
cution, to all nodes on the historic trail of any block 
modified by the transaction. 

The proof shows that the mapping described above 
generates a valid execution of S’ that is equivalent 
to a given execution of D3. This is done by showing 
that all messages preserve the following invariant: for 
each node N, all data blocks that exist at N in both 
executions have the same content in both executions 
(however, some blocks may be present at node N in the 
S’ execution that are not present in the D3 execution.) 

Clearly the S1 approach described here is not a prac- 
tical alternative for a real system, since it involves mas- 
sive replication of every block and hypothetical nodes 
that never fail. It is presented simply to show that 
the behavior of D3 is equivalent to the behavior of an 
algorithm known to be correct. 

The details of the proof, and a more detailed de- 
scription of the processing of D3 messages, are given 
in [Cham 921. 
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11 Possible Extensions 

The O3 algorithm is designed primarily for processing 
transactions that access relatively small sets of records. 
The algorithm provides parallelism between transac- 
tions, permitting a high overall transaction rate. An 
interesting extension would be to consider parallelism 
within a single transaction. For example, a transac- 
tion might need to update all records satisfying some 
criterion, and this work might be distributed in the 
form of a set-oriented request to all nodes at which 
relevant records might be stored. 

A related extension would be to permit access to 
records by general predicates on their values rather 
than by a unique record ID. This would permit the 
algorithm to be used in a relational query environ- 
ment. Relational systems generally implement access 
aids such as indexes that can quickly locate records by 
their values. In order to use D3 in a relational environ- 
ment, methods would be needed to maintain indexes 
on records that are continuously migrating among a 
set of distributed nodes. 

12 Related Work 

Replication is a well-known technique for increasing 
the availability of data stored in a database. Traiger 
et al [Trai 821 introduced a model for transaction se- 
mantics in distributed database systems, and Bern- 
stein and Goodman [Bern 831 presented a theory for 
proving the correctness of replication algorithms. 

To provide high availability, some systems rely on 
special hardware such as shared memory or dual- 
ported disks. Tandem’s “Non-Stop”(TM) system 
[Borr 811, for example, guards against loss of data by 
means of a “mirrored disk” approach. Another ex- 
ample is the Redundant Array of Inexpensive Disks 
(RAID) approach [Patt 881, which “stripes” each data 
block across sectors on multiple disks, and writes an 
additional “parity sector” on another disk, thus en- 
abling reconstruction of data in the event of a single 
disk failure. 

Other systems, for example Teradata [Tera 851, 
replicate data in a distributed system without spe- 
cial hardware. A large number of distributed data 
replication algorithms have been published [Bhide 90, 
ElAb 86, Giff 79, Hsiao 901. While some of these algo- 
rithms address the problem of partitioning the data in 
a way that avoids an unbalanced workload after a fail- 
ure, they all rely on a static mapping of the replicas 
of an object or data block to the nodes in the sys- 
tem. Thus, none of the above algorithms deals with 
the problem of dynamically redistributing data. 

The ability to redistribute data without interruption 
of service is the central feature of the D3 algorithm 
presented here. It allows automatic migration of data 
for load-balancing purposes, and enables the system to 
be reconfigured by adding or deleting nodes without 
interruption of service. Furthermore, after a failure 
the algorithm allows the system to recover to a “safe” 
state in which it is protected against additional failures 
without waiting for recovery of the failed node. 
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Summary of Messages and 
Operator Commands 

Primary messages received by a T-node: 

Begin transaction (1 
returns (returncode, TranID) 

Get (TranID, RecID) returns 
(returnCode, data) 

Store (TranID, RecID, Data) 
returns (returncode) 

Delete (TranID, RecID) 
returns (returnCode) 

Commit (TranID) 
returns (returncode) 

Rollback (TranID) 
returns (returncode) 

Secondary messages received by any node from a T- 
node: 

Simple Get (TranID, RecID) 
returns (returncode, data) 

Simple Update (TranID, RecID, Data) 
returns (returncode) 

Simple Create (TranID, RecID, Data) 
returns (returncode) 

Simple Delete (TranID, RecID) 
returns (returncode) 

Prepare to Commit Local Transaction (TranID) 
returns (returnCode) 

Commit Local Transaction (TranID) 
returns (returncode) 

Rollback Local Transaction (TranID) 
returns (returncode) 

Messages received by any node from the Coordinator: 

Delete old PF (PF-id) 
returns (returncode) 

Prepare for new PF (newPF) 
returns (returncode, transstatuslist) 

Activate New PF (PF-id, transStatusList) 
returns (returncode) 

Shutdown () 
returns (returnCode) 

Continue (transStatusList) 
returns (returncode) 

Report Status () returns 
(returncode, PF-list, transStatusList) 

Active PF's (PF-list) 
returns (returncode) 

Report Load Statistics0 
returns (returncode, busyMeasure) 

Messages received by the Coordinator from any node: 

Inactive PF (PF-id, HodeID) 
returns (returncode) 

Failed lode (RodeID) 
returns (returncode) 

Messages received by any node from any node: 

Migrate Block (BlockID, Data) 
returns (returncode) 

Lock Released (LockID) 
returns (returnCode) 

You're the new Coordinator (OldCoord) 
returns (returncode) 

Query PF 0 
returns (currentPF) 

Flush Transaction IDS (TranIDList) 
returns (returncode) 

Operator commands received by the Coordinator: 

Add Bode (RodeID) 
Delete Bode (RodeID) 
Resume () 

Operator commands received by any node: 

Initialize (BodeID, list of other BodeIDs) 
Reset () 
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