
Resilient Logical Structures for Efficient Management of Replicated Data*

D. Agrawal A. El Abbadi
Department of Computer Science

University of California
Santa Barbara, CA 93106

{agrawal,amr}@cs.ucsb.edu

Abstract

Replicated data management protocols have been pro
posed that exploit a logically structured set of copies.
These protocols have the advantage that they pro-
vide limited fault-tolerance at low communication cost.
The propceed protocols can be viewed as analogues of
the read-one write-all protocol in the context of logi-
cal structures. In this paper, these protocols are gen-
eralized in two ways for a grid and a tree structure.
First, the quorum based approach is applied to develop
protocols that use structured read and write quorums,
thus attaining a high degree of data availability for
both read and write operations. Next, the reconfig-
uration or views approach is developed for both grid
and tree structures resulting in protocols that attain
high degrees of availability at significantly low com-
munication cost for read operations. In this sense, the
proposed protocols have the advantages of the read-
one write-all protocol for low cost read operations as
well as the majority quorum protocol for high data
availability.

*This research is supported by the NSF under grant numbers

IRI-9004998 and IRI-9117904.

Permission to copy without fee all or part of this material

is granted provided that the copies are not made or dis-

tributed for direct commercial advantage, the VLDB copy-

right notice and the title of the publication and its date

appear, and notice is given that copying is by permission of

the Very Large Data Base Endowment. To copy otherwise,

or to republish, requires a fee and/or special permission

from the Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

1 Introduction

Data replication is used in distributed systems to in-
crease data availability and to achieve fault-tolerance.
By storing multiple copies of data at several sites in
the system, there is an increased likelihood of data re-
maining available and accessible to users despite site
and communication failures. However, complex and
expensive synchronization mechanisms [GiflS, Tho79,
Sto79, ES83, DB85, ESC85, BG87, PL88, JM90] are
needed to maintain the consistency and integrity of
data. One of the simplest protocols for managing repli-
cated data is one where read operations on an object
are allowed to read any copy, and write operations are
required to write all copies of the object. The read-
one write-all protocol provides read operations with a
high degree of availability at a very low cost: a read
operation accesses a single copy. On the other hand,
this protocol severely restricts the availability of write
operations since they cannot be executed after the fail-
ure of any copy. This protocol results in the imbalance
of availability of read and write operations: read op
erations have a higher availability whereas write oper-
ations have a lower availability when compared to the
case when data is not replicated.

In order to increase the availability of both read and
write operations, the quorum protocol [Gif79, Tho79]
was proposed. The quorum protocol generalizes the
read-one write-all protocol by imposing an intersection
requirement between read and write operations. Write
operations can be made fault-tolerant since they do not
need to access all copies of an object. However, this
is at the cost of requiring read operations to access
more than one copy of the object. Dynamic quorum
protocols [DB85, PL88, JM90] have also been proposed
to further increase availability in replicated databases.
However, these approaches do not address the issue of

151

low-cost read operations.

The view-based protocol [ESC85, ET891 uses con-
figuration information to achieve high availability of
both read and write operations, as well as low cost of
read operations. The configuration information allows
users to execute transactions by employing the read-
one write-all protocol and hence results in low cost read
operations. When changes occur in the network due to
failures and recovery, a reconfiguration protocol is exe-
cuted to update the configuration information. The re-
configuration protocol uses the notion of quorums and
hence read and write operations have high availability.
This approach is especially useful if failures are infre-
quent and persistent, and hence represents an alter-
native design philosophy to the quorum approach. In
particular, with the quorum approach each operation
is penalized for fault-tolerance purposes, but changes
in the network configuration remain transparent to the
transactions. On the other hand, the reconfiguration
approach executes a special protocol when the network
configuration changes (not necessarily immediately),
but as a result user transactions are not penalized and
can always execute using the desired communication
cost.

Recently, several researchers have proposed impos-
ing a logical structure on the set of copies in the
database, and using structural information to create
intersecting quorums. Protocols that use a logical
structure, e.g., the grid protocol [Mae85, CAASO] and
the tree protocol [AE91, AEgO], execute operations
with low communication costs while providing fault-
tolerance for both read and write operations. How-
ever, as with the original read-one write-all approach,
the improved performance for read operations results
in a degraded write availability when failures occur.
In particular, structure-based protocols are vulnera
ble to the failure of specific sites. In this sense, these
protocols are analogous to the read-one write-all pro-
tocol, i.e., low cost read operations but write oper-
ations are vulnerable to failures. In this paper, we
first describe the extension of these two protocols to
improve the fault-tolerance of write operations by us-
ing the notions of structured read and write quorums
with respect to a logical structure. As is the case in
the standard quorum protocols [Gif79, Tho79], the in-
creased fault-tolerance for write operations is at the
increased cost of executing read operations. In order
to let users continue using the analogues of the read-
one write-all protocol in the context of a logical struc-

ture, we develop reconfiguration protocols for dynam-
ically adapting to failures and recovery. This results
in the following dichotomy. Users accesses are through
the simple analogues of the read-one write-all protocol
with respect to a logical structure and therefore have
low communication cost for read operations. On the
other hand, the reconfiguration protocol uses the no-
tion of quorums in the context of a logical structure to
ensure high data availability.

The paper is organized as follows. In the next sec-
tion, we present the model of the system. The quorum
and reconfiguration protocols for grid-based logical
structures are presented in Section 3 and for tree-based
logical structures are presented in Section 4. Both sec-
tions include performance analyses that demonstrate
the superiority of the proposed approach. The paper
concludes with a discussion of our results.

2 Model

A distributed system consists of a set of distinct sites
that communicate with each other by sending messages
over a communication network. No assumptions are
made regarding the speed, connectivity, or reliability of
the network. We assume that sites are fail-stop [SSSZ]

and communication links may fail to deliver messages.
Combinations of such failures may lead to patiiiioning
failures [DGS85], h w ere sites in a partition may com-
municate with each other, but no communication can
occur between sites in different partitions. A site may
become inaccessible due to site or partitioning failures.

A distributed database consists of a set of objects

stored at several sites in a computer network. Users
interact with the database by invoking transactions,

which are partially ordered sets of atomic read and
write operations. The execution of a transaction must
be atomic, i.e., a transaction either commits or aborts

[Gra78]. A commonly accepted correctness criteria in
databases is the serializable execution of transactions
[EGLT76]. The serializable execution is guaranteed by
employing a concurrency control mechanism.

In a replicated database, copies of an object may
be stored at several sites in the network. Multiple
copies of an object must appear as a single logical ob-
ject to the transactions. This is termed as one-copy

equivalence [BG87] and is enforced by a replica con-

trol protocol. The correctness criteria for replicated
databases is one-copy serializability [BG87], which en-
sures both one-copy equivalence and the serializable

152

execution of transactions. In order to ensure one-copy
equivalence, a replicated object z may be read by read-
ing a read quorum of copies, and it may be written by
writing a write quorum of copies. The following re-
striction is placed on the choice of quorum assignments
[Giff 9, Tho79]:

l Quorum Intersection Property: For any two opera
tions o[z] and o’[z] on an object z, where at least
one of them is a write, the quorums must have a
nonempty intersection.

Version numbers or timestamps are used to identify the
current copy in a quorum. When timestamps are used,
intersection of write quorums is not necessary [Her86].
The notion of intersecting quorums is closely related
to coteries [GB85]. In coteries, an added minimality
condition is imposed upon quorums while with inter-
secting quorums a distinction is made between read
and write operations.

The view-based protocol uses configuration informa-
tion to achieve fault-tolerance of both read and write
operations, while reduing the cost of executing read
operations. We can summarize the rules for reconfigu-
ration from [ESC85, ET891 as follows:

l Configuration Rule: Each site s has associated with
it a set View[s], which is the set of sites s assumes
it can communicate with. Each view has associ-
ated with it a special identifier, which uniquely
determines a configuration. Furthermore, these
identifiers are totally ordered.

l Operation Execution Rule: Read and write opera
tions are executed by accessing copies that reside
on the sites with the same view. Read and write
operations executed in the same view must have
a nonempty intersection.

Reconfiguration is initiated through a special trans-
action called a view-reconfiguration transaction. The
reconfiguration transaction updates copies and config-
urations in an atomic step. The transaction succeeds
in including an object in a new view only when it can
determine the current value of that object. In order to
ensure that the new view has the current value, the re-
configuration transaction must access a reconfiguration

quorum which satisfies the following property:

l Reconfiguration Quorum Property: A reconfigura-
tion quorum must have a nonempty intersection

with any write quorum and two reconfiguration
quorums must have a nonempty intersectionl.

The above rules in addition to a concurrency control
protocol ensure one-copy serializability [ET89].

3 The Grid Structure

In this section we propose using a grid structure to de-
fine quorums for both read and write operations. We
start by describing previously proposed protocols that
use a grid structure, and generalize them using the
quorum approach to decrease their vulnerability to site
and communication failures. We then apply the recon-
figuration paradigm to grid-based quorum protocols,
and thus reduce the cost of executing read operations,
while maintaining a high degree of data availability.

3.1 The Grid Quorum Protocol

Maekawa [Mae851 proposed using the notion of finite
projective planes to obtain a distributed mutual ex-
clusion algorithm where all quorums are of equal size.
If the number of sites in the system is n then mutual
exclusion can be achieved by communicating with fi
sites. Maekawa further suggested logically organizing
the sites in the form of a two-dimensional grid to en-
sure quorums of size 0(,/Z). Chang, Ahamad, and
Ammar [CAASO] extended Maekawa’s grid protocol
for replicated data to support read and write opera-
tions. Unlike Maekawa’s protocol where an operation
excludes every other operation, in this protocol read
operations do not exclude other read operations but
ensure exclusion of write operations. Furthermore a
write operation excludes both read and write opera
tions. In this protocol, n copies of a data object are
logically organized in the form of a fi x fi grid’ as
shown in Figure 1. Read operations on this object are
executed by acquiring a read quorum that consists of a
copy from each column in the grid. Write operations,
on the other hand, are executed by acquiring a write
quorum that consists of all copies in one column and a
copy from each of the remaining columns. Since read
and write operations access O(fi copies, we will refer
to this protocol as the dw protocol.

In Figure 1, copies {1,7,13,19,25} are suffi-
cient to execute a read operation whereas copies
{1,6,11,16,21,7,13,4,20} will be required to execute

‘The latter part of the condition is relaxed in [ETSS].
2For simplicity, we assume that n is a perfect square.

153

000@0 l e.0.
@O@@@ l O@OO
@Q@(g)@ l O@@@
@Q@@@ l O@@@
@@@@@ .a@@@

Figure 1: A grid organization and an example of a failure pattern: black circles indicate unavailable copies

a write operation. It can be easily shown that a write
quorum intersects with both read and write quorums
in this protocol. This protocol provides low-cost execu-
tion of operations (fi compared to n/2+ 1 in the ma
jority protocol [Tho79, GiI79]) while providing a com-
parable degree of availability [CAASO]. However, there
are several drawbacks associated with this protocol. In
particular, if copies in an entire column become un-
available due to failures or network partitioning, read
and write operations cannot be executed. Note that
this is the case even though a majority of copies are
available in the system. Similarly, if copies in an en-
tire row are unavailable, no write operations can be
executed. These shortcomings of the protocol can be
overcome either by using the notion of quorums or by
employing dynamic reconfiguration in the context of
grids.

We start by generalizing the notion of quorums in
the context of the grid structure. Given an object or-
ganized as a grid of dimensions fi x fi, we define a
read grid quorum and a write grid quorum. In general,
a grid quorum has length 1 and width w, and is repre-
sented as a pair (I, 20). A read operation is executed by
accessing a read grid quorum (I, w), which is formed
from 1 copies in each of w different columns. A write
operation is executed by writing a write grid quorum,
(I, w), which is formed from (a) 1 copies in each of w
columns as well as (b) any fi - I+ 1 copies in each
of fi - w + 1 columns. (The second component of
the write quorum is to ensure the intersection between
two write quorums, if timestamps are used instead of
version numbers, this component is not needed.) In
order to ensure the quorum intersection property be-
tween read and write quorums, if the read grid quo
rum is of size (1, w) then the write grid quorum must

be(,/Z-I+l,,/?i-w+l). Notethatifbothlength
and width of a write quorum is greater than &i/2+ 1,
then the second component, i.e., condition (b), is vac-
uously satisfied by the copies already included due to
condition (a). It is easy to show that quorums that
satisfy these conditions have non-empty intersections.

In the ds protocol proposed by Chang,
Ahamad and Ammar [CAASO], read quorums have
length one and width &i, while write quorums have
length J;; and width one. This protocol is especially
interesting since both read and write operations have
size O(fi. The protocol is, however, vulnerable to
the failure of an entire column or row in the grid. If
an entire column is inaccessible, both read and write
operations cannot be executed, while ifan entire row is
inaccessible, write operations are unavailable. We now
define an alternative quorum assignment in which the
two dimensions of the grid quorums are used as follows.
The length dimension is used for ensuring efficient exe-
cution of read operations and the width dimension for
ensuring fault-tolerance of write operations. In partic-
ular, we use the assignment that corresponds to the
read-one write-all in the length dimension and the ma,
jority quorum in the width dimension. That is, read
quorums have dimensions (1, G//2 + 1) and write quo-
rums have dimensions (J;i, G/2 + 1). We will re-
fer to this protocol as the m grid quorum pro-
tocol. This assignment ensures that read operations
have a low cost, ,/ii/2 + 1, and have a high degree of
availability, since they are not vulnerable to the fail-
ure of a minority of the columns. Write operations,
on the other hand, are more available than the read-
one write-all protocol since only n/2 + fi copies are
needed to execute write operations. However, few spe-
cific failures may render write operations unavailable.

154

To further increase the fault-tolerance of write opera
tions, we define the majority grid quorum assignment
where both read and write quorums have dimensions

ww + 1, Jf;P + l), i.e., both operations are exe-
cuted by accessing a majority of copies in a majority
of the columns. This protocol tolerates the failures of
three quarter of the sites in the grid. However, this
increase in fault-tolerance is at the increase in the cost
of read operations: instead of accessing ,/ii/2 copies,
reads now have to access n/4 copies.

Consider an object with 25 copies organized as a
grid of 5 x 5 as shown in Figure 1. A read grid
quorum of dimensions (2,3), may be formed from
the following set {1,11,7,17,19,24}. Note that in
this case, no copies in the third and fifth columns
are included in the quorum. Hence unlike the

d--r- read wrzte protocol, the unavailability of two entire
columns is tolerated by a read operation. In this case,
a write grid quorum must have length 4 and width
3, and hence can be formed from the following set:
{1,6,11,21,3,8,13,23,5,10,15,25}. Again notice that this
set ensures that a write quorum can tolerate the un-
availability of an entire row (in this case the fourth
row), or two columns (in this case the second and the
fourth columns).

3.2 Reconfiguring Grids

Although the grid quorum protocol achieves high data
availability, increase in fault-tolerance is obtained at
the increased cost of read operations. For example, to
tolerate the failure of an entire row, a quorum grid pro
tocol must have write quorums with lengths ,/ii - 1:
read quorums with dimensions (2, ,/K/2+ 1)) and write
quorums have dimensions (J;; - 1, fi/2 + 1). In this
case a read operation must access two copies instead
of one in a majority of columns, thus doubling the
number of copies accessed by a read operation, when
compared with the m assignment. Instead the re-
configuration approach can be used to increase fault-
tolerance while maintaining low communication costs.
After reconfiguration the m assignment rules are
used for constructing read and write grid quorums.
Note that these rules ensure that any write quorum
must have a non-empty intersection with every other
read or write quorum. For reconfiguration we use the
majority grid quorum assignment, which provides the
highest degree of fault-tolerance (in general the ma-
jority assignment provides the best data availability
[AA891 when copies have equal weights). The recon-

figuration rule must ensure that a reconfiguration quo
rum intersects with every write operation. We there-
fore impose a requirement on the write rule that any
write quorum must at least write a majority grid quo
rum.

We now summarize the rules. Assume a grid of
dimensions ,/ii x fi, and that there are 1 available
columns and w available rows in the current view (a
row or a column is available if it contains at least one
copy in the current view):

Reconfiguration Rule: A reconfiguration quorum is
formed from any majority grid quorum of dimen-
sions (&i/2+ 1, G//2+ 1). Thus in any view both
1 and w must be at least as large as ,/i/2 + 1.

Write Quorum Rule: A write quorum is formed
from all available copies in G/2 + 1 columns in
the current view. Each available column included
in the write quorum must have at least ,/ii/2 + 1
copies in the current view.

Read Quorum Rule: A read quorum is formed from
one copy in any l- 612 of the 1 available columns
in the current view.

A reconfiguration quorum must access a majority of
columns and in each column it must access a major-
ity of copies. This guarantees that there can be at
most one view at any time where an object is accessi-
ble for both reading and writing. Since a write quorum
accesses a majority of columns of the base structure,
it will intersect with any reconfiguration quorum on
at least one column. Furthermore, in that column, the
write quorum accesses at least a majority of copies and
hence must intersect with any reconfiguration quorum
on at least one copy. The intersection between read
and write quorums in a view follows from the above
quorum rules.

Consider the scenario in which all copies except
a quarter of the grid are unavailable as shown
in Figure 1. A reconfiguration transaction can
still form a new view by accessing a reconfigu-
ration quorum consisting of the available copies
{13,14,15,18,19,20,23,24,25}. Write operations in this
view will write all copies whereas read operations ac-
cess any single copy. This example is one of the many
possible failure scenarios in which as many as 314th of
the total number of copies become unavailable and yet
read and write operations can be executed. No other
variants of the static quorum protocol (where all copies
are treated equal) can tolerate as many failures.

155

3.3 Grid Reconfiguration Availability

In this section, we compute the availability of the pro-
posed reconfiguration protocol for grids and compare
it with the availability of read and write operations in

the majority quorum protocol [Gif79, Tho79]. In this
analysis we confine ourselves to site failures only. In
the case of the quorum protocol, read and write quo-
rums can be constructed as long as a majority of copies
of an object are available. Let p be the probability
that a copy of an object is available for constructing
a quorum. Then, the data availability in the majority
quorum protocol is:

= Probability(majority copies are available)
+ Probability(majority + 1 copies are available)
. . .

+ Probability(majority + i copies are available)
. . .

+ Probability(al1 copies are available)

If we let n be equal to 2k + 1 for some non-negative
integer k, the above probabilities can be represented
by the following terms, i.e.,

(y;;)pt+l(l-p)t+...

+ #+‘(I -$y-‘+‘+ ... +$‘+I.

The availability of reconfiguration quorums on a grid
of size fi x fi is computed as follows. Let J;; be
equal to 2k + 1 for some non-negative integer k. The
grid reconfiguration protocol is successful if it can con-
struct a reconfiguration quorum on the grid of size

h/72+ ww+ I>, or equivalently (k + 1, k + 1).
That is, the reconfiguration quorum must include a
majority of copies in a majority of the columns. We
compute the availability of reconfiguration quorums for
grids in two stages. First, we compute the availability
of a majority of copies in a single column of the grid.
Let Amc be the availability of a majority of copies in
a single column, which can be computed as:

Amc = p’+‘(l - p)k + . . .

+(2~=pf)pt+i(l-p)~-i+l+...+pZI+1
The next step is to compute the availability of a major-
ity of columns that have a majority or more available

copies of an object. This can be once again computed
as follows, i.e.,

(tT) A%:(1 - Amc)L + . . . + Af$zl

Unfortunately, the above equations for the data
availabilities in the two protocols do not have a closed
form. In order to compare the availabilities, we il-
lustrate the availabilities in the two protocols for spe-
cific replica configurations of an object. In addition,
we depict the availabilities of read and write opera-
tions in the read-one write-all protocol3 and in the
dz protoco14. In particular, Figure 2(a) il-
lustrates the availabilities in the above protocols when
there are nine copies of an object that are organized as
a grid with three columns and three rows. Similarly,
Figure 2(b) illustrates the availability with twenty-five
copies that are organized as a grid with five columns
and five rows.

Figure 2 clearly shows the imbalance between read
and write availability when the read-one write-all pro
tocol is used. This imbalance is partially remedied by
the dm protocol due to the use of a logical
structure. However, as the figure shows, there still re-
mains a significant imbalance between read and write
availabilities. For example with 25 copies and when
an individual copy has availability 75%, read availabil-
ity is 100% whereas write availability is approximately
74%. The quorum protocol and the proposed recon-
figuration based protocol in this case have read and
write availability of approximately 99%. This analysis
illustrates that by using the reconfiguration approach
data availability in the grid protocol can be made com-
parable to the quorum protocol while maintaining the
low cost of read operations. In particular, read op-
erations in the grid protocol access fewer than J5i/2
copies compared to n/2 in the quorum protocol. Note
that with 9 copies, the availability of both operations
in the quorum and reconfiguration based protocol be-
comes almost 100% when the availability of an individ-
ual copy is greater than 85%. Similarly, with 25 copies,
this availability level is attained beyond copy availabil-
ity of 75%. In this sense, we are able to achieve the

3~ the read-one write-all protocol, the read availabiity is
1 - p” and the write availability is p”, where p and ra are as
defined above.

‘In the dP seadlwrrte protocol, the availability of reads is

(3 - (1 - p)fi)fi and writes is (1 - (1 - p)fi)fi - (1 - pfi -
(1 - p)fi)fi [CAASO].

156

0 Majority Quorum

0: Reads in &ZjLZZ

A: Grid Reconfiguration Quorum

0: Writes in JEZiZL

0: Reads in Read-one Write-all A Writes in Read-one Write-all
XI Availability of a copy of an object Y: Operation Availability

Y

0.9

I

V vvvvvvvvvggw9t+~9*

V
00 0

0 *
0 0 0

0.8
t

*
0

0.7, v

0.6.

high degree of read availability of the read-one write-
all protocol for both read and write operations using
the reconfiguration based approach. This is achieved
without the high cost of the read operations required
by the quorum protocol.

4 The Tree Structure

In this section, we consider a logical structure based on
trees. We first summarize the analogue of the read-one
write-all protocol when copies of an object are logically
organized as a tree. We next present a generalization
of this protocol which can be used to construct read
tree quorums and write tree quorums. Finally, we pro
pose a reconfiguration protocol for trees that permits
the users to use the analogue of the read-one write-all
protocol in the context of trees for executing read and
write operations but uses the notion of tree quorums
for dynamic reconfiguration in the presence of persis-
tent failures.

4.1 The Tree Quorum Protocol

In [AE91], Agrawal and El Abbadi proposed using a
logical tree structure over a network of sites to achieve

A

(a) 9 copies or 3 x 3 grid (b) 25 copies or 5 x 5 grid

Figure 2: Comparison of the availabilities in various protocols

fault-tolerant distributed mutual exclusion. This pro-
tocol has a property of graceful degradation in the
sense that when there are no failures mutual exclusion
can be achieved by communicating with logn sites.
As failures occur, the size of the quorum may increase
to the maximum of n/2 + 1 sites. This protocol was
extended to manage replicated data [AEgO] by distin-
guishing between read and write operations. Write op-
erations in the tree protocol must access a write quo
rum which is formed from the root, a majority of its
children, and a majority of their children, and so forth
until the leaves of the tree are reached. To ensure the
quorum intersection property, a read operation tries to
access the root; if the root is unavailable, the read tries
to access a majority of the root’s children. For each
unavailable copy in this majority set, the read opera-
tion tries to access a majority of its children. It can
be easily shown that read and write operations have a
nonempty intersection. We will refer to this protocol
as the ReadRoot protocol.

In Figure 3, an example of a ternary tree with thir-
teen copies of an object is illustrated. Note that this
structure is logical, and does not have to correspond to
the actual physical structure of the network connecting
the sites storing the copies. A write operation could

157

Figure 3: A tree organization with an example of a failure pattern: black circles indicate unavailable copies

be executed by writing the following set of copies only:

{~,V,5,6,8,91. A read operation can be executed by
accessing the root in the best case. If failures occur,
the set of copies accessed may be different. For exam
ple, consider a network configuration where copies 1
(the root), 2, and 3 are unavailable. In this case the
read may form a quorum by accessing copy 4 and a
majority of copy 2’s children, e.g., 5 and 7. Alterna
tively, the quorum may be formed from copy 4 and a
majority of copy 3’s children, e.g., 9, 10. The desirable
aspects of this protocol is that the cost of executing
read operations is comparable to the read-one write-all
protocol while the availability of write operations is sig-
nificantly better [AEgO]. Furthermore, when compared
with the majority protocol, the cost of executing both
read and write operations is substantially less without
significantly reducing write availability. However, as is
the case with the grid protocol, this protocol has some
drawbacks. If more than a majority of the copies in
any level of the tree become unavailable, write opera-
tions cannot be executed. For example, if the root of
the tree is down, no write operations can be executed.
This problem can either be solved by generalizing the
tree protocol along the lines of the quorum protocol or
by using dynamic reconfiguration.

We first summarize the extension of quorums in the
context of the tree structure [AE92]. Given a set of n
copies of an object z, we logically organize them into
a tree of height h, and degree d, i.e., each node has
d children, and the maximum height is h. We will
assume the standard tree terminology, i.e., root, child,
parent, leaf, level, etc. We also assume that the tree is
complete, i.e., it has the maximum number of nodes.
As is the case with the grid quorums, the tree quorums
also have two dimensions associated with them, i.e.,

the length 1 which corresponds to the height of the
tree and the width w which corresponds to the degree
of the nodes in the tree. A tree quorum of size (I, w)
is constructed as follows:

if I= 0 then an empty set is a valid tree quorum;

if I# 0 and the tree is empty then the tree quorum
cannot be constructed;

if the root is available then the root and tree quo
rums of size (I- 1, w) recursively constructed from
any w subtrees out of d subtrees of the root form
a required tree quorum;

if the root is unavailable then tree quorums of size
(1, w) constructed from any w subtrees out of d
subtrees of the root form a required tree quorum.

In the ReadRoot protocol described above, the write
quorums have length h and width d/2 + 1. SimiIarly,
the read quorum is of size (1, d/2 + 1). In order to
ensure the quorum intersection property between read
and write tree quorums, if the read tree quorum is of
size (1, w) then the write tree quorum must be (h - I+
1, d - w + 1). Similarly, the intersection between any
two write tree quorums is guaranteed if the sum of the
lengths of the two quorums exceeds the height h of the
tree and the sum of the widths exceeds the degree d
of the tree. It can be easily shown that when the read
and write tree quorums have lengths and widths that
satisfy the above constraints, they have a nonempty
intersection.

Consider a replicated object with thirteen copies
which are organized as a ternary tree of height 3 as
illustrated in Figure 3. We now construct tree quo
rums of length 2 and width 2. In the best case, the

158

quorum need only contain the root and two of its chil-
dren, i.e., {1,2,3}, {1,2,4}, or {1,3,4}. However, as a
result of the failure of the root, a tree quorum of size
(2,2) can be formed by merging two tree quorums of
size (2,2) on any majority (two) of the root’s subtrees,

e.g., (2, 5, 6, 3, 8, 9) or (2, 5, 6, 4, 11, 12). A set
containing the root 1, any one of {2,3,4}, and any two
children of either of the other two copies also forms a
quorum. Finally, if all three children of the root are
inaccessible, then a set with the root and any two chil-
dren of two of the inaccessible copies form a quorum,
e.g., {1,5,7,8,9}, {1,8,10,12,13} etc. If the root and
a majority or more of the root’s children have failed,
then a tree quorum of the required dimensions cannot
be constructed.

4.2 Reconfiguring Trees

The tree quorum protocol overcomes the vulnerability
of the ReadRoot protocol for executing write opera
tions when a majority of copies at any level in the tree
is inaccessible by increasing the length of the read tree
quorums and by reducing the length of the write tree
quorums. However, this approach results in read op-
erations becoming more expensive since they cannot
be executed by accessing a single copy. Instead of us-
ing the tree quorum protocol for executing user level
operations, we can use the notion of dynamic recon-
figuration which would allow users to continue using
the basic tree protocol. We use the notion of majority
tree quorums with dimensions (h/2 + 1, d/2 + 1) for
reconfiguration.

Given a tree of height h with degree d for each inte-
rior node, the following rules are observed for executing
operations and for reconfiguration:

l Reconfiguration Rule: A reconfiguration quorum is
formed from any majority tree quorum of dimen-
sions (h/2 + 1, d/2 + 1).

l Write Quorum Rule: Write operations are executed
by requiring that tree quorums of majority or
d/2 + 1 width and length involving all levels in the
reconfigured tree be obtained. To ensure the inter-
section with reconfiguration quorums, the length
of write quorum must be at least h/2 + 1.

l Read Quorum Rule: Let d, denote the number of
available children of node c in the reconfigured
tree. Read operations are executed by acquiring a
tree quorum in which the width at node c (when

c is not included) is d, - d/2 + 1 and length 1. To
ensure correctness d, - d/2 + 1 must be positive.

Since the sum of the lengths of read and write tree
quorums exceeds the height of the reconfigured tree
and the sum of their widths exceeds the degree of each
node in the reconfigured tree, read and write oper-
ations are guaranteed to have a nonempty intersec-
tion. Furthermore, since write quorums are of length
at least h/2 + 1, write operations are guaranteed to
intersect with any reconfiguration tree quorum. Since
the sum of the lengths of two reconfiguration tree quo-
rum exceeds the height of the tree and the sum of the
widths exceeds the degree, only one configuration can
be formed at any time.

We now discuss the availability and performance as-
pects of the reconfiguration protocol with the help of
an example. Consider the ternary tree of height three
shown in Figure 3. In the ReadRoot protocol, read
quorums have a length one and width two and write
quorums have a length three and width two. If the
copy at the root fails write operations cannot be ex-
ecuted unless the tree is reconfigured. If a reconfigu-
ration transaction is executed after the failure pattern
shown in Figure 3, a new view can be constructed since
a reconfiguration tree quorum of length two and width
two can still be constructed without the root. Read
and write operations can be executed once again on
this newly reconfigured tree. For example, a read quo
rum may comprise of any one available node from level
two or no nodes from level two and any one node from
{5,6,11,13}. Th e write tree quorum on the other hand
would correspond to copies in the set {2,5,6,4,11,13},
since its length must be at least two. If we use the tree
quorum protocol then in order for write operations to
be fault-tolerant to the failure of the root, write quo
rums must have length at most h - 1 or 2, e.g., read
and write tree quorums with size (2,2). Read and write
tree quorums for the failure configuration depicted in
Figure 3 must be {2,5,6,4,11,13}. Thus, read opera
tions become significantly more restrictive and expen-
sive in the absence of the reconfiguration protocol.

4.3 Tree Reconfiguration Availability

The availability of read and write operations in the
tree quorum protocol can be computed by formulating
recurrence relations for both read and write availabil-
ities. The recurrence relation is in terms of the avail-
abilities of these operations in the subtrees of a tree of

159

copies of an object. Let &,[I, 201 be the availability of
operations that require a tree quorum of length 1 and
width w in a tree of height h and degree d. Thus, the
availability in a tree of height h + 1, Ah+i [I, w], is given
aS:

Prob(Root up) x [w subtrees available with &,[I- 1, w]]

+

Prob(Root down) x [w subtrees available with Ah [1, w]]

By takingp as the probability that the root is available
and 1 -p as the probability that the root is unavailable,
we get:

PX
i(>

2 (Ah[~-l,w])w(l-A~[~-l,w])d-w+...+

()
,ti (Ah[I-l,w])“‘+i(l-Ah[I-l,w])d-w-i+...

+ (&[I---1, WI,“]

+(1-P) x
K >

z (Ah[l, w])w (1 - A/,[/, W])d-” + . . .

+

(>

w “+ i &,[I, w])w+i (1 - A& w])~+“+ + . . .

+ (AAV, 4Jd]
Note that &,[I, W] = 0 for 1 > h, Ah[O, w] = 1, and
Ar[l, w] = p. Since the above recurrence relation
involves nonlinear terms, we illustrate the operation
availabilities for a specific replica configuration of an
object with thirteen copies in Figures 4. The reconfig-
uration quorum has the dimension (h/2 + 1, d/2 + l),
i.e., (2,2).

Figure 4 illustrates the availabilities of read and
write operations in various protocols. As in Figure 2,
we include read and write availabilities in the read-one
write-all protocol, the majority quorum protocol, and
the ReadRoot protocol without reconfiguration [AEgO].
We again observe that there is an imbalance in avail-
ability between read and write operations that use the
ReadRoot protocol without reconfiguration. For exam-
ple with 13 copies and copy availability of 75%, read
availability is almost 99% whereas write availability is
approximately 50%. With reconfiguration, read and
write availability in this case become approximately
92%. For copy availability greater than 85% the data
availability becomes approximately 100%. Read and

write operations, on the other hand, have costs com-
parable to the ReadRoot protocol. This analysis illus-
trates that by using the reconfiguration approach, data
availability in the tree protocol can be made compara
ble to the majority quorum protocol while maintaining
the low cost of read operations.

5 Discussion

In this paper we proposed a uniform approach for
increasing the fault-tolerance of logically structured
replicated objects. Compared with the unstructured
approach, logical structures increase fault-tolerance
while ensuring low read operation execution cost.
However, the traditional imbalance between the avail-
abilities of reads and writes in the read-one write-all
protocol is “inherited” in the analogues that use logical
structures. We therefore proposed exploiting the no-
tions of quorums in the context of grid and tree struc-
tures. This was attained by extending the quorum
approach to a two dimensional pair instead of the tra-
ditional one dimensional quorum assignment. These
two dimensions are used to manipulate the availabili-
ties and costs of read and write operations. The assign-
ments that result in the lowest operation cost, however,
have the least degrees of data availability (this is sim-
ilar to the read-one write-all protocol). For maximal
availability, our probabilistic analysis has shown that
a majority structured quorum assignment provides the
highest degree of data availability for both read and
write operations (this corresponds to the highest avail-
ability attained by the majority assignment in unstruc-
tured data [AA89]). H owever, majority assignments
require the highest read and write execution costs.
We therefore adapted the views approach [ET891 used
in unstructured replicated databases to both the grid
and the tree logical structures. This provides us with
comparable data availability to the majority assign-
ment, while significantly reducing the cost of execut-
ing read operations. Reconfiguration has the added
cost of the view reconfiguration transaction, which is
executed whenever reconfiguration is required. Logical
structures, however, provide a limited degree of fault-
tolerance for write operations. Hence, for some tem-
porary, short-term failures, no reconfiguration needs
to be performed, and most read and write operations
will be allowed to execute. Thus, reconfiguration will
only need to be performed when failures persist and
result in degraded availability for both read and write

160

0 Majority Quorum *: Tree Reconfiguration Quorum
0: Reads in ReadRoot 0: Writes in ReadRoot
V Reads in Read-one Write-all & Writes in Read-one Write-all
X Availability of a copy of an object Y: Operation Availability

Y
A

V

,v0v0vp~0pP~v

*
0.9.

cl 0, 0

V 0 0 * 0

0.8 0
0* V 0

0.7. 0 *

0 0
0.6, 0 *

0 A

A

13 copies or a ternary tree of height 3

Figure 4: Comparison of the availabilities in various protocols

operations. Finally, although the results in this pa
per are in terms of two specific logical structures, this
approach can be extended to any logical structure for
which the notion of quorums and majority quorums
can be defined.

References

[AA891 M. Ahamad and M. H. Ammar. Per-
formance Characterization of Quorum-
Consensus Algorithms for Replicated Data.
IEEE Transations on Software Engineer-

ing, 15(4):492495, April 1989.

[AESO] D. Agrawal and A. El Abbadi. The Tree
Quorum Protocol: An Efficient Approach
for Managing Replicated Data. In Proceed-

ings of Sixteenth International Conference

on Very Large Data Bases, pages 243-254,
August 1990.

[AE91] D. Agrawal and A. El Abbadi. An Efficient
and Fault-tolerant Solution for Distributed
Mutual Exclusion. ACM Transactions on

Computer Systems, pages l-20, February
1991.

[AE92] D. Agrawal and A. El Abbadi. The Gen-
eralized Tree Quorum Protocol: An Ef-
ficient Approach for Managing Replicated
Data. ACM Transaction on Database Sys-

tems, 1992. To appear.

[BG87] P. A. Bernstein and N. Goodman. A
Proof Technique for Concurrency Con-
trol and Recovery Algorithms for Repli-
cated Databases. Distributed Computing,

Springer- Verlag, 2(1):3244, January 1987.

[CAASO] S. Y Cheung, M. H. Ammar, and
M. Ahamad. The Grid Protocol: A High
Performance Scheme for Maintaining Repli-
cated Data. In Proceedings of the Sixth In-

ternational Conference on Data Engineer-

ing, pages 438445, January 1990.

[DB85] D. Davcev and W. Burkhard. Consistency
and Recovery Control for Replicated Files.
In Proceedings of the Tenth ACM Sym-
posium on Operating Systems Principles,

pages 87-96, December 1985.

[DGS85] S. B. Davidson, H. Garcia-Molina, and
D. Skeen. Consistency in partitioned

161

networks. ACM Computing Surveys,

17(3):341-370, September 1985.

[EGLT76] K. P. E swaran, J. N. Gray, R. A. Lorie, and
I. L. Traiger. The Notion of Consistency
and Predicate Locks in Database System.
Communications of the ACM, 19(11):624-
633, November 1976.

[ES831 D. Eager and K. Sevcik. Achieving Ro
bustness in Distributed Database Systems.
ACM Transactions on Database Systems,

8(3):354-381, September 1983.

[ESCSS] A. El Abbadi, D. Skeen, and F. Cristian. An
Efficient Fault-Tolerant Protocol for Repli-
cated Data Management. In Proceedings of

the Fourth ACM Symposium on Principles

of Database Systems, pages 215-228, March
1985.

[ET891 A. El Abbadi and S. Toueg. Maintain-
ing Availability in Partitioned Replicated
Databases. ACM Transaction on Database

Systems, 14(2):264-290, June 1989.

[GB85] H. Garcia-Molina and D. Barbara. How to
assign votes in a distributed system. Jour-

nal of the Association of the Computing

Machinery, 32(4):841-860, October 1985.

[GiflS] D. K. Gifford. Weighted Voting for RepIi-
cated Data. In Proceedings of the Sev-

enth ACM Symposium on Operuting Sys-

tems Principles, pages 150-159, December
1979.

[Gra78] J. N. Gray. Notes on database systems.
In R. Bayer, R. M. Graham, and G. Seeg-
muher, editors, Operating Systems: An

Advanced Course, volume 60 of Lecture

Notes in Computer Science, pages 393481.
Springer-Verlag, 1978.

[Her861 M. Herlihy. A Quorum-Consensus Repli-
cation Method for Abstract Data Types.
ACM Transactions on Computer Systems,

4(1):32-53, February 1986.

[JM90] S. Jajodia and D. Mutchler. Dynamic
Voting Algorithms for Maintaining the
Consistency of a Replicated Database.
ACM Transactions on Database Systems,

15(2):23&280, June 1990.

[Mae851 M. Maekawa. A fi algorithm for mu-
tual exclusion in decentralized systems.
ACM Transactions on Computer Systems,

3(2):145-159, May 1985.

[PL88] J. F. Paris and D. E. Long. Efficient Dy-
namic Voting Algorithms. In Proceedings
of the Fourth IEEE International Confer-

ence on Data Engineering, pages 268-275,
February 1988.

[SSSZ] R. Schlichting and F. B. Schneider. FaiI-
Stop Processors: An Approach to De-
signing Fault-Tolerant Computing Systems.
ACM Transactions on Computer Systems,

1(3):222-238, August 1982.

[St0791 M. Stonebraker. Concurrency Control and
Consistency in Multiple Copies of Data
in Distributed INGRES. IEEE Transac-

tions on Software Engineering, 3(3):188-
194, May 1979.

[Tho79] R. H. Thomas. A Majority Consensus Ap
preach to Concurrency Control for Mul-
tiple Copy Databases. ACM Tmnsaction

on Database Systems, 4(2):180-209, June
1979.

162

