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Abstract 

Replicated data management protocols have been pro 
posed that exploit a logically structured set of copies. 
These protocols have the advantage that they pro- 
vide limited fault-tolerance at low communication cost. 
The propceed protocols can be viewed as analogues of 
the read-one write-all protocol in the context of logi- 
cal structures. In this paper, these protocols are gen- 
eralized in two ways for a grid and a tree structure. 
First, the quorum based approach is applied to develop 
protocols that use structured read and write quorums, 
thus attaining a high degree of data availability for 
both read and write operations. Next, the reconfig- 
uration or views approach is developed for both grid 
and tree structures resulting in protocols that attain 
high degrees of availability at significantly low com- 
munication cost for read operations. In this sense, the 
proposed protocols have the advantages of the read- 
one write-all protocol for low cost read operations as 
well as the majority quorum protocol for high data 
availability. 
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1 Introduction 

Data replication is used in distributed systems to in- 
crease data availability and to achieve fault-tolerance. 
By storing multiple copies of data at several sites in 
the system, there is an increased likelihood of data re- 
maining available and accessible to users despite site 
and communication failures. However, complex and 
expensive synchronization mechanisms [GiflS, Tho79, 
Sto79, ES83, DB85, ESC85, BG87, PL88, JM90] are 
needed to maintain the consistency and integrity of 
data. One of the simplest protocols for managing repli- 
cated data is one where read operations on an object 
are allowed to read any copy, and write operations are 
required to write all copies of the object. The read- 
one write-all protocol provides read operations with a 
high degree of availability at a very low cost: a read 
operation accesses a single copy. On the other hand, 
this protocol severely restricts the availability of write 
operations since they cannot be executed after the fail- 
ure of any copy. This protocol results in the imbalance 
of availability of read and write operations: read op 
erations have a higher availability whereas write oper- 
ations have a lower availability when compared to the 
case when data is not replicated. 

In order to increase the availability of both read and 
write operations, the quorum protocol [Gif79, Tho79] 
was proposed. The quorum protocol generalizes the 
read-one write-all protocol by imposing an intersection 
requirement between read and write operations. Write 
operations can be made fault-tolerant since they do not 
need to access all copies of an object. However, this 
is at the cost of requiring read operations to access 
more than one copy of the object. Dynamic quorum 
protocols [DB85, PL88, JM90] have also been proposed 
to further increase availability in replicated databases. 
However, these approaches do not address the issue of 
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low-cost read operations. 

The view-based protocol [ESC85, ET891 uses con- 
figuration information to achieve high availability of 
both read and write operations, as well as low cost of 
read operations. The configuration information allows 
users to execute transactions by employing the read- 
one write-all protocol and hence results in low cost read 
operations. When changes occur in the network due to 
failures and recovery, a reconfiguration protocol is exe- 
cuted to update the configuration information. The re- 
configuration protocol uses the notion of quorums and 
hence read and write operations have high availability. 
This approach is especially useful if failures are infre- 
quent and persistent, and hence represents an alter- 
native design philosophy to the quorum approach. In 
particular, with the quorum approach each operation 
is penalized for fault-tolerance purposes, but changes 
in the network configuration remain transparent to the 
transactions. On the other hand, the reconfiguration 
approach executes a special protocol when the network 
configuration changes (not necessarily immediately), 
but as a result user transactions are not penalized and 
can always execute using the desired communication 
cost. 

Recently, several researchers have proposed impos- 
ing a logical structure on the set of copies in the 
database, and using structural information to create 
intersecting quorums. Protocols that use a logical 
structure, e.g., the grid protocol [Mae85, CAASO] and 
the tree protocol [AE91, AEgO], execute operations 
with low communication costs while providing fault- 
tolerance for both read and write operations. How- 
ever, as with the original read-one write-all approach, 
the improved performance for read operations results 
in a degraded write availability when failures occur. 
In particular, structure-based protocols are vulnera 
ble to the failure of specific sites. In this sense, these 
protocols are analogous to the read-one write-all pro- 
tocol, i.e., low cost read operations but write oper- 
ations are vulnerable to failures. In this paper, we 
first describe the extension of these two protocols to 
improve the fault-tolerance of write operations by us- 
ing the notions of structured read and write quorums 
with respect to a logical structure. As is the case in 
the standard quorum protocols [Gif79, Tho79], the in- 
creased fault-tolerance for write operations is at the 
increased cost of executing read operations. In order 
to let users continue using the analogues of the read- 
one write-all protocol in the context of a logical struc- 

ture, we develop reconfiguration protocols for dynam- 
ically adapting to failures and recovery. This results 
in the following dichotomy. Users accesses are through 
the simple analogues of the read-one write-all protocol 
with respect to a logical structure and therefore have 
low communication cost for read operations. On the 
other hand, the reconfiguration protocol uses the no- 
tion of quorums in the context of a logical structure to 
ensure high data availability. 

The paper is organized as follows. In the next sec- 
tion, we present the model of the system. The quorum 
and reconfiguration protocols for grid-based logical 
structures are presented in Section 3 and for tree-based 
logical structures are presented in Section 4. Both sec- 
tions include performance analyses that demonstrate 
the superiority of the proposed approach. The paper 
concludes with a discussion of our results. 

2 Model 

A distributed system consists of a set of distinct sites 
that communicate with each other by sending messages 
over a communication network. No assumptions are 
made regarding the speed, connectivity, or reliability of 
the network. We assume that sites are fail-stop [SSSZ] 

and communication links may fail to deliver messages. 
Combinations of such failures may lead to patiiiioning 
failures [DGS85], h w ere sites in a partition may com- 
municate with each other, but no communication can 
occur between sites in different partitions. A site may 
become inaccessible due to site or partitioning failures. 

A distributed database consists of a set of objects 

stored at several sites in a computer network. Users 
interact with the database by invoking transactions, 

which are partially ordered sets of atomic read and 
write operations. The execution of a transaction must 
be atomic, i.e., a transaction either commits or aborts 

[Gra78]. A commonly accepted correctness criteria in 
databases is the serializable execution of transactions 
[EGLT76]. The serializable execution is guaranteed by 
employing a concurrency control mechanism. 

In a replicated database, copies of an object may 
be stored at several sites in the network. Multiple 
copies of an object must appear as a single logical ob- 
ject to the transactions. This is termed as one-copy 

equivalence [BG87] and is enforced by a replica con- 

trol protocol. The correctness criteria for replicated 
databases is one-copy serializability [BG87], which en- 
sures both one-copy equivalence and the serializable 
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execution of transactions. In order to ensure one-copy 
equivalence, a replicated object z may be read by read- 
ing a read quorum of copies, and it may be written by 
writing a write quorum of copies. The following re- 
striction is placed on the choice of quorum assignments 
[Giff 9, Tho79]: 

l Quorum Intersection Property: For any two opera 
tions o[z] and o’[z] on an object z, where at least 
one of them is a write, the quorums must have a 
nonempty intersection. 

Version numbers or timestamps are used to identify the 
current copy in a quorum. When timestamps are used, 
intersection of write quorums is not necessary [Her86]. 
The notion of intersecting quorums is closely related 
to coteries [GB85]. In coteries, an added minimality 
condition is imposed upon quorums while with inter- 
secting quorums a distinction is made between read 
and write operations. 

The view-based protocol uses configuration informa- 
tion to achieve fault-tolerance of both read and write 
operations, while reduing the cost of executing read 
operations. We can summarize the rules for reconfigu- 
ration from [ESC85, ET891 as follows: 

l Configuration Rule: Each site s has associated with 
it a set View[s], which is the set of sites s assumes 
it can communicate with. Each view has associ- 
ated with it a special identifier, which uniquely 
determines a configuration. Furthermore, these 
identifiers are totally ordered. 

l Operation Execution Rule: Read and write opera 
tions are executed by accessing copies that reside 
on the sites with the same view. Read and write 
operations executed in the same view must have 
a nonempty intersection. 

Reconfiguration is initiated through a special trans- 
action called a view-reconfiguration transaction. The 
reconfiguration transaction updates copies and config- 
urations in an atomic step. The transaction succeeds 
in including an object in a new view only when it can 
determine the current value of that object. In order to 
ensure that the new view has the current value, the re- 
configuration transaction must access a reconfiguration 

quorum which satisfies the following property: 

l Reconfiguration Quorum Property: A reconfigura- 
tion quorum must have a nonempty intersection 

with any write quorum and two reconfiguration 
quorums must have a nonempty intersectionl. 

The above rules in addition to a concurrency control 
protocol ensure one-copy serializability [ET89]. 

3 The Grid Structure 

In this section we propose using a grid structure to de- 
fine quorums for both read and write operations. We 
start by describing previously proposed protocols that 
use a grid structure, and generalize them using the 
quorum approach to decrease their vulnerability to site 
and communication failures. We then apply the recon- 
figuration paradigm to grid-based quorum protocols, 
and thus reduce the cost of executing read operations, 
while maintaining a high degree of data availability. 

3.1 The Grid Quorum Protocol 

Maekawa [Mae851 proposed using the notion of finite 
projective planes to obtain a distributed mutual ex- 
clusion algorithm where all quorums are of equal size. 
If the number of sites in the system is n then mutual 
exclusion can be achieved by communicating with fi 
sites. Maekawa further suggested logically organizing 
the sites in the form of a two-dimensional grid to en- 
sure quorums of size 0(,/Z). Chang, Ahamad, and 
Ammar [CAASO] extended Maekawa’s grid protocol 
for replicated data to support read and write opera- 
tions. Unlike Maekawa’s protocol where an operation 
excludes every other operation, in this protocol read 
operations do not exclude other read operations but 
ensure exclusion of write operations. Furthermore a 
write operation excludes both read and write opera 
tions. In this protocol, n copies of a data object are 
logically organized in the form of a fi x fi grid’ as 
shown in Figure 1. Read operations on this object are 
executed by acquiring a read quorum that consists of a 
copy from each column in the grid. Write operations, 
on the other hand, are executed by acquiring a write 
quorum that consists of all copies in one column and a 
copy from each of the remaining columns. Since read 
and write operations access O(fi copies, we will refer 
to this protocol as the dw protocol. 

In Figure 1, copies {1,7,13,19,25} are suffi- 
cient to execute a read operation whereas copies 
{1,6,11,16,21,7,13,4,20} will be required to execute 

‘The latter part of the condition is relaxed in [ETSS]. 
2For simplicity, we assume that n is a perfect square. 
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Figure 1: A grid organization and an example of a failure pattern: black circles indicate unavailable copies 

a write operation. It can be easily shown that a write 
quorum intersects with both read and write quorums 
in this protocol. This protocol provides low-cost execu- 
tion of operations (fi compared to n/2+ 1 in the ma 
jority protocol [Tho79, GiI79]) while providing a com- 
parable degree of availability [CAASO]. However, there 
are several drawbacks associated with this protocol. In 
particular, if copies in an entire column become un- 
available due to failures or network partitioning, read 
and write operations cannot be executed. Note that 
this is the case even though a majority of copies are 
available in the system. Similarly, if copies in an en- 
tire row are unavailable, no write operations can be 
executed. These shortcomings of the protocol can be 
overcome either by using the notion of quorums or by 
employing dynamic reconfiguration in the context of 
grids. 

We start by generalizing the notion of quorums in 
the context of the grid structure. Given an object or- 
ganized as a grid of dimensions fi x fi, we define a 
read grid quorum and a write grid quorum. In general, 
a grid quorum has length 1 and width w, and is repre- 
sented as a pair (I, 20). A read operation is executed by 
accessing a read grid quorum (I, w), which is formed 
from 1 copies in each of w different columns. A write 
operation is executed by writing a write grid quorum, 
(I, w), which is formed from (a) 1 copies in each of w 
columns as well as (b) any fi - I+ 1 copies in each 
of fi - w + 1 columns. (The second component of 
the write quorum is to ensure the intersection between 
two write quorums, if timestamps are used instead of 
version numbers, this component is not needed.) In 
order to ensure the quorum intersection property be- 
tween read and write quorums, if the read grid quo 
rum is of size (1, w) then the write grid quorum must 

be(,/Z-I+l,,/?i-w+l). Notethatifbothlength 
and width of a write quorum is greater than &i/2+ 1, 
then the second component, i.e., condition (b), is vac- 
uously satisfied by the copies already included due to 
condition (a). It is easy to show that quorums that 
satisfy these conditions have non-empty intersections. 

In the ds protocol proposed by Chang, 
Ahamad and Ammar [CAASO], read quorums have 
length one and width &i, while write quorums have 
length J;; and width one. This protocol is especially 
interesting since both read and write operations have 
size O(fi. The protocol is, however, vulnerable to 
the failure of an entire column or row in the grid. If 
an entire column is inaccessible, both read and write 
operations cannot be executed, while ifan entire row is 
inaccessible, write operations are unavailable. We now 
define an alternative quorum assignment in which the 
two dimensions of the grid quorums are used as follows. 
The length dimension is used for ensuring efficient exe- 
cution of read operations and the width dimension for 
ensuring fault-tolerance of write operations. In partic- 
ular, we use the assignment that corresponds to the 
read-one write-all in the length dimension and the ma, 
jority quorum in the width dimension. That is, read 
quorums have dimensions (1, G//2 + 1) and write quo- 
rums have dimensions (J;i, G/2 + 1). We will re- 
fer to this protocol as the m grid quorum pro- 
tocol. This assignment ensures that read operations 
have a low cost, ,/ii/2 + 1, and have a high degree of 
availability, since they are not vulnerable to the fail- 
ure of a minority of the columns. Write operations, 
on the other hand, are more available than the read- 
one write-all protocol since only n/2 + fi copies are 
needed to execute write operations. However, few spe- 
cific failures may render write operations unavailable. 
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To further increase the fault-tolerance of write opera 
tions, we define the majority grid quorum assignment 
where both read and write quorums have dimensions 

ww + 1, Jf;P + l), i.e., both operations are exe- 
cuted by accessing a majority of copies in a majority 
of the columns. This protocol tolerates the failures of 
three quarter of the sites in the grid. However, this 
increase in fault-tolerance is at the increase in the cost 
of read operations: instead of accessing ,/ii/2 copies, 
reads now have to access n/4 copies. 

Consider an object with 25 copies organized as a 
grid of 5 x 5 as shown in Figure 1. A read grid 
quorum of dimensions (2,3), may be formed from 
the following set {1,11,7,17,19,24}. Note that in 
this case, no copies in the third and fifth columns 
are included in the quorum. Hence unlike the 

d--r- read wrzte protocol, the unavailability of two entire 
columns is tolerated by a read operation. In this case, 
a write grid quorum must have length 4 and width 
3, and hence can be formed from the following set: 
{1,6,11,21,3,8,13,23,5,10,15,25}. Again notice that this 
set ensures that a write quorum can tolerate the un- 
availability of an entire row (in this case the fourth 
row), or two columns (in this case the second and the 
fourth columns). 

3.2 Reconfiguring Grids 

Although the grid quorum protocol achieves high data 
availability, increase in fault-tolerance is obtained at 
the increased cost of read operations. For example, to 
tolerate the failure of an entire row, a quorum grid pro 
tocol must have write quorums with lengths ,/ii - 1: 
read quorums with dimensions (2, ,/K/2+ 1)) and write 
quorums have dimensions (J;; - 1, fi/2 + 1). In this 
case a read operation must access two copies instead 
of one in a majority of columns, thus doubling the 
number of copies accessed by a read operation, when 
compared with the m assignment. Instead the re- 
configuration approach can be used to increase fault- 
tolerance while maintaining low communication costs. 
After reconfiguration the m assignment rules are 
used for constructing read and write grid quorums. 
Note that these rules ensure that any write quorum 
must have a non-empty intersection with every other 
read or write quorum. For reconfiguration we use the 
majority grid quorum assignment, which provides the 
highest degree of fault-tolerance (in general the ma- 
jority assignment provides the best data availability 
[AA891 when copies have equal weights). The recon- 

figuration rule must ensure that a reconfiguration quo 
rum intersects with every write operation. We there- 
fore impose a requirement on the write rule that any 
write quorum must at least write a majority grid quo 
rum. 

We now summarize the rules. Assume a grid of 
dimensions ,/ii x fi, and that there are 1 available 
columns and w available rows in the current view (a 
row or a column is available if it contains at least one 
copy in the current view): 

Reconfiguration Rule: A reconfiguration quorum is 
formed from any majority grid quorum of dimen- 
sions (&i/2+ 1, G//2+ 1). Thus in any view both 
1 and w must be at least as large as ,/i/2 + 1. 

Write Quorum Rule: A write quorum is formed 
from all available copies in G/2 + 1 columns in 
the current view. Each available column included 
in the write quorum must have at least ,/ii/2 + 1 
copies in the current view. 

Read Quorum Rule: A read quorum is formed from 
one copy in any l- 612 of the 1 available columns 
in the current view. 

A reconfiguration quorum must access a majority of 
columns and in each column it must access a major- 
ity of copies. This guarantees that there can be at 
most one view at any time where an object is accessi- 
ble for both reading and writing. Since a write quorum 
accesses a majority of columns of the base structure, 
it will intersect with any reconfiguration quorum on 
at least one column. Furthermore, in that column, the 
write quorum accesses at least a majority of copies and 
hence must intersect with any reconfiguration quorum 
on at least one copy. The intersection between read 
and write quorums in a view follows from the above 
quorum rules. 

Consider the scenario in which all copies except 
a quarter of the grid are unavailable as shown 
in Figure 1. A reconfiguration transaction can 
still form a new view by accessing a reconfigu- 
ration quorum consisting of the available copies 
{13,14,15,18,19,20,23,24,25}. Write operations in this 
view will write all copies whereas read operations ac- 
cess any single copy. This example is one of the many 
possible failure scenarios in which as many as 314th of 
the total number of copies become unavailable and yet 
read and write operations can be executed. No other 
variants of the static quorum protocol (where all copies 
are treated equal) can tolerate as many failures. 
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3.3 Grid Reconfiguration Availability 

In this section, we compute the availability of the pro- 
posed reconfiguration protocol for grids and compare 
it with the availability of read and write operations in 

the majority quorum protocol [Gif79, Tho79]. In this 
analysis we confine ourselves to site failures only. In 
the case of the quorum protocol, read and write quo- 
rums can be constructed as long as a majority of copies 
of an object are available. Let p be the probability 
that a copy of an object is available for constructing 
a quorum. Then, the data availability in the majority 
quorum protocol is: 

= Probability(majority copies are available) 
+ Probability(majority + 1 copies are available) 
. . . 

+ Probability(majority + i copies are available) 
. . . 

+ Probability(al1 copies are available) 

If we let n be equal to 2k + 1 for some non-negative 
integer k, the above probabilities can be represented 
by the following terms, i.e., 

( y;;)pt+l(l-p)t+... 

+ #+‘(I -$y-‘+‘+ ... +$‘+I. 

The availability of reconfiguration quorums on a grid 
of size fi x fi is computed as follows. Let J;; be 
equal to 2k + 1 for some non-negative integer k. The 
grid reconfiguration protocol is successful if it can con- 
struct a reconfiguration quorum on the grid of size 

h/72+ ww+ I>, or equivalently (k + 1, k + 1). 
That is, the reconfiguration quorum must include a 
majority of copies in a majority of the columns. We 
compute the availability of reconfiguration quorums for 
grids in two stages. First, we compute the availability 
of a majority of copies in a single column of the grid. 
Let Amc be the availability of a majority of copies in 
a single column, which can be computed as: 

Amc = p’+‘(l - p)k + . . . 

+( 2~=pf)pt+i(l-p)~-i+l+...+pZI+1 
The next step is to compute the availability of a major- 
ity of columns that have a majority or more available 

copies of an object. This can be once again computed 
as follows, i.e., 

( tT) A%:(1 - Amc)L + . . . + Af$zl 

Unfortunately, the above equations for the data 
availabilities in the two protocols do not have a closed 
form. In order to compare the availabilities, we il- 
lustrate the availabilities in the two protocols for spe- 
cific replica configurations of an object. In addition, 
we depict the availabilities of read and write opera- 
tions in the read-one write-all protocol3 and in the 
dz protoco14. In particular, Figure 2(a) il- 
lustrates the availabilities in the above protocols when 
there are nine copies of an object that are organized as 
a grid with three columns and three rows. Similarly, 
Figure 2(b) illustrates the availability with twenty-five 
copies that are organized as a grid with five columns 
and five rows. 

Figure 2 clearly shows the imbalance between read 
and write availability when the read-one write-all pro 
tocol is used. This imbalance is partially remedied by 
the dm protocol due to the use of a logical 
structure. However, as the figure shows, there still re- 
mains a significant imbalance between read and write 
availabilities. For example with 25 copies and when 
an individual copy has availability 75%, read availabil- 
ity is 100% whereas write availability is approximately 
74%. The quorum protocol and the proposed recon- 
figuration based protocol in this case have read and 
write availability of approximately 99%. This analysis 
illustrates that by using the reconfiguration approach 
data availability in the grid protocol can be made com- 
parable to the quorum protocol while maintaining the 
low cost of read operations. In particular, read op- 
erations in the grid protocol access fewer than J5i/2 
copies compared to n/2 in the quorum protocol. Note 
that with 9 copies, the availability of both operations 
in the quorum and reconfiguration based protocol be- 
comes almost 100% when the availability of an individ- 
ual copy is greater than 85%. Similarly, with 25 copies, 
this availability level is attained beyond copy availabil- 
ity of 75%. In this sense, we are able to achieve the 

3~ the read-one write-all protocol, the read availabiity is 
1 - p” and the write availability is p”, where p and ra are as 
defined above. 

‘In the dP seadlwrrte protocol, the availability of reads is 

(3 - (1 - p)fi)fi and writes is (1 - (1 - p)fi)fi - (1 - pfi - 
(1 - p)fi)fi [CAASO]. 
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high degree of read availability of the read-one write- 
all protocol for both read and write operations using 
the reconfiguration based approach. This is achieved 
without the high cost of the read operations required 
by the quorum protocol. 

4 The Tree Structure 

In this section, we consider a logical structure based on 
trees. We first summarize the analogue of the read-one 
write-all protocol when copies of an object are logically 
organized as a tree. We next present a generalization 
of this protocol which can be used to construct read 
tree quorums and write tree quorums. Finally, we pro 
pose a reconfiguration protocol for trees that permits 
the users to use the analogue of the read-one write-all 
protocol in the context of trees for executing read and 
write operations but uses the notion of tree quorums 
for dynamic reconfiguration in the presence of persis- 
tent failures. 

4.1 The Tree Quorum Protocol 

In [AE91], Agrawal and El Abbadi proposed using a 
logical tree structure over a network of sites to achieve 

A 

(a) 9 copies or 3 x 3 grid (b) 25 copies or 5 x 5 grid 

Figure 2: Comparison of the availabilities in various protocols 

fault-tolerant distributed mutual exclusion. This pro- 
tocol has a property of graceful degradation in the 
sense that when there are no failures mutual exclusion 
can be achieved by communicating with logn sites. 
As failures occur, the size of the quorum may increase 
to the maximum of n/2 + 1 sites. This protocol was 
extended to manage replicated data [AEgO] by distin- 
guishing between read and write operations. Write op- 
erations in the tree protocol must access a write quo 
rum which is formed from the root, a majority of its 
children, and a majority of their children, and so forth 
until the leaves of the tree are reached. To ensure the 
quorum intersection property, a read operation tries to 
access the root; if the root is unavailable, the read tries 
to access a majority of the root’s children. For each 
unavailable copy in this majority set, the read opera- 
tion tries to access a majority of its children. It can 
be easily shown that read and write operations have a 
nonempty intersection. We will refer to this protocol 
as the ReadRoot protocol. 

In Figure 3, an example of a ternary tree with thir- 
teen copies of an object is illustrated. Note that this 
structure is logical, and does not have to correspond to 
the actual physical structure of the network connecting 
the sites storing the copies. A write operation could 
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Figure 3: A tree organization with an example of a failure pattern: black circles indicate unavailable copies 

be executed by writing the following set of copies only: 

{~,V,5,6,8,91. A read operation can be executed by 
accessing the root in the best case. If failures occur, 
the set of copies accessed may be different. For exam 
ple, consider a network configuration where copies 1 
(the root), 2, and 3 are unavailable. In this case the 
read may form a quorum by accessing copy 4 and a 
majority of copy 2’s children, e.g., 5 and 7. Alterna 
tively, the quorum may be formed from copy 4 and a 
majority of copy 3’s children, e.g., 9, 10. The desirable 
aspects of this protocol is that the cost of executing 
read operations is comparable to the read-one write-all 
protocol while the availability of write operations is sig- 
nificantly better [AEgO]. Furthermore, when compared 
with the majority protocol, the cost of executing both 
read and write operations is substantially less without 
significantly reducing write availability. However, as is 
the case with the grid protocol, this protocol has some 
drawbacks. If more than a majority of the copies in 
any level of the tree become unavailable, write opera- 
tions cannot be executed. For example, if the root of 
the tree is down, no write operations can be executed. 
This problem can either be solved by generalizing the 
tree protocol along the lines of the quorum protocol or 
by using dynamic reconfiguration. 

We first summarize the extension of quorums in the 
context of the tree structure [AE92]. Given a set of n 
copies of an object z, we logically organize them into 
a tree of height h, and degree d, i.e., each node has 
d children, and the maximum height is h. We will 
assume the standard tree terminology, i.e., root, child, 
parent, leaf, level, etc. We also assume that the tree is 
complete, i.e., it has the maximum number of nodes. 
As is the case with the grid quorums, the tree quorums 
also have two dimensions associated with them, i.e., 

the length 1 which corresponds to the height of the 
tree and the width w which corresponds to the degree 
of the nodes in the tree. A tree quorum of size (I, w) 
is constructed as follows: 

if I= 0 then an empty set is a valid tree quorum; 

if I# 0 and the tree is empty then the tree quorum 
cannot be constructed; 

if the root is available then the root and tree quo 
rums of size (I- 1, w) recursively constructed from 
any w subtrees out of d subtrees of the root form 
a required tree quorum; 

if the root is unavailable then tree quorums of size 
(1, w) constructed from any w subtrees out of d 
subtrees of the root form a required tree quorum. 

In the ReadRoot protocol described above, the write 
quorums have length h and width d/2 + 1. SimiIarly, 
the read quorum is of size (1, d/2 + 1). In order to 
ensure the quorum intersection property between read 
and write tree quorums, if the read tree quorum is of 
size (1, w) then the write tree quorum must be (h - I+ 
1, d - w + 1). Similarly, the intersection between any 
two write tree quorums is guaranteed if the sum of the 
lengths of the two quorums exceeds the height h of the 
tree and the sum of the widths exceeds the degree d 
of the tree. It can be easily shown that when the read 
and write tree quorums have lengths and widths that 
satisfy the above constraints, they have a nonempty 
intersection. 

Consider a replicated object with thirteen copies 
which are organized as a ternary tree of height 3 as 
illustrated in Figure 3. We now construct tree quo 
rums of length 2 and width 2. In the best case, the 
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quorum need only contain the root and two of its chil- 
dren, i.e., {1,2,3}, {1,2,4}, or {1,3,4}. However, as a 
result of the failure of the root, a tree quorum of size 
(2,2) can be formed by merging two tree quorums of 
size (2,2) on any majority (two) of the root’s subtrees, 

e.g., (2, 5, 6, 3, 8, 9) or (2, 5, 6, 4, 11, 12). A set 
containing the root 1, any one of {2,3,4}, and any two 
children of either of the other two copies also forms a 
quorum. Finally, if all three children of the root are 
inaccessible, then a set with the root and any two chil- 
dren of two of the inaccessible copies form a quorum, 
e.g., {1,5,7,8,9}, {1,8,10,12,13} etc. If the root and 
a majority or more of the root’s children have failed, 
then a tree quorum of the required dimensions cannot 
be constructed. 

4.2 Reconfiguring Trees 

The tree quorum protocol overcomes the vulnerability 
of the ReadRoot protocol for executing write opera 
tions when a majority of copies at any level in the tree 
is inaccessible by increasing the length of the read tree 
quorums and by reducing the length of the write tree 
quorums. However, this approach results in read op- 
erations becoming more expensive since they cannot 
be executed by accessing a single copy. Instead of us- 
ing the tree quorum protocol for executing user level 
operations, we can use the notion of dynamic recon- 
figuration which would allow users to continue using 
the basic tree protocol. We use the notion of majority 
tree quorums with dimensions (h/2 + 1, d/2 + 1) for 
reconfiguration. 

Given a tree of height h with degree d for each inte- 
rior node, the following rules are observed for executing 
operations and for reconfiguration: 

l Reconfiguration Rule: A reconfiguration quorum is 
formed from any majority tree quorum of dimen- 
sions (h/2 + 1, d/2 + 1). 

l Write Quorum Rule: Write operations are executed 
by requiring that tree quorums of majority or 
d/2 + 1 width and length involving all levels in the 
reconfigured tree be obtained. To ensure the inter- 
section with reconfiguration quorums, the length 
of write quorum must be at least h/2 + 1. 

l Read Quorum Rule: Let d, denote the number of 
available children of node c in the reconfigured 
tree. Read operations are executed by acquiring a 
tree quorum in which the width at node c (when 

c is not included) is d, - d/2 + 1 and length 1. To 
ensure correctness d, - d/2 + 1 must be positive. 

Since the sum of the lengths of read and write tree 
quorums exceeds the height of the reconfigured tree 
and the sum of their widths exceeds the degree of each 
node in the reconfigured tree, read and write oper- 
ations are guaranteed to have a nonempty intersec- 
tion. Furthermore, since write quorums are of length 
at least h/2 + 1, write operations are guaranteed to 
intersect with any reconfiguration tree quorum. Since 
the sum of the lengths of two reconfiguration tree quo- 
rum exceeds the height of the tree and the sum of the 
widths exceeds the degree, only one configuration can 
be formed at any time. 

We now discuss the availability and performance as- 
pects of the reconfiguration protocol with the help of 
an example. Consider the ternary tree of height three 
shown in Figure 3. In the ReadRoot protocol, read 
quorums have a length one and width two and write 
quorums have a length three and width two. If the 
copy at the root fails write operations cannot be ex- 
ecuted unless the tree is reconfigured. If a reconfigu- 
ration transaction is executed after the failure pattern 
shown in Figure 3, a new view can be constructed since 
a reconfiguration tree quorum of length two and width 
two can still be constructed without the root. Read 
and write operations can be executed once again on 
this newly reconfigured tree. For example, a read quo 
rum may comprise of any one available node from level 
two or no nodes from level two and any one node from 
{5,6,11,13}. Th e write tree quorum on the other hand 
would correspond to copies in the set {2,5,6,4,11,13}, 
since its length must be at least two. If we use the tree 
quorum protocol then in order for write operations to 
be fault-tolerant to the failure of the root, write quo 
rums must have length at most h - 1 or 2, e.g., read 
and write tree quorums with size (2,2). Read and write 
tree quorums for the failure configuration depicted in 
Figure 3 must be {2,5,6,4,11,13}. Thus, read opera 
tions become significantly more restrictive and expen- 
sive in the absence of the reconfiguration protocol. 

4.3 Tree Reconfiguration Availability 

The availability of read and write operations in the 
tree quorum protocol can be computed by formulating 
recurrence relations for both read and write availabil- 
ities. The recurrence relation is in terms of the avail- 
abilities of these operations in the subtrees of a tree of 

159 



copies of an object. Let &,[I, 201 be the availability of 
operations that require a tree quorum of length 1 and 
width w in a tree of height h and degree d. Thus, the 
availability in a tree of height h + 1, Ah+i [I, w], is given 
aS: 

Prob(Root up) x [w subtrees available with &,[I- 1, w]] 

+ 

Prob(Root down) x [w subtrees available with Ah [1, w]] 

By takingp as the probability that the root is available 
and 1 -p as the probability that the root is unavailable, 
we get: 

PX 
i( > 

2 (Ah[~-l,w])w(l-A~[~-l,w])d-w+...+ 

( ) 
,ti (Ah[I-l,w])“‘+i(l-Ah[I-l,w])d-w-i+... 

+ (&[I---1, WI,“] 

+(1-P) x 
K > 

z (Ah[l, w])w (1 - A/,[/, W])d-” + . . . 

+ 

( > 

w “+ i &,[I, w])w+i (1 - A& w])~+“+ + . . . 

+ (AAV, 4Jd] 
Note that &,[I, W] = 0 for 1 > h, Ah[O, w] = 1, and 
Ar[l, w] = p. Since the above recurrence relation 
involves nonlinear terms, we illustrate the operation 
availabilities for a specific replica configuration of an 
object with thirteen copies in Figures 4. The reconfig- 
uration quorum has the dimension (h/2 + 1, d/2 + l), 
i.e., (2,2). 

Figure 4 illustrates the availabilities of read and 
write operations in various protocols. As in Figure 2, 
we include read and write availabilities in the read-one 
write-all protocol, the majority quorum protocol, and 
the ReadRoot protocol without reconfiguration [AEgO]. 
We again observe that there is an imbalance in avail- 
ability between read and write operations that use the 
ReadRoot protocol without reconfiguration. For exam- 
ple with 13 copies and copy availability of 75%, read 
availability is almost 99% whereas write availability is 
approximately 50%. With reconfiguration, read and 
write availability in this case become approximately 
92%. For copy availability greater than 85% the data 
availability becomes approximately 100%. Read and 

write operations, on the other hand, have costs com- 
parable to the ReadRoot protocol. This analysis illus- 
trates that by using the reconfiguration approach, data 
availability in the tree protocol can be made compara 
ble to the majority quorum protocol while maintaining 
the low cost of read operations. 

5 Discussion 

In this paper we proposed a uniform approach for 
increasing the fault-tolerance of logically structured 
replicated objects. Compared with the unstructured 
approach, logical structures increase fault-tolerance 
while ensuring low read operation execution cost. 
However, the traditional imbalance between the avail- 
abilities of reads and writes in the read-one write-all 
protocol is “inherited” in the analogues that use logical 
structures. We therefore proposed exploiting the no- 
tions of quorums in the context of grid and tree struc- 
tures. This was attained by extending the quorum 
approach to a two dimensional pair instead of the tra- 
ditional one dimensional quorum assignment. These 
two dimensions are used to manipulate the availabili- 
ties and costs of read and write operations. The assign- 
ments that result in the lowest operation cost, however, 
have the least degrees of data availability (this is sim- 
ilar to the read-one write-all protocol). For maximal 
availability, our probabilistic analysis has shown that 
a majority structured quorum assignment provides the 
highest degree of data availability for both read and 
write operations (this corresponds to the highest avail- 
ability attained by the majority assignment in unstruc- 
tured data [AA89]). H owever, majority assignments 
require the highest read and write execution costs. 
We therefore adapted the views approach [ET891 used 
in unstructured replicated databases to both the grid 
and the tree logical structures. This provides us with 
comparable data availability to the majority assign- 
ment, while significantly reducing the cost of execut- 
ing read operations. Reconfiguration has the added 
cost of the view reconfiguration transaction, which is 
executed whenever reconfiguration is required. Logical 
structures, however, provide a limited degree of fault- 
tolerance for write operations. Hence, for some tem- 
porary, short-term failures, no reconfiguration needs 
to be performed, and most read and write operations 
will be allowed to execute. Thus, reconfiguration will 
only need to be performed when failures persist and 
result in degraded availability for both read and write 
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Figure 4: Comparison of the availabilities in various protocols 

operations. Finally, although the results in this pa 
per are in terms of two specific logical structures, this 
approach can be extended to any logical structure for 
which the notion of quorums and majority quorums 
can be defined. 
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