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Abstract 1 Introduction 

The use of data at different levels of information con- 
tent is essential to the performance of multimedia, 
scientific, and other large databases because it can 
significantly decrease I/O and communication costs. 
The performance advantages of such a multi-resolution 
scheme can only be fully exploited by a data model 
that supports the convenient retrieval of data at dif- 
ferent levels of information content. In this paper we 
extend the relational data model to support multi- 
resolution data retrieval. In particular, we introduce 
a new partial set construct, called the sandbag, that 
can support multi-resolution for the types of data used 
in a wide variety of next-generation database applica- 
tions, as well as traditional applications. We extend 
the relational algebra operators to analogous opera- 
tors on sandbags. The resulting extension of the rela- 
tional algebra is sound and forms a foundation for fu- 
ture database management systems that support these 
types of next-generation applications. 

Manipulating very large data objects such as images, 
sounds and scientific data incurs large I/O and com- 
munication costs. A relatively unexplored approach to 
decreasing these costs is to retrieve and use a smaller 
version of an object rather than the complete object 
when such an approach is feasible. For some types of 
data, such as representations of continuous functions, 
(e.g., images and sounds), we can compute a smaller 
version of the data, or an approximation, that retains 
the character of the data and is satisfactory for many 
purposes. An approximation provides less informa- 
tion than the data that is its source, but is completely 
consistent with it. Such an approximation is called 
partial or incomplete data, similar in principle to the 
partial data of existing models of incomplete informa- 
tion [l-13]. Wh en an approximation suffices and is 
significantly smaller than the original, complete data 
object, retrieving it instead may incur lower costs be- 
cause fewer bytes are accessed or moved. 
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For example, consider a multimedia database that 
contains raster images. A typical high-resolution 
(1024 x 1024 pixel) full color (24-bit) raster image con- 
tains 3 megabytes. In typical current computing en- 
vironments, such an image is likely to take more than 
a second to retrieve (perhaps much more). However, 
a 256 x 256 pixel 8-bit color raster image of the same 
scene is satisfactory for many purposes. This approx- 
imation is 1/48th the size of the original, complete 
image. The costs of operations on large bodies of data 
are dominated by throughput limitations rather than 
overhead, seek time, and propagation delay, so lower 
resolution images can be retrieved much more rapidly 
than higher resolution images. The lower resolution 
pictures will often be useful in their own right or as 
rapidly appearing previews of the complete pictures. 
We call a system that can produce approximations as 
well as complete data a multi-resolution data retrieval 
system. The term multi-resolution is borrowed from 
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graphics, but we apply it to all kinds of data. 
Many applications of growing importance [14] ma- 

nipulate huge quantities of data. These include mul- 
timedia databases, voice-mail systems, image process- 
ing applications, HDTV, graphics applications such as 
CAD/CAM, flight simulators and virtual reality sys- 
tems, geographic [15] and astronomic databases [lS], 
and scientific applications such as seismic process- 
ing. A multi-resolution data retrieval system is essen- 
tial to the performance of these applications. Multi- 
resolution is a natural approach already used in an ad 
hoc manner to decrease I/O, storage, and communica- 
tion costs [17]. The approach presented in this paper 
is a logical but novel extension of ideas in the fields of 
graphics [18, 19, 201 and databases to systematically 
address the needs of these types of next-generation ap- 
plications. 

Database management systems (DBMSs) are com- 
monly used for accounting and record keeping and 
other “traditional” applications because they provide 
convenient data storage and retrieval services for these 
types of data. If DBMSs are to fully address the needs 
of the growing number of applications that demand 
multi-resolution, they must be extended to retrieve 
data at multiple resolutions conveniently. We propose 
to accomplish this by: 

extending existing data models to give precise 
meaning to multi-resolution data and queries, 

allowing the user to control the resolution of query 
results, and 

developing techniques for efficiently implementing 
this extended model. 

This paper describes a formal multi-resolution rela- 
tional data model that forms a foundation of and a nec- 
essary first step towards a practical multi-resolution 
DBMS. In Section 2 we motivate multi-resolution and 
show that existing data models and techniques do not 
suffice to exploit it conveniently. Section 3 presents 
multi-resolution primitive types and tuples. Section 
4 introduces a new construct for representing incom- 
plete information about sets, called the sandbag. and 
discusses its expressiveness. Section 5 defines oper- 
ators analogous to the standard relational operators 
for sandbags. The sandbag and these operators form 
a multi-resolution data model and an algebra that is 
a generalization of the relational algebra. Finally, in 
Section 6 we briefly mention some of the future work 
that needs to be accomplished in order to usefully im- 
plement and exploit this data model. 

The proofs of all theorems stated in this paper ap- 
pear in a technical report [21]. We address the imple- 
mentation and computational complexity of sandbag 

operations in [22]. These issues are beyond the scope 
of this paper and not discussed further here. 

2 Why Multi-Resolution 

Multi-resolution is the concept of viewing data at dif- 
ferent levels of information content. The fields of de- 
notational semantics [13, 231 and information theory 
[24, 25, 26, 271 provide an intuitive and a formal defi- 
nition of information content and other concepts that 
underlie multi-resolution (approximation, consistency, 
resolution, information-theoretic partial order). We re- 
peat the informal definitions of these concepts here to 
provide the reader the necessary intuitions. 

Data describes the real world. Some data is more 
descriptive than other data. For instance, the daily list 
of stock volumes, opening prices and closing prices is 
more descriptive of market history than averages and 
indices computed over many stocks, such as the Dow 
Jones Industrial Average. Similarly, a high quality au- 
dio recording is more descriptive of music played than 
a poor, scratchy recording. The more descriptive data 
is, the more information it contains. We use the term 
resolution synonymously with “information content”. 

Only by considering the meaning of computer- 
manipulated data, or the descriptions of the real world 
we obtain from it, can we define the information- 
theoretic notion of approximation. A data object X 
approximates a data object Y if every world described 
by Y is described by X. The approximates relation 
is a natural partial order of data that could be called 
the “goodness” or “precision” of the data. X approx- 
imates Y if and only if Y describes the world better 
than X, and is consistent with X. Intuitively, if Y de- 
scribes the world, then X is a version of Y that tells us 
less about the world than does Y, but from which we 
will not draw any false conclusions. The meaning of 
data, and hence the notion of approximation, is always 
application dependent, as is the case with the example 
of raster images mentioned in the introduction. 

We focus on a particular property of approximations 
that is generally true, though not universally obtained 
in practice. 

If object X approximates object Y and X is 
lower-resolution than Y, then X requires less 
space to be represented by a computer than 
Y. 

Accessing a large object requires many accesses to 
main memory and/or many expensive I/O operations. 
Our goal is to use the general relationship between 
approximations and space to improve performance by 
computing against lower-resolution data when possi- 
ble. Because the greatest savings in space, and hence 

140 



time, are possible when approximating very large ob- 
jects, our examples and motivating applications tend 
to emphasize such objects. However, our proposed 
framework applies to all sizes of objects. 

2.1 Multi-Resolution is Demanded 

In many applications, accessing low-resolution data is 
quite adequate. In some cases, the highest-resolution 
data cannot always be used. For instance, when a 
raster image has higher resolution than a device it is 
to be a displayed upon, a lower-resolution approxima- 
tion must be produced. Such a reduction of resolution 
is done in an ad hoc manner in some graphic and scien- 
tific applications. For instance, in databases of images 
[16, 171, ‘(browse images” are created at low-resolution 
so that an “overview” of the data is obtained, that al- 
lows preliminary examination of the data for quality 
or interest, and for publication. A similarly “zooming” 
capability is useful in cartographic applications. The 
enormous volume of data in astronomy, ecology, mete- 
orology, geology, and geography [15] databanks could 
be better exploited by database technology that sys- 
tematically and conveniently supports resolution con- 
trol. Systematically treating smaller versions of very 
large data items is a first step towards the difficult 
problems of terabyte-sized databases of any kind of 
data, from images to financial data. 

There are many applications where retrieving data 
at complete resolution takes too long, either because of 
some real-time constraint, or because the user is dis- 
satisfied with performance. This problem can some- 
times be addressed by retrieving low-resolution data 
quickly or before a deadline. The similar idea of impre- 
cise computation has been suggested as an approach 
to meeting real-time constraints on database queries 
[5, 6, 28, 29, 301. A multi-resolution system naturally 
extends and complements this approach to real-time 
databases by supporting larger tradeoffs in impreci- 
sion for time. 

For instance, a technique for displaying images 
called progressive transmission [20] is to display a low- 
quality image immediately, so the user may peruse it 
while the larger, better image is being retrieved via 
a network. The image is then gradually or abruptly 
improved, or refined, until it is complete. Two simi- 
lar ideas are adaptive refinement [18] and progressive 
refinement [19], that are the incremental computation 
of the features of a graphic image in order of their 
visual importance to a viewer. If a data model that 
supports multi-resolution is available, these ideas can 
be naturally extended to include the idea of retriev- 
ing a series of data objects, each of which is better 
than the last, until the complete answer is retrieved. 
We adopt the term progressive refinement to refer to 

this approach to data retrieval from disk, network, 
and main memory. Progressive refinement is a gen- 
eral technique for improving the utility of any query 
system, and is inherently a multi-resolution technique. 
Although networks, disks, memory and CPUs continue 
to improve rapidly, the volume of data demanded will 
always match their capabilities, and progressive refin- 
ment will remain a useful technique. 

2.2 Existing Technology and Data Models 
are Insufficient 

Existing database technology does not support multi- 
resolution or progressive refinement conveniently. The 
database management system should hide the imple- 
mentation details of multi-resolution data retrieval, 
presenting resolution transparency to the user without 
sacrificing the user’s ability to obtain specific resolu- 
tions. Computed fields and object-oriented approaches 
allow approximations to primitive data objects to be 
computed and returned. However, since the relation- 
ship between levels of resolution is not part of these 
data models, a burden is placed on the user to explic- 
itly manage resolution without a unified or systematic 
framework. For instance, to implement progressive re- 
finement of a query in existing systems, the user must 
submit a separate query explicitly for each desired im- 
provement. Similarly, to meet some performance con- 
straint, the user needs to guess which resolution will be 
produced timely. Without a model of multi-resolution, 
the system cannot dynamically adapt returned resolu- 
tion to user’s constraints. Furthermore, existing sys- 
tems do not allow systematic approximation of sets, 
although sets are fundamental to most data models, 
and large sets with many elements are often manipu- 
lated. 

A data model and query evaluation system that con- 
tains the relationship between data and approxima- 
tions offers advantages that cannot be obtained by ex- 
isting systems: 

l Resolution of responses can be traded for speed to 
meet real-time constraints at compile time or at 
run time, based on the dynamic situation within 
the database. 

l Progressive refinement has a precise meaning and 
can be provided systematically. 

l Sets of values can be systematically approxi- 
mated. 

l The relationship between resolutions can be ex- 
ploited by special storage structures and algo- 
rithms. 
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3 Multi-resolution Primitive Types 
and Tuples 

In this section we introduce multi-resolution primitive 
types and multi-resolution tuples. Multi-resolution 
(MR) primitive types are needed because there are 
various types of data that we wish to treat at differ- 
ent resolutions that are more conveniently represented 
as primitive types rather than as tuples or relations. 
These types include images, sounds, and geometric fig- 
ures. An MR primitive type 7 is a user-defined data 
type consisting of values at various resolutions. All 
MR primitive types are partially ordered by a user- 
defined relation C, and have a bottom element I that 
is CJ all elements. The partial order & corresponds 
to the approximates relation defined informally in Sec- 
tion 2. The highest-resolution elements of a primitive 
type are called the total elements, designated by the 
predicate tot : 7 ++ {true,false}. (We denote function 
application by an infix dot. Thus tat applied to x is 
written t&.x.) 

The database programmer defines the MR primitive 
types according to his or her needs, including the ap- 
proximates relation ( C ) and a type-specific bottom 
element 1. These types should not pervert the inten- 
tion that the formally defined relation C corresponds 
to the meaning of approximates informally defined in 
Section 2. 

In an implementation, the user will provide ap- 
plication dependent functions that can produce low- 
resolution data from high-resolution data. A data defi- 
nition language that supports the specification of these 
functions by the database programmer and use of such 
functions by the DBMS and its query evaluator are im- 
portant implementation details that are future work. 

Rich partially ordered primitive types with many 
different resolutions distinguish our approach from re- 
search concerned mostly with the semantics of null 
values. Of course, many primitives types within a 
given application, such as unique identifiers, booleans, 
and small integers, will have only one useful resolu- 
tion level, plus a null value (I). These types, and the 
functions mentioned above, will be provided by the 
DBMS. 

We illustrate these concepts with two typical exam- 
ples. The first is the canonical example of a partially 
ordered data type of real intervals [23]. The second ex- 
ample is a multi-resolution primitive type whose mem- 
bers are rasters at different resolutions. 

Example 1: A real number can be approximated 
by a real interval that contains it. We say a narrower 
interval is higher-resolution than a wider interval. The 
type of real intervals consists of all intervals, and is 
partially ordered by containment: 

The total elements of this type are the inter- 
vals [a, o] that only contain one real number, e.g. 
@~.[3.14,3.14] = true. The bottom element (I) of this 
domain is [-03, +oo]. 0 

Example 2: Consider a multi-resolution raster im- 
age primitive type with five distinct levels of resolu- 
tion. An application programmer might construct the 
resolution levels such that: 

l level 4 images are 1024 x 1024 24-bit color rasters, 

l level 3 images are 256 x 256 8-bit color rasters, 

l level 2 images are 128 x 128 black-and-white 
rasters, 

l level 1 images are 16 x 16 black-and-white icons, 
and 

l level 0 is a null value for this type. 

The type of raster images consists of all images at these 
five resolution levels, in contrast to Example 1, which 
has an infinite number of resolution levels. The order- 
ing C would be programmed by the user so that: 

xrv E x= Y or X and Y are com- 
puted from the same picture and X has a 
lower resolution level than Y. 

The total elements of this type are the level 4 rasters. 
The level 0 element is the bottom element (I) of this 
type. 0 

Having defined the concept of multi-resolution prim- 
itive types, we can now define the multi-resolution tu- 
ple, that is constructed from user-defined and built-in 
MR primitive types. To specify a tuple-type, the user 
merely specifies a sequence of types; the cross-product 
of these types is the tuple-type. Because tuples are an 
inherent and basic type supported by the database, 
the user does not have to specify any of the operations 
required by a primitive type to define a tuple-type. 
However, we give definitions of some of these opera- 
tions here, in order to define a complete data model. 

Definition 1: For a tuple-type 7 constructed from 
a sequence of N primitive types [7c, 71, . . . . IN-i], 

l Given two tuples x and y in 7, 
xlzy E (Vc: o<c A c<N : x[c]Ey[c]) 

l The bottom element (I) of 7 is the sequence of 
the bottom elements from each component type 
of the tuple-type. 

l E.x E (Vc: 0 5 c A c < N : tot.(x[c])) 0 

Notice that tuples are partially ordered according to 
the resolution of their constituents. 
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4 Multi-Resolution Sets 

The relational data model is built from primitive data 
types, tuples, and sets of tuples, or relations. Con- 
structing information content-based partial orders of 
primitive types and tuples is straightforward, as we 
have seen, and has been proposed in various forms 
even though it is not common in practice. Some sim- 
ilar means of constructing a multi-resolution partial 
order of sets (or relations) is required because sets 
are essential to most data models, including the re- 
lational. Furthermore, sets with many members are 
large, and hence expensive. This is a surprisingly in- 
teresting problem [2, 3, 5, 6, 111. 

An approach to approximating a set of total data 
elements from a partially ordered set has been sug- 
gested in [2], where the authors have introduced the 
sandwich concept. A sandwich describes a set B of to- 
tal elements by “sandwiching” them between two sets. 
These are a consis2ent sel, that contains tuples guar- 
anteed to approximate (in the partial order of tuples) 
some tuple in B, and a complete set, each tuple of 
which is guaranteed to be approximated by some tu- 
ple in B. If these sets are restricted to total elements, 
as in [5, 61, then they are simply a subset and a su- 
perset of B, respectively. For instance, the set {Alice, 
Bob, Carla} could be approximated by the consistent 
set {Alice, Bob} and the complete set {Alice, Bob, 
Carla, Dan, Jo}. 

This idea was used in [2] to construct a consistent 
semantics for complex objects [l] and to present a very 
expressive approximate query system. In contrast, this 
idea was used in [5] t o construct a query system that 
exhibits progressive refinement, which is more in the 
spirit of this paper. 

4.1 The Sandbag Scheme 

Because the sandwich construct cannot capture in- 
formation about cardinality, we extend the sandwich 
to a new partial set construct, called the sandbag. 
(Throughout this paper, the capital letters P, Q, S, 
and T stand for sandbags, the capital letters B and 
C stand for sets of total elements, and the calligraphic 
letters V and 7 stand for domains or types of elements 
that are partially ordered and have a bottom element.) 
For instance, consider the set B = {1.1,3.14,5.0}. The 
fact that B has three members cannot be represented 
by a sandwich. A related problem is that the sand- 
wiching sets are restricted to co-chains in the partial 
order of the set’s elements, so that even if cardinal- 
ity could be captured, one could not represent the 
facts that B contains three elements, two of them are 
greater than 2.5, and one of them is 3.14. 

The sandbag can represent these facts. The basic 
idea of the sandbag is to approximate a set B of total 

elements by using partial data elements. Each par- 
tial data element d E 2> is mapped into a range that 
provides lower and upper bounds on the number of el- 
ements in B that are approximated by d. We call the 
number of total elements in some set approximated by 
d the number above d. To formalize this concept we 
define the following: 

Definition 2: Let 2) be a partially ordered data do 
main, B C 2> be a set of total elements, and d E D be 
any data element. The number of total elements above 
the element din the set B is denoted by numa B.d, and -. 
defined by: 

numa B.d = -* I{zldG+ A xE B}I 0 

To illustrate this, consider B defined above, that 
can be considered a shorthand for the set of total el- 
ements from the partially ordered domain of real in- 
tervals (Example 1) {[l.l,l.l], [3.14,3.14], [5.0,5.0]}. 
The number of elements above the partial data ele- 
ment d = [2.5,6.0] is 2 (m.B.d = 2). A sandbag 
describing B might provide a lower bound for d of 1 
and an upper bound of 3. This is consistent with B, 
but is not the most precise consistent bounding inter- 
val possible, that would of course be [2,2]. The capac- 
ity for imprecision is essential to the sandbag. Before 
presenting additional examples, we formally define the 
concept of a sandbag. 

Definition 3: Let N’ be the set of naturals (N) plus 
infinity, NU{co}, and let D be a partially ordered data 
domain. A sandbag S is two functions, denoted m.S 
and z.S. 

l m.S.d : 2) ++ N’, a lower bound on the number 
of total elements in a set consistent with S that 
are above d. 

l E.S.d : V ++ N’, an upper bound on the num- 
ber of total elements in a set consistent with S 
that are above d. 0 

We now present a definition that formalizes the con- 
cept that a sandbag is consistent with, (or approxi- 
mates) a set. 

Definition 4: Let V be a partially ordered data 
domain, and B c 2> a set of total elements. We say 
that a sandbag S is consistent with a set B, denoted 
sbcons S.B, when: -* 

(Vd:dED: m.S.d < numa.B.d 
A m.S.d > numa.B.d) 0 
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Figure 1: A Sandbag of Magazine Cover Rasters. 

416 
Figure 2: A Sandbag of Facts About a Set of Cars. 

4.2 Using the Sandbag to Approximate Sets 

The sandbag construct can usefully approximate sets 
of diverse types. For instance, it can represent a set 
of raster images of different resolutions. Raster im- 
ages representing the covers of a weekly magazine for 
a year could be approximated by a sandbag that indi- 
cates there are exactly 52 images in the set, 4 of them 
(A, B, C, and D), are available at full resolution, 3 
(x, y, and z) are available at some lower resolution, 
and no others are mentioned. This can be represented 
diagrammatically, as in Figure 1. 

In this style of diagrammatic representation of a 
sandbag, a node represents an element of the multi- 
resolution type over which the sandbag is defined. An 
arrow indicates the approximation relationship (an ar- 
row from p to q indicates p E q). The small numbers to 
the left and right of a node indicate the & and naxa 
value of that node, respectively. The height of a node 
in the diagram loosely corresponds to its resolution. 

The sandbag can represent incomplete information 
in the form of constraints expressed via a partial order. 
For example, suppose it is known that a car rental 
company has between 4 and 6 cars ready for rental, 
2 to 4 of them are sports cars of unspecified color, at 
most 2 are Corvettes, at least 1 is a blue Ferrari, and 
exactly 1 is a red Corvette. This can be represented 
by a sandbag, and is depicted in Figure 2. 

Note that in this example we are using the par- 
tial ordering of tuples, and assuming partial orders for 
both the ‘color’ type and the ‘make’ type. ‘color’ and 

‘make’ have a bottom element, and ‘make’ is assumed 
to have at least one intermediate resolution, of ‘car 
style’, of which ‘sport’ is an example. Thus, ‘sport’ & 
‘Corvette’. 

One of the most interesting uses of a sandbag is 
to construct compact, imprecise representations of an 
ordered set. For example, consider a relation of bank 
accounts. If integer intervals are a primitive, the sand- 
bag could represent a conglomeration of facts such as: 

(a) At most five and at least four accounts be- 
tween account #100 through #112 have a balance 
in the range $60,000 to $100,000. 

(b) Account #107 has exactly $43,737. 

(c) Account #lOS has between $40,000 and 
$49,000. 

(d) Accounts #50 through #500 have exactly 100 
accounts with less than $10,000. 

(e) Accounts #50 through #500 have at most 200 
and at least 150 accounts with more than $50,000. 

These facts are depicted in Figure 3, wherein a partial 
data element is represented as a rectangle labeled near 
its lower left corner. The mina and maxa values of these 
partial elements are to the left and right of the label, 
respectively. 

The mina and maxa functions enable queries on the 
sandbag to obtain interesting information. The pre- 
cision in the results will depend on the quality of the 
facts from which it is constructed. For instance, given 
the facts above: 

l A selection of accounts having between $40,000 
and $45,000 will definitely include account #lOS 
(m applied to #lOS will produce l), but cannot 
exclude #107 ( maxa applied to #107 will produce 
1, and mina will produce 0). 

l The number of accounts in the range #100 to 
#200 with less than $8,000 is at most 100 (x 

4a5 
l5oe 200 

e43.737 
lb,SU 

17 

d 100 100 
50 100 log* 112 500 

Account Number 

%1GQ.ooo 

BhllW 

$50.000 

SO 

Figure 3: A Sandbag Approximating a Bank Account. 
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is loo), and we cannot be sure that there are any 
such accounts (& is 0). 

Information such as that depicted in Figure 3 can be 
combined with statistical sampling. As more samples 
are added to a sandbag, it becomes better and better 
defined. The space required by the sandbag depends 
on the quantity of such information that it contains as 
well as its implementation. 

The sandbag can represent the fact that a tuple I 
is a maybe tuple [4, 111 in a relation, if a.x = 0 and 
m.x = 1. The maybe tuple is closely related to the 
sandwich and the I-table [6]. Both provide a means of 
stating that the tuples in a relation cannot be excluded 
but are not known to be in the set. The sandbag can 
model these constructs in a straightforward manner 
without any particular use of an underlying partial or- 
der. Similarly, “normal” relations and sets consisting 
of only total elements, such as are used in traditional 
relational databases, are trivially modeled. 

Thus, the sandbag can represent approximations of 
at least five distinct kinds of sets: 

l sets of objects at various resolutions, 

l incompletely specified sets, 

l sets of points in continuous spaces, 

l statistically sampled sets, and 

l sets of normal tuples and maybe tuples. 

As far as we know, this flexibility is not offered by any 
other representation of incomplete information about 
a set, nor is it systematically available in any proposed 
data model [l-13]. If the efficiency and convenience of 
the sandbag can match its expressiveness, it may be a 
useful part of multi-resolution databases. The sandbag 
construct is a tradeoff between flexibility and ease of 
implementation that leans towards flexibility. 

4.3 A Partial Order of Sandbags 

In this subsection we develop the machinery that al- 
lows sandbags to be general multi-resolution types. 
Fundamental to this is the notion that sandbags, like 
primitives types and tuples, are partially ordered by 
the amount of information they provide about the sets 
that they approximate. The tighter the bounds pro- 
vided by a sandbag, the more informative it is. A 
sandbag P approximates a sandbag Q if the bounds 
provided by mina and maxa on Q are at least as tight 
as and consistent with those of P. 

Definition 5: Let V be a partially ordered data 
domain. The approximates relation c on sandbags is 
defined by: 

P&Q z (Vx : x E ‘D : m.P.x < mina.Q.x -- 
A e.P.x > maxa.Q.x) EI -- 

The relation C defined as above is in fact a partial 
order of sandbags, because it is reflexive, transitive, 
and antisymmetric. 

Sandbags have a bottom element and a notion of 
totality, just as did primitives and tuples. If for all 
x the lower limit -.S.x = 0 and the upper limit 
maxa S.x = 00, then S provides no information what- 
soever. This is the null value of sandbags in our model. 
Since a sandbag S is a pair of functions m.S and 
m.S, we formally define a sandbag by defining the 
value of m.S and w.S on every element of 2). 

Definition 6: The bottom element of the sandbag 
type is denoted Ise and defined by: 

0 mina.l,,.x = 0 
l maxa.l,,.x = 00 

for every element x in a partially ordered data domain 
2). 0 

The bottom-most element of sandbags under the 
partial order & is in fact I,,. 

Definition 7: Let 2, be a partially ordered data 
domain. A sandbag S is total, denoted tons, if and 
only if: 

(Vx : 2 E v : m.s.x = m.S.x) 0 

Total sandbags are in fact the top-most elements 
of the type of sandbags. If a sandbag is total, there 
is at most one set consistent with it, and the mem- 
bers of that set can be exactly determined from the 
sandbag. Between these two extremes of zero and to 
tal information, a sandbag provides varying degrees 
of information about a set it approximates. Alterna- 
tively, we think of a sandbag as limiting the num- 
ber of sets consistent with it. The more informa- 
tive a sandbag is, the fewer sets are consistent with 
it. All sets are consistent with I,, (i.e. (VB : 

B is a set of total elements from 2, : sbcons.l,,.B)). 

Unfortunately, a sandbag need not be consistent 
with any set, because the values of mina and maxa 
can easily contradict each other. 

Definition 8: Let S be a sandbag and B be 
a set of total elements. We say that S is exter- 
nally consistent, denoted by extcons.S, if and only if: 
(3 B : : sbc0ns.S.B) 0 

As might be expected, we are exclusively concerned 
with externally consistent sandbags, because we are 
only interested in using sandbags to inform us about 
actual sets. 
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The sandbag concept was inspired by [2], in which 
the authors develop the sandwich representation of 
partial sets and a meaningful partial order of that 
representation. The sandbag concept extends that 
work because it is a more expressive partially ordered 
set construct. Thus, sandbags may be very useful in 
data models based on complex objects or higher-order 
relations. Because we are primarily concerned with 
improving performance by retrieving approximations 
and thus saving I/O costs, we develop a flat relational 
model for the sake of simplicity rather than a higher- 
order model. 

5 A Multi-Resolution Relational 
Algebra 

A relation is a set of tuples. We call a sandbag over a 
multi-resolution tuple-type a multi-resolution relation. 
Following tradition, we construct a relational-like al- 
gebra by defining analogs for each relational operators 
(n u, -7 x, 6, ?T, and W) that take sandbags as argu- 
ments and produce a sandbag as a result. We define 
each of these operators so as to produce the best re- 
sults possible that are guaranteed to be consistent with 
the arguments. It is therefore not surprising that each 
of these MR operators enjoys properties essential to a 
partial data model: 

Property 1 (Soundness): A binary sandbag op- 
erator setop’ is said to be sound with respect to a set 
operator setop if and only if for all sandbags P and Q 
and sets B and C: 

sbc0ns.P.B A sbcons.Q.C 

* sbcons.(P setop’ Q).(B setop C) 0 

Intuitively, an MR operator is sound if the result of 
applying it to approximations to total sets is always 
consistent with the result of the standard relational 
operator applied to the total sets. 

Property 2 (Completeness): A binary sandbag 
operator setop’ is said to be complete with respect to 
a set operator setop if and only if for externally con- 
sistent sandbags P and Q and sets B and C: 

(VP,Q,z:: 
(3B, C : sbc0ns.P.B A sbc0ns.Q.C : 

=.(B setop C).z = m.(P setop’ Q).t) 
A (3B, C : sbc0ns.P.B A sbc0ns.Q.C : 

m.(B setop C).z = m.(P setop’ Q).r)) 0 

Intuitively, an MR operator is complete if it provides 
the most informative result that is guaranteed to be 
consistent. 

An operator has the completeness property’ if for 
each partial data element there exist some sets consis- 
tent with its arguments for which the bounds provided 
are the correct puma value. Two further useful prop- 
erties follow from Soundness and Completeness: 

Property 3 (Monotonicity): A binary sandbag 
operator setop’ is monotonic if and only if: 

PEQ A S&T 3 Psetop’S&Qsetop’T 0 

Intuitively, an MR operator is monotonic if the results 
of the operator never get worse (contain less informa- 
tion) when applied to arguments that are better (con- 
tain more information, or are higher-resolution). 

Property 4 (Totality Preservation): A binary 
sandbag operator setop’ is totality preserving if and 
only if: 

&J.P A m.Q + &t.(P setop’ Q) 0 

Intuitively, an MR operator preserves totality if it pro- 
duces a total result when applied to total arguments. 

These properties are defined analogously for unary 
operators, such as projection of a list L (AL) and se- 
lection by a predicate 0 (00). 

5.1 Relational Operators on Sandbags 

In order to extend the relational algebra to a multi- 
resolution relational algebra as naturally as possible 
we define sandbag operators analogous to each re- 
lational operator. We denote the sandbag operator 
analogous to a relational operator setop by priming it, 
i.e. setop’ . Thus, the MR relational operators corre- 
sponding to n, U, -, x, Q, ‘IT, and W will be denoted by 
f-f, u’, -‘, x’, u’, P’, and W’, respectively. Intuitively, 
Properties l-4 will hold for sandbag operators only if 
we define them to produce the most informative sand- 
bag guaranteed to be consistent with their arguments. 

Definition 9: For any binary set operator setop, a 
binary sandbag operator setop’ can be generated by: 

l &.(P setop’ Q).z = 
(min B, C: sbc0ns.P.B A sbc0ns.Q.C : 

m.(B setop C).z) 
l m.(P setop’ Q).z = 

(max B, C: sbc0ns.P.B A sbc0ns.Q.C : 
m.(B setop C).z) 0 

A similar but simpler definition suffices for unary op- 
erators. 

‘Maier[4] provides a terminology for partial data that de- 
fines the terms faithful, precise, adequate, and Testricted. In the 
language of [4], a sound operator is faithful, and a complete op- 
erator is adequate and restricted. Property 2 does not imply 
precision in that terminology. 
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Definition 10: For any unary set operator setop, a 
unary sandbag operator setop’ can be generated by: 

0 mina.(setop’.P).z = 

(min B : sbcons.P.B : numa.(setop.B).x) 
0 maxa.(setop’.P).z = 

(max B : sbcons.P.B : numa.(setop.B).x) •I 

Any sandbag operator generated from Definition 9 
or Definition 10 is well-defined if its arguments are 
externally consistent, so that the sets quantified over 
by min and max are non-empty. 

Theorem 1: Any sandbag operator setop’ gen- 
erated from a set operator setop with either Defini- 
tion 9 or Definition 10 has the Properties of Soundness, 
Completeness, Monotonicity, and Totality Preserva- 
tion. 0 

In particular 17, u’, -‘, x’, u’, a’, and W’ have the 
properties of Soundness, Completeness, Monotonicity 
and Totality Preservation. 

Although these definitions are not constructive, nev- 
ertheless there exist reasonably efficient implementa- 
tions of these operations that sacrifice the Complete- 
ness Property to gain speed [22]. Without Complete- 
ness, the bounds provided by m& and maxa are not 
guaranteed to be the best that can be derived; how- 
ever, they are guaranteed to be consistent. 

5.2 The Multi-resolution data model 

The MR relational operators (n’, U’, -I, x’, u’, A’, 
and w’) form a query language over MR relations anal- 
ogous to the relational algebra. We have defined these 
operations so that they are strictly more general than 
and completely consistent with the relational opera- 
tors. This fact is expressed by Theorem 1, that is used 
to show that these operators on sandbags form a lan- 
guage that is a generalization of the relational algebra. 
We call this the multi-resolution relational algebra, al- 
though the algebraic laws of the relational algebra hold 
only in modified forms for our language. 

Consider a relational database Y consisting of 
N relations Y = {Ro, RI, Rz,...RN-1). A corre- 
sponding multi-resolution relational database Z con- 
sists of N sandbags Z = {So, Si, Sz, . ..SN-1). 
We say an MR relational database Z approx- 
imates a relational database Y if and only if 
(V i : i 2 0 A i < N : sbcons.&.&). Note that the 
quality of Z is not specified; it may contain all of the 
information of Y (i.e., be total) or very little. A rela- 
tional expression E over Y is a tree of relational oper- 
ators that uses relations from Y. The corresponding 
multi-resolution relational algebra expression, denoted 
E’, is an operator-for-operator substitution of sandbag 
operators for relational operators and sandbags from 

Z for relations from Y. The result of a query expres- 
sion on an MR database is defined to be the result of 
applying the MR operators to the MR relations. 

We extend the definitions of Soundness, Complete- 
ness, Monotonicity and Totality Preservation for in- 
dividual operators to analogous properties on multi- 
resolution query languages, such as the MR relational 
algebra. We denote the result of applying an expres- 
sion E to a database Y by E.Y. Let Z be an MR 
database approximating a relational database Y. For 
a query language we define the following four Query 
Language (QL) Properties: 

Property 5 (QL Soundness): A query language 
is sound if and only if sbcons.(E’.Z).(E.Y), for every 
expression E. 0 

Property 6 (QL Completeness): A query lan- 
guage is complete if and only for every expression E, 
E’ on Z always provide the tightest bounds consistent 
with Y. 

(Vx :: (3Y : Z approximates Y : 
m.(E.Y).x = m.(E’.Z).x) 

A (3Y : Z approximates Y : 
m.(E.Y).x = m.(E’.Z).x)) 0 

Property 7 (QL Monotonicity): A query lan- 
guage is monotonic if and only if any improvements 
in the information of the sandbags of Z do not 
make E’ worse, for any query E. If Z and X are 
MR databases, Z = {Sc,Si,Sz ,... SN-~} and X = 
{PO, 9, p2, . ..pN-1). 

(Vi : i>O A i<N : S;cPi) j E’.Z&E’.X 0 

Property 8 (QL Totality Preservation): A 
query language is totality preserving if and only if every 
expression is total (t&(E’.Z)) when every sandbag in 
2 is total. Cl 

Theorem 2: The multi-resolution relational alge- 
bra has the Query Language Properties of Soundness, 
Monotonicity, and Totality Preservation, but not Com- 
pleteness. 0 

Unfortunately, the QL Completeness Property does 
not hold for the multi-resolution relational algebra. A 
counter-example to completeness can be constructed 
from queries that mention the same relation more than 
once. If P is a non-total sandbag approximating a 
relation R in a database, the MR query expression 
P -’ P yields a non-total sandbag as a result that is 
consistent with non-empty sets. 

This proves the MR query language is incomplete, 
and is an example of an algebraic law that fails to hold 
in unmodified form for the MR query language. 
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Incompleteness is a disadvantage that appears to be 
a fundamental problem of approaches that do not pre- 
serve identity, such as [6]. [4, 7, 121 discuss this prob- 
lem. We choose to tolerate this disadvantage, for two 
reasons. Most importantly, any implementation based 
on our approach to constructing sandbags described 
in [22] must immediately sacrifice the Completeness 
Property (Property 2), because calculating the opti- 
mal mina and maxa values is NP-hard for that par- 
ticular approach. Secondly, we suspect that this in- 
completeness has little impact on our overall purpose 
of supporting the resolution/performance tradeoff. A 
significant difference between our approach and most 
previous work on partial data models is our motiva- 
tion of high performance rather than clean semantics 
for incomplete data. 

5.3 Multi-resolution Queries and Progressive 
Refinement 

A query in the multi-resolution relational algebra is 
essentially a relational query. This has the advantage 
that queries are easily understood, and the choice of 
response resolution is orthogonal to the formulation of 
the query. 

This data model admits the concept of progressive 
refinement that is not available in the standard re- 
lational model. In both models, a query has a sin- 
gle, well-defined, result. However, in the MR model 
this query result has many lower-resolution approxi- 
mations, that we call responses. We define P to be a 
response to a query E’ on an MR database 2 if and 
only if P & E’.Z. Both the notions of response and re- 
sult are mathematically defined based on the MR data 
model. 

It is the low-resolution responses to queries that 
are the focus of our work, rather than the highest- 
resolution results, because our fundamental goal is 
to improve performance by allowing resolution of 
database query answers to be traded for speed. Fur- 
thermore, the idea of progressive refinement can now 
be made precise. A DBMS progressively rejnes the 
answer to some query when it produces a chain of re- 
sponses, each of which approximates the result of the 
query and improves upon the last response. Because 
the responses to a query are sandbags and sandbags 
are partially ordered, we can depict the responses to a 
query diagrammatically, as in Figure 4. 

We have just begun research into the implementa- 
tion of the MR data model (See Section 6.) For the 
sake of explanation, we now present an example of pro- 
gressive refinement as if a working MR DBMS exists. 

Example 3: Consider an MR database 2 consisting 
of a relation r of the scheme r(id,pic), where id is of 
type integer (not a multi-resolution type) and pit is 

The Total Elements 

The Total Answer 

A low-res answer 

Figure 4: Progressive refinement of multi-resolution 
queries. 

the raster type describe in Example 2. Consider the 
query Q = ~id~10cAid<150.r, and suppose 10 tuples of 
r satisfy this selection predicate. 

Suppose that rasters are stored in the DBMS in the 
following manner (either by the database programmers 
design or by the choice of the MR DBMS). Eight of the 
10 scenes depicted by Q.2 have level 2 approximations 
resident in main memory, all images in 2 have a level 
3 raster approximation stored on magnetic disk, and 
the total rasters (level 4) are stored on (relatively slow) 
CD-ROMs. 

In response to Q, a sandbag S containing 8 level 2 
rasters will be delivered to the user (perhaps a pro 
gram that draws on a screen) in milliseconds. The 
MR DBMS then retrieves the 10 level 3 rasters from 
magnetic disk, and places them, one at a time, in S. 
In terms of the partial order of sandbags, S CQ.Z 
and S is being progressively refined upward. After 
about 5 seconds the retrieval of level 4 rasters is be- 
gun. Perhaps 60 seconds later the sandbag S is total, 
and S = Q.Z. 0 

The query in Example 3 may be terminated after 
a specific resolution is materialized to obtain a low- 
resolution response relatively quickly. (More powerful 
means of specifying response resolution in the query 
are the subject of future work.) 

In this example, the full expressive power of the 
sandbag to represent cardinalities is not being em- 
ployed. The sandbag S serves as a container of multi- 
resolution objects. The sandbag will often be used in 
this less than fully general role. Since id is not an MR 
type, Example 3 does not utilize the MR algebra in 
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an interesting manner, although it demonstrates what 
we consider the most important immediate use of an 
MR DBMS. Example 4 partially illustrates a multi- 
resolution join. 

Example 4: Consider two relations that represent 
the positions of objects (r(X, Y, A),p(X, Y, B)). In 
this schema the attributes X and Y are of the real 
interval type defined in Example 1, and represent po- 
sition on a grid. A and B are identifiers. The natural 
join query Q = T w p calculates the objects in T and 
p that share positions. Let the relations P and p be 
represented by the sandbags R’ and P’. Let the sand- 
bag S be the response to the MR query R’ W’ PI. The 
schema of S is (X, Y, A, B). 

Let us suppose that sandbags R’ and P’ are refined 
over time, either as their tuples are read or as ob- 
jects report their positions with increasing precision. 
First, suppose it is known only that ]r] = 100 and 
ip] = 100. Then z.S.1 is 10,000. Suppose then 
that the exact position of some objects a E p and 
b E T are discovered. If these objects are in the same 
position, then h.S.([- 00, +oo], [-oo, +oo], a, b) = 
1. If it is then determined that there are no 
objects with an X position greater than 100.0, 
maxa.S.([lOO,+oo], [-co,+c~],I,I) = 0. As more 
precise information is added to R’ and P’, the mina 
and maxa values of S get closer, until S is total. 0 

Fundamentally little can be inferred about a join 
until the join attributes of its arguments are rela- 
tively well-defined. This example suggests a computa- 
tional expense to implement the sandbag operations, 
undoubtably limiting their usefulness. However, we 
believe that by sacrificing completeness the sandbag 
can be implemented efficiently enough to be practical 
for some applications, even when used as in Example 4. 

6 Conclusions and Future Work 

This paper introduces the sandbag, an expressive con- 
struct for modeling imprecise and uncertain informa- 
tion about a set. Based on the sandbag, we develop 
a multi-resolution data model that forms a basis for 
building a useful database management system that 
offers the performance advantages of multi-resolution. 
The data model provides a sound theoretical frame- 
work and makes precise the notions of multi-resolution 
and progressive refinement, that we have motivated. 
We hope that the similarity to the relational data 
model leverages the technology and widespread under- 
standing of that model, both for the reader’s under- 
standing and to construct an efficient implementation. 
However, the idea of multi-resolution and the sandbag 
construct are applicable to other data models, such as 
object-oriented ones. 

We are in the process of developing efficient algo- 
rithms to implement the sandbag and the sandbag op- 
erations [22]. At least two other goals must be met if 
a useful multi-resolution database management system 
is to be constructed. 

Foremost, a query language extension must be de- 
veloped that allows the user to conveniently specify 
the desired resolution of the response to a query. We 
plan to extend the MR relational algebra by allowing 
queries to be annotated with resolution/performance 
constraints. 

Secondly, special algorithms, data structures, and 
storage structures that exploit the lower-bandwidth 
requirements of low-resolution data should be utilized 
systematically. These include a cache storage struc- 
ture that directly utilizes the size relationship between 
resolution levels to manage storage of differing speed 
to provide good performance across the entire spec- 
trum of resolutions. The quad tree representation of 
raster images is an inherently multi-resolution data 
structure. Structures such as a bit-striped transposed 
representation of sets of ordered values [31, 321 may al- 
low multi-resolution to be applied to common, built-in 
types more efficiently. 
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