A Multi-Resolution Relational Data Model*

Robert L. Read
Donald S. Fussell
Avi Silberschatz

Department of Computer Sciences
University of Texas
Austin, TX 78712-1188
Email: {read, fussell, avi}@cs.utexas.edu

Abstract

The use of data at different levels of information content is essential to the performance of multimedia, scientific, and other large databases because it can significantly decrease I/O and communication costs. The performance advantages of such a multi-resolution scheme can only be fully exploited by a data model that supports the convenient retrieval of data at different levels of information content. In this paper we extend the relational data model to support multi-resolution data retrieval. In particular, we introduce a new partial set construct, called the sandbag, that can support multi-resolution for the types of data used in a wide variety of next-generation database applications, as well as traditional applications. We extend the relational algebra operators to analogous operators on sandbags. The resulting extension of the relational algebra is sound and forms a foundation for future database management systems that support these types of next-generation applications.

1 Introduction

Manipulating very large data objects such as images, sounds and scientific data incurs large I/O and communication costs. A relatively unexplored approach to decreasing these costs is to retrieve and use a smaller version of an object rather than the complete object when such an approach is feasible. For some types of data, such as representations of continuous functions, (e.g., images and sounds), we can compute a smaller version of the data, or an approximation, that retains the character of the data and is satisfactory for many purposes. An approximation provides less information than the data that is its source, but is completely consistent with it. Such an approximation is called partial or incomplete data, similar in principle to the partial data of existing models of incomplete information [1-13]. When an approximation suffices and is significantly smaller than the original, complete data object, retrieving it instead may incur lower costs because fewer bytes are accessed or moved.

For example, consider a multimedia database that contains raster images. A typical high-resolution (1024 x 1024 pixel) full color (24-bit) raster image contains 3 megabytes. In typical current computing environments, such an image is likely to take more than a second to retrieve (perhaps much more). However, a 256 x 256 pixel 8-bit color raster image of the same scene is satisfactory for many purposes. This approximation is 1/48th the size of the original, complete image. The costs of operations on large bodies of data are dominated by throughput limitations rather than overhead, seek time, and propagation delay, so lower resolution images can be retrieved much more rapidly than higher resolution images. The lower resolution pictures will often be useful in their own right or as rapidly appearing previews of the complete pictures. We call a system that can produce approximations as well as complete data a multi-resolution data retrieval system. The term multi-resolution is borrowed from

*This material is based in part upon work supported by the Texas Advanced Technology Program under Grant No. ATP-024, the National Science Foundation under Grant Nos. IRI-9003341 and IRI-9106450, and grants from the IBM and Hewlett-Packard corporations.
graphics, but we apply it to all kinds of data.

Many applications of growing importance [14] manipulate huge quantities of data. These include multimedia databases, voice-mail systems, image processing applications, HDTV, graphics applications such as CAD/CAM, flight simulators and virtual reality systems, geographic [15] and astronomical databases [16], and scientific applications such as seismic processing. A multi-resolution data retrieval system is essential to the performance of these applications. Multi-resolution is a natural approach already used in an ad hoc manner to decrease I/O, storage, and communication costs [17]. The approach presented in this paper is a logical but novel extension of ideas in the fields of graphics [18, 19, 20] and databases to systematically address the needs of these types of next-generation applications.

Database management systems (DBMSs) are commonly used for accounting and record keeping and other “traditional” applications because they provide convenient data storage and retrieval services for these types of data. If DBMSs are to fully address the needs of the growing number of applications that demand multi-resolution, they must be extended to retrieve data at multiple resolutions conveniently. We propose to accomplish this by:

- extending existing data models to give precise meaning to multi-resolution data and queries,
- allowing the user to control the resolution of query results, and
- developing techniques for efficiently implementing this extended model.

This paper describes a formal multi-resolution relational data model that forms a foundation of and a necessary first step towards a practical multi-resolution DBMS. In Section 2 we motivate multi-resolution and show that existing data models and techniques do not suffice to exploit it conveniently. Section 3 presents multi-resolution primitive types and tuples. Section 4 introduces a new construct for representing incomplete information about sets, called the sandbag, and discusses its expressiveness. Section 5 defines operators analogous to the standard relational operators for sandbags. The sandbag and these operators form a multi-resolution data model and an algebra that is a generalization of the relational algebra. Finally, in Section 6 we briefly mention some of the future work that needs to be accomplished in order to usefully implement and exploit this data model.

The proofs of all theorems stated in this paper appear in a technical report [21]. We address the implementation and computational complexity of sandbag operations in [22]. These issues are beyond the scope of this paper and not discussed further here.

2 Why Multi-Resolution

Multi-resolution is the concept of viewing data at different levels of information content. The fields of denotational semantics [13, 23] and information theory [24, 25, 26, 27] provide an intuitive and a formal definition of information content and other concepts that underlie multi-resolution (approximation, consistency, resolution, information-theoretic partial order). We repeat the informal definitions of these concepts here to provide the reader the necessary intuitions.

Data describes the real world. Some data is more descriptive than other data. For instance, the daily list of stock volumes, opening prices and closing prices is more descriptive of market history than averages and indices computed over many stocks, such as the Dow Jones Industrial Average. Similarly, a high quality audio recording is more descriptive of music played than a poor, scratchy recording. The more descriptive data is, the more information it contains. We use the term resolution synonymously with “information content”.

Only by considering the meaning of computer-manipulated data, or the descriptions of the real world we obtain from it, can we define the information-theoretic notion of approximation. A data object X approximates a data object Y if every world described by Y is described by X. The approximates relation is a natural partial order of data that could be called the “goodness” or “precision” of the data. X approximates Y if and only if Y describes the world better than X, and is consistent with X. Intuitively, if Y describes the world, then X is a version of Y that tells us less about the world than does Y, but from which we will not draw any false conclusions. The meaning of data, and hence the notion of approximation, is always application dependent, as is the case with the example of raster images mentioned in the introduction.

We focus on a particular property of approximations that is generally true, though not universally obtained in practice.

If object X approximates object Y and X is lower-resolution than Y, then X requires less space to be represented by a computer than Y.

Accessing a large object requires many accesses to main memory and/or many expensive I/O operations. Our goal is to use the general relationship between approximations and space to improve performance by computing against lower-resolution data when possible. Because the greatest savings in space, and hence
time, are possible when approximating very large objects, our examples and motivating applications tend to emphasize such objects. However, our proposed framework applies to all sizes of objects.

2.1 Multi-Resolution is Demanded

In many applications, accessing low-resolution data is quite adequate. In some cases, the highest-resolution data cannot always be used. For instance, when a raster image has higher resolution than a device it is to be displayed upon, a lower-resolution approximation must be produced. Such a reduction of resolution is done in an ad hoc manner in some graphic and scientific applications. For instance, in databases of images [16, 17], "browse images" are created at low-resolution so that an "overview" of the data is obtained, that allows preliminary examination of the data for quality or interest, and for publication. A similarly "zooming" capability is useful in cartographic applications. The enormous volume of data in astronomy, ecology, meteorology, geology, and geography [15] databanks could be better exploited by database technology that systematically and conveniently supports resolution control. Systematically treating smaller versions of very large data items is a first step towards the difficult problems of terabyte-sized databases of any kind of data, from images to financial data.

There are many applications where retrieving data at complete resolution takes too long, either because of some real-time constraint, or because the user is dissatisfied with performance. This problem can sometimes be addressed by retrieving low-resolution data quickly or before a deadline. The similar idea of imprecise computation has been suggested as an approach to meeting real-time constraints on database queries [5, 6, 28, 29, 30]. A multi-resolution system naturally extends and complements this approach to real-time databases by supporting larger tradeoffs in imprecision for time.

For instance, a technique for displaying images called progressive transmission [20] is to display a low-quality image immediately, so the user may peruse it while the larger, better image is being retrieved via a network. The image is then gradually or abruptly improved, or refined, until it is complete. Two similar ideas are adaptive refinement [18] and progressive refinement [19], that are the incremental computation of the features of a graphic image in order of their visual importance to a viewer. If a data model that supports multi-resolution is available, these ideas can be naturally extended to include the idea of retrieving a series of data objects, each of which is better than the last, until the complete answer is retrieved.

2.2 Existing Technology and Data Models are Insufficient

Existing database technology does not support multi-resolution or progressive refinement conveniently. The database management system should hide the implementation details of multi-resolution data retrieval, presenting resolution transparency to the user without sacrificing the user's ability to obtain specific resolutions. Computed fields and object-oriented approaches allow approximations to primitive data objects to be computed and returned. However, since the relationship between levels of resolution is not part of these data models, a burden is placed on the user to explicitly manage resolution without a unified or systematic framework. For instance, to implement progressive refinement of a query in existing systems, the user must submit a separate query explicitly for each desired improvement. Similarly, to meet some performance constraint, the user needs to guess which resolution will be produced timely. Without a model of multi-resolution, the system cannot dynamically adapt returned resolution to user's constraints. Furthermore, existing systems do not allow systematic approximation of sets, although sets are fundamental to most data models, and large sets with many elements are often manipulated.

A data model and query evaluation system that contains the relationship between data and approximations offers advantages that cannot be obtained by existing systems:

- Resolution of responses can be traded for speed to meet real-time constraints at compile time or at run time, based on the dynamic situation within the database.
- Progressive refinement has a precise meaning and can be provided systematically.
- Sets of values can be systematically approximated.
- The relationship between resolutions can be exploited by special storage structures and algorithms.
3 Multi-resolution Primitive Types and Tuples

In this section we introduce multi-resolution primitive types and multi-resolution tuples. Multi-resolution (MR) primitive types are needed because there are various types of data that we wish to treat at different resolutions that are more conveniently represented as primitive types rather than as tuples or relations. These types include images, sounds, and geometric figures. An MR primitive type T is a user-defined data type consisting of values at various resolutions. All MR primitive types are partially ordered by a user-defined relation \subseteq, and have a bottom element \bot that is \subseteq all elements. The partial order \subseteq corresponds to the \textit{approximates} relation defined informally in Section 2. The highest-resolution elements of a primitive type are called the total elements, designated by the predicate $\text{tot}: T \rightarrow \{\text{true}, \text{false}\}$. (We denote function application by an infix dot. Thus tot applied to x is written $\text{tot}.x$.)

The database programmer defines the MR primitive types according to his or her needs, including the \textit{approximates} relation (\subseteq) and a type-specific bottom element \bot. These types should not pervert the intention that the formally defined relation \subseteq corresponds to the meaning of \textit{approximates} informally defined in Section 2.

In an implementation, the user will provide application dependent functions that can produce low-resolution data from high-resolution data. A data definition language that supports the specification of these functions by the database programmer and use of such functions by the DBMS and its query evaluator are important implementation details that are future work.

Rich partially ordered primitive types with many different resolutions distinguish our approach from research concerned mostly with the semantics of null values. Of course, many primitives types within a given application, such as unique identifiers, booleans, and small integers, will have only one useful resolution level, plus a null value (\bot). These types, and the functions mentioned above, will be provided by the DBMS.

We illustrate these concepts with two typical examples. The first is the canonical example of a partially ordered data type of real intervals [23]. The second example is a multi-resolution primitive type whose members are rasters at different resolutions.

\textbf{Example 1:} A real number can be approximated by a real interval that contains it. We say a narrower interval is higher-resolution than a wider interval. The type of real intervals consists of all intervals, and is partially ordered by containment:

\[[a, b] \subseteq [c, d] \iff a \leq c \land b \geq d \]

The total elements of this type are the intervals $[a, a]$ that only contain one real number, e.g. $\text{tot}([3.14, 3.14]) = \text{true}$. The bottom element ($\bot$) of this domain is $[-\infty, +\infty]$. □

\textbf{Example 2:} Consider a multi-resolution raster image primitive type with five distinct levels of resolution. An application programmer might construct the resolution levels such that:

- level 4 images are 1024×1024 24-bit color rasters,
- level 3 images are 256×256 8-bit color rasters,
- level 2 images are 128×128 black-and-white rasters,
- level 1 images are 16×16 black-and-white icons, and
- level 0 is a null value for this type.

The type of raster images consists of all images at these five resolution levels, in contrast to Example 1, which has an infinite number of resolution levels. The ordering \subseteq would be programmed by the user so that:

\[X \subseteq Y \iff X = Y \text{ or } X \text{ and } Y \text{ are computed from the same picture and } X \text{ has a lower resolution level than } Y. \]

The total elements of this type are the level 4 rasters. The level 0 element is the bottom element (\bot) of this type. □

Having defined the concept of multi-resolution primitive types, we can now define the multi-resolution tuple, that is constructed from user-defined and built-in MR primitive types. To specify a tuple-type, the user merely specifies a sequence of types; the cross-product of these types is the tuple-type. Because tuples are an inherent and basic type supported by the database, the user does not have to specify any of the operations required by a primitive type to define a tuple-type. However, we give definitions of some of these operations here, in order to define a complete data model.

\textbf{Definition 1:} For a tuple-type T constructed from a sequence of N primitive types $[T_0, T_1, \ldots, T_{N-1}]$,\n
- Given two tuples x and y in T,
 \[x \subseteq y \iff (\forall c : 0 \leq c < N : x[c] \subseteq y[c]) \]
- The bottom element (\bot) of T is the sequence of the bottom elements from each component type of the tuple-type.

\[\text{tot}.x \iff (\forall c : 0 \leq c < N : \text{tot}(x[c])) \]

Notice that tuples are partially ordered according to the resolution of their constituents.
4 Multi-Resolution Sets

The relational data model is built from primitive data
types, tuples, and sets of tuples, or relations. Con-
structing information content-based partial orders of
primitive types and tuples is straightforward, as we
have seen, and has been proposed in various forms
even though it is not common in practice. Some sim-
ilar means of constructing a multi-resolution partial
order of sets (or relations) is required because sets
are essential to most data models, including the re-
lation. Furthermore, sets with many members are
large, and hence expensive. This is a surprisingly in-
teresting problem [2, 3, 5, 6, 11].

An approach to approximating a set of total data
elements from a partially ordered set has been sug-
gested in [2], where the authors have introduced the
sandwich concept. A sandwich describes a set B of
total elements by "sandwiching" them between two sets.
These are a consistent set, that contains tuples guar-
anteed to approximate (in the partial order of tuples)
some tuple in B, and a complete set, each tuple of
which is guaranteed to be approximated by some tu-
ples in B. If these sets are restricted to total elements,
as in [5, 6], then they are simply a subset and a su-
perset of B, respectively. For instance, the set {Alice,
Bob, Carla} could be approximated by the consistent
set {Alice, Bob} and the complete set {Alice, Bob,
Carla, Dan, Jo}.

This idea was used in [2] to construct a consistent
semantics for complex objects [1] and to present a very
expressive approximate query system. In contrast, this
idea was used in [5] to construct a query system that
exhibits progressive refinement, which is in the spirit
of this paper.

4.1 The Sandbag Scheme

Because the sandwich construct cannot capture in-
formation about cardinality, we extend the sandwich to
a new partial set construct, called the sandbag.
(Throughout this paper, the capital letters P, Q, S,
and T stand for sandbags, the capital letters B and
C stand for sets of total elements, and the calligraphic
letters D and T stand for domains or types of elements
that are partially ordered and have a bottom element.)
For instance, consider the set B = \{1.1, 3.14, 5.0\}. The
fact that B has three members cannot be represented by
a sandwich. A related problem is that the sand-
wiching sets are restricted to co-chains in the partial
order of the set's elements, so that even if cardinal-
ity could be captured, one could not represent the
facts that B contains three elements, two of them are
greater than 2.5, and one of them is 3.14.

The sandbag can represent these facts. The basic
idea of the sandbag is to approximate a set B of total
elements by using partial data elements. Each par-
tial data element d ∈ D is mapped into a range that
provides lower and upper bounds on the number of el-
ements in B that are approximated by d. We call the
number of total elements in some set approximated by
d the number above d. To formalize this concept we
define the following:

Definition 2: Let D be a partially ordered data do-
main, B ⊆ D be a set of total elements, and d ∈ D be
any data element. The number of total elements above
the element d in the set B is denoted by numa.B.d, and
defined by:

\[
\text{numa}.B.d = |\{x | d \sqcap x \land x \in B\}|
\]

To illustrate this, consider B defined above, that
be a shorthand for the set of total el-
ments from the partially ordered domain of real in-
tervals (Example 1) \{1.1, 1.1, 3.14, 3.14, 5.0, 5.0\}. The
number of elements above the partial data element
d = [2.5, 6.0] is 2 (numa.B.d = 2). A sandbag
describing B might provide a lower bound for d of 1
and an upper bound of 3. This is consistent with B,
but is not the most precise consistent bounding inter-
val possible, that would of course be [2.2]. The capa-
city for imprecision is essential to the sandbag. Before
presenting additional examples, we formally define the
concept of a sandbag.

Definition 3: Let N be the set of naturals (N) plus
infinity, N∪{∞}, and let D be a partially ordered data
domain. A sandbag S is two functions, denoted mina.S
and maxa.S.

- \text{mina}.S.d : D → N', a lower bound on the number
 of total elements in a set consistent with S that
 are above d.

- \text{maxa}.S.d : D → N', an upper bound on the num-
 ber of total elements in a set consistent with S
 that are above d.

We now present a definition that formalizes the con-
cept that a sandbag is consistent with, (or approxi-
mates) a set.

Definition 4: Let D be a partially ordered data do-
main, and B ⊆ D a set of total elements. We say
that a sandbag S is consistent with a set B, denoted
sbcos.S.B, when:

(∀ d ∈ D : \text{mina}.S.d ≤ numa.B.d
\land \text{maxa}.S.d ≥ numa.B.d)
4.2 Using the Sandbag to Approximate Sets

The sandbag construct can usefully approximate sets of diverse types. For instance, it can represent a set of raster images of different resolutions. Raster images representing the covers of a weekly magazine for a year could be approximated by a sandbag that indicates there are exactly 52 images in the set, 4 of them (A, B, C, and D), are available at full resolution, 3 (x, y, and z) are available at some lower resolution, and no others are mentioned. This can be represented diagrammatically, as in Figure 1.

In this style of diagrammatic representation of a sandbag, a node represents an element of the multi-resolution type over which the sandbag is defined. An arrow indicates the approximation relationship (an arrow from p to q indicates p ⊆ q). The small numbers to the left and right of a node indicate the \text{mina} and \text{maxa} value of that node, respectively. The height of a node in the diagram loosely corresponds to its resolution.

The \text{mina} and \text{maxa} functions enable querying on the sandbag to obtain interesting information. The precision in the results will depend on the quality of the facts from which it is constructed. For instance, given the facts above:

- A selection of accounts having between $40,000 and $45,000 will definitely include account #108 (\text{mina} applied to #108 will produce 1), but cannot exclude #107 (\text{maxa} applied to #107 will produce 1, and \text{mina} will produce 0).
- The number of accounts in the range #100 to #200 with less than $8,000 is at most 100 (\text{maxa})

These facts are depicted in Figure 3, wherein a partial data element is represented as a rectangle labeled near its lower left corner. The \text{mina} and \text{maxa} values of these partial elements are to the left and right of the label, respectively.

The \text{mina} and \text{maxa} functions enable querying on the sandbag to obtain interesting information. The precision in the results will depend on the quality of the facts from which it is constructed. For instance, given the facts above:

- A selection of accounts having between $40,000 and $45,000 will definitely include account #108 (\text{mina} applied to #108 will produce 1), but cannot exclude #107 (\text{maxa} applied to #107 will produce 1, and \text{mina} will produce 0).
- The number of accounts in the range #100 to #200 with less than $8,000 is at most 100 (\text{maxa})

These facts are depicted in Figure 3, wherein a partial data element is represented as a rectangle labeled near its lower left corner. The \text{mina} and \text{maxa} values of these partial elements are to the left and right of the label, respectively.

The \text{mina} and \text{maxa} functions enable querying on the sandbag to obtain interesting information. The precision in the results will depend on the quality of the facts from which it is constructed. For instance, given the facts above:

- A selection of accounts having between $40,000 and $45,000 will definitely include account #108 (\text{mina} applied to #108 will produce 1), but cannot exclude #107 (\text{maxa} applied to #107 will produce 1, and \text{mina} will produce 0).
- The number of accounts in the range #100 to #200 with less than $8,000 is at most 100 (\text{maxa})

These facts are depicted in Figure 3, wherein a partial data element is represented as a rectangle labeled near its lower left corner. The \text{mina} and \text{maxa} values of these partial elements are to the left and right of the label, respectively.

The \text{mina} and \text{maxa} functions enable querying on the sandbag to obtain interesting information. The precision in the results will depend on the quality of the facts from which it is constructed. For instance, given the facts above:

- A selection of accounts having between $40,000 and $45,000 will definitely include account #108 (\text{mina} applied to #108 will produce 1), but cannot exclude #107 (\text{maxa} applied to #107 will produce 1, and \text{mina} will produce 0).
- The number of accounts in the range #100 to #200 with less than $8,000 is at most 100 (\text{maxa})

These facts are depicted in Figure 3, wherein a partial data element is represented as a rectangle labeled near its lower left corner. The \text{mina} and \text{maxa} values of these partial elements are to the left and right of the label, respectively.

The \text{mina} and \text{maxa} functions enable querying on the sandbag to obtain interesting information. The precision in the results will depend on the quality of the facts from which it is constructed. For instance, given the facts above:

- A selection of accounts having between $40,000 and $45,000 will definitely include account #108 (\text{mina} applied to #108 will produce 1), but cannot exclude #107 (\text{maxa} applied to #107 will produce 1, and \text{mina} will produce 0).
- The number of accounts in the range #100 to #200 with less than $8,000 is at most 100 (\text{maxa})

These facts are depicted in Figure 3, wherein a partial data element is represented as a rectangle labeled near its lower left corner. The \text{mina} and \text{maxa} values of these partial elements are to the left and right of the label, respectively.

The \text{mina} and \text{maxa} functions enable querying on the sandbag to obtain interesting information. The precision in the results will depend on the quality of the facts from which it is constructed. For instance, given the facts above:

- A selection of accounts having between $40,000 and $45,000 will definitely include account #108 (\text{mina} applied to #108 will produce 1), but cannot exclude #107 (\text{maxa} applied to #107 will produce 1, and \text{mina} will produce 0).
- The number of accounts in the range #100 to #200 with less than $8,000 is at most 100 (\text{maxa})

These facts are depicted in Figure 3, wherein a partial data element is represented as a rectangle labeled near its lower left corner. The \text{mina} and \text{maxa} values of these partial elements are to the left and right of the label, respectively.
is 100), and we cannot be sure that there are any such accounts (\textit{mina} is 0).

Information such as that depicted in Figure 3 can be combined with statistical sampling. As more samples are added to a sandbag, it becomes better and better defined. The space required by the sandbag depends on the quantity of such information that it contains as well as its implementation.

The sandbag can represent the fact that a tuple \(x \) is a \textit{maybe tuple} \([4, 11]\) in a relation, if \(\text{mina}.x = 0 \) and \(\text{maxa}.x = 1 \). The \textit{maybe tuple} is closely related to the sandwich and the \textit{I-table} \([6]\). Both provide a means of stating that the tuples in a relation cannot be excluded but are not known to be in the set. The sandbag can model these constructs in a straightforward manner without any particular use of an underlying partial order. Similarly, “normal” relations and sets consisting of only total elements, such as are used in traditional relational databases, are trivially modeled.

Thus, the sandbag can represent approximations of at least five distinct kinds of sets:

- sets of objects at various resolutions,
- incompletely specified sets,
- sets of points in continuous spaces,
- statistically sampled sets, and
- sets of normal tuples and maybe tuples.

As far as we know, this flexibility is not offered by any other representation of incomplete information about a set, nor is it systematically available in any proposed data model \([1-13]\). If the efficiency and convenience of the sandbag can match its expressiveness, it may be a useful part of multi-resolution databases. The sandbag construct is a tradeoff between flexibility and ease of implementation that leans towards flexibility.

4.3 A Partial Order of Sandbags

In this subsection we develop the machinery that allows sandbags to be general multi-resolution types. Fundamental to this is the notion that sandbags, like primitives types and tuples, are partially ordered by the amount of information they provide about the sets that they approximate. The tighter the bounds provided by a sandbag, the more informative it is. A sandbag \(P \) approximates a sandbag \(Q \) if the bounds provided by \(\text{mina} \) and \(\text{maxa} \) on \(Q \) are at least as tight as and consistent with those of \(P \).

Definition 5: Let \(\mathcal{D} \) be a partially ordered data domain. The approximates relation \(\sqsubseteq \) on sandbags is defined by:

\[
P \sqsubseteq Q \equiv (\forall x : x \in \mathcal{D} : \text{mina}.P.x \leq \text{mina}.Q.x \land \text{maxa}.P.x \geq \text{maxa}.Q.x)
\]

The relation \(\sqsubseteq \) defined as above is in fact a partial order of sandbags, because it is reflexive, transitive, and antisymmetric.

Sandbags have a bottom element and a notion of totality, just as did primitives and tuples. If for all \(x \) the lower limit \(\text{mina}.S.x = 0 \) and the upper limit \(\text{maxa}.S.x = \infty \), then \(S \) provides no information whatsoever. This is the null value of sandbags in our model. Since a sandbag \(S \) is a pair of functions \(\text{mina}.S \) and \(\text{maxa}.S \), we formally define a sandbag by defining the value of \(\text{mina}.S \) and \(\text{maxa}.S \) on every element of \(\mathcal{D} \).

Definition 6: The bottom element of the sandbag type is denoted \(\bot_{\text{sb}} \) and defined by:

- \(\text{mina}.\bot_{\text{sb}}.x = 0 \)
- \(\text{maxa}.\bot_{\text{sb}}.x = \infty \)

for every element \(x \) in a partially ordered data domain \(\mathcal{D} \).

The bottom-most element of sandbags under the partial order \(\sqsubseteq \) is in fact \(\bot_{\text{sb}} \).

Definition 7: Let \(\mathcal{D} \) be a partially ordered data domain. A sandbag \(S \) is \textit{total}, denoted \(\text{tot}.S \), if and only if:

\[
(\forall x : x \in \mathcal{D} : \text{mina}.S.x = \text{maxa}.S.x)
\]

Total sandbags are in fact the top-most elements of the type of sandbags. If a sandbag is total, there is at most one set consistent with it, and the members of that set can be exactly determined from the sandbag. Between these two extremes of zero and total information, a sandbag provides varying degrees of information about a set it approximates. Alternatively, we think of a sandbag as limiting the number of sets consistent with it. The more informative a sandbag is, the fewer sets are consistent with it. All sets are consistent with \(\bot_{\text{sb}} \) (i.e. \(\forall B : B \) is a set of total elements from \(\mathcal{D} : \text{sbcons}.\bot_{\text{sb}}.B \)).

Unfortunately, a sandbag need not be consistent with any set, because the values of \(\text{mina} \) and \(\text{maxa} \) can easily contradict each other.

Definition 8: Let \(S \) be a sandbag and \(B \) be a set of total elements. We say that \(S \) is \textit{externally consistent}, denoted by \(\text{extcons}.S \), if and only if:

\[
(\exists B : B \in \mathcal{D} : \text{sbcons}.S.B)
\]

As might be expected, we are exclusively concerned with externally consistent sandbags, because we are only interested in using sandbags to inform us about actual sets.
The sandbag concept was inspired by [2], in which the authors develop the sandwich representation of partial sets and a meaningful partial order of that representation. The sandbag concept extends that work because it is a more expressive partially ordered set construct. Thus, sandbags may be very useful in data models based on complex objects or higher-order relations. Because we are primarily concerned with improving performance by retrieving approximations and thus saving I/O costs, we develop a flat relational model for the sake of simplicity rather than a higher-order model.

5 A Multi-Resolution Relational Algebra

A relation is a set of tuples. We call a sandbag over a multi-resolution tuple-type a multi-resolution relation. Following tradition, we construct a relational-like algebra by defining analogs for each relational operators (∩, ∪, -, ×, σ, π, and \(\bowtie \)) that take sandbags as arguments and produce a sandbag as a result. We define each of these operators so as to produce the best results possible that are guaranteed to be consistent with the arguments. It is therefore not surprising that each of these MR operators enjoys properties essential to a partial data model.

Property 1 (Soundness): A binary sandbag operator \(\text{setop}' \) is said to be sound with respect to a set operator \(\text{setop} \) if and only if for all sandbags \(P \) and \(Q \) and sets \(B \) and \(C \):

\[
\text{sbc0ns}.P.B \land \text{sbc0ns}.Q.C \Rightarrow \text{sbc0ns}.(P \text{ setop}' Q).(B \text{ setop} C)
\]

Intuitively, an MR operator is sound if the result of applying it to approximations to total sets is always consistent with the result of the standard relational operator applied to the total sets.

Property 2 (Completeness): A binary sandbag operator \(\text{setop}' \) is said to be complete with respect to a set operator \(\text{setop} \) if and only if for externally consistent sandbags \(P \) and \(Q \) and sets \(B \) and \(C \):

\[
\forall P, Q. z :: \\
\exists B, C : \text{sbc0ns}.P.B \land \text{sbc0ns}.Q.C : \\
\text{numa}.(B \text{ setop} C).z = \text{mina}.(P \text{ setop}' Q).z \land \text{numa}.(B \text{ setop} C).z = \text{maxa}.(P \text{ setop}' Q).z)
\]

Intuitively, an MR operator is complete if it provides the most informative result that is guaranteed to be consistent.

An operator has the completeness property\(^1\) if for each partial data element there exist some sets consistent with its arguments for which the bounds provided are the correct \text{numa} value. Two further useful properties follow from Soundness and Completeness:

Property 3 (Monotonicity): A binary sandbag operator \(\text{setop}' \) is monotonic if and only if:

\[
P \subseteq Q \land S \subseteq T \Rightarrow P \text{ setop}' S \subseteq Q \text{ setop}' T
\]

Intuitively, an MR operator is monotonic if the results of the operator never get worse (contain less information) when applied to arguments that are better (contain more information, or are higher-resolution).

Property 4 (Totality Preservation): A binary sandbag operator \(\text{setop}' \) is totality preserving if and only if:

\[
\text{tot}.P \land \text{tot}.Q \Rightarrow \text{tot}.(P \text{ setop}' Q)
\]

Intuitively, an MR operator preserves totality if it produces a total result when applied to total arguments.

These properties are defined analogously for unary operators, such as projection of a list \(L(\pi_L) \) and selection by a predicate \(\theta(\sigma_L) \).

5.1 Relational Operators on Sandbags

In order to extend the relational algebra to a multi-resolution relational algebra as naturally as possible we define sandbag operators analogous to each relational operator. We denote the sandbag operator analogous to a relational operator \(\text{setop} \) by priming it, i.e. \(\text{setop}' \). Thus, the MR relational operators corresponding to \(\cap, \cup, -, \times, \sigma, \pi, \text{ and } \bowtie \) will be denoted by \(\cap', \cup', -, \times', \sigma', \pi', \text{ and } \bowtie' \), respectively. Intuitively, Properties 1-4 will hold for sandbag operators only if we define them to produce the most informative sandbag guaranteed to be consistent with their arguments.

Definition 9: For any binary set operator \(\text{setop} \), a binary sandbag operator \(\text{setop}' \) can be generated by:

\[
\text{mina}(P \text{ setop}' Q).x = \\
(\min B, C : \text{sbc0ns}.P.B \land \text{sbc0ns}.Q.C : \text{numa}.(B \text{ setop} C).z)
\]

\[
\text{maxa}(P \text{ setop}' Q).x = \\
(\max B, C : \text{sbc0ns}.P.B \land \text{sbc0ns}.Q.C : \text{numa}.(B \text{ setop} C).z)
\]

A similar but simpler definition suffices for unary operators.

\(^1\) Maier[4] provides a terminology for partial data that defines the terms faithful, precise, adequate, and restricted. In the language of [4], a sound operator is faithful, and a complete operator is adequate and restricted. Property 2 does not imply precision in that terminology.
Definition 10: For any unary set operator setop, a unary sandbag operator setop' can be generated by:

- $\text{min} \,(\text{setop} \cdot P) \cdot z = (\text{min} \, B : \text{sbcons} \cdot P \cdot B : \text{numa} \cdot (\text{setop} \cdot B) \cdot x)$
- $\text{max} \,(\text{setop} \cdot P) \cdot z = (\text{max} \, B : \text{sbcons} \cdot P \cdot B : \text{numa} \cdot (\text{setop} \cdot B) \cdot x)$

Any sandbag operator generated from Definition 9 or Definition 10 is well-defined if its arguments are externally consistent, so that the sets quantified over by min and max are non-empty.

Theorem 1: Any sandbag operator setop' generated from a set operator setop with either Definition 9 or Definition 10 has the Properties of Soundness, Completeness, Monotonicity, and Totality Preservation.

In particular \cap', \cup', \neg', \times', σ', and π' have the properties of Soundness, Completeness, Monotonicity, and Totality Preservation.

Although these definitions are not constructive, nevertheless there exist reasonably efficient implementations of these operations that sacrifice Completeness Property to gain speed [22]. Without Completeness, the bounds provided by min and max are not guaranteed to be the best that can be derived; however, they are guaranteed to be consistent.

5.2 The Multi-resolution data model

The MR relational operators (\cap', \cup', \neg', \times', σ', and π') form a query language over MR relations analogous to the relational algebra. We have defined these operations so that they are strictly more general than and completely consistent with the relational operators. This fact is expressed by Theorem 1, that is used to show that these operators on sandbags form a language that is a generalization of the relational algebra.

We call this the multi-resolution relational algebra, although the algebraic laws of the relational algebra hold only in modified forms for our language.

Consider a relational database Y consisting of N relations $Y = \{R_0, R_1, R_2, ..., R_{N-1}\}$. A corresponding multi-resolution relational database Z consists of N sandbags $Z = \{S_0, S_1, S_2, ..., S_{N-1}\}$. We say an MR relational database Z approximates a relational database Y if and only if $(\forall i : i \geq 0 \land i < N : \text{sbcons} \cdot S_i \cdot R_i)$. Note that the quality of Z is not specified; it may contain all of the information of Y (i.e., be total) or very little. A relational expression E over Y is a tree of relational operators that uses relations from Y. The corresponding multi-resolution relational algebra expression, denoted E', is an operator-for-operator substitution of sandbag operators for relational operators and sandbags from Z for relations from Y. The result of a query expression on an MR database is defined to be the result of applying the MR operators to the MR relations.

We extend the definitions of Soundness, Completeness, Monotonicity and Totality Preservation for individual operators to analogous properties on multi-resolution query languages, such as the MR relational algebra. We denote the result of an expression E to a database Y by $E \cdot Y$. Let Z be an MR database approximating a relational database Y. For a query language we define the following four Query Language (QL) Properties:

Property 5 (QL Soundness): A query language is sound if and only if $\text{sbcons} \cdot (E' \cdot Z) \cdot (E \cdot Y)$, for every expression E.

Property 6 (QL Completeness): A query language is complete if and only for every expression E, E' on Z always provide the tightest bounds consistent with Y.

Property 7 (QL Monotonicity): A query language is monotonic if and only if any improvements in the information of the sandbags of Z do not make E' worse, for any query E. If Z and X are MR databases, $Z = \{S_0, S_1, S_2, ..., S_{N-1}\}$ and $X = \{P_0, P_1, P_2, ..., P_{N-1}\}$:

$(\forall i : i \geq 0 \land i < N : S_i \subseteq P_i) \rightarrow E' \cdot Z \subseteq E' \cdot X$

Property 8 (QL Totality Preservation): A query language is totality preserving if and only if every expression is total $(\text{tot} \cdot (E' \cdot Z))$ when every sandbag in Z is total.

Theorem 2: The multi-resolution relational algebra has the Query Language Properties of Soundness, Monotonicity, and Totality Preservation, but not Completeness.

Unfortunately, the QL Completeness Property does not hold for the multi-resolution relational algebra. A counter-example to completeness can be constructed from queries that mention the same relation more than once. If P is a non-total sandbag approximating a relation R in a database, the MR query expression $P \rightarrow P$ yields a non-total sandbag as a result that is consistent with non-empty sets.

This proves the MR query language is incomplete, and is an example of an algebraic law that fails to hold in unmodified form for the MR query language.
Incompleteness is a disadvantage that appears to be a fundamental problem of approaches that do not preserve identity, such as [6]. [4, 7, 12] discuss this problem. We choose to tolerate this disadvantage, for two reasons. Most importantly, any implementation based on our approach to constructing sandbags described in [22] must immediately sacrifice the Completeness Property (Property 2), because calculating the optimal \(\text{mins} \) and \(\text{maxs} \) values is NP-hard for that particular approach. Secondly, we suspect that this incompleteness has little impact on our overall purpose of supporting the resolution/performance tradeoff. A significant difference between our approach and most previous work on partial data models is our motivation of high performance rather than clean semantics for incomplete data.

5.3 Multi-resolution Queries and Progressive Refinement

A query in the multi-resolution relational algebra is essentially a relational query. This has the advantage that queries are easily understood, and the choice of response resolution is orthogonal to the formulation of the query.

This data model admits the concept of progressive refinement that is not available in the standard relational model. In both models, a query has a single, well-defined, result. However, in the MR model this query result has many lower-resolution approximations, that we call responses. We define \(P \) to be a response to a query \(E' \) on an MR database \(Z \) if and only if \(P \subseteq E'.Z \). Both the notions of response and result are mathematically defined based on the MR data model.

It is the low-resolution responses to queries that are the focus of our work, rather than the highest-resolution results, because our fundamental goal is to improve performance by allowing resolution of database query answers to be traded for speed. Furthermore, the idea of progressive refinement can now be made precise. A DBMS progressively refines the answer to some query when it produces a chain of responses, each of which approximates the result of the query and improves upon the last response. Because the responses to a query are sandbags and sandbags are partially ordered, we can depict the responses to a query diagrammatically, as in Figure 4.

We have just begun research into the implementation of the MR data model (See Section 6.) For the sake of explanation, we now present an example of progressive refinement as if a working MR DBMS exists.

Example 3: Consider an MR database \(Z \) consisting of a relation \(r \) of the scheme \(r(id,pic) \), where \(id \) is of type integer (not a multi-resolution type) and \(pic \) is the raster type describe in Example 2. Consider the query \(Q = \sigma_{10 \leq id \leq 150}.r \), and suppose 10 tuples of \(r \) satisfy this selection predicate.

Suppose that rasters are stored in the DBMS in the following manner (either by the database programmers design or by the choice of the MR DBMS). Eight of the 10 scenes depicted by \(Q.Z \) have level 2 approximations resident in main memory, all images in \(Z \) have a level 3 raster approximation stored on magnetic disk, and the total rasters (level 4) are stored on (relatively slow) CD-ROMs.

In response to \(Q \), a sandbag \(S \) containing 8 level 2 rasters will be delivered to the user (perhaps a program that draws on a screen) in milliseconds. The MR DBMS then retrieves the 10 level 3 rasters from magnetic disk, and places them, one at a time, in \(S \). In terms of the partial order of sandbags, \(S \subseteq Q.Z \) and \(S \) is being progressively refined upward. After about 5 seconds the retrieval of level 4 rasters is begun. Perhaps 60 seconds later the sandbag \(S \) is total, and \(S = Q.Z \).

The query in Example 3 may be terminated after a specific resolution is materialized to obtain a low-resolution response relatively quickly. (More powerful means of specifying response resolution in the query are the subject of future work.)

In this example, the full expressive power of the sandbag to represent cardinalities is not being employed. The sandbag \(S \) serves as a container of multi-resolution objects. The sandbag will often be used in this less than fully general role. Since \(id \) is not an MR type, Example 3 does not utilize the MR algebra in
an interesting manner, although it demonstrates what we consider the most important immediate use of an MR DBMS. Example 4 partially illustrates a multi-resolution join.

Example 4: Consider two relations that represent the positions of objects \((r(X, Y, A), p(X, Y, B))\). In this schema the attributes \(X\) and \(Y\) are of the real interval type defined in Example 1, and represent on a grid. \(A\) and \(B\) are identifiers. The natural join query \(Q = r \bowtie p\) calculates the objects in \(r\) and \(p\) that share positions. Let the relations \(r\) and \(p\) be represented by the sandbags \(R\) and \(P\). Let the sandbag \(S\) be the response to the MR query \(R' \bowtie P'\). The schema of \(S\) is \((X, Y, A, B)\).

Let us suppose that sandbags \(R'\) and \(P'\) are refined over time, either as their tuples are read or as objects report their positions with increasing precision. First, suppose it is known only that \(|r| = 100\) and \(|p| = 100\). Then \(\text{max}_a.S.\perp = 10,000\). Suppose then that the exact position of some objects \(a \in p\) and \(b \in r\) are discovered. If these objects are in the same position, then \(\text{min}_a.S.([-\infty, +\infty], [-\infty, +\infty], a, b) = 1\). If it is then determined that there are no objects with an \(X\) position greater than \(100.0\), \(\text{max}_a.S.([100.0, +\infty], [-\infty, +\infty], \perp, \perp) = 0\). As more precise information is added to \(R'\) and \(P'\), the \(\text{min}_a\) and \(\text{max}_a\) values of \(S\) get closer, until \(S\) is total. \(\square\)

Fundamentally little can be inferred about a join until the join attributes of its arguments are relatively well-defined. This example suggests a computational expense to implement the sandbag operations, undoubtably limiting their usefulness. However, we believe that by sacrificing completeness the sandbag can be implemented efficiently enough to be practical for some applications, even when used as in Example 4.

6 Conclusions and Future Work

This paper introduces the sandbag, an expressive construct for modeling imprecise and uncertain information about a set. Based on the sandbag, we develop a multi-resolution data model that forms a basis for building a useful database management system that offers the performance advantages of multi-resolution. The data model provides a sound theoretical framework and makes precise the notions of multi-resolution and progressive refinement, that we have motivated. We hope that the similarity to the relational data model leverages the technology and widespread understanding of that model, both for the reader’s understanding and to construct an efficient implementation. However, the idea of multi-resolution and the sandbag construct are applicable to other data models, such as object-oriented ones.

We are in the process of developing efficient algorithms to implement the sandbag and the sandbag operations \([22]\). At least two other goals must be met if a useful multi-resolution database management system is to be constructed.

Foremost, a query language extension must be developed that allows the user to conveniently specify the desired resolution of the response to a query. We plan to extend the MR relational algebra by allowing queries to be annotated with resolution/performance constraints.

Secondly, special algorithms, data structures, and storage structures that exploit the lower-bandwidth requirements of low-resolution data should be utilized systematically. These include a cache storage structure that directly utilizes the size relationship between resolution levels to manage storage of differing speed to provide good performance across the entire spectrum of resolutions. The quad tree representation of raster images is an inherently multi-resolution data structure. Structures such as a bit-striped transposed representation of sets of ordered values \([31, 32]\) may allow multi-resolution to be applied to common, built-in types more efficiently.

Acknowledgements

Comments by the referees and the UT database research group have greatly improved this paper.

References

[16] Personal communication with Dr. Anita Cochran about the Halley Watch Archive CD image library.

