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Abstract 

This paper considers the problem of adding list as 

a type constructor to an object-oriented data model. 
In particular, we are concerned with how lists in a 
database can be constructed and how they can be 
queried. We propose that operators from a discrete, 
linear-time temporal logic provide a natural basis for 
making assertions about the ordering of elements in a 
list. We then show how such assertions may be incor- 
porated into a query algebra by extending the Melam- 
pus Data Model (MDM) with a list type constructor 
and by allowing temporal assertions as predicates on 
lists. The extended algebra allows the expression of 
a significantly larger class of queries than previously 
possible. Furthermore, temporal operators provide a 
basis for creating new lists that satisfy desired order- 
ing properties. For example, sorting is shown to fall 
out as a special case. This paper also describes a new 
framework based on Boolean circuits for evaluating the 
truth of an assertion on a given list. This framework 
provides many opportunities for optimization and par- 
allelism, and it lends insight to the meaning and com- 
plexity of a temporal formula. 
Keywords: data models, complex objects, temporal 
logic, query languages. 

1 Introduction 

Recently, there has been a great deal of interest 
in defining data models that include, beside tradi- 
tional sets (or relations), other “bulk” data types. 
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(See, for example, [DBPL 89, DBPL 911.) Perhaps 
the most common such construct to be added is 
the ordered sequence. For example, sequences ap- 
pear as data type constructors in Galileo [Albano 851, 
FAD [Bancilhon 871, NST [Giiting 891, 
EXTRA/EXCESS [Carey 88, Vandenberg 9 11, 
02 [Bancilhon 891, and Algres [Ceri 901. In part, this 
frequency reflects the intuition that a list is the “next 
most” complicated data structure after sets (or multi- 
sets) and thus a logical choice for researchers to tackle 
first. Even more, however, it is a reflection of the inher- 
ent need in many applications for ordering among data 
items. In a scientific database, for example, each ex- 
perimental run may be recorded as a sequence of obser- 
vations. A project planning database may keep a pri- 
oritized list of tasks. In a stock database, each stock’s 
history may be represented as a sequence of price quo- 
tations. Even in a traditional business database, or- 
dering is needed, e.g., to sort the output of a query. 

The power of data manipulation languages to ex- 
tract information has not kept pace with the ability of 
data definition languages to create complex structures. 
In the case of lists, the ability to extract sublists and 
the ability to select lists from a set are usually quite 
constrained. For example, both 02 [Bancilhon 891 
and EXTRA/EXCESS [Carey 881 allow a list to be 
the target of a select query; each element that satis- 
fies the selection predicate is returned in an (order- 
preserving) result list. It is not possible, however, to 
retrieve the first element to satisfy the predicate, or all 
those following the last such element, etc. An 02 or 
EXTRA/EXCESS database may also include a set of 
lists. However, there are few predicates that one may 
apply in selecting from such a set. 

Data models have been similarly constrained in their 
support of list creation, with support being limited 
to low-level, physical operations and a few specially 
defined, high-level operations. For example, the user 
may be allowed to create a singleton list from a given 
object or to concatenate two lists. Sorting may be 
provided as a special-purpose operator. 

In this paper, we describe a new approach to incor- 
porating lists into a data model. The approach was 
inspired by work in the area of temporal logic and is 
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based on a simple observation: temporal formulae (for 
discrete, linear time) which usually serve to describe 
t,ime-ordered sequences of “states,” can equally well 
describe spatially-ordered sequences of objects.’ For 
example, the temporal modality “always,” which can 
be used to express dynamic integrity constraints such 
as “an employee’s salary never decreases,” can also ex- 
press properties of a (static) sequence, such as “the list 
of employees is sorted by salary.” By using temporal 
logic as the basis of a list query facility, it is possible 
to express easily a significantly larger class of inter- 
esting queries than in previous work. For example, 
suppose we have a scientific database in which set S 
contains the results of a large number of runs from a 
superconductivity experiment. Each run consists of a 
list of observations. We may select the runs in which 
superconductivity was (or was not) displayed, those in 
which the temperature monotonically decreased, the 
runs in which resistance dropped to zero before the 
temperature reached its minimum, etc. Furthermore, 
given an individual run (a single list), we can extract 
the observations preceding the first display of super- 
conductivity, those following each decrease in temper- 
ature, etc. 

Using temporal logic as a basis for querying lists of- 
fers many advantages. It has a well-developed formal 
basis. It is a concise and powerful declarative lan- 
guage, allowing the user to specify ordering properties 
without specifying how to evaluate them. In addi- 
tion to being advantageous for the user, a declarative 
language also presents many opportunities for opti- 
mization. Furthermore, since the formalism of tempo- 
ral logic is derived from intuitive concepts of ordering 
(e.g., “eventually” or “from now on”), the expression 
of such queries is (relatively) painless. Of course, tem- 
poral logic has limitations as well, and certain poten- 
tially interesting queries cannot be expressed. For ex- 
ample, it would not be possible (barring extensions) to 
select the elements in a list that occupy even-numbered 
positions [Wolper 831. 

The remainder of this paper is organized as follows. 
In Section 2, we discuss related work. In particu- 
lar, we focus on other data models that have included 
lists and on other applications of temporal logic in a 
database context. After defining a set of temporal op- 
erators appropriate for finite lists in Section 3, Sec- 
tion 5 then incorporate List as a type constructor into 
the Melampus Data Model (MDM) [Richardson Sla, 
Richardson 91b]. First, we address several issues that 
arise when the formalism of temporal logic is incorpo- 
rated into a data model. Then we extend the MDM 

‘We do not mean to imply spatial databases or GIS applica- 
tions, although they, too, can use sequenced objects. Rather, 
“spatially-ordered” here means ordered within the space of 
database objects. 

query algebra by adding list as a fundamental type 
constructor, by adding operators to build lists, and 
by allowing temporal predicates to appear in queries 
involving lists. The usefulness of these extensions is 
demonstrated by examples. Section 6 then presents a 
novel framework for evaluating the truth of a temporal 
predicate against a list. This framework, based on the 
construction of Boolean circuits, reveals the inner reg- 
ularity of the computation and exposes opportunities 
for parallelism and other optimizations. Section 7 in- 
troduces rigid variables, shows how they may be used 
to express more powerful queries, and shows how the 
evaluation framework can be extended to handle them. 
The paper concludes with a discussion of future work. 

2 Related Work 

2.1 NST 

The NST (Nested Sequences of Tuples) data model 
was designed to model documents [Giiting 891. In 
a document, nested sequential order arises naturally, 
e.g., the order of paragraphs in a section, and sections 
in an article. One of the goals of NST is to provide 
algebraic operators that are convenient for manipulat- 
ing structured documents, e.g., to produce an invoice 
from orders and inventory. Thus, NST features pow- 
erful sequence restructuring operators. However, as in 
EXTRA/EXCESS and 02, the facilities for querying 
sequences are relatively weak. In particular, exists CI 
(foralla) is true of a list if any (every) element sat- 
isfies cr. These operators essentially treat a list as an 
unordered set, e.g., if forall cr holds for a list, then 
it holds for any permutation of that list. Similarly, 
the NST select operator u applies a predicate to each 
list element and returns (in the same order) those that 
qualify. Again, the value of the predicate on a given el- 
ement is independent of the element’s position in the 
list. The ability to express such “order-dependent” 
predicates is a central goal of our work. As a result, 
several operators that are primitive in the NST model 
(e.g., ord for sorting and rdup for duplicate elimina- 
tion) are derived operators in our model. 

2.2 Rs-Operations 

A more recent proposal notes the lack of facil- 
ities in existing data models for manipulating se- 
quences [Ginsburg 921. The authors propose two pow- 
erful operators, called I&-operations, which are based 
on regular languages and which define a family of 
list merging and extracting operations. Each opera- 
tor takes a regular expression as an argument, and 
the words generated by the expression serve as pat- 
terns that direct how lists should be shuffled together 
or picked apart. For example, the regular expression 
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Q = (I~IZ)* generates 2122, ~~~22~22, . . . . In a 
merge operation, Q can be used to produce the perfect 
shuffle of two equal-length lists. In an extraction, Q 
can be used to produce the sublist of elements in odd 
(or even) numbered positions. These operators add 
considerable power to the users’ ability to manipulate 
lists, although they seem to do so at a physical level. 
The connection between the logical ordering of a query 
result and the expression of that query can be difficult 
to see. 

2.3 Time Sequences 

The work in this paper is similar in some respects to 
Segev and Shoshani’s time sequences [Segev 871. How- 
ever, their emphasis is on the management of sampled, 
time-varying data. For example, they provide a tax- 
onomy of different kinds of time sequences, e.g., reg- 
ular vs. irregular, discrete vs. continuous, etc. They 
provide operations to support these kinds, e.g., inter- 
polation of data values between recorded time points, 
and their query language includes extensions special- 
ized for specifying time points and intervals. In our 
work, we are concerned with a lower level concept, 
sequential data structures, and we provide no special 
support for those that are associated with a time se- 
quence. On the other hand, our query langauge does 
not restrict “temporal” predicates to the time dimen- 
sion, since the temporal operators are available as gen- 
eral query constructs. 

2.4 Temporal Databases 

The usefulness of temporal modalities for querying 
has long been recognized in the context of temporal re- 
lational databases [McKenzie 911. Given that tempo- 
ral queries range over sequences of database states, it is 
perhaps not surprising that similar modalities should 
be useful in querying sequences of objects. Indeed, one 
of the common uses for a list is to maintain recorded 
histories, e.g., a sign-up sheet, a sequence of experi- 
mental observations, etc. Thus, one might wonder if 
the problem of querying lists can be addressed simply 
by mapping those lists to a temporal data model. 

There are important reasons, however, why this ap- 
proach is neither desirable nor sufficient. The problem 
of querying sequences is at once simpler and more com- 
plicated than querying in a temporal database. It is 
simpler in the sense that a list is linear, whereas time 
in a temporal data model may be multidimensional, 
e.g., the model may recognize both transaction time 
and valid time [Snodgrass 871. Querying a sequence is 
more complex in that a database object can be an arbi- 
trary composition of structures. One list might contain 
simple data values, while another contains lists of sets 

of tuples. In a temporal database, all sequences have 
the same structure, which is defined by the temporal 
data model. For example, Tuzhilin and Clifford de- 
fine a temporal database as a temporal structure which 
maps each time instant to a database [Tuzhilin 901. 
Thus every temporal structure is isomorphic to a se- 
quence of tuples in which the attribute names are rela- 
tion names and each attribute value is a (flat) relation. 
Other temporal data models define the mapping from 
time to structures at the tuple level or at the attribute 
level [McKenzie 911. These map to different, but still 
fixed, data structures. 

Another difference between sequences of objects and 
the implied sequences of a temporal database is the in- 
terpretation and usefulness of indexing operations. If 
the temporal model defines time as continuous, then 
concepts like “the third time instant” or “the time in- 
stant before P becomes true” are meaningless. Even 
in discrete time models, such concepts are of dubi- 
ous utility in a query language (and thus, do not ap- 
pear), since the granularity of time is likely to be quite 
small, implementation dependent, and ultimately, of 
little concern to the user. In querying a list, however, 
absolute and relative indexing are important opera- 
tions, e.g., “Who is the second person in the list?” or 
“Return the three observations preceding the first dis- 
play of superconductivity.” Thus, we may expect the 
temporal modalities “next” and “previous” to play a 
relatively more prominent role in querying lists than 
in querying a temporal database. 

3 The Temporal Operators 

In this section, we introduce the set of tempo- 
ral operators that will form the basis for querying 
lists. These operators are similar to those defined in 
[Lichtenstein 851. We include both past and future 
operators, with the basic modalities being next, pre- 
vious, until, and since. One minor difference is that 
we deal only with finite pasts and futures, reflecting 
the fact that lists in a database are finite objects. We 
also make allowances for lists whose elements may be 
complex objects (e.g. a list of lists) and for empty lists. 

3.1 Syntax 

In defining a syntax, we immediately face the prob- 
lem of deciding what an “atomic” formula is. This 
is because the elements of a list may themselves be 
complicated structures, and thus, whether a formula 
is atomic depends on the type of the list to which it 
is applied. For the moment, we shall postpone this 
discussion and simply state that an atomic formula is 
a predicate that can be evaluated by looking at an 
individual list element and that we have some way 
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l-h 9 I= -p iff (L,i) &t P 
ii, fj k pO;Q iff (L 4 I= P or (L, i) I= Q 

iff (1 < i < n) 3 (L, i + 1) b P 
(L::)bPU& iff 3jTi<j<n.(L,j)k&and 

Vk : i 1 k < j. (L, k) b P 
(4 4 i= QP iff (l<i<n) 3 (L,i-l)bP 
(L, i) + P S Q iff 3j : 1 5 j 5 i. (L, j) b Q and 

Vk: j<k<i.(L,k)kP 

Figure 1: The Semantics of b. 

of syntactically identifying such a formula. The syn- 
tax, then, is as follows. First, every atomic formula 
is a formula. Then if P and Q are formulas, so are: 
-P, P v &, OP, OP, PU &, PS &. 

3.2 Semantics 

Let L be a sequence of n > 0 objects, L[l], . . . , L[n]. 
We distinguish between an object L[i] in a list, and the 
point in the list that it occupies, denoted (L, i). The 
truth of a temporal formula is defined as truth at a 
point: (L,i) b P means that P is satisfied at the ith 
point of L. Because it is a common case, we will write 
L + P as a shorthand for (L, 1) /= P. The semantics 
of i= is given in Figure 1. The first two rules define 
negation and disjunction; from these, we define con- 
junction (A) and implication (3) in the standard way. 
The next four rules define the semantics of the tempo- 
ral operators O(weak next) and Z.4 (strong until) along 
with their past counterparts 0 (weak previous) and 
S (strong since). OP ( QP) holds at a point in a list if 
P holds at the next (previous) point. These operators 
are weak in the sense that there need not be a next 
(previous) point in order to satisfy the formulas. That 
is! OP holds at the last point in a sequence for any Pl 
and analogously for QP at the first point. Note that 
Of&e holds only for the last element in a sequence, 
while @false holds only for the first. This will prove 
very useful for certain kinds of queries. From the weak 
forms, we can derive operators for strong next ( b) and 
strong previous (8): 

bp E&f --(o+) BP E&f -( @+) 

The formula @ is satisfied at a point in a sequence iff 
that point is not the last and P is satisfied at the next 
point, and similarly for @P. Clearly, these operators 
can be used for counting in a sequence. We shall write 

A 
0”P as a shorthand for 0 . . 0 P and similarly for 
the other forms of next and previous. Furthermore, 

when m = 0, we shall understand 0”P to be equiva- 
lent to P. 

The “since” and “until” operators are strong in the 
sense that the predicate Q must eventually hold (in 
the past or future). That is, PU & holds at a point 
if P holds continuously from that point until a point 
at which & holds. Similarly, PS Q holds at a point if 
Q held at some previous point, and P has held ever 
since. In both cases, the predicate holds at a point if 
Q holds at that point. From these operators we derive 
past and future operators denoting “eventually” ( 0 @) 
and “always” ( 0 El): 

OP E&f true UP @P s&f true SP 

q P E&f -(o+) q P E&f + ++) 

OP holds at a point i iff P holds at i or at some point 
following i, while 0 P holds iff P holds at i and at 
every following point. Similar descriptions apply to 
the past forms. 

4 Data Model Issues 

In this section we discuss two problems that 
arise when we merge the formalism of tem- 
poral logic with MDM, an object-oriented data 
model [Richardson 91b]. MDM features abstract 
types, conformity-based subtyping, multisets, and a 
query algebra. MDM is a “pure” object model in that 
object identity is pervasive and all access to an ob- 
ject is via a method interface; even access to an ob- 
ject’s state is defined in terms of get and put meth- 
ods [Snyder 861. W e use a functional notation to de- 
note method invocation. For example, if x is an ex- 
perimental observation, temp(x) returns the temper- 
ature in that observation. The syntax for our query 
operators is also functional and was inspired by the 
ENCORE algebra [Shaw 911. For example, to select 
the elements of a multiset S that satisfy a predicate p, 
we write Select (S, p) . 

4.1 Atomic Formulas 

In some temporal logics, an atomic formula is sim- 
ply one containing no temporal operators. This is cer- 
tainly a sufficient condition for our purposes (though 
not necessary, as we shall see). Thus, for any predicate 
P containing no temporal operators, 

(L,i) FP iff L[i] +P 

That is, an atomic formula holds at a point in a se- 
quence if it holds for the object at that point. Note 
that if P is atomic, then L f= P means that P holds 
for the first object in L. 

To define what it means for a predicate to hold for 
an object, we must address the issue of free variables 
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in a formula. Traditionally, free variables in an atomic 
formula are successively bound to each state in a se- 
quence, the implicit assumption being that a state has 
a tuple-like structure. Such variables are often called 
flexible or dynamic because they take on different val- 
ues at each point in the sequence. (This is in contrast 
to rigid variables, discussed in Section 7.) Suppose we 
are considering a sequence L of observations from a 
superconductivity experiment. In standard temporal 
logic, we would write •I (temp < 43) to assert that 
the temperature is always below 43 degrees. Here, the 
atomic subformula is (temp < 43), and the free vari- 
able temp is bound to the corresponding attribute in 
each state in the sequence. 

This approach to flexible variables is inappropriate 
for our purposes since the “states” in a sequence are 
actually objects to which we can only apply methods. 
Furthermore, many queries need to refer to the identi- 
ties of the objects in a sequence (e.g., the observations 
themselves), as well as to the methods in their inter- 
face (e.g., temp). For these reasons, we assume a sin- 
gle flexible variable, named . (dot), that binds to the 
identity of each object in a sequence. To express that 
the temperature always remains below 43 degrees, we 
would write q ( temp(.) < 43). To assert that a specific 
object, say A, is somewhere in a list, we would write 
O(. = A). 

In our formalism, a predicate containing no tempo- 
ral operators is certainly atomic. However, this is too 
restrictive a definition in general, since the elements 
of a list may themselves be lists to which we would 
like to apply temporal predicates. For example, given 
a list of lists of observations, we might wish to assert 
that in at least one of the lists, the temperature is 
always below 43 degrees. Even though “always less 
than 43 degrees” is a temporal predicate, it is atomic 
with respect to the outer list. Therefore, we introduce 
a syntax for explicitly forcing the interpretation of a 
formula to “go down a level:” 

(L,i) b [TPj iff L[i] + P 

Thus, to express the above predicate, we would write 
0 [ 0 (temp(.) < 43)]. A list satisfies this predi- 
cate only if there is some (list) element that satisfies 
q (temp(.) < 43). Note that without the brackets, this 
predicate has quite a different interpretation. A list L 
of lists ! of observations satisfies 0 O( temp(.) < 43) if 
the temperature is below 43 degrees in the first obser- 
vation in every e for some suffix of L. 

4.2 The Empty List 

The operators defined in Section 3 assume that ev- 
ery sequence has at least one element. However, a 
database may certainly contain empty lists. Although 

there are not many interesting queries that one can ask 
about empty lists, we would at least like to be able 
to identify them in a query. It turns out, however, 
that the natural way of extending the interpretation 
of the temporal operators to empty lists leads to some 
surprising results. For example, 0 P means P holds 
at all points in the list. Thus we might expect that 
the empty list vacuously satisfies such a formula. But 
then, the empty list must satisfy Of&e. If we were to 
accept this interpretation, then the theorem from tem- 
poral logic q P =+ P would no longer be valid. Rather 
than lose important theorems in order to incorporate 
a fairly uninteresting case, we treat the empty list in 
an ad hoc manner (and assume that an implementa- 
tion will use ad hoc techniques for handling this case). 
In particular, we define the special predicate symbol 
empty, which is satisfied only by the empty sequence. 
Furthermore, the empty sequence satisfies no formulas 
of the form 6’P or PqhQ, where B and +6 are temporal 
operators. For example, the formula empty V OP is 
satisfied by empty lists and by nonempty lists that 
satisfy OP. 

5 Adding Lists to MDM 

This section details how lists are incorporated into 
MDM. In order to concentrate on the use of temporal 
logic for expressing queries, we will omit the descrip- 
tion of some of MDM’s operators. In particular, we 
will not discuss the operators Aggregate, Union, and 
Difference as they apply to lists. For a description 
of Aggregate, see [Richardson 91b]; MDM’s list Union 
and Difference operators are essentially the same as 
those of EXTRA/EXCESS [Vandenberg 911. 

5.1 List Membership 

Membership in a list, like membership in a multiset, 
is based on identity, and like a multiset, a list may have 
more than one occurrence of a given element. If R is a 
list or multiset, then Card(x, R) denotes the number 
of occurrences of z in R. If z is not an element, then 
Card(x, R) = 0. Thus, we define the “element of 
predicate in terms of Card: 

x E R E&f Card(x, R) > 0 

5.2 Sublists 

The concept of a sublist arises naturally in describ- 
ing the results of list operations. Because of the in- 
herent ordering of list elements, however, there are at 
least three reasonable definitions of sublist (in increas- 
ing order of constraint): unordered, order-preserving, 
and contiguous. Let f? and L be two lists. We say 
that e is an unordered sublist of L, written e E L, 
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iff V’z : Card(~, .!!) 5 Card(z, L). Next, e is an order- 
preserving sublzst of L, written e r L, if I C_ L and 
the elements in 8 appear in the same order relative to 
their appearance in L. That is, for each 1 5 i < ]e/, 
there is some ki such that e[i] = L[lci], and rEi+l > Ici 
for 1 5 i < ]e]. Finally, e is a contzguous sublzst of L, 
written e GL, if e CL and for 1 5 i < ]e], Ici+i = Ici + 1. 

5.3 Constructors 

We now introduce primitive operators for creating 
lists and for converting between lists and multisets. 
For any object 2, [z] constructs a singleton list con- 
taining z as its only element. (This is similar to the 
ARR operator of EXTRA/EXCESS [Vandenberg 911.) 
If the type of z is T, then the type of [z] is a list of 
T, denoted CT]. Similarly, {z} constructs a singleton 
multiset of type {T} containing only 2. 

For any list L of type CT1 , the operator Set(L) cre- 
ates a multiset of type {T} containing all of the ele- 
ments of L, i.e., V’1: : Card(z, Set(L)) = Card(z, L). 
In effect, Set(L) keeps the elements of L while throw- 
ing away their ordering. Note that Set(L) is distinct 
from {L}; the latter creates a multiset of type {CT]} 
containing the list L. 

Since information is lost when a list is converted to a 
set, it is not immediately clear how to define an inverse 
operator that converts a set to a list. Rather than 
define a set-to-list, operator that chooses an arbitrary 
ordering for the list, we introduce a primitive operator 
that produces all orderings. For any multiset S of 
type {T}! the operator List*(S) returns the set of all 
unique permutations of the elements of S. The result 
has type { CT]}. Clearly, since the size of the result 
is O(]S]!), Lzst* could never be used directly in any 
practical sense. However, like the powerset operator 
[Gyssens 881, the permutation operator is useful for 
its ability to define the semantics of other interesting 
(and more practical) operators. We shall see several 
examples. 

5.4 Select 

The Select operator applies a predicate to the ele- 
ments of a multiset and returns the subset of quali- 
fying elements: Select(S,F) = (212: E S A I k P}. 
Suppose S is a set of lists, and P is a predicate pos- 
sibly containing temporal operators. Then the selec- 
tion returns those lists such that P is satisfied at the 
first point. For example, Select(S, q (temp(.) < 0)) 
retrieves the lists in which the temperature is always 
less than 0. By using combinations of next and pre- 
vious operators, we can test a predicate at any point 
in a list. For example, to select lists where P holds 
at the i-th position, we could write: Select(S, @-‘I’). 

We may also specify that P holds i positions from the 
end: Select(S, 0( G,i-lP A Of&e)). 

The following examples show additional selection 
queries. In all cases, we are selecting from a multi- 
set of lists. The list element type varies but should be 
clear from the context. 

Select(S, empty V Onfake). Select lists of length 
R or less. 

Select(S, o4 @(. = Mary)). Select lists (of length 
5 or more) in which Mary appears somewhere in 
the first 5 positions. 

Select(S, 0( (. = Mary) A O(. = John)) ). Select 
lists in which Mary precedes John. 

Select(S, (temp(.) 2 0)U q (temp(.) < 0)). Select 
the runs in which the temperature was initially 
non-negative, then fell below zero for the remain- 
der of the experiment. 

SeZect(S, q [O(. = Mary)]). Here, each element 
in S is a list of lists. The predicate selects the 
lists in which every element list contains Mary. 

We now extend the semantics of the Select operator 
to the case where elements are being chosen from a 
list. In this case, the elements are retrieved from each 
point at which the selection predicate holds. Let L be 
of type CT]. Then, 

Sekct(L, P) Edef [h[i] 1 (L, i) + p] 

where L[i] denotes the element at position i. The re- 
sult list also has type CT1 and is order preserving with 
respect to L. If no points in L satisfy P, then the 
result is an empty list. 

When ‘P contains no temporal operators, then 
Select(L,P) is equivalent to list selection in EX- 
TRA/EXCESS and 02. For example, given an ex- 
perimental run, L, we can select all the observa- 
tions for which temperature is less than zero with 
Select(L, (temp(.) < 0)). By adding temporal oper- 
ators, we can ask more complex queries. For example, 
Select( L, 0 (temp( .) < 0) ) retrieves each observation 
that precedes one in which the temperature is below 
zero, while Select(L, @(temp(.) < 0)) retrieves the 
list’s tail beginning with the first observation in which 
the temperature is below zero. 

5.5 Choose1 

The operator Choose1 returns an arbitrarily chosen 
element from a list or multiset. If the list or multiset 
is empty, Choose1 returns nil. In [Richardson 91b], we 
showed how several useful multiset operators could be 
derived by composing Choose1 with other primitive 
operators. Similarly, Choose1 can derive useful list 
operators. 
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5.5.1 Indexed Retrieval Operators 

We can compose Choose1 and Select to yield an op- 
erator that returns the ith element in a list. 

L[i] “def 
ml i<l 
Choose1 (Select(L, oiT1 @false)) i 2 1 

Since the formula @false is satisfied only at the first 
point in the list, B @false holds only at the second, 
0 0 @false at the third, and so forth. Therefore, the 
selection returns a singleton list containing the ith el- 
ement of L; Choose1 then returns this element. Note 
that if L is empty, or if i is not in the range l..]L], then 
L[i] returns nil. We can similarly derive an operator 
that, extracts contiguous sublists, rather than a single 
element. One limitation to both operators is that the 
indices must be “compile-time” constants, since the 
notation a,” is really just a shorthand for an explicit 
number of @ operators. 

5.5.2 Deriving a Generalized Sort Operator 

Suppose S is a multiset and P is a temporal pred- 
icate. We can derive a “temporal sorting” operator 
whose effect is to arrange the element of S into a list 
that satisfies P. 

sort(s, P) z&f Ch oosel (Select(List*(S), P)) 

The result of Sor?(S, P) is a list, L, containing all of 
the elements of S and such that (L, 1) k P. If no such 
ordering is possible, the result is nil. (Select will return 
an empty set, and Choose1 of an empty set is defined 
to be nil.) Finding good heuristics for implementing 
this operator is a major challenge for future research. 
It would also be interesting to look for general, deter- 
ministic algorithms for Sort, to see if its apparent n! 
complexity can be reduced. Given that the problem 
of determining whether there exists any sequence of 
length n that satisfies a given P is NP-complete (from 
the results of [Sistla 85]), then we know that the com- 
plexity of Sort is at least NP. 

We should point out that we will need to strengthen 
the predicate language with rigid variables (Section 7) 
before we can use this operator in the conventional 
sense. Even so, we can still express useful operations 
with Sort. For example, Sor?(S, true) converts the 
multiset S into an arbitrarily ordered list. The ex- 
pression Sori(S, PU OlP) creates a list such that all 
elements of S satisfying P precede those that do not; 
ordering within each group is arbitrary. 

The next two operators do not make use of temporal 
predicates directly. Rather, they benefit indirectly by 
composition with selection. 

5.6 Image 

The Image, operator applies an n-ary function to 
each element in the cross product of its n arguments, 
and returns the collected results of each application. 
The n arguments must either be all multisets or all 
lists, and the returned object is a multiset or list, re- 
spectively. For example, if n = 1 and L is a list of 
observations, Imagel(L, XX. tern&z)) creates a list of 
the projected temperature readings. The variable 2: is 
bound by X to each object in L, similar to the way 
(.) is bound in a temporal formula. However, here we 
introduce an explicit name because in general, Image 
applies an n-ary function requiring n formal parame- 
ters. For example, if f is a binary function, we might 
write Imagen(L1, Ls, Xq.f(z, y)). 

5.7 Partition 

The Partztion operator allows a multiset to be di- 
vided into equivalence classes based on a user-defined 
equivalence relation, expressed as a binary predicate, 
p. The result is a set of multisets m, such that p(z, y) 
holds for every pair (.r, y) taken from any m and such 
that lp(z, y) holds for every pair taken from different 
m’s. We extend the definition of Partition to operate 
on lists in a straightforward manner. Partition(L,p) 
returns a list, L’, of lists, !, such that each e con- 
tains the elements of one partition, each L is order- 
preserving with respect to L, and the ordering of the 
e’s with L’ is according to their first elements (that is, 
Image,(L’, xc. ep]) CL). 

As an example, suppose L is a merged transaction 
log in which each entry is tagged with the id of the 
associated transaction (TID). We may restructure the 
log into a list of individual transaction logs: 

L’ = Partition(L, X3: y. TID(x) = TID(y)) 

The sequence of individual logs in L’ will correspond 
to the order in which the transactions started. Sup- 
pose that log records also contain the action performed 
(ACT) and the log sequence number (LSN), and sup- 
pose we wish to consider only the transactions that 
committed. We can select the logs in L’ in which the 
last record’s action is a commit: 

L” = Select(L’, 0(( OfaZse)A(ACT(.) = COMMIT))) 

Finally, suppose we wish to rearrange the individual 
logs to reflect the order in which the transactions com- 
mitted. We will apply the Sort operator to do this, but 
again, we must wait until Section 7 before being able 
to express the appropriate predicate. 
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5.7.1 Duplicate Elimination 

One reason Partztion is interesting is that it allows 
us to define a generalized duplicate elimination op- 
erator for multisets [Richardson 91b]. We can easily 
define a similar operator for lists: 

Ekm(L,p) E&f Imugel(PuTtition(L,p), At. t[l]) 

The result is an order preserving sublist of L in 
which only the first member of each equivalence 
class (as defined by p) is included. For example, 
Elzm(L, Xt y . 3: = y) removes all but the first oc- 
currence of each individual in L. 

6 Boolean Circuits 

Clearly, in an implementation of the extended MDM 
algebra, a central algorithm is that which evaluates a 
temporal predicate on a list. In this section, we present 
a framework in which to perform such evaluations. As 
will become clear, this framework allows different eval- 
uation strategies and thus affords many opportunities 
for optimizations and parallelism. The main idea is 
that a temporal predicate and a list together define a 
Boolean circuit [Borodin 771. A Boolean circuit is a 
directed acyclic graph in which nodes with in-degree 
zero are inputs, interior nodes are gates labelled with 
A,V,or7, and nodes with outdegree zero are outputs. 
Evaluating the circuit is equivalent to evaluating the 
temporal predicate against the list. 

The rules for constructing the Boolean circuit for a 
given formula are based on the familiar fixpoint theo- 
rems of temporal logic, e.g.: 

PUG? F &V(PA b(PU&)) 

That is, PU & holds at a point in a sequence if & 
holds or if P holds and PU & holds at the next point. 
At the last point in the sequence, PU & holds only if 
Q holds. Similar statements can be made about the 
past operator, S, and about the other operators de- 
rived from U and S. The process of constructing a 
Boolean circuit can be viewed as an iterative expan- 
sion of the fixpoint theorems for each element in the 
given list. Note that “construction” here is used in the 
mathematical sense; as we shall see, an evaluation al- 
gorithm need not always materialize the entire graph. 

For each i, 1 5 i < n, let C[(L,i), P] denote the 
Boolean circuit that evaluates the assertion, (L, i) k 
P. We may construct such a circuit according to the 
rules given in Figure 2. The rules to construct Boolean 
circuits for the other temporal operators can be de- 
rived. For temporal formulaP and list L of length n, it 
can be shown by induction that the size of C[(L, l), P] 
is 5 2nlPl. This pl aces a bound on the time and space 
complexity of the evaluation problem. 

C[(L,i), OP] = 
1 

C[(L,i+ l),P] 1 < i< n 
tme i=n 

C[(L, i), OP] = 
{ 

C[(L,i- l),P] 1 < is n 
true i=l 

C[(L, i), PU G!] = 

i 

q(L 4, QIV 
(C[(L,i),P]AC[(L,i+l),PUe]) l<i<n 

C[(-L 4, 4 i=n 

q(L,i),PSQ] = 

i 

C[(L, 4, Q!lV 
(E[(L,i),P]AEC[(L,i-l),PSQ]) l<iln 

C[(-L 4, Ql i=l 

Figure 2: Rules for Constructing Boolean Circuits. 

Figure 3 shows an example of the Boolean circuit 
generated by the formula •I (temp(.) < 0) for a list 
of experimental observations in which the sequence of 
temperature readings is 32, 16, 2, -14, -43. The arcs in 
the circuit have been labeled with the computed truth 
value that flows along the arc. The value of the predi- 
cate at a point in the list is the value on the arc flowing 
out of the top-level node corresponding to that point. 
(The construction given above does not explicitly cre- 
ate output nodes, although it would be easy to do so.) 
In this example, the formula fails to hold at points 1, 
2, and 3 in the list, while it does hold at points 4 and 5. 
Figure 4 shows a more complicated example. Here the 
formula asserts that when the temperature first falls 
below zero, it stays below zero for the remainder of the 
run. This formula holds at every point. As the figures 
indicate, the Boolean circuits generated by a formula 
have a regular, repeating structure. In Figure 4, each 
repeating unit, called a cell, is enclosed in a dashed 
box. 

The examples shown in Figures 3 and 4 contain 

32<0 16<0 2<0 -14<0 -43<0 

Figure 3: q (temp(.) < 0). 
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Figure 4: (temp(.) 2 0)U q (temp(.) < 0). 

only future temporal operators. When this is the 
case, or when the formula contains only past opera- 
tors, then we may evaluate P in a single pass over 
the list using space proportional to IPl (rather than 
2nlPj). Consider the last cell in Figure 4. In an evalu- 
ation, Boolean values flow into this cell either from the 
right (in which case they are known constants) or “up” 
from atomic predicates applied to the 5th list element. 
All outputs of the 5th cell can therefore be calculated 
without reference to any other object in the list. These 
outputs are then inputs to the 4th cell, and so on. For 
any cell, the computation requires space proportional 
to the size of the cell, which is proportional to the size 
of the original formula. Furthermore, once the outputs 
of the ith cell have been computed, the space for its 
inputs can be reclaimed. Therefore, a formula contain- 
ing only future operators can be evaluated in a single 
(backward) pass over the list using space proportional 
to the size of the formula. Similarly, a formula con- 
taining only past operators can be evaluated in a sin- 
gle forward pass. In both cases, the time complexity is 
still proportional to nIPI. It seems likely, though, that 
in many instances, the cost to access the database for 
each list element will far outweigh the cost to compute 
IPI Boolean operations for that object. 

When a formula nests operators of opposing tense, 
multiple passes are required, with the results from each 
pass being stored for use in the next. For example, 
consider the formula 0 ( E] P A 0 Q), which asserts 
that there is some point i such that P holds at every 
point from 1 through i and that & holds from points i 
through n. This formula requires 2 passes: a forward 
pass evaluates q P and records its value at each point; 
a backward pass then evaluates the remainder of the 
formula, using the cached results from the first pass. 
Note that a cache can require up to n bits, although in 
this example, there is a very compact representation. 
This is because a formula of the form BP divides any 
list into a prefix over which P holds everywhere and 
a suffix over which it holds nowhere. Thus, a single 
integer giving the length of the prefix suffices to cache 
the results of the first pass. (Similar remarks can be 

made concerning the operators 0, 0, and @ .) A 
second point to note is that we may trade space for 
time in case accessing the database is expensive. In 
this example, we may elect to evaluate Q at each point 
during the first pass (along with q P), caching the 
results in a bit vector. Then the second pass operates 
solely on in-memory data structures. 

6.1 Optimizations 

The previous section described a framework for eval- 
uating the truth of a formula against a list, and showed 
that some cases can be evaluated more efficiently than 
others. Indeed, one advantage of using a declarative 
language for posing queries is the ability to optimize 
query processing, and a main focus of current research 
is the development of such strategies. Here we outline 
some of the obvious kinds of optimizations that can be 
expected to improve performance. 

Simplification. We can reduce expression com- 
plexity by equivalence- preserving transforma- 
tions, e.g. (0 P) A ( 0 Q) E 0 (P A Q). Col- 
lections of such transformations can be developed 
and verified formally. 

Early termination. During an evaluation, pieces 
of the computation (and hopefully, the whole 
computation) can be “turned off.” For example, if 
a formula contains UP as a subexpression, and if 
P evaluates to false at some point, then we know 
that q P must be false for every preceding point. 

Heuristically chosen evaluation order. Even with 
early termination: a backward (or forward) scan 
is not necessarily the best plan. For example, if 
we are evaluating UP, and P is false in the first 
object (as in Figure 3), then a forward scan would 
discover this right away. Since we are free to ma- 
terialize and evaluate the Boolean circuit in any 
order, then we can apply any available knowledge 
about the data being queried in choosing an eval- 
uation order. 

Parallelism. Boolean circuits were originally stud- 
ied in connection with parallel complexity theory, 
so it is no surprise that they should be amenable 
to parallel evaluation. The highly regular struc- 
ture of the Boolean circuits induced by temporal 
predicates allows us to divide the work of evalu- 
ation among many processes. For example, each 
process could be given some “chunk” of the list 
(some number of cells), and at least the atomic 
predicates can be evaluated in parallel. The eval- 
uation of temporal predicates then requires com- 
munication between the processes. Although this 
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phase seems to be inherently sequential in nature, 
various techniques (such as global early termina- 
tion) can be considered to reduce the severity of 
the bottleneck. 

7 Rigid Variables 

So far, we have only been able to express predicates 
in which the state of each individual object is com- 
pared with itself or with global constants. We have not 
been able to compare the states of different objects in 
the list. Rigid variables give us this added power. Us- 
ing rigid variables, we can, for example, specify that 
the temperature in every observation is within some 
delta of the temperature in the first observation, or 
that the temperature in each observation is less than 
or equal to the one before it. Rigid variables add to 
both the expressive power of the logic and (unfortu- 
nately) to the complexity of the evaluation procedure. 

If P is a temporal predicate, then so is AK. P. Here, 
the binding operator A introduces the rigid variable Ii 
whose scope is P. By convention, we use upper-case 
letters to denote rigid variables. 

A formula containing a rigid variable has the follow- 
ing interpretation: 

That is, a formula AK. P holds at a point i in a se- 
quence if the formula P’ also holds at point i, where 
P’ is obtained by replacing all free occurrences of K 
in P with the object at i. For example, the for- 
mula AX. 0 0 (. # X) holds at a point i in list L iff 
(L, i) I= 0 o(. # -WI), i.e., iff L[i] is not repeated in 
the suffix. Therefore, if L b O(AX. OO(. # X)), then 
it contains no duplicates. 

Suppose S is a set of experimental runs. To select 
runs in which the temperature was held constant, we 
would write: Select(S, AX. •I (temp(.) = temp(X))). 
For each list in S, X is bound to the first observa- 
tion, so the selection criterion becomes q (2emp(.) = 
~ev(-Wl)). N ow suppose L is a specific run. The 
following query selects those observations in which 
the temperature is a local minimum, i.e., in which 
the temperature is less then either of its neighbors: 
Selecl(L, AX. b(iemp(.) 2 temp(X)) A a(bnp(.) > 
temp( X)) ). We could select the global minima by re- 
placing b and B with q and ~1, respectively. Fi- 
nally, we can use rigid variables in conjunction with 
the Sort operator to produce sorted lists (in the con- 
ventional sense). Suppose S is a set of people. Then 
Sort(S, q (AX. (O(age(.) > age(X)))) ) creates a list 
of people sorted by increasing age. 

32 <= ;16<= ;2<= j-14<= i-43<= itrue 
temp00 1 temp()o ltemp00 jtemp(X) itemp(X) i ---.....---.- .-- -.....---. . ..---._...__ ._ ._.___._.___ ___________ ___ 

Figure 5: q (AX. o (temp(.) 5 femp(X))). 

7.1 Decision Procedure 

This section outlines how the Boolean circuit frame- 
work can be extended to handle rigid variables. In 
Section 6, the decision procedure pushes Boolean con- 
stants through a circuit. When an atomic formula con- 
tains rigid variables, its truth value at a point is no 
longer a constant, but is itself an expression. For ex- 
ample, the atomic formula (temp(.) > temp(X)) might 
become (43 > temp(X)) at a specific point. This ex- 
pression can be viewed as a finite representation of 
the infinite set of temperature values that make the 
formula true, i.e., the formula holds for all values of 
K such that K < 43. The decision procedure there- 
fore involves building up expressions and pushing those 
through the circuit. (Strictly speaking, the structure is 
no longer a Boolean circuit.) Of course, all rigid vari- 
ables eventually get bound, so the expressions eventu- 
ally reduce to Boolean constants. When the expression 
(43 > temp(X)) reaches a node in the circuit at which 
X is bound (by the A operator), the truth value can 
be determined. 

To make these ideas concrete, let us consider the 
predicate which specifies that temperature is mono- 
tonically decreasing: q (AX. O(temp(.) < lemp(X))). 
The circuit for this example is shown in Figure 5. 
First, notice that the presence of the 0 operator in 
the formula causes the cells to be skewed. Next, the 
circuit contains a new kind of node corresponding to 
the A expression in the formula. As indicated above, 
what flows through the circuit (below the A nodes) are 
expressions, rather than Boolean values. For example, 
in Figure 5, the expression (16 5 lemp(X)) flows into 
the A node in the first cell. At a A node, the object 
associated with the current cell is substituted for free 
occurrences of the rigid variable. In the figure, the re- 
sult of the substitution is shown in parentheses above 
each node. Since there is only one rigid variable in this 
example, the expression reduces to a Boolean constant 
flowing out of the node. 

In this example, the only temporal operator in the 
scope of the rigid variable X is 0. As a result, the size 
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Figure 6: q (AX. o 0(Xx. t # X)) 

of the expression flowing into the A nodes is bounded 
by the size of the cell. If the scope of a rigid variable 
includes other temporal operators, this is no longer 
the case. Consider the expression q (AX. 0 q (. # X)) 
which asserts that the list contains no duplicates. This 
example is depicted in Figure 6. The expression that 
flows into the A node in the fourth cell is e # X. (The 
identities of the list elements are denoted by the lower 
case letters a-e.) But the expression flowing into the 
third cell is d # X A e # X, and into the second cell 
is c # X A d # X A e # X, etc. In other words, the 
size of the expression flowing into a node is linear in 
the length of the list’s tail beginning at that point. 
This is not surprising, since verifying that an element 
is unique requires global knowledge of the list’s other 
members. 

In Figure 6, the expression flowing into each A node 
is identical to the portion of the circuit below and to 
the right of that node, thus actually constructing the 
expressions is somewhat redundant. In fact, for this 
example, we can perform the evaluation by accumu- 
lating sets of individuals and then testing for member- 
ship. For example, instead of evaluating the expression 
d#X~e#Xincell3,wecouldevaluateX~{d,e}. 
We could then add c to the set and pass it to the left. 
Explicitly maintaining the set of values for X that sat- 
isfy (or fail to satisfy) a formula is possible as long as 
the set is finite. Suppose, however, that the leaf ex- 
pressions were of the form 2 < X. For any value of 3: 
there are infinitely many values of X that satisfy the 
predicate. In this case, building expressions is attrac- 
tive, since it allows us to represent infinite sets in a fi- 
nite way. Furthermore, in some cases, we can avoid the 
linear growth in the expressions. For example, rather 
than building the expression (3 < X)A(-18 < X), we 
can take advantage of the semantics of < and simply 
pass3<x. 

8 Conclusions and Future Work 

This paper has described an approach based on tem- 
poral logic for incorporating lists into a data model. 
There are several important contributions of this work. 
The main contribution is the recognition that temporal 
logic can be used as the basis of a powerful query lan- 
guage over sequential data structures, and the demon- 
stration of these ideas in the context of MDM. In the 
process of adding lists to MDM, we have addressed 
issues that do not normally arise in temporal logic, 
such as object-identity and the complex structure of 
list elements. In addition, we have proposed a new 
framework based on Boolean circuits for evaluating a 
predicate against a list. This framework affords wide 
latitude in choosing an evaluation strategy. We have 
proposed a new approach to defining rigid variables 
and have described some initial ideas on how the eval- 
uation framework may be extended to handle them. 
Finally, we have (in a small way) contributed to the 
area of temporal logic by demonstrating its usefulness 
in yet another area of computer science. 

It is clear that there are many avenues for further 
research. The possibilities span the range from in- 
creasing the expressiveness of the predicate language, 
to developing a repertoire of evaluation strategies, to 
building an actual implementation. The focus of cur- 
rent research is on developing evaluation strategies 
within the Boolean circuit framework, particularly in 
the presence of rigid variables. 

Finally, an intriguing problem is whether reasonably 
efficient implementations of the Sort operator can be 
found. While it seems unlikely that any general al- 
gorithm will be able to perform “normal” sorting in 
n logn steps (and therefore, an implementation will 
probably have to recognize this as a special case), it is 
nevertheless an interesting challenge to find a general 
Sari algorithm that avoids the n! complexity implied 
by its definition. 
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