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Abstract: The SQL language allows users to express queries that have nested subqueries in them. Optimi- 
zation of nested queries has received considerable attention over the last few years [Kim82, Ganski87, 
Daya187, Murali891. As pointed out in [Ganski87], the solution presented in [Kim821 for JA type queries 
has the COUNT bug. In order to avoid the COUNT bug, the more general strategy described in [Gan- 
ski871 and [Dayal87] is used. In this paper, we modify Kim’s algorithm so that it avoids the COUNT bug. 
The modified algorithm may be used when it is more efficient than the general strategy. In addition, we 
present a couple of enhancements that precompute aggregates and evaluate joins and outer joins in a top- 
down order. These enhancements eliminate Cartesian products when certain correlation predicates are ab- 
sent and enable us to employ Kim’s method for more blocks. Finally, we incorporate the above improve- 
merits into a new unnesting algorithm. 

1. Introduction 

Traditionally, database systems have executed 
nested SQL [Astrahan75] queries using Tuple Iteration 
Semantics (TIS). It was analytically shown in [Kim821 
that executing queries by TIS can be very inefficient. It 
was first pointed out in [Epstein791 and then in [Kim821 
that nested queries can be evaluated very efficiently 
using relational algebra or set-oriented operators. The 
process of obtaining set-oriented operators to evaluate 
nested queries is known as unnesting. 

It was later pointed out in [Kiessling84] and 
[Ganski87] that the unnesting techniques presented in 
[Kim821 do not always yield the correct results for 
nested queries that have non equi-join correlation predi- 
cates or for queries that have the COUNT aggregate 
between nested blocks. Unnesting solutions for these 
types of queries were provided in [Ganski87]. These 
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solutions were further refined and extended in 
[Dayal87]. An important contribution of the current 
paper is a modification to Kim’s algorithm that avoids 
the COUNT bug. Under certain conditions, Kim’s 
approach may be more efficient than the general solu- 
tion and hence worth considering. 

In this paper, we focus our attention on unnesting 
Join-Aggregate (JA) type of SQL queries [Kim82]. 
These queries have correlation join predicates and an 
aggregate (AVG, SUM, MIN, MAX, or COUNT) 
between the nested blocks. The reason for focusing on 
JA type queries is that many other nesting predicates 
(such as EXISTS, NOT EXISTS, ALL, ANY) can be 
reduced to JA type queries [Ganski87, Daya1871. An 
example of a 2 block JA type query is: 

SELECT DEPTname 
FROM DEPT 
WHERE DEPT.work stations < 

(SELECT C&NT (EMP.*) 
FROM EMP 
WHERE DEPT.name = EMP.dept-name) 

The above query finds the names of each of the 
departments that has more employees than work stations 
in it. The predicate ‘DEPTname = EMP.dept name’ is 
the correlation join predicate. Blocks may be nested 
within each other to any arbitrary depth. Notice that we 
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can associate a COUNT value with every tuple of 
DEPT. Section 3.2 of [Murali89] describes how the 
result of such a query can be obtained using TIS. 

A few words on notation now. In the rest of this 
paper, upper case letters R, S, T, . . . shall denote base 
relations. We refer to temporary relations as TEn/Ip, 
where n is any positive integer. OP, is used to denote 
any one of the six comparison operators (# , = , 5, <, 2, 
>>. Attribute names are denoted by lower case 
identifiers, some of which may be just one letter long. 
We also assume that every base relation has a unique 
attribute denoted by the symbol #. Some unnesting 
algorithms require that every relation has at least one 
such attribute. 

The reader is advised that we shall not adhere to 
strict SQL syntax when writing queries in this paper. 
The SQL syntax for expressing outer joins is fairly 
cumbersome. Instead, we shall write queries in a syn- 
tax that is fairly intuitive. 

We introduce a couple of definitions here: 

Definition: A (Nested) Linear Query is a JA 
type query in which at most one block is nested within 
any block. 

Definition: A (Nested) Tree Query is a JA type 
query in which there is at least one block which has 
two or more blocks nested within it at the same level. 

In this paper, we focus our attention on linear 
queries only. Extension to tree queries will be the topic 
of a future paper. The techniques for unnesting tree 
queries presented in [Murali were not as general as 
the ones we are developing in the current paper. For 
example, [Murali did not consider Kim’s algorithm 
at all. For ease of notation, we shall assume that there 
is only one relation in the FROM clause of each block. 
The algorithms presented in this paper can be easily 
extended to the case when there are multiple relations 
in any FROM clause. 

The rest of the paper is organized as follows: Sec- 
tion 2 provides background material briefly. In it we 
describe Kim’s algorithm and show why it gives rise to 
the COUNT bug and how the solution provided in 
[GanskiS7] eliminates the COUNT bug. We also 
describe the general solution presented in [Daya that 
enables us to unnest linear queries. Section 3 discusses 
the enhancement to Kim’s solution which avoids the 
COUNT bug and shows under what conditions an easy 
implementation is possible. We then describe, in 

Section 4, how the aggregate in the last block may be 
precomputed. Section 5 deals with evaluating joins and 
outer joins in the order they occur enabling us to 
employ Kim’s method for a larger set of blocks. 
Finally, we incorporate the ideas presented in Sections 2 
through 5 into a new integrated algorithm. 

2. Related work 

The purpose of this section is to familiarize the 
reader briefly with past work. For a thorough under- 
standing of the earlier work, the reader is encouraged to 
read the following papers: [Kim82], [Ganski87], 
[Day al871, and [Murali89]. 

2.1. Kim’s algorithm and the COUNT bug 

We motivate Kim’s unnesting algorithm with the 
following example of a 2 block JA type query: 

Example 1: 
SELECT R.a 
FROM R 
WHERE R.b OPi (SELECT COUNT (S.*) 

FROM S 
WHERE R.c = S.c) 

Kim’s algorithm transforms the above query into 
the following two unnested queries. 

Query 1: 
TEMP, (c, count) = 
SELECT S.c, COUNT (S.“) 
FROM S 
GROUPBY S.c 

Query 2: 
SELECT R.a 
FROM R, TEMP, 
WHERE R.c = TEMP,.c AND R.b OP, TEMP,.count 

The result of the first query may be pipelined into 
the next query. Query 1 computes the COUNT value 
associated with every distinct value in the c attribute of 
S. Notice that a tuple of R may join with at most one 
tuple of TEMPi. Kim’s algorithm works correctly if the 
aggregate is not a COUNT. However, in the presence 
of the COUNT aggregate, the algorithm gives rise to the 
COUNT bug [Kiessling84, Ganski871. A tuple r of R 
would be lost after the join if it does not join with any 
tuples of S. However, the COUNT associated with r is 
0 and if (r.b OP1 0) is true, r should appear in the 
result. In order to preserve tuples in R that have no 
joining tuples in S, an outer join’ (OJ) is performed 
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when the COUNT aggregate is present between two 
blocks [Ganski87]. In this case, the unnested query 
becomes: 

Query 3: 
SELECT R.a 
FROM R, S 
WHERE R.c = S.c --- OJ 
GROUPBY R.# 
HAVING R.b OPi COUNT (S.“) 

The outer join preserves every tuple of R and 
hence the COUNT bug is avoided. If it can be deter- 
mined at compile time that R.b can never equal 0, then 
we could still use Kim’s method. Notice that the outer 
join precedes the groupby operation in Query 3. 
Ganski’s solution is more general than Kim’s solution 
as the former may be applied even in the presence of 

non equi-join correlation predicates* IGanski871. 

2.2. Dayal’s solution 

The solution in [Dayal87] generalizes Ganski’s 
solution for queries with more than 2 blocks. A linear 
query with multiple blocks gives rise to a ‘linear J/OJ 
expression’ where each instance of an operator is either 
a join or an outer join. A general linear J/OJ expression 
would look like: 

R J/OJ S J/OJ T J/OJ U J/OJ . . . 

Relation R is associated with the outermost block, 
relation S with the next inner block and so on. An 
outer join is required if there is a COUNT between the 
respective blocks. In all other cases (AVG, MAX, 
MIN, SUM), we need perform only a join. The joins 
and outer joins are evaluated using the appropriate 
predicates, 

Since joins and outer joins do not commute with 
each other in genera13, a legal order may be obtained by 

‘In this paper, an outer join wiIl always signify a left 
outer join. 

‘For Kim’s method to apply, only equi-join correlation 
predicates of the form f,(R) = f,(S), must be present. fi and fs 
are functions that reference only R and S respectively. 

3[Rose90] shows that joins and outer joins commute 
under specific conditions. [Dayal87] introduced the notion of 
G-joins or generalized joins to commute joins and outer joins. 
In future, we plan to utilize G-joins and the ideas in [Rose901 
to commute joins and outer joins while unnesting. The algo- 
rithms in this paper do not use G-joins explicitly. 

computing all the joins first and then computing the 
outer joins in a left to right order (top to bottom if you 
like) [Dayal87]. For example, the expression R OJ S J 
T J U OJ V J W can be legally evaluated as ((R OJ (S J 
T J U)) OJ (V J W)). Since we may evaluate the joins 
in any order, we may choose the cheapest join order to 
join relations S, T, and U. 

Consider the following three block linear query. 

SELECT R.a 
FROM R 
WHERE R.b OP, (SELECT COUNT (S.“) 

FROM S 
WHERE R.c OP2 S.c 
AND S.d OP3 (SELECT COUNT (T.*) 

FROM T 
WHERE S.e OP, T.e 
AND R.f OPs T.f)) 

The corresponding linear expression is R OJ S OJ 
T and hence a legal order is (R OJ S) OJ T. The result 
is obtained by executing the following two queries. 

Query 4: 
TEMPl (#, a, b, *) = 
SELECT R.#, R-a, R.b, S.* 
FROM R, S, T 
WHERE (R OJ S) OJ T 
GROUP BY R.#, S.# 
HAVING S.d OP3 COUNT(T.*) 

Query 5: 
SELECT TEMP, .a 
FROM TEMPi 
GROUP BY TEMP*.# 
HAVING TEMPi.b OP1 COUNT(TEMP,.*) 

The outer join predicates are implicit in Query 4. 
The predicate for R OJ S is (R.c OP2 S.c), while the 
predicate for the second outer join with T is (S.e OP, 
T.e and R.f OPs T.f). Tuples from Query 4 may be 
pipelined into Query 5. The subtleties involved in 
Query 4 are explained in detail in [Murali89]. We also 
describe them brietly in Section 5 of this paper. Notice 
that if the query has d blocks, the total number of joins 
and outer joins will be (d-l). These will be followed by 
(d- 1) groupby-having operations. 

3. Modifying Kim’s algorithm 

In this section, we describe how Kim’s algorithm 
may be modified to avoid the COUNT bug. The 
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motivation in trying to modify Kim’s approach is that it 
may be more efficient than Ganski’s solution. We first 
study queries with two blocks and then study queries 
with three or more blocks. 

3.1. Queries with two blocks 

We return to Example 1 in Section 2.1. Query 1, 
that created the temporary relation TEMP,, remains 
unchanged. However, Query 2 has to be modified. We 
know that the COUNT associated with a tuple of R that 
does not join with any tuple of S is 0. Thus, a tuple of 
r E R that does not join with any tuple of TEMPl will 
be a result tuple if (r.b OP1 0) is true. For a tuple r E 
R that joins with a tuple of TEMpl, r will be a result 
tuple if (r.b OP, TEMP,.count) is true. The join opera- 
tor in Query 2 is replaced by an outer join. In addition, 
different predicates are applied to the join (matching) 
tuples and the anti-join (non-matching) tuples to deter- 
mine if they belong to the result. Notationally, we 
write this as shown below: 

Query 6: 
SELECT R.a 
FROM R, TEMPl 
WHERE R.c = TEMPl.c --- OJ 

[R.b OP1 TEMP,.count : R.b OP1 0] 

The square brackets, in the last line of the above 
query, enclose the two predicates which are separated 
by a colon. The first predicate is applied to the joining 
tuples while the second tuple is applied to the anti-join 
tuples. There is currently no way of expressing the 
above query in SQL. 

We now show that under certain circumstances, 
the modified Kim’s method may be more efficient than 
Ganski’s method. The heuristic argument is based on 
(1) the number of tuples that flow from each node in 
the query plans corresponding to the two methods and 
(2) the number of tuples that have to be processed at 
each groupby and outer join node. The query plans for 
the two methods are shown in Figures 1 and 2. The 
edges in Figures 1 and 2 are labeled by the number of 
tuples flowing through those edges. Both methods 
involve accessing relations R and S. Clearly 1 TEMPl 1 
I 1 S 1 and 1 R 1 I 1 R OJ S I. Assume that 1 S I< 1 R I . 
The number of tuples flowing from the groupby node to 
the outer join node in Kim’s method is equal to I 
TEMPl I . The number of tuples flowing from the outer 
join node to the groupby node in Ganski’s method is 
equaltoIROJS1. ClearlyITEMPIIcIROJSI. The 

[R.b OP1 TEMl$.count : R.b OP1 0] 

SELECT S.c, COUNT (S.*) 
R 

Modified Kim’s Method 
(Query 1 and Query 6) 

/ 

SI 

Figure 1. 
S 

GROUPBY R.# 
HAVING 
R.b OP1 CO G.*) 

J 

OJ SI 

Outer Join 
Rc = s.c 

A 

I SI 

R S 
Gamki’s Method 

(Query 3) 

Figure 2. 

number of tuples processed by the groupby node and 
the outer join node in Kim’s method is each less than 
the corresponding number of tuples in Ganski’s method. 
Hence if I S I c I R I , Kim’s method should perform 
better than Ganski’s method. 

In the above discussion we have ignored the fact 
that Ganski’s method joins two base relations, whereas 
in Kim’s method, we join a base relation with a tem- 
porary relation. As a result, Ganski’s method might be 
able to employ more join methods. Clearly, the optim- 
izer has to pick the cheaper method more carefully than 
as outlined above. The important point is that we can 
use Kim’s method even in the presence of the COUNT 
aggregate when the correlation predicates are all equi 
joins. 
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3.2. Queries with three blocks 

We now extend the modified Kim’s algorithm to 
queries with three blocks. We first introduce a 
definition here. 

Definition: An equi-join correlation predicate is 
called a neighbor predicate if it references the relation 
in its own block and the relation from the immediately 
enclosing block. 

Consider the following example in which all the 
join predicates are neighbor predicates. 

Example 2: 
SELECT R.a 
PROM R 
WHERE R.b OPi (SELECT COUNT (S.*) 

PROM S 
WHERE R.c = S.c 
AND S.d OP2 (SELECT COUNT (I.*) 

PROM T 
WHERE S.e = T.e)) 

The algorithm given in [Kim821 worked bottom 
up. We follow the same approach here. The result of 
the query is obtained by evaluating the following three 
unnested queries. 

Query 7: 
TEMP, (e, count) = 
SELECT T.e, COUNT (T.*) 
PROM T 
GROUPBY T.e 

Query 8: 
TEMP, (c, count) = 
SELECT S.c, COUNT (S.*) 
PROM S, TEMPi 
WHERE S.e = TEMP,.e --- OJ 

[Sd OP, TEMP,.count : S.d OP, 01 
GROUPBY S.c 

Query 9: 
SELECT R.a 
PROM R, TBMP* 
WHERE R.c = TEMP+ --- OJ 

[R.b OP1 TEMPz.count : R.b OP1 01 

Thus, we were able to extend the same principle 
to a three block query of Example 2 and avoid the 
COUNT bug. It is easy to see how we can extend the 
above solution to a query with more than three blocks 
as long as the correlation predicates are neighbor 

predicates. The natural question then is: what happens 
when we have non neighbor predicates. We address 
this in the next section. 

3.3. Queries with non neighbor predicates 

We start with the query shown in Example 3. 
This query is obtained by adding the non neighbor 
predicate, R.f = T.f, in the third block of the query in 
Example 2. Surprisingly, the query becomes very hard 
to unnest in the presence of the COUNT aggregates. 

Example 3: 
SELECT R.a 
PROM R 
WHERE R.b OP, (SELECT COUNT (S.*) 

PROM S 
WHERE R.c = S.c 
AND S.d OP, (SELECT COUNT (T.*) 

PROM T 
WHERE S.e = T.e 
AND R.f = TX)) 

Evaluating bottom up, we would expect the three 
unnested queries to be as follows: 

Query 10: 
TEMPl (e, f, count) = 
SELECT T.e, T.f, COUNT (T.*) 
PROM T 
GROUPBY T.e, T.f 

Query 11: 
TEMPT (c, f, count) = 
SELECT SC, TEMPi.f, COUNT (S.*) 
PROM S, TEMPl 
WHERE S.e = TEMP,.e --- OJ 

[S.d OP2 TEMP,.count : S.d OP, 01 
GROUPBY S.c, TEh4Pr.f 

Query 12: 
SELECT R.a 
PROM R, TBM& 
WHERE (R.c = TEMP2.c AND R.f = TEMP2.f) --- OJ 

[R.b OPi TEM&.count : R.b OP, 01 

There are no surprises in Queries 10 and 12. In 
Query 12, each tuple of R joins with at most one tuple 
of TEMP,. However, Query 11, as shown above, is 
incorrect! We shall return to this point soon. The 
objective of Query 11 is to compute COUNT (S.*) asso- 
ciated with every (c, f) pair. To better understand what 
Query 11 must really do, it is instructive to look at the 
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last two blocks of the query in Example 3 and evaluate 
COUNT (S.*) for various (c, f) values. Assume then 
that relations S and T are populated as shown below. 

We only need to look at a single value in the c 
field as tuples with distinct c values fall into distinct 
groups. Using the above instances of S and T, we 
evaluate COUNT (S.*), from the last two blocks, for the 
following (c, f) groups as shown below: 

It is just a coincidence that the COUNT associ- 
ated with every group is 3! Notice that the value 3000 
is not present in the column T.f, but it may be present 
in R.f. We want Query 11 to produce such a table even 
though it has no knowledge of the R.f values. 

We now return to discussing why Query 11, as 
shown, is incorrect. Notice that we are selecting atui- 
butes from both S and TEMPi in Query 11. We are 
also grouping by attributes from both the relations. In 
case an S tuple does not join with any TEMPi tuples, 
we cannot meaningfully evaluate the query. Let us try 
to understand what happens when an S tuple does not 
join with any tuple of TEMP,. It is clear from the 
query of Example 3 that if an S tuple does not join with 
any T tuple, then COUNT (I’.*) is 0, irrespective of the 
value of R.f. Therefore, such an S tuple will contribute 
to COUNT (S.*) if (S.d OP, 0) is true. 

There is another subtlety that we need to focus 
on. Assume that a tuple s E S joins with one or more 
TEMPi tuples. Let (TEMPi.f] denote the set of f 
values in the joining TEMP, tuples. We need to decide 
if s will contribute to COUNT (S.*). If a tuple r E R 
has as an f value that is in (TEMPi.f} , we know that 
COUNT fl.*) associated with this (r, s) pair will be 
greater than 0. Then s will contribute to COUNT (S.*) 
if (s.d OP, TEMP,.count) is true. On the other hand, 
for any tuple r E R that has an f value that is not in 
{TEMPi.fJ, the corresponding COUNT (T.*) will be 0. 
If (s.d OP, 0) is true, then s will contribute to COUNT 
(s.*). 

Using these observations, we now describe what 
the outer join operator of Query 11 must accomplish 
using the following pseudo code: 

1 if no tuple of TEMPi satisfies (s.e = TEMPi.e) 
2 then output (s.c, all) 
3 else for each tuple of TEMP, 
4 satisfying (s.e = TEMPi.e) 
5 ( 
6 if (s.d OP, TEMP,.count) 
7 then output (s.c, TEMPi.f) 
8 else if (s.d OPz 0) 
9 then output (s.c, - (TEMPi.f)) 
10 1 

The pseudo code focuses on one S tuple, s, at a 
time. The second component of the tuple in Line 2 is a 
set that denotes all possible values of f. In Line 7 we 
output a tuple of the form (s.c, TEMPi.f). Line 9 indi- 
cates that we are outputting one tuple (s.c, 
- {TEMP, .f]). The second component of the above 
tuple is a set of values and is equal to the complement 
of the values present in set (TEMPi.f). It is clear that 
the outer join operator has become more complex now! 

The groupby operator in Query 11 is also a lot 
more complicated. The groupby operator can easily 
determine the group to which a tuple from Line 7 
belongs to as both the c and f values are available. A 
tuple from Line 2 logically belongs to all groups that 
have the same c value as this tuple since its f value 
represents all possible values of f. A tuple from Line 9 
belongs to all groups that have the same c value as this 
tuple but whose (the group’s) f value does not belong to 
set (TEMPi .f) . Logically, the number of such groups is 
bounded by the size of the domain of f. Potentially, 
this size could be infinite! 
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We further illustrate the complexity of the outer 
join and the groupby operations in Query 11 using the 
data stored in the relations S and T. We first use Query 
10 to compute TEMP,. 

Assuming OPz denotes equality, the outer join 
operator of Query 11 produces the following output. 

C second comments 
component 

10 1000 from the la tuple of S 
10 -(looo) from the 2”d tuple of S 
10 1000 from the 3’d tuple of S 
10 2000 from the 31d tuple of S 
10 - (1000,2000) from the 4& tuple of S 
10 all from the 6” tuple of S 

It should be easy to see that the first, third, and 
the last tuple in the above table belong to the (IO, 1000) 
group. The second, the fourth, and the last tuple belong 
to the (10,20(X)) group. Similarly, the second, the fifth, 
and the last tuple belong to the (10, x) group where x is 
any value except 1000 or 2000. The groupby operation 
of query 11 must take the output of the outer join 
operator and produce TBMP2 (an infinite relation!) as 
shown below. 

IT EMP& 1 f Icount] 

None of the fi'S in the above table are equal to 
1000 or 2000. Notice that in this example, for every c 
value we have generated all possible f values, and 
hence the predicate (R.f = TEMPz.f) in Query 12 will 
always be satisfied. However, this predicate helps us 
identify the correct matching tuple in TEMPF We have 
not been able to develop an efficient implementation for 
the groupby operator of Query Il. Perhaps, it might be 

easier to modify the outer join of Query 12. Until a 
reasonable implementation is possible, we cannot 
employ Kim’s method when a non neighbor predicate 
(T.f = R.f in this case) is present inside a COUNT 
block. However, if the second COUNT in Example 3 is 
replaced by a non COUNT aggregate, Query 11 would 
only have to perform a simple join. As in Dayal’s solu- 
tion, an outer join is used only when a COUNT aggre- 
gate is present between the blocks. 

In the next two sections, we shall present a couple 
of strategies that will enable us to generate more plans. 
The goal we are working towards is a new unnesting 
algorithm in Section 6 that incorporates the ideas 
presented in Sections 2 through 5. 

4. Precomputing the last aggregate 

As we mentioned in Section 2.2, a valid J/OJ ord- 
ering is obtained by performing all the joins first, fol- 
lowed by the outer joins from left to right. Sometimes, 
we can change this order as demonstrated by the next 
query. 

SELECT R.a 
PROM R 
WHERE R.b OP, (SELECT COUNT (S.*) 

PROM S 
AND S.d OPz (SELECT MAX (T.d) 

PROM T 
WHERE R.f OPs T.f) 

The J/OJ expression for the above query is R OJ 
(S J T). Since there is no correlation predicate between 
the S and T blocks, we have to perform a Cartesian pro- 
duct to compute (S J I’). The outer join is then per- 
formed using the predicate (R.f OPs T.f). However, for 
each (r, s) pair, where r E R and s E S, MAX (T.d) 
depends only on r. Hence, we can precompute MAX 
(T.d) associated with each tuple of R as follows: 

TEMP, (#, a, b, max) = 
SELECT R.#, R.a, R.b, MAX (T.d) 
PROM R, T 
WHERE R.f OPa T.f --- OJ 
GROUP BY R.# 

Notice that 1 TEMP, I= 1 R 1 . Essentially, TEMP, 
has all the attributes of R required for further processing 
along with the MAX (T.d) associated with each tuple of 
R. We were able to compute MAX (T-d) in this fashion 
only because it occurred in the last block. Any aggre- 
gate that does not occur in the last block depends on the 
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results of the blocks below it and hence cannot be 
evaluated before the blocks below it are evaluated. 
Also, notice that we performed an outer join between R 
and T even though we were computing MAX (T.d). 
This is because COUNT (S.*) indirectly depends on 
each tuple of R as R is referenced inside the third block 
which is nested within the second block. Hence we 
must preserve all tuples of R. For a tuple of R with no 
joining tuples in T, the MAX value is set to NULL4. 
We can now rewrite the original query as follows: 

SELECT TEMPl .a 
FROM TEMPi 
WHERE TEMPi.b OPi (SELECT COUNT (S.*) 

FROM S 
WHERE S.d OP, TEMP,.max) 

We now have a correlation predicate between 
TEMPl and S, thus avoiding a Cartesian product. The 
reader might note that similar ideas were presented in 
[Dayal87] in the section titled “Positioning G-Agg 
operations”. In that section, [Daya187] presents rules 
for computing aggregates before G-joins. 

It is clear that it is possible to precompute the 
bottom most aggregate (BMA) if the number of outer 
relations referenced in the last block have already been 
joined. In the example of this section, the BMA 
depended only on one outer relation. In Section 6, we 
shall present an example where the BMA depends on 
more than one relation. 

5. Performing outer joins before joins 

As pointed out repeatedly, one correct evaluation 
order of a J/OJ expression is to perform the joins first 
followed by the outer joins from top to bottom. In this 
section we show that we may also proceed in a strictly 
top-down order, performing the joins and outer joins in 
the order they occur. As we shall see in Section 6, 
proceeding in a top down manner may enable us to use 
Kim’s algorithm for a larger number of contiguous 
blocks at the end of the query. However, care must be 
taken to ensure that any join that is present just below 
an outer join is also evaluated as an outer join. We 
again illustrate with an example. 

4Any comparison where one or both of the operands is 
NULL evaluates to unknown, which SQL regards as false for 
query evaluation purposes. 

SELECT R.a 
FROM R 
WHERE R.b OP1 (SELECT COUNT (S.“) 

FROM S 
WHERE R.c OP2 S.c 
AND S.d OPs (SELECT MAX (T.d) 

FROM T 
WHERE S.e OP, T.e 
AND R.f OP5 T-t)) 

The J/OJ expression is R OJ (S J T). The join 
predicate between S and T is (S.e OP, T.e) and the 
outer join predicate is (R.c OP2 S.c AND R.f OPs T.f). 
Assume that the join between S and T is very expensive 
and should be possibly avoided. Could we evaluate (R 
OJ S) first? It turns out that we can indeed perform (R 
OJ S) first. However, some precautions/modifications 
are necessary. 

It is clear that if an R tuple has no matching S 
tuples, the count associated with that R tuple is 0. As 
pointed out in [Murali89], this R tuple may be option- 
ally routed to a higher node in the query tree so that it 
does not participate in the next join operation with T. 

We thus need to consider only the join tuples of 
the form (r, s) from the outer join, where r E R and s E 
S. Let us focus our attention on a single tuple r of R. 
When the join with T is evaluated using the predicate 
(Se OP4 T.e AND R.f OP5 T.f), it is quite possible that 
none of these (r, s) tuples join with any tuples of T. In 
this case, the r tuple will be lost. However, if (r.b OP1 
0) is true, r is a result tuple and hence must be 
preserved. On the other hand, if some of the (r, s) 
tuples do join with some T tuples, it may so happen that 
after we do the groupby (as in Query 4 of Section 2.2) 
by (R.#, S.#) and evaluate MAX (T.d), none of the s.d 
values in the (r, s) tuples satisfy (s.d OPs MAX (T.d)). 
We may be tempted to discard all the (r, s) groups. 
Again if (r-b OPi 0) is true, we need to preserve r. 

We can preserve r if we perform the join between 
S and T as an outer join. Also, the groupby operator 
must not discard any (r, s) group not satisfying (s.d OPs 
MAX (T.d)). Instead, it must pass it on preserving the R 
portion of the tuple and nulling out the S portion of the 
tuple. 

Similar ideas were used in [Murali when 
unnesting tree queries. Summarizing, if we encounter 
the expression R OJ S OJ T J U J V, we could evaluate 
it as ((R OJ S) OJ (T J U J V)). The above order 
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corresponds to evaluating all the joins first. Another 
evaluation order could be ((((R OJ S) OJ T) OJ (U J 
V)). Now we have an outer join between T and U. 
Carrying this idea one step further, the above expression 
may also be evaluated as ((((R OJ S) OJ T) OJ U) OJ 
V). As we shall see in the next section, joining rela- 
tions in a top down order may enable us to employ 
Kim’s method for a larger number of blocks. 

6. An integrated algorithm 

In this section we describe a new algorithm that 
generates execution plans by combining the ideas 
presented in Sections 2 through 5. We leave it to the 
optimizer to pick the cheapest plan. Before we describe 
the new algorithm, we introduce a fairly simple graphi- 
cal notation for JA type queries. The new algorithm 
will operate on graphs. 

The graph G = (V, E) for a JA type query con- 
sists of a set of vertices V and a set of directed edges E. 
There is a one-one correspondence between the blocks 
of the query and the elements of V. Each element of 
V, except for the first vertex, is labeled either C 
(COUNT) or NC won COUNT). This labeling is 
clearly suggestive of the kind of aggregate (COUNT or 
Non COUNT) present in that block. The vertices are 
numbered 1 through d, where d is the current number of 
vertices in the graph. A directed edge is drawn from 
vertex i to j (i < j) if there is a correlation predicate in 
the jth block between the relations of blocks i and j. In 
essence, the graph is a join graph. 

Kim’s method may be applied to the last k blocks 
of a query (0 I k 5 d) if the last k vertices of the graph 
of the query satisfy the following properties: 

l The in degree of every C vertex is at most 
1. 
l The edge incident on a C vertex corresponds 
to a neighbor predicate. 
l All the edges incident with the last k ver- 
tices correspond to equi-join correlation predi- 
cates. 
l The relations in the first d-k blocks have al- 
ready been joined. 

The BMA may be precomputed if the in degree 
of the last vertex is at most 1. 

The operations on the graph are as follows: 

l When the relations of two or more blocks 
are joined, the corresponding vertices are col- 

lapsed into one vertex. The edges adjacent to 
these vertices are removed, while all the edges 
that connect these vertices to other vertices are 
preserved. Multiple edges are replaced by a 
single edge. 
l Let d-l and d be the last two vertices in the 
graph. If the BMA is computed, the last ver- 
tex d is removed from the graph and the edge 
incident on d is connected to d-l. 

Notice that we may be able to apply Kim’s 
method only after joining some relations. For example, 
we may apply Kim’s method to the last block after join- 
ing R and S in the query of Example 3. This is because 
the predicate (R.f = T.f) becomes a neighbor predicate 
only after relations R and S are joined. Thus, the 
number of blocks for which we may apply Kim’s 
method can change dynamically. Similarly, the BMA 
may have originally depended on more than one outer 
relation but after these relations have been joined, the in 
degree of the last vertex will become 1. The BMA may 
be precomputed at this point. 

When a series of consecutive m joins are encoun- 
tered in a J/OJ expression, one may be tempted to 
evaluate alI the joins using the cheapest order. It will 
become evident from the example at the end of this 
paper that we must evaluate joins incrementally. In 
other words, we must evaluate the first i joins at a time, 
where 1 I i I m. This ensures that we may be able to 
apply Kim’s method to a larger group of contiguous 
blocks at the end of the query. 

We are finally ready to present the new algorithm, 
unnest, in pseudo code. The input to the algorithm is 
the graph G of the query and the output is a set of 
query plans. We shall not describe how the output is 
specifically constructed as this is implicit in the opera- 
tions on the graph and should be fairly self evident. 
References to G’ in unnest denote the new graph 
derived from G. 
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unnest (G) 

1 
if (the BMA can be precomputed) 

( compute the aggregate. 
unnest (G’); 

if (Kim’s method can be applied to the 
remaining blocks) 

( apply Kim’s method 
return; 

1 
if (J--J-- . ..---I---OJ---...) is encountered 

{ for (i = 1; i c= m; i++) 
evaluate the first i joins using the 
cheapest join order. 

unnest (G’); 
1 

if (OJ--J---J-- . ..---J---OJ---...) is encountered 
( for (i = 1; i <= m; i++) 

evaluate the first i joins using the 
cheapest join order. 

unnest (G’); 

evaluate the first OJ; replace the 
first J by OJ. 

unnest (G’); 

We illustrate the working of the algorithm on the 
following query whose graph is shown in Figure 3. 

SELECT R.a 
FROM R 
WHERE R.b OPr 

(SELECT COUNT (S.*) 
FROM S 
WHERE R.c = S.c 
AND S.d OP, 

(SELECT AVG (T.d) 
FROM T 
WHERE S.e = T.e 
AND R.f = T.f 
AND T.g OP3 

(SELECT SUM (U.g) 
FROM U 
WHERE S.h = U.h 
AND T.i = U.i))) 

/ 
NC 

Fi,oure 3. 

The J/OJ expression is R---OJ---S---J---T---J---U. 
The following query plans, as shown in Figures 4(a)- 
4(f), are possible: 

l (a) Apply Kim’s method to blocks 2, 3, and 
4. 

l (b) Join R and S and apply Kim’s method to 
blocks 3, and 4. Since the outer join between 
R and S is performed before the join, the first 
join is now evaluated as an outer join. 
l (c) Join R, S, and T and apply Kim’s 
method to block 4. Notice that both joins are 
now replaced by outer joins. 
l (d) All joins have been replaced by outer 
joins, followed by three groupby operations. 
l (e) Join relations S, T, and U first, followed 
by the outer join. This amounts to applying 
the general solution for the entire query. 
l (f) Join relations S, T, and U first. Since the 
BMA depends only on relations S and T, the 
BMA is computed before the outer join with 
R. 

Notice that it was important to evaluate the joins 
incrementally. Most of the outer join nodes in Figure 4 
have two output edges. The vertical edge represents the 
anti-join tuples, while the other edge represents the join 
tuples. Similarly, the groupby-having nodes have two 
output edges. The vertical edge represents the groups 
that did not satisfy that condition in the having clause. 
These groups have certain portions nulled out. For 
example, in Figure 4(d), groups flowing from the first 
groupby-having node to the topmost groupby-having 
node along the vertical edge are of the form (R, NULL) 
[Murali89]. Also, Figures 4(b)4(f) have edges that 
route tuples to a node much higher in the tree than the 
immediate parent. As pointed out in IMurali891, this is 
optional but leads to savings in message costs. 
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Rc = S.c and R.f = T.f 

&b OP1 COUNT (S.*) : Rb OP1 0] 

S.e = T.e and S.h = Ub 

(4 

Cd) 

Having S.d OP2 AVG (T.d) 

Groupby R.#, S.#, T.# 
Having T.g OP3 SUM (U.g) 

Outer Join 
S.h = U.h and 

t 

d R.f = T.f 

R.b OP1 COUNT (S.*) 

S.e = T.e and R.f = T.f 
and S.h = U.h and 

R.b OP1 COUNT (S.*) 

Having S.d OP2 AVG (T.d) 

S.h = U.h and T.i = U.i 

T.g OP3 SUM (U.g) 

\ (cl 

/ Grounbv R.# ----~I-, -~-. 
Having 
R.b OP1 COUNT (S.*) R.b OP1 COUNT (S.*) 

Groupby R.#, S.#, T.# 
Having T.g OP3 SUM (U.g) 

R.c = S.c and 
R.f = T.f 

\ 

(T-4 
Having S.d OP2 AVG (T.d) 

Having T.g OPj SUM (U.g) 

Figure 4. 

and 
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7. Conclusions and future work VLDB Conf., pp.77-85, (August 1989). 

In this paper, we have presented a new algorithm 
that enhances and incorporates the previously known 
techniques for unnesting JA type queries. We are in the 
process of studying unnesting algorithms for all nested 
predicates in SQL. It appears that we can unnest the 
various SQL predicates using the techniques presented 
in this paper. It is hoped that more commercial systems 
will unnest SQL queries in the near future. 

[Rose901 Amon Rosenthal and Cesar Galindo-Legaria, 
“Query Graphs, Implementing Tress, and Freely- 
Reorderable Outerjoins”, Proc. SIGMOD Conf., “pp. 
291-299, (May 1990). 
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