
Using Flexible Transactions to Support Multi-system
Telecommunication Applications

Mansoor Ansari*
Dept. of Computer Science

University of Houston
Houston, TX 77204
ansari@cs.uh.edu

Linda Ness
Bellcore

445 south St.
Morristown, NJ 07962

linda@flash.bellcore.com

Marek Rusinkiewicz*
Dept. of Computer Science

University of Houston
Houston, TX 77204
marek@cs.uh.edu

Amit Sheth
Bellcore

444HoesLane
Piscataway, NJ 08854
amit@ctt.bellcore.com

Abstract 1 Introduction and Motivation

Service order provisioning is an important telecommuni-
cation application that automates the process of providing
telephone services in response to the customer requests. It
is an example of a multi-system application that requires ac-
cess to multiple, independently developed application sys-
tems and their databases. In this paper, we describe the
design and implementation of a prototype system’ that sup-
ports the execution of the Flexible Transactions and its use
to develop the service order provisioning application. We
argue that such approach may be used to support the devel-
opment of multi-system, flow-through processing applica-
tions in a systematic and organized manner. Its advantages
include fast and easy specification of new services, support
for testing of the declaratively specified work-flows, and
the specification of potential concurrency among the tasks
constituting an application.
Keywords: multi-system application, work-flow control,
service order provisioning, Flexible Transactions

‘M. Ansari and M. Rustiewicz were supported, in part, by
grants from Bellcore, MCC, and by the Texas AdvancedTechnol-
ogy program under Grant No.3652008.

‘The term “prototype” refers to a “softwaze prototype”
throughout this paper.

Permission to copy withoutfee ail or part of this material is
grantedprovided that the copies are not made or distributed
for direct commercial advantage, the VLDB copyright no-
tice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee andlor special permission from the
Endowment.

Proceedings of the 18th VLDB Conference
Vancouver, British Columbia, Canada 1992

In many industrial computing environments, dedi-
cated application systems were developed to automate
various organizational functions. These systems were
usually designed independently and used their own
databases to store the data they needed. As the scope
of automation was expanded, the needs for new multi-
system applications that require access to multiple au-
tonomous systems began to grow. Such needs have
usually been addressed by developing dedicated soft-
ware systems which are said to control work-flows.
When the work-flows are completely automated, i.e.,
do not require manual processing steps or human in-
terventions, the system is said to supportflow-through
processing.

In current systems supporting flow-through pro-
cessing, the integration of component systems has
been usually implemented in an ad hoc manner, with
the work flows hard-coded in the application. To
develop robust multi-system applications, we need a
model that allows flexible specification of work-flows
and efficient control of their execution. Multidatabase
transactions provide a technology that can be used to
address these issues.

The multidatabase approach assumes the existence
of multiple and possibly heterogeneous databases in
which component database systems maintain their au-
tonomy upon integration [J!IM85, LA86, SL90]. In
managing multidatabase transactions, the problems
associated with preserving the autonomy of partici-
pating database systems are aggravated by the fact
that multidatabase transactions are often long run-
ning activities. This is inconsistent with the assump-
tion of the traditional transaction model that trans-
actions are short lived. To address this situation,
several models have been proposed in the literature
to relax some requirements of the traditional trans-

65

action model, such as atomicity or isolation, that
may be too restrictive in a multidatabase environment
[GS87, Elm92]. The management of work-flows and
long running activities has been addressed, among
others, in [Reu89, GGKf90, DHL91, Kle911.

During a cooperative research project involving
Bellcore and the University of Houston, a prototype
transaction processing system based on an extended
transaction model was developed. The system was
then used to implement a telecommunication applica-
tion that served as a testbed for the prototype. The
application we have selected is service order provi-
sioning, which is the automated process of providing
telephone services to customers. A service request
is processed by multiple and heterogeneous systems
that are responsible for performing optimal line and
equipment assignments and updating the facility, cus-
tomer and billing information databases. The systems
involved in processing of a customer request have
various functionalities and are, to a large extent, au-
tonomous. In order to provide a service, the execution
of these systems must be coordinated and data may
need to be exchanged between them. This problem is
fundamental to the telecommunications industry since
its business consists of efficiently providing telecom-
munications services to customers.

The objective of the project was to determine
whether the application of multidatabase transaction
models might permit flow-through processing appli-
cations to be defined and supported quickly, flexibly,
and efficiently. The project provided insight into both
the strengths and weaknesses of the approach for this
class of applications.

The transaction processing system described in this
paper is based on the Flexible Transaction paradigm
[RELL90, ELLR90]. A Flexible Transaction is a
collection of subtransactions related by a set of ex-
ecution dependencies among them. Associated with
each Flexible Transaction is a set of acceptable states
defining the conditions for the success of the global
transaction. Therefore, the success of all subtrans-
actions may not be necessary for the success of the
global transaction. This characteristic of the Flexi-
ble Transactions provides flexible atomicity, by per-
mitting specification of the subsets of subtransactions
that should be treated as units of atomicity, rather
than requiring the all or nothing property. In addi-
tion, partial results of the Flexible Transactions (the
results of committed subtransactions) are visible to
other transactions, if the subtransactions are declared
to be compensable. This characteristic provides flex-
ible isolation. Furthermore, declaring the execution

dependencies of the subtransactions permits specifi-
cation of intra-transaction parallelism.

The project consisted of two phases: (a) develop-
ment of a prototype for executing Flexible Transac-
tions, and (b) specification of provisioning for a class
of service requests as a Flexible Transaction and exe-
cuting it on the prototype. The prototype consists of
a scheduler, which decides when the subtransactions
of a Flexible Transaction should be submitted for exe-
cution and an Execution Monitor which submits each
scheduled subtransaction to the appropriate DBMS,
monitors its progress, and relays the information back
to the scheduler. The second phase of our project in-
volved modeling of a substantial application system
and study of the applicability of the model in industrial
context.

The rest of the paper is organized as follows. In
section 2, the Flexible Transaction model is reviewed.
Some extensions to the original model that were pro-
posed as a direct result of this project, are provided
in this section. Section 3 reviews service order pro-
visioning and describes how a class of service orders
can be modeled as a Flexible Transaction. Section 4
presents the steps in implementing this multi-system
application using the Flexible Transaction paradigm
and describes the architecture of our prototype for
processing Flexible Transactions. Section 5 presents
conclusions and future work.

2 Flexible Transaction Model

A Flexible Transaction is specified by providing the
following information [ELLR90]: (a) a set of sub-
transactions, (b) a set of intra-transaction execution
dependencies, and (c) a set of acceptable states defin-
ing the conditions for the success of the FlexibleTrans-
action.

2.1 The Set of Subtransactions

Each subtransaction is a logical unit of work that per-
forms some operations at a particular site. A subtrans-
action can be either compensable or noncompensable
[Gra81, KLs901.

Most nested transaction models use commitment
protocols to assure that all subtransactions constituting
a global transaction are either committed or aborted.
Some models assume the existence of a prepared to
commit state. A subtransaction that has finished all its
operations can wait in this state for a commit or abort

66

decision from the global transaction manager. How-
ever, since multidatabase transactions are frequently
long-running activities, holding the locks on data by
the subtransactions waiting in the prepared-to-commit
state, may lower the availability of the data. There-
fore, transaction models have been proposed that may
take advantage of compensation to increase the avail-
ability of data and decrease the possibility of a dead-
lock [GS87, LKS91]. However, the applicability of
these models is limited by the fact that not all sub-
transactions can be compensated (especially in a mul-
tidatabase environment). By allowing both compens-
able and noncompensable subtransactions to coexist
within a single Flexible Transaction, the visibility of
the subtransactions can be controlled as follows. A
compensable subtransaction can commit locally and
make its results visible to other (sub)transactions, as-
suming that it can be compensated, if necessary. A
noncompensable subtransaction must wait in a pre-
pared to commit state for a commit decision from the
global transaction manager before it can make its re-
sults visible to others.

2.2 The Intra-transaction Execution Depen-
dencies

One characteristic that most multi-transaction mod-
els share is that operations are grouped to form one
or more subtransactions. Often a subtransaction can
have an execution dependency as a condition to start
a subtransaction, a condition to resume the execution
of a halted subtransaction, or a condition to terminate
a subtransaction [CR90]. The condition can be speci-
fied based on the execution state of one or more sub-
transactions, based on the output generated by other
subtransactions, or based on time. A comprehensive
list of executing dependencies have been discussed in
[Ans92]; below we present a summary.

The execution state of a subtransaction can be not-
executed, executing, prepared-to-commit, committed,
aborted, or compensated. A number of execution
dependencies involving the execution state of one
or more subtransactions can be defined. The exe-
cution dependencies can be interpreted and defined
from two different perspectives. One is from a his-
torical perspective, i.e., whether a given history has
maintained the execution dependencies of scheduled
(sub)transactions [CR91]. It is useful when the inter-
transaction dependencies of the subtransactions are
being studied to establish a correcmess criterion for
the concurrent execution of the global transactions.
The other is from a postulative perspective, i.e., to

define the intra-transaction dependencies of the sub-
transactions in the specification of a global transaction
[RELL90]. It is useful when the intra-dependencies of
the subtransactions are being studied for constructing
requirements for the execution of the global transac-
tions. Below, different types of the execution depen-
dencies are listed:

l The execution dependencies based on the ex-
ecution state. These dependencies have been
discussed frequently in the literature and in-
clude start dependencies (start-start depen-
dency, commit-start dependency, prepared-to-
commit-start, and abort-startdependency), com-
mit dependencies (commit-commit dependency,
prepared-to-commit-commit dependency, and
abort-commit dependency), and abort dependen-
cies (weak-commit-abort, and weak-abort-abort
dependency).

The execution dependencies based on the output
of other subtransactions. These dependencies
are sometimes referred in the literature as value
dependencies [DE89].

The execution dependencies involving time.
The execution dependency of a subtransaction
based on time can be temporal-start depen-
dency, temporal-commit dependency [LT88], or
temporal-abort dependency.

The execution dependencies listed above can be
combined to express mom complex semantics. To
simplify the specification of the subtransactions that
are assigned to perform a common subgoal of a global
transaction (e.g. the set of subtransactions that can be
used to reserve a CZU)~, they can be grouped into clus-
ters. Thus, execution dependencies may involve in-
dividual subtransactions or clusters. Associated with
each cluster, is a condition for its success. A subtrans-
action with an execution dependency on a cluster can
be executed only after success or failure of the cluster.

2.3 The Set of Acceptable States

The conditions for the success of a Flexible Transac-
tion can be specified by providing a set of acceptable
states, defined as a combinationof the execution states
of the subtransactions. If an acceptable state is reached

‘In [LER90], this is referred to as function replication. For
a function T. the local database systems which can be used to
implement T are said to be functionally replicated for T.

67

during the scheduling of the subtransactions, no ad-
ditional subtransaction need to be scheduled and the
Flexible Transaction can terminate successfully.

Each acceptable state is specified as a conjunction
of the subtransaction states (s-states). The s-states
corresponding to the execution states are presented in
Table 1.

As an example, let’s consider a Flexible Transaction
consisting of three subtransactions. A set of accept-
able states for this transaction can be specified as:

{CUW or (F&V or . ..}

The first acceptable state indicates that the Flexible
Transaction can successfully complete if the first and
the third subtransactions succeed and the second sub-
transaction fails. The second acceptable state indi-
cates that the Flexible Transaction can complete suc-
cessfully if the first subtransaction fails and the second
and the third subtransactions succeed.

A Flexible Transaction may have a subset of sub-
transactions that can be alternatively used to achieve
the same subgoal (such as the first and the second
subtransaction in the above example). Such subtrans-
actions can run concurrently; however, precautions
must be taken, by the appropriate specification of the
acceptable states, to ensure that only one of them is
allowed to succeed. This is assured by the termination
protocol, described in the next section.

2.4 The Execution of Flexible Transactions

The execution of a Flexible Transaction consists of
a scheduling phase and a terminating phase. In the
scheduling phase, subtransactions are scheduled ac-
cording to their execution dependencies. All subtrans-
actions whose execution dependencies are satisfied
can be scheduled concurrently. Whenever the execu-
tion state of a subtransaction changes, the scheduler
checks if an acceptable state has been reached. This
phase ends if one of the following events occurs:
(a) One of the acceptable states is reached. An accept-
able state is reached when all subtransactions whose
success is required reach the S state3. This state is
referred to as the accepted state. In this case, the
Flexible Transaction has succeeded and therefore be-
comes ready to commit.
(b) No subtransaction is executing, no more subtrans-
action can be scheduled, and no acceptable state is

31f more than one acceptable state is reached simultaneously,
one of them is selected. The choice can be either arbitrary or based
on additional specification of preference among the acceptable
states.

reached. In this case, the Flexible Transaction has
failed and therefore becomes rearj, to abort.

In the terminating phase, the execution of the Flex-
ible Transaction is completed as follows:
(a) If the Flexible Transaction is ready to commit, the
accepted state is used to determine which subtransac-
tions must be committed, aborted, or compensated:

l All the subtransactions that are still executing,
are aborted.

l All the compensable subtransactions that are
committed, but their failure is required in the
accepted state, are compensated.

l All the subtransactions that are in the prepared-
to-commit state, are either committed or aborted,
as required by the accepted state.

(b) If the Flexible Transaction is ready to abort, all
the subtransactions in the prepared-to-commit state
are aborted, and all the committed subtransactions are
compensated4.

3 Service Order Provisioning

Service order provisioning is the automated process
of providing a telephone service to a customer. The
process of providing a service is carried out in a dis-
tributed environment and requires access to multiple
heterogeneous databases. The size and the complexity
of the components and the fact that they maintain a real
time inventory are some of the reasons for preserving
the autonomy of the component systems. In the dis-
cussion below, we will refer to the real applications
and databases5. We wilI attempt to extract general
characteristics of such applications, including the ex-
ecution dependencies that exist among various tasks,
omitting unnecessary details whenever possible.

A customer’s request for a service is entered into
the Service Order Processor (SOP) which reads the
service request and converts it to the service order.
From there, the service order is sent to different busi-
ness units within the company for further processing.
The order is sent to the provisioning unit where it is

4Noncompensable subtransactions are not allowed to commit
in the scheduling phase.

‘NOTICE: Descriptionof applications, databases, and systems
is abstract and for illustration only. Bellcore and Bellcore Client
Companies may not be supporting these products or may not be
using them in the way described in this paper.

68

s-states corresponding execution states
N not-executed

S (Success) committed, prepared-to-commit
F (Failure) aborted, compensated

The execution state of the subtransaction
* has no effect on reaching the corresponding

acceptable state.

Table 1: List of possible s-states in an acceptable state

analyzsed and processed for line and equipment as-
signments. After completing the assignments, SOP
receives the final status of the provisioning.

3.1 Provisioning Environment

Provisioning6 often involves three distinct types of
areas in which different types of assignments may
take place (see Figure 1). One type of area, called
local loop, is from customer premises to the central
office. All local loops in a geographic area terminate
in the central office where the necessary equipment
for switching between cables and wires reside. The
second type of area is within a central office. The
third type of area is between central offices and is
called inter-office or trunk area. Figure 1 shows two
local loops, two central offices, and one inter-office
area. Usually one application system, called operation
support system, is dedicated to assignments in each
area.

The assignment of a local loop, the transmission
path between central office and customer premises, is
done by Loop Facility Assignment and Control Sys-
tem (LFACS). LFACS is a BelIcore provided opera-
tion support system for the loop assignment center.
The inventory for local loop facilities is maintained in
the LFACS database and include, information about
cables, cable pairs, distribution terminals, cross box
terminals, binding posts, living units, customer ser-
vice wires, remote switches, etc.

The assignment of the line-side equipment within
the central office (the equipment dedicated to the lo-
cal loop) is done by the Computer System for Main
frame Operation System (COSMOS). Its primary job
is to assign the best possible line equipment in the
central office (originating equipment) to the outside
plant equipment (typically cablepair). A cable pair is
assigned by LFACS and passed to COSMOS through
the information flow controlIer module. The corre-

‘The discussion here is that of a typical case.

sponding originating equipment is assigned by COS-
MOS based on the central office load balancing and
other criteria determined by the telephone operating
company. COSMOS maintains the inventory for local
wire center facilities and circuits in its database.

The assignment of the trunk-side equipment (the
equipment dedicated to the trunks) within the central
office and the assignments of the facilities between
central offices is done by the TIRKS@system. The
TIRKS system is composed of several software mod-
ules performing a variety of functions. It supports the
facilities between central offices and the associated
equipment within a central office, required to make
the facilities work. It also supports equipment inven-
tory, facility inventory, and circuit design.

Other systems exist in the provisioning environment
that perform various tasks, in addition to facility as-
signments. The Service Order Analysis and Control
system (SOAC) controls the work flow and orches-
trates the flow of information among the components
of the system. SOAC is a transaction based system
and holds only temporary data. Routing and dispatch-
ing of work force is done by WFADO. It handles
the routing and dispatching installation maintenance
forces for the field, maps the job location, estimates
the time to perform the work, categorizes the work to
match technician skill, calculates dispatchs start date,
and prioritizes dispatch jobs. Another system called
the MARCH@system serves as a vehicle to associate
service and/or custom calling features (e.g. 3 way
calling) with the telephone number of the customer.
The rest of the operation support systems are beyond
the scope of this paper.

TIRKS is a registered trademark of Bellcore.
MARCH is a registered trademark of Bellcore.

69

E E

PQ PQ
T T -7-vfa

Central
OffiCe

Central
OffiCe

Warehouse

Figure 1: Foreign Exchange Service

3.2 Foreign Exchange Service: A class of ser-
vice orders

The foreign exchange service is one example of a spe-
cial service order. It differs from an ordinary service
order in that it has two terminating ends (customer
premise, and caller to the customer premise). Also it
uses circuits and trunks that are dedicated to special
service circuits. To understand the foreign exchange
service, let’s consider the following scenario.

The owner of a warehouse in Piscataway has cus-
tomers in Morristown (Figure 1). Although both Pis-
cataway and Morristown are within the service area
of the same telephone operating company, the call
between them is a toll call, and the warehouse cus-
tomers would have to pay the usage sensitive fee. The
warehouse owner requests a Foreign Exchange Ser-
vice from the telephone company to arrange a special
service so that the warehouse customers in Morristown
would not be charged for their calls to the warehouse.
Instead, the warehouse owner will pay a monthly fee
for the special service.

The Foreign Exchange Service request is processed
under the supervision of SOAC which interacts with
multiple operation support systems. Figure 2 illus-
trates the simplified flow information. Basically, the
process consists of submitting appropriate allocation
and update requests to the various component systems
and passing the information between the components
through the controller. Complex execution dependen-
cies exist between the individual requests executed by
the independent but cooperating systems. After the
assignments and the physical connections are made,
the special service is available and the telephone com-
pany starts to bill the customer.

3.3 Modeling the Foreign Exchange Service
Order Provisioning as a Flexible Trans-
action

A service request (transaction), which is forwarded to
SOAC, has the characteristics of a Flexible Transac-
tion. The foreign exchange service transaction corre-
sponding to Figure 2 consists of ten subtransactions.
A flexible transaction can be represented by a trans-
action graph, such as the one shown in Figure 3. The
nodes of the transaction graph correspond to subtrans-
actions ST; of flexible transactions. A directed edge
is drawn from ST; to STj if an execution dependecy
exists, requiring that STj cannOt be exuted until ST;
completes successfully. Transactions with no incom-
ing edges have no execution dependencies and are
designated as primary subtransactions.

In our example, ST1 , ST2 and ST3 are primary sub-
transactions. Each subtransaction corresponds to one
of the messages (with its corresponding response/reply
message) shown in Figure 2). ST1 is the Planning
MSG to WFADO, ST2 is MSGl and its reply MSGlR
involving the TIRKS system, and ST3 is the Assign-
ment Request to LFACS (that performs the assign-
ments related to the loop serving the warehouse) and
the reply response from LFACS. Upon the success of
ST2, ST4 is scheduled. ST4 is MSG2 to the TIRKS
system and its response MSG2R. Upon the success of
ST3, ST5 and ST6 are triggered to provide Assignment
Request to two COSMOSs corresponding to the two
central offices. ST5 and ST6 are prepared based on
the output of the ST3 which is the assignment done by
LFACS. Upon the success of STl, ST4, ST5, and ST6,
ST7 through ST10 are scheduled for execution. ST7 is
the MSG3 to the TIRKS system, ST8 is the Assign-
ment MSG to WFADO, ST9 is the Translation Packet
to the MARCH system, and ST10 is the Assignment
Section to SOP Upon the success of ST7 through STlo,
the Flexible Transaction commits. Therefore, this
Flexible Transaction has one acceptable state which
specifies the success of all ten subtransactions as the
condition for its success.

70

Translation Assignment Planning
MSG (STl)

Assignment

TIRKS
MSG2 (5’53)

4
MSG2R ClPREP

c

Request Response

Assignment

Request Response
t

COSMOS COSMOS LFACS

A

Figure 2: Foreign Exchange Service Order Provisioning

4 Implementing a Class of Service Or-
ders Using the Flexible Transaction
Paradigm

Our prototype testbed for foreign exchange service
provisioning was developed in two steps. In the first
step, a processing system for Flexible Transactions
was implemented to receive the specification of a Flex-
ible Transaction, schedule subtransactions and man-
age the control and data flow among subtransactions
until the Flexible Transaction commits or aborts. This
implementation is independent from the application
discussed in Section 3 and is capable of processing
any Flexible Transaction. A model for executing Flex-
ible Transactions using a parallel Prolog-based query
language is described in [KPE92]. However, no in-
formation about the actual implementation involving
multiple application systems or databases is provided

there. Implementation of our scheduler and the rest of
the prototype is described in Section 4.

In the second step, a program module was imple-
mented to analyze a telephone service request, gen-
erate the specification of a Flexible Transaction, and
generate a set of subtransactions for local systems.
Also, since the actual database systems used by the
components of the service order processor were not
accessed by the prototype implementation, models of
these databases were created under a commercial re-
lational database management system. These models
captured only the data that were relevant to our appli-
cation. Each of these databases are autonomous and
are treated independently from other databases. The
processing system for Flexible Transactions resides on
a separate machine and no database has direct com-
munication with other databases.

71

Figure 3: The intra-transaction execution dependency of a foreign exchange service transaction

4.1 Software Architecture

There are two major tasks in the implementation of
a transaction processing system for Flexible Transac-
tions [ARNS92]. The first task is to schedule sub-
transactions and determine the success or failure of
the global transaction. The second task is to execute
subtransactions in the local database systems. Figure
4 illustrates the architecture of PROMT (a PROcess-
ing system for Multidatabase Transactions) prototype,
which was developed to perform the above tasks.

The scheduling algorithm for Flexible Transactions
is implemented using L.0 [CCG+91, Nes90], a lan-
guage that allows concise specification of the schedul-
ing constraints on the subtransactions. The scheduler
receives the specification of a Flexible Transaction
consisting of a set of subtransactions, their depen-
dency set, and the set of acceptable states. The spec-
ification of a Flexible Transaction can be expressed
in a pseudo language or through a graphical interface.
In this case, the specification must be translated by a
module to L.0 before it is passed to the scheduler.

To supervise the execution of the scheduled sub-
transactions, the Distributed Operation Language,
DOL, is used [HAB+92]. DOL is designed to pro-
vide access to multiple and heterogeneous hardware
and software systems. By interfacing L.0 and DOL,
the scheduler can cooperate with the execution moni-
tor in processing FIexible Transactions.

4.2 The Scheduler

L.0 is a rule-based language, which was designed to
ahow fast development of prototypes for software and
hardware protocols [CCG+91, Nes90J. Such pro-
tocols constrain the behavior of a number of differ-
ent agents or components to achieve a common goal.
Among such common goals are reliable transmission

of data, fair resource allocation, recovery from an er-
ror state, correct execution of a hardware circuit, and
success or failure of a Flexible Transaction.

Often these protocols are stated as sets of guarded
commands [Dij75] (or rules). Each set of guarded
commands specifies the behavior of a particular agent
or component. In the case of Flexible Transactions,
each subtransaction may be viewed as an agent. The
Flexible Transaction itself may be viewed as a pro-
tocol for coordinating the behavior of each of these
subtransactions. Thus, the algorithm for processing
Flexible Transactions can be implemented via a pa-
rameterized set of guarded commands, which is in-
stantiated once for each specification of a Flexible
Transaction.

The fundamental semantics of L.0 is the syn-
chronous execution of the guarded commands. Each
guarded command is composed of a guard (a set of
predicates), and a set of actions to be taken once the
guard becomes true. The guards in L.0 are referred
to as causes, and the actions are referred to as effects.
L.0 provides primitives to activate or deactivate a set
of cause-effect rules in each synchronization step.

Each synchronization step is composed of two
phases. In phase one, all the causes in the set of
active cause-effect rules are evaluated. The effects
of the true causes are executed at the next synchro-
nization step(s). In phase two, all of the effects with
true causes (which are evaluated in previous steps) are
executed. The execution of these effects appear to be
simultaneous to the user.

For example in the scheduler of Flexible Transac-
tions, the execution dependencies of the subtransac-
tions are implemented using whenever cause-effect
rules. For each subtransaction, there is one guarded
command of the form:

whenever
<precondition for execution> C

72

Flexible
Transaction
Specification PROMT

Figure 4: The Architecture of PROMT

<the execution state of the advantages. The basic idea underlying L.0 is syn-
subtransaction is "not-executing"> chronous execution of quantified guarded commands.

then
<assign state of subtransaction

to be "executing"> &
<invoke DOL to start execution

of that subtransaction>;

The synchronous execution allows modeling of maxi-
malparallelism [CNS91]. The parallelism may further
be restricted according to the dependency constraints
of the subtransactions and the limitations of the exe-
cution environment for the subtransactions.

This type of cause-effect rule implies that at each
step, all subtransactions which have not been exe-
cuted and whose preconditions (their execution de-
pendency) are true, are scheduled for execution. By
using a quanfifrer for the above cause-effect rule, the
cause-effect rule is executed for all subtransactions.

The predicate to determine the success or failure
of the Flexible Transactions is implemented using the
until deactivators. The until deactivator, which is a
cause-effect rule, can be used to remove one set of
rules and activate other set(s) of rules. In the sched-
uler, two until deactivators are used. The cause of one
deactivator specifies the conditions for the success of
the Flexible Transaction. The cause of the other de-
activator specifies the conditions for the failure of the
Flexible Transaction. Once the cause of one of the two
until deactivators becomes true, all other rules spec-
ified by the whenever rule and the other until rule,
are deactivated. Upon the completion of the effect of
the until rule, it is also removed from the set of active
rules and the execution stops.

Another important advantage is that it simplifies the
implementation. Some features of L.0 such as quan-
tification and cause-effect rules are very expressive,
and therefore permit an easy implementation of the
scheduler. Furthermore, the specification of Flexible
Transaction can be expressed easily using L.0 data
structure. Interfacing L.0 to DOL is straight-forward,
since L.0 provides the facility to call functions written
inc.

4.3 Subtransaction Execution Monitor

The subtransactions are described using the Dis-
tributed Operation Language (DOL) [HAB+92].
DOL can be used to specify a distributed execution
of a global application in a heterogeneous computing
environment. A DOL execution environment consists
of Execution Engine, Service Directory, and Local Ac-
cess Managers (LAMS). The architecture of the DOL
system is illustrated in Figure 5.

Thus, the scheduler of the Flexible Transactions is
implemented using a quantified whenever rule and
two until rules. These rules form an L.0 procedure.
To process a Flexible Transaction, the specification of
the Flexible Transaction, specified in (or translated to)
L.0, is passed to the scheduler capsule. The scheduler
capsule then processes the transaction, and upon ter-
mination of the transaction, it returns the status of the
transaction. The status specifies whether the Flexible
Transaction has committed or aborted.

The Engine is responsible for the execution of the
DOL programs. Internally, it plays the role of a task
controller and information flow controller. For each
task to be performed at a site, it checks with Service
Directory to determine how that site can be accessed.
Then, it spawns an instance of a LAM on that site
to perform the task. It supplies the LAM with all the
necessary information, including commands and input
data. Upon the termination of the task, it receives
possible output and the status of the task from the
LAM.

Using L.0 to implement the scheduler has several A LAM acts as a proxy user for the software sys-

73

Figure 5: The Architecture of DOL system

tern it manages, encompassing it in a sort of logical
shell. Each LAM knows how to communicate with
the Engine and with its local software system. It pro-
vides to the local software system commands and data
which it receives from the Engine and returns back to
the Engine the output produced by the local software
system. It also provides the Engine with the status of
the performed task.

This architecture allows an easy addition of soft-
ware systems to DOL. To incorporate a new system, a
LAM must be designed for it and its access informa-
tion, such as its network address, must be added to the
Service Directory.

4.4 Interfacing the Scheduler and the Execu-
tion Monitor

The main concern in designing the L.0 interface to
DOL was to allow the asynchronous execution of the
DOL programs (subtransactions) so that L.0 program
(scheduler) did not have to wait for each DOL program
to finish before it would continue its scheduling job.
The design of the interface is illustrated in Figure 6.

Four C functions, DoTrans, GetState, Commit-
Trans, and AborfTruns were developed to interface
L.0 and DOL. DoTrans starts the Interface process and
establishes the communication channel with it. It then
passes the communication information and the name
of the file containing DOL program (a subtransaction
to be executed), as the arguments to the Interface.
Finally, without waiting for the Interface process to
finish, it returns back to the scheduler. It returns the
communication information of the established chan-
nel.

GetState reports the current state of a subtransac-
tion, upon a request from the scheduler. It checks
whether there is any returned result from the Interface
or the LAM. If there is any new result of the executing
subtransaction, that is LocalCommit, LocalAbort or
PreparedToCommif, it reports it back to the scheduler.

Otherwise, it reports Executing as the current state of
the subtransaction. If the subtransaction has locally
committed or aborted, it closes the channel so that it
can be reused. However, if the state is prepared to
commit, it keeps the channel alive, so that it can be
used to send a commit or abort message later.

CommifTrans and AborfTrans are used for the sub-
transactions that are in the prepared-to-commit state.
If the scheduler decides to commit the pending sub-
transaction, it calls the CommifTruns. The Commif-
Truns uses the already established channel to signal
the subtransaction to commit. Similarly, AbortTrans
is used if the scheduler decides to abort the pending
subtransaction.

The Interface is a process started by DoTruns. It
creates a child process to execute a subtransaction and
waits for the result. If a subtransaction fails or suc-
ceeds without waiting in a prepared-to-commit state,
the DOL Engine reports the state of the subtransaction
back to the Interface. The DOL Engine reports any
kind of failure such as failing to connect to a service
or aborting a subtransaction in the DBMS as Failure.
In the case of a success, Interface records any output
in a file and reports local commit to the scheduler.
In each case, Interface plays the role of a filter. The
implementation permits complex filtering depending
on data returned by a subtransaction, as well as on the
state information.

5 Conclusions and Future Work

Many applications and databases that were designed
to operate as stand-alone systems need to become
interoperable to support multi-system applications.
Service order provisioning is one example of such
a multi-system application which is fundamental to
the telecommunications business. The automation of
the provisioning will allow telephone operating com-
panies to make new services available to customers

74

Scheduler

(L.0)

DoTrans

GetState
Execution Monitor

\ CommitTrans
/ AbortTrans

f

L.0 function

Process

Figure 6: Interfacing L.0 and DOL

faster, i.e. in minutes, rather than in days or weeks.
One conclusion of the project described in this pa-

per is that the Flexible Transaction model was found
to be useful for specifying the control and data flow
in service order provisioning. Work flows for many
telecommunications services are qualitatively simi-
lar to the work flow considered here; hence Flexible
Transactions for many services can be defined simi-
larly. The use of this model facilitates specification of
provisioning at a higher level of abstraction, making
the provisioning of various services easier to under-
stand. The declarative and high-level specification of
work-flow control as dependencies and success/failure
conditions, as compared to hard coded flows in appli-
cation code has significant advantages. The work-flow
can be changed independently of the subtransactions
that perform a specific activity or request specific func-
tions from other systems. A subtransaction that per-
forms one type of activity can be used in multiple work
flows that require performing the same type of activ-
ity. Since the Flexible Transaction model permits con-
current execution of subtransactions at different sites,
it promises improved efficiency by exploiting paral-
lelism among subtransaction executions. The model
also allows easy addition of more systems and tasks
to service order provisioning with new demands. The
abstraction of the work and data flow could, in the
future, permit automated verification of correctness.

Another conclusion that might be drawn from this
project is that proposed multidatabase transaction
models (e.g. the Flexible Transaction model), which
relax traditional requirements such as atomicity and

1
0

isolation and even the correcmess criterion of serial-
izability are practical, and have, in fact, been in use
informally for years by “industrial” applications.

One of the obstacles to efficient provisioning of
services is that requests for manual assistance due to
errors, failures and data inconsistencies may be gen-
erated throughout the provisioning process. These
scenarios must be identified and their handling must
be automated. Our experiences indicate that provi-
sioning and many other flow-through processing ap-
plications could be defined and supported efficiently
using multidatabase transaction models. However, it
remains an open research problem to determine if the
Flexible Transaction Model is expressive enough to
naturally remove needs for manual assistance.

The project is currently continued and its scope
has been expanded. In particular, we are studying a
number of research issues including the definition of a
suitable correctness criterion for concurrent execution
of multiple Flexible Transactions and the development
of a recovery mechanism for Flexible Transactions.

Acknowledgement: We wish to thank Peter J. Stein
from Bellcore for his invaluable assistance. He provided
us with an abstract view of service order provisioning and
suggested the foreign exchange service as an appropriate
example. We thank Len Castelli, Steve Melville, and Patty
Murray for their helpful comments on earlier drafts. We
also thank James McKenna for his support of this project.

75

References
[ARNS92] M. Ansari, M. Rusinkiewicz, L. Ness, and

A. Sheth. Executin Multidatabase Transac-
tions. Proceedin of 3 5th International Con er-

sf ence on System ciences, Vol.11, January 1 92. s

[Am921 M. Ansari. Executing Flexible Transactions in
a Multidatabase Environment. Master thesis,
Department of Computer Science, University
of Houston, 1992.

[CCGf91] E. Cameron, D. Cohen, T. Guinther, W. Keese,
L. Ness, C. Norman, and H. Srinidhi. The L.0
Language and Environment for Protocol Simu-
lation and Prototyping. Transactions On Com-
puters, April 1991.

[CNS9 11

[CR901

[CR911

[DHL9 11

[Dij751

[DE891

[Elm921

E. Cameron, L. Ness, and A. Sheth. An Ex-
ecutor for Multidatabase Transactions which
Achieves Maximal Parallelism. Proceedings
of the First International Workshop on Interop-
erability in Multidatabase System, April 1991.

l? Chrysanthis and K. Ramamritham. ACTA:
A Framework for Specifying and Reasoning
about Transaction Structure and Behavior. Pro-
ceedings of ACM SIGMOD, May 1990.

P. P Chrysanthis and K. Ramamritham. A For-
malism for Extended Transaction Models. Pro-
ceedings of the 17th VLDB, September 1991.

U. Dayal, M. Hsu, and R. Ladin. A Trans-
actional Model for Long-Running Activities.
In Proceedings of the 17th VLDB, September
1991.

E. Dijkstra. Guarded Commands. Communi-
cations of ACM 18,8, August 1975.

W. Du and A. Elmagarmid. Quasi Serializabil-
ity: A Correctness Criterion for Global Con-
currency Control in InterBase. Proceedings of
the 15th VLDB, August 1989.

A. Elmagarmid, Ed. Transaction Models
for Advanced Database Applications, Morgan-
Kaufmann, February 1992.

pLLR90] A. Elmagarmid, Y. Leu, W. Litwin, and
M. Rusinkiewicz. A Multidatabase Transac-
tion Model for Interbase. Proceedings of the
16th VLDB, August 1990.

[GGK+90] H. Garcia-Molina, D. Gawlick, J. Klein,
K. Kleissner, and K. Salem. Coordinating
multi-transaction activities. Technical Report
$-F-247-90,Prmceton University, February

[GS871 H. Garcia-Molina and K. Salem. Sagas. Pro-
ceedings of ACM SIGMOD, 1987.

[Gra8 11 J.N. Gray. The Transaction Concept: Virtues
and Limitations. Proceedings of the 7th VLDB,
September 1981.

[HAB+92] Y. Halabi, M. Ansari,R. Batra, W. Jin, G. Kara-
batis, P. Krychniak, M. Rusinkiewicz, and

IKle911

ms901

IS=923

lLER90]

&KS911

IL4861

D-3-881

CMos851

[N=w

[Reu89]

L. Suardi. Narada: An Environment for Spec-
ification and Execution of Multi-System Ap-
plications. Proceedings of the Second Inter-
national Conference on Systems Integration,
1992.
D. Heimbigner and D. McLeod. A Fed-
erated Architecture for Information Manage-
ment. ACM Transactionson Office Information
Systems, 3(3), July 1985.
J. Klein. Advanced Rule Driven Transaction
Management. Proceedings of the COMPCON
Spring, February 1991.
H. Korth, E. Levy, and A. Silberschatz. A For-
mal Approach to Recovery by Compensating
Transactions. Proceedings of the 16th VLDB,
August 1990.
E. Kuehn, F. Puntigam, and A. Elmagarmid.
An Execution Model for Distributed Database
Transactions and Its Implementation in VPL.
Proceedings of the Third International Con-
fEcr1;g2Extending Database Technology,

Y. Leu, A. Elmagarmid, and M. Rusinkiewicz.
An Extended Transaction Model for Multi-
database Systems. Technical Report, Computer
Sciences Department, PurdueUniversity, 1989.
E. Levy, H. Korth, and A. Silberschatz. An Op-
timistic Commit Protocol for Distributed Trans-
action Management. Proceedings of the ACM
SIGMOD, May 1991.
W. Litwin and A. Abdellatif. Multidatabase
y;F60perability. Computer, 19(12), December

W. Litwin and H. Tirri. Flexible Concurrency
Control Using Value Dates. Technical Report
845, INRIA, May 1988.
J. Moss. Nested Transactions: An Approach
to Reliable Distributed Computing. MIT Press,
Cambridge, MA, 1985.
L. Ness. Issues Arising in the Analysis of L.0:
A Synchronous Executable Temporal Logic
Language. Proceedings of the Workshop on
Computer-Aided Verification, June 1990.

A. Reuter. Contracts: A Means for Extending
Control Beyond Transaction Boundaries. Pre-
sentation at Third International Workshop on
High Performance Systems, September 1989.

lRELL90] M. Rusinkiewicz, A. Elmagarmid, Y. Leu, and
W. Litwin. Extending the Transaction Model
to Capture More Meaning. SIGMOD Record,
August 1990.

[SL90] A. Sheth and J. Larson. Federated Database
Systems for Managing Distributed, Heteroge-
neous, and Autonomous Databases. ACM Com-
puting Surveys, 22(3), September 1990.

76

