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Abstract 

We present an approach to dealing with skew in par- 
allel joins in database systems. Our approach is easily 
implementable within current parallel DBMS, and per- 
forms well on skewed data without degrading the per- 
formance of the system on non-skewed data. The main 
idea is to use multiple algorithms, each specialized for 
a different degree of skew, and to use a small sample 
of the relations being joined to determine which algo- 
rithm is appropriate. We developed, implemented, and 
experimented with four new skew-handling parallel join 
algorithms; one, which we call virtual processor range 
partitioning, was the clear winner in high skew cases, 
while traditional hybrid hash join was the clear winner 
in lower skew or no skew cases. We present experimental 
results from an implementation of all four algorithms on 
the Gamma parallel database machine. To our knowl- 
edge, these are the first reported skew-handling numbers 
from an actual implementation. 

1 Introduction 

Multiprocessor database system technology has pro- 
gressed to the point where a number of companies are 
now shipping products that use parallelism to provide 
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dramatic speedup and scaleup performance. It is clear 
from the success of these systems that parallelism is 
an effective means of meeting the performance require- 
ments of large database applications. However, the basic 
technique that these systems use for exploiting intra- 
query parallelism (hash-based redistribution of relations 
on their joining attribute) [DG92] is vulnerable to the 
presence of skew in the underlying data. Simply put, if 
the underlying data is sufficiently skewed, load imbal- 
ances in the resulting parallel join execution will swamp 
any of the gains due to parallelism and unacceptable 
performance will result. 

In response to this problem, a large and growing num- 
ber of skew-handling algorithms have been proposed. In 
general terms, these algorithms do a significant amount 
of preprocessing in order to compute an execution plan 
designed to minimize load imbalances. While these algo- 
rithms may succeed in minimizing skew, invariably they 
perform much worse than the basic parallel hash join al- 
gorithm on data that is not skewed. For example, most 
of the previously proposed skew handling algorithms 
require that the relations to be joined are completely 
scanned before the join begins [HLSl, WDYTSO, K090]. 
Since the time to perform a parallel hash join is a small 
multiple of the time required to scan the two relations 
being joined, this can represent a substantial overhead, 
which is unacceptable for anything but extremely skewed 
data. 

Since there little or no empirical evidence that extreme 
degrees of skew occur commonly in practice, it is sub- 
optimal to penalize the normal case in order to benefit an 
extreme case. For this reason, we sought to develop an 
approach to join processing in which the “normal” case 
approaches the performance of the fastest known parallel 
join algorithms on non-skewed data, but that avoids the 
disastrous performance degradation that standard hash- 
based join processing suffers on skewed data. 

The basic idea in our approach is that we have mul- 
tiple algorithms, each optimized for differing degrees of 
skew. We found in our experiments that two algorithms 
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are sufficient: the usual parallel hybrid hash join algo- 
rithm [SD89], and a new algorithm that we call viti~al 
processor range partitioning, performs well on moder- 
ately skewed data at a cost slightly higher than that of 
the parallel hybrid hash join. Before settling on these 
two algorithms, we implemented three other new skew 
handling algorithms (range partitioning, weighted range 
partitioning, and a scheduling version of virtual proces- 
sor range partitioning) and performed tests on the im- 
plementation. We present detailed data on their perfor- 
mance from this implementation in this paper. To the 
best of our knowledge, these skew-handling algorithms 
are the first ones ever actually implemented in either 
a research prototype or a commercial parallel database 
system product. 

A fundamental step underlying our approach is an ini- 
tial pass of sampling the relations to be joined. The re- 
sulting set of samples is used in two ways: (1) they are 
used to predict the level of skew in the data, and hence 
to select the appropriate join algorithm to employ, and 
(2) they are used within the skew handling algorithms 
to determine the proper mapping of work to processors. 
The initial sampling in our implementation is extremely 
fast - approximately one percent of the time it would 
take hybrid hash to perform a join of the two relations 
assuming non-skewed data. 

A further desirable property of our approach is that it 
can be easily implemented within the framework of ex- 
isting parallel database systems. The modifications re- 
quired to an existing system are minimal; it took us less 
than a person-month to add this skew-handling scheme 
to the Gamma prototype. 

The remainder of this paper is organized as follows. 
Section 2 describes our algorithms and the techniques 
that they use to avoid skew. Section 3 describes the 
implementation of these algorithms within the Gamma 
parallel database machine. In Section 4 we present re- 
sults from a series of experiments with the implemen- 
tation of these algorithms. Section 5 describes related 
work on handling skew in parallel join operations in- 
cluding a comparison of these earlier techniques with 
our own. We present our conclusions in Section 6. 

2 Algorithms 

This section is composed of three parts: a description of 
the basic parallel hash join and how it is vulnerable to 
skew; the basic techniques we employ to handle skew; 
and the resulting new algorithms built using these basic 
techniques. While these techniques are described in the 
context of parallel hash joins, they are applicable to a 
wide range of parallel database algorithms. In fact, the 
fundamental problem with skew has nothing to do with 

joins. Skew can occur whenever hashing is used to par- 
allelize a task. For example, the techniques we describe 
in this section can just as well be applied if a more tradi- 
tional join algorithm such as sort merge is used at each 
processor. 

2.1 Review of Basic Parallel Hash Join 

At the highest level, the working of parallel hash join al- 
gorithms in a shared-nothing multiprocessor database 
system is simple. For concreteness, suppose that we 
are joining R and S, and that the join condition is 
R.A = S.B. Initially, both relations R and S are dis- 
tributed throughout the system; if there are L proces- 
sors, and the sizes of R and S (in tuples) are IRI and 
IS’], then approximately jRI/k tuples of R reside on disk 
at each processor. Similarly, each processor has about 
]S]/lc tuples of S on its disk. 

To perform the join, each processor executes the fol- 
lowing steps: 

Every processor in parallel reads its partition of re- 
lation R from disk, applying a hash function to the 
join attribute of each tuple in turn. This hash func- 
tion has as its range the numbers O..li-- 1; if a tuple 
hashes to value i, then it is sent to processor num- 
ber i. The set of R tuples sent to processor i in this 
step will be denoted Ri. 

Each processor i in parallel builds a memory resi- 
dent hash table using the tuples sent to it during 
step 1. (This hash table uses a different hash func- 
tion than the one used to repartition the tuples in 
step 1.) 

Each processor in parallel reads its partition of S 
from disk, applying the same hash function used in 
step 1 to each tuple in turn. As in step 1, this hash 
function is used to map the S tuples to processors. 
The set of S tuples sent to processor i in this step 
will be denoted Si. 

As a processor receives an incoming S tuple s, the 
processor probes the hash table built in step 2 to 
see if s joins with any tuple of R. If so, an answer 
tuple is generated. 

As mentioned above, this is a simplified description. 
For example, if not all of the R tuples received in step 2 
fit in memory, some overflow handling scheme must be 
employed. Most commonly, the overflow processing is 
handled by partitioning Ri into smaller subparts, called 
buckets, such that each bucket is small enough to fit en- 
tirely within memory. A critical factor in determining 
the performance of the algorithm is the number of buck- 
ets needed for each of the Ri; the larger the number 
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of buckets, the more I/O necessary as the tuples in the 
overflow buckets of & and Si are spooled to disk and 
then re-read to perform the join. 

From the preceding description it should be clear that 
for good parallelization the number of tuples mapped to 
each processor should be approximately equal, or else 
load imbalances will result (this form of imbalance is 
what Walton [WDJSl] terms red&&z&on skew). These 
load imbalances could be the result of a poorly designed 
hash function. However, load imbalance due to a poor 
hash function can be removed by choosing a better hash 
function; the theoretical literature on hashing gives a 
number of techniques designed to find a hash function 
that with high probability performs well [CW79]. A 
more fundamental problem arises from repeated values 
in the join attribute. By definition, any hash function 
must map tuples with equal join attribute values to the 
same processor, so there is no way a clever hash func- 
tion can avoid load imbalances that result from these 
repeated values. 

A more subtle cause of load imbalance occurs when 
the number of matching tuples varies from processor to 
processor. This form of load imbalance results if the join 
selectivity for Ri w S’i differs from the join selectivity 
for Rj W Sj. This type of load imbalance is called join 
product skew by Walton et al. [WDJ91]. 

2.2 Skew Avoidance Fundamentals 

In the next five subsections we describe the techniques 
we apply to resolving both types of skew. 

Range Partitioning 

A basic approach to avoiding redistribution skew is to 
replace hash partitioning with range partitioning. The 
idea is that instead of allocating each processor a bin of 
a hash function, each processor is allocated a subrange 
of the join attribute value. The values that delineate the 
boundaries of these ranges need not be equally spaced 
in the join attribute domain; this allows the values to be 
chosen so as to equalize the number of tuples mapped 
to each subrange. For example, if the join attribute val- 
ues appearing in the relation are {1,1,1,2,3,4,5,6}, and 
there are two processors, one could choose “3” to be the 
splitting value, sending tuples with values 1 and 2 to 
processor zero and tuples with join attribute values 3 - 
6 to processor one. 

In general, if there are Ic processors, then there will 
be k - 1 “splitting values” delineating the boundaries 
between contiguous ranges. We call these k - 1 splitting 
values the “partitioning vector.” The partitioning vec- 
tor is “exact” if it partitions the tuples in the relation 
into exactly equal sized pieces. While computing an ex- 

act partitioning vector is difficult, an attractive aspect of 
range partitioning is that it is relatively easy to deter- 
mine an approximate partitioning vector via sampling; 
that is, without examining the entire relation. This 
technique of sampling for approximate splitting vectors 
has been used previously in DBMS algorithms for evalu- 
ating non-equijoins [DNSSla] and for parallel external 
sorting [DNSSlb]. A theoretical investigation of the 
performance of sampling-based range splitting appears 
in [SN92]. 

In a two relation join, say R W S, the question arises 
whether an algorithm should attempt to balance the 
number of R tuples per node, or the number of S tuples 
per node, or the sum of the R and S tuples per node. 
The answer is not always clear, but a useful general ob- 
servation is that an imbalance in the number of building 
tuples is much worse than an imbalance in the number 
of probing tuples, since an imbalance in the number of 
building tuples per site gives rise to extra buckets in the 
local subjoins, driving up the number of I/OS signifi- 
cantly. This observation is validated by results that we 
reported in [SD891 and by our experimental results in 
Section 4. 

Subset-Replicate 

One complication arises with join processing via range 
partitioning in the presence of highly skewed data: for 
equal sized partitions, it might be necessary to map a 
single data value to multiple partitions. For example, if 
the join attribute values are (1, 1, 1, 1, 1, 1, 2, 3}, an 
equal-sized partitioning would map { 1, 1, 1, 1) to pro- 
cessor zero and { 1, 1, 2, 3) to processor one. If using 
a range partitioning that assigns single values to more 
than one partition, one must take care to ensure that 
all possible answer tuples are produced. A simple solu- 
tion would be to send all tuples with the repeated join 
attribute value to all processors to which that value is 
mapped, but this only results in multiple processors do- 
ing exactly the same work and producing the same an- 
swer tuples at multiple sites. 

It is sufficient to send all tuples with the repeated at- 
tribute value from one relation to all sites to which that 
value is mapped, and to send each tuple with the re- 
peated attribute value in the other relation to exactly 
one of the sites with repeated values. We call this tech- 
nique subset-replicate. (Subset-replicate is similar to the 
fragment-replicate technique proposed for distributed 
relational query processing by Epstein et al. [ESW78].) 
As an example, suppose we are joining R and S with 
the join predicate R.A = S.B. Furthermore, suppose 
that the relations R and S contain tuples as shown in 
Table 1. 

Suppose we wish to join R and S on two processors. 
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Table 1: Example relations R and S. 

The splitting vector in this case is a single value (since 
there are only two processors), the value “3.” Then a 
subset-replicate partitioning onto two processors po and 
pl might send the R tuples (1,3) and (2,3) to processor 
po and the R tuples (3,3) and (4,3) to processor pl. 
This is the “subset” part of the partitioning. Since the R 
tuples were subsetted, for correctness the S tuples with 
the join attribute value 3 must be replicated among both 
processors. This means that the S tuples (1, l), (2,2), 
and (3,3) will be sent to PO, while the S tuples (3,3), 
(4,4), and (4,s) will be sent to pl. 

Again the question arises whether to replicate the 
building (inner) relation and to subset the probing 
(outer) relation or vice-versa. While there are clearly 
situations where either will out perform the other, again 
a reasonable heuristic is to subset the building relation 
and replicate the probing relation. The motivation for 
this heuristic is that it is critical that the portion of the 
building relation mapped to each processor be as small 
as possible so as to minimize the number of buckets in 
the join. 

Weighting 

Another complication that arises with range partitioning 
is that it will often be the case that a join attribute 
value appears a different number of times in different 
partitions. For example, suppose that the join attribute 
values in a 12 tuple relation are {1,2,3,4,4,4,4,4,4,4,4,6}, 
and that we wish to partition over three processors po, 
pi, and ps. Then an even partitioning vector would be 
[4,4], meaning that tuples with the join attribute value 
4 should be mapped to all three processors. Since a total 
of 8 tuples have the join attribute value “4”, to balance 
the load evenly among the 3 processors, l/8 of the tuples 
with 4 as the join attribute must be directed to processor 
po (along with join attribute values 1, 2, and 3), l/2 to 
processor pi, and 318 to processor ps (along with join 
attribute value 6). 

We refer to this technique for distributing replicated 
values for the subsetted relation as weighted range par- 
titioning. 

Virtual Processor Partitioning 

This and the next subsection deal with the problem of 
join product skew. For concreteness, suppose that we are 
joining two 10,000 tuple relations and that in each rela- 
tion the join attribute value “1” appears 1,000 times and 
no other join attribute value appears more than once. 
Also, assume that we have 10 processors. Then if we 
use equal sized range partitioning, all 1000 tuples with 
“1” as their join attribute value from both relations will 
be mapped to processor zero, meaning that processor 
zero will be asked to generate l,OOO,OOO result tuples. 
There is no way to remedy this problem by choosing a 
set of 9 splitting values; too many l’s will be mapped to 
some processor in every case. 

The solution to this problem is to choose many more 
partitions than there are processors. This idea has ap- 
peared many times before in the skew join literature with 
respect to hash bucket partitioning; the first reference to 
the technique is probably in [KTMo83]. We refer to the 
technique of using multiple range partitions per node as 
virtual processor partitioning. In the previous example, 
if we chose 100 buckets per processor, for a total of 1000 
buckets, we would have a fine enough granularity to re- 
solve this problem. In particular, the 1000 l’s would be 
spread among 100 buckets (subranges), each of which 
could be mapped to a different processor. This of course 
leaves open the question of how these virtual processor 
partitions are to be mapped to the actual processors. 
We considered two techniques for this, both described 
in the next subsection. 

Load Scheduling 

We consider two basic techniques for mapping virtual 
processor partitions to actual processors: 

Round robin. 

This is the simplest scheme - if there are li proces- 
sors, the ith virtual processor partition is mapped 
to actual processor i mod k. 

Processor scheduling. 

In this scheme, for each virtual processor partition 
i, we compute an estimate of the cost c; of joining 
the tuples of Ri and Si. Any formula for estimating 
the cost of a join could be used; we chose the simple 
technique of estimating that 

ci = If& lest + ISi lest + I& W Si lest 

where (Rijest is an estimate of the number of R tu- 
ples mapped to partition i, ]Silest is an estimate of 
the number of S tuples mapped to partition i, and 
1% W Silest is an estimate of the number of tuples 
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in & W S;. We computed this estimate of the size 
of & w Si by assuming that the join attribute val- 
ues in each of Ri and Si were uniformly distributed 
between the endpoints of the range for virtual pro- 
cessor partition i. Once this estimate for the cost 
of the joining of the virtual processor partitions has 
been computed, any task scheduling algorithm can 
be used to try to equalize the times required by the 
virtual processor partitions allocated to the phys- 
ical processors. We used the heuristic scheduling 
algorithm known as “LPT” [Gra69]. 

This approach is similar to that used by Wolf et 
al. [WDYTSO] in scheduling hash partitions, al- 
though in that paper the statistics used to schedule 
these partitions are gained by a complete scan of 
both relations rather than by sampling, and hash 
partitioning is used instead of range partitioning. 

2.3 Algorithm Description 

The algorithms that we implemented can be described 
in terms of the skew handling techniques defined above. 
But first we need to discuss how the approximate split- 
ting vectors are computed. For each algorithm except 
hybrid hash, we first used sampling to compute a sta- 
tistical profile of the join attribute values of the two re- 
lations to be joined. We obtained this sample by us- 
ing stratified sampling [Coc77] with each stratum con- 
sisting of the set of tuples initially residing at a pro- 
cessor. Within each processor, the samphng was per- 
formed using page-level extent map sampling. Extent 
map sampling is described in Section 3. Issues involv- 
ing stratified sampling and page level sampling are dis- 
cussed in [SN92]. We now describe the skew handling 
algorithms. 

1. Hybrid hash. 

This is just the basic parallel hybrid hash algorithm 
(with no modifications for skew handling.) A de- 
scription of this algorithm and some alternatives 
appears in [SD89]. 

2. Simple range partitioning. 

At the top level, this algorithm works as follows: 

(a) Sample the building (inner) relation. 

(b) Use the samples to compute an approximate 
partitioning vector. The number of partitions 
defined by the partitioning vector is equal to 
the number of processors. 

(c) Redistribute the building relation using the ap- 
proximate partitioning vector to determine to 
which processor the tuples should go. 

(d) Build an in-memory hash table containing 
as many building relation tuples as possible. 
Overflow tuples are partitioned into buckets 
sized so that each such bucket will fit in main 
memory [SDS9]. 

(e) Redistribute the probing (outer) relation using 
the same approximate partitioning vector as in 
step 3. 

(f) For each tuple of the probing relation probe 
the in-memory hash table, outputting a join 
result tuple for each match. If overflow oc- 
curred in step 4, probing tuples corresponding 
to one of the overflow buckets of the build- 
ing relation are written directly to disk. Once, 
all the probing tuples have been received, the 
overflow buckets of the building and probing 
relations are processed. 

3. Weighted range partitioning. 

This algorithm is the same as range partitioning ex- 
cept that instead of simple range partitioning, tu- 
ples are redistributed using weighted range parti- 
tioning. 

4. Virtual processor partitioning - round robin. 

This algorithm is the same as range partitioning ex- 
cept that instead of having the number of partitions 
equal the number of processors, the number of par- 
titions is a multiple of the number of processors. 
The exact number of partitions is a parameter of 
the algorithm. The partitions are allocated to pro- 
cessors using round robin allocation. 

5. Virtual processor partitioning - processor 
scheduling. 

This algorithm is the same as virtual processor par- 
titioning - round robin except that instead of using 
round robin allocation of partitions to processors, 
processor scheduling using LPT is used. 

3 Implement at ion Details 

In this section we describe some of the details of the 
implementation of the skew handling algorithms within 
Gamma. We begin by explaining how we sampled the 
relations, and then consider the modifications to Gamma 
that were necessary for the remainder of the algorithms. 

Sampling Implementation 

As mentioned in Section 2, we use stratified sampling 
to obtain a sample from relations distributed through- 
out the multiprocessor. In stratified sampling, if a t 
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node multiprocessor needs to take n samples, each pro- 
cessor takes n/k samples from its local partition of the 
database. Although this is not a simple random sample 
of the entire relation, a stratified sample is sufficient for 
our purposes. 

Stratified sampling requires that each processor take 
some specified number of samples from its partition 
of the database. A number of techniques have been 
proposed for this problem, notably sampling from Bt 
trees [OR89], sampling from hash tables [ORX90], and 
using a dense index on a primary key [DNSSla]. In this 
section we describe a new technique that we call extent 
map sampling. 

Extent-based sampling requires neither an index on a 
dense primary key nor an index on any other attribute. 
Our scheme hinges on the fact that many systems allo- 
cate pages in contiguous units called extents, and record 
information about where the pages of a file are stored by 
linking together the extents for the pages of the file. This 
information is maintained in a small memory-resident 
data structure. Moreover, the address of a page within 
an extent can be found by adding an offset to the address 
of the first page of this extent. Given this information, 
we can select a random page or tuple as follows: gen- 
erate a random number T between one and the number 
of pages in the file (relation). Find the address of the 
rth page of the file by chaining down the linked list of 
extents. If a random page is desired, then this page can 
be brought in; if a random tuple is desired, we follow 
this I/O by randomly choosing one of the tuples in the 
page. 

The above correctly chooses a random page if the 
pages in the relation have the same number of tu- 
ples. However, if they do not we will need accep- 
tance/rejection sampling to accept or reject a randomly 
chosen page so that the inclusion probabilities for each 
tuple of the relation is identical. If all pages have the 
same number of tuples then we require exactly one I/O 
to fetch a random tuple. If they do not, then the average 
number of I/O’s required for fetching a random tuple is 
the inverse of the fill-factor. Therefore, if the fill-factor 
is more than 50% we would need at most two I/O’s on 
an average to fetch a random tuple. This is still better 
than the previous index-based methods even assuming 
that the previous methods have no wasted I/O’s due to 
acceptance rejectance sampling. For this reason we have 
adopted extent-map sampling in our implementation. 

We also used page-level sampling in our implementa- 
tion. This means that after a random page has been 
selected and read into memory (using extent map sam- 
pling), we add every tuple on that page to the sample. 
This in effect boosts the number of samples per I/O by 
a factor equal to the average number of tuples per page. 
This technique is most efficient if the correlation on the 

join attribute within a page is low. 

Implementation in Gamma 

In order to investigate the performance of our skew han- 
dling algorithms, we implemented the algorithms using 
Gamma [DGSSO] as our experimental vehicle. Gamma 
falls into the class of shared-nothing [Sto86] architec- 
tures. The hardware consists of a 32 processor In- 
tel iPSC/2 hypercube. Each processor is configured 
with a 80386 CPU, 8 megabytes of memory, and a 330 
megabyte MAXTOR 4380 (5 l/4 in.) disk drive. Each 
disk drive has an embedded SCSI controller which pro- 
vides a 45 Kbyte RAM buffer that acts as a disk cache 
on sequential read operations. The nodes in the hyper- 
cube are interconnected to form a hypercube using cus- 
tom VLSI routing modules. Each module supports eight 
full-duplex, serial, reliable communication channels op- 
erating at 2.8 megabytes/set. 

Gamma is built on top of an operating system de- 
signed specifically for supporting database management 
systems. NOSE provides multiple, lightweight pro- 
cesses with shared memory. A non-preemptive schedul- 
ing policy is used to help prevent convoys [BGMPTS] 
from occurring. NOSE provides communications be- 
tween NOSE processes using the reliable message pass- 
ing hardware of the Intel iPSC/2 hypercube. File ser- 
vices in NOSE are based on the Wisconsin Storage Sys- 
tem (WiSS) [CDKK85]. 

The services provided by WiSS include sequential files, 
byte-stream files as in UNIX, B+ tree indices, long data 
items, an external sort utility, and a scan mechanism. A 
sequential file is a sequence of records that may vary in 
length (up to one page) and that may be inserted and 
deleted at arbitrary locations within a file. Optionally, 
each file may have one or more associated indices that 
map key values to the record identifiers of the records 
in the file that contain a matching value. One indexed 
attribute may be designated to be a clustering attribute 
for the file. 

Before beginning this work, Gammaalready contained 
the code needed to perform a parallel hybrid hash join. 
The critical code that needed to be added to the sys- 
tem in order to incorporate our new skew handling join 
algorithms were 

1. code to do the parallel stratified page level extent 
map sampling, 

2. code to sort the resulting samples and build the 
required approximate splitting vectors, and 

3. code to redistributes tuples using the new distribu- 
tion types (e.g., subset-replicate) required by our 
algorithms. 
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Items 1 and 2 above were straightforward. We now dis- 
cuss the changes to the redistribution code in more de- 
tail. 

Basic parallel hybrid hashing in Gamma makes use of 
a data structure called a split table [DGS+SO, DG92]. 
This data structure contains entries that are (hash 
bucket, processor number) pairs. If Ic processors are be- 
ing used to execute a relational operation, then the split 
tables have Ic entries. The semantics are such that any 
tuple that hashes to a given hash bucket should be sent 
to the processor number in the split table entry for that 
hash bucket. Each processor executing an operation has 
a copy of this split table. In a given processor, associ- 
ated with the split table are Ic outgoing buffer pages, one 
for each processor. When a tuple maps to a given hash 
bucket, it is added to the corresponding buffer page; 
when this page fills, a message containing this page is 
sent to the target processor. 

To add basic range partitioning, we added a new type 
of split table called a range split table. This was a simple 
modification; the only change is that entries of the split 
table correspond to ranges of join attribute values in- 
stead of corresponding to hash buckets. When deciding 
where to send a tuple, instead of hashing the join at- 
tribute value to find the corresponding entry, the range 
split table is searched to find the range containing the 
join attribute value. If a tuple t maps to more than one 
range (e.g., if there are repeated values in the split ta- 
ble), then, during redistribution of the building (inner) 
relation, one of the duplicate ranges is selected at ran- 
dom and t is sent to the corresponding processor. During 
redistribution of the probing (outer) relation, t is sent 
to the processors corresponding to all of the containing 
subranges. 

To add weighted range partitioning, we augmented the 
basic range split table to contain weights for the upper 
and lower boundary values of each range in the table. 
These weights are computed from the sorted set of sam- 
ples at the time when the partitioning values are being 
computed. Then, during the redistribution of the build- 
ing relation, instead of sending tuple t to a randomly 
selected subrange, a subrange is selected with a prob- 
ability that reflects the weights in the weighted-range 
split table. 

The most obvious way to add virtual processor range 
partitioning would be to expand these basic range split- 
ting tables to add more entries than processors. The 
difficulty in doing so is that the lower level Gamma code 
assumes that there will be exactly one outgoing buffer 
page for every entry in the split table. For large numbers 
of virtual processors, the space required by this scheme 
is prohibitive. For example, for 30 processors and 50 
virtual processor ranges per processor it would require 
1500 output buffers (I2 megabytes with 8K byte network 

packets) per node. This is more than the total amount 
of memory per node in our sytem. 

To solve this problem we used a two-level split table. 
The upper level table contains the same number of en- 
tries as the number of virtual processor partitions. The 
lower level table contains one entry per processor. Each 
entry in the upper table consists of a (range, lower split 
table entry number) pair. When a tuple is being pro- 
cessed to decide to which processor it should be sent, 
first a lookup is performed on the upper table to deter- 
mine the set of virtual processor ranges in which the join 
attribute value of the tuple appears. Next the entries for 
these ranges are examined to determine to which lower 
level entries the tuple belongs. From this set of entries in 
the lower level table the system can determine to which 
processors the tuple should be sent. Only one buffer 
page per destination processor is used. 

4 Experiments and Results 

Test Data 

For the purposes of this experiment we wanted to use a 
set of test data that was simple and intuitively easy to 
understand, yet that would stress all of our skew han- 
dling algorithms. One option would have been to gener- 
ate relations with attributes drawn from standard sta- 
tistical distributions (like Zipf and normal.) We decided 
against this because we found that relations with such 
attributes make the experiments much harder to under- 
stand and control. For example, suppose we wish to 
perform a set of joins on a pair of relations, varying the 
level of skew in both relations, yet keeping the answer 
size approximately constant? This is difficult to do with 
sets of Zipfian distributions. 

To remedy this problem we generated relations with a 
number of integer attributes, each with various amounts 
of “scalar skew” - that is, in an N tuple relation, in 
each attribute the constant “1” appears in some fixed 
number of tuples, while the remaining tuples contain 
values uniformly distributed between two and N. The 
use of such a distribution has three major benefits. First, 
it makes it easy to understand exactly what experiment 
is being performed. Second, it is easy to keep the answer 
size constant over varying amounts of skew. Finally, it 
captures the essence of the Zipfian distribution (a small 
number of highly skewed values with the bulk of the 
values appearing very infrequently) without suffering its 
drawbacks. The term “scalar skew” is due to Walton 
et al. [WDJSl]. This is also the model of skew used by 
Omiecinski [Omigl]. 

The exact description of the attributes are as follows. 
In each case, we are assuming a relation of N tuples, 
and that N 2 100,000. The attributes relevant to our 
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experiments are xl, x10, x100, x1000, x10000, x20000, 
x30000, x40000, and x50000. The number following the 
“x” in each case is the number of tuples in which the 
value “1” appears in the join attribute (these tuples are 
chosen at random). The remainder of the tuples have 
a join attribute value chosen randomly from 2 to N, 
where N is the number of tuples in the relation. For 
example, the x10 attribute has the semantics that the 
value “1” appears in exactly ten randomly chosen tuples. 
The remaining N - 10 tuples contain values uniformly 
chosen at random between 2 and N. The rationale for 
choosing these attributes should become more apparent 
in the following set of experiments. In addition to the 
attributes listed above, each tuple contained a string at- 
tribute to pad the length of each tuple to 100 bytes. In 
all of our experiments below we used relations of 500,000 
tuples. Thus, each relation occupies approximately 50 
megabytes of disk space. 

All experiments were conducted using 30 processors 
with disks. Speedup or scaleup experiments were not 
performed as we were more interested in focusing on the 
relative performance of the different algorithms. Fur- 
thermore, previous join [DGGt86, DGSf90, DGS88, 
DNSSla, SD891 and sorting [DNSSlb] tests demon- 
strated that the Gamma provides linear speedup and 
scaleup over a wide range of different hardware and soft- 
ware configurations. 

Single Skew Experiments 

In the first set of experiments we ran the building rela- 
tion was skewed and the probing relation was uniform. 
This models a very common sort of join in practice - 
joins between a key of one relation and the correspond- 
ing foreign key in another. Each data point is the av- 
erage of 5 experiments. For the range, weighted range, 
and virtual processor range partition round robin the 
number of samples on the building relation was fixed 
at 14,400 (the probing relation is not sampled in these 
algorithms.) For the virtual range partition processor 
scheduling algorithm, we took 14,400 samples of both 
the building and probing relations. For the virtual pro- 
cessor range partitioning algorithms we use 60 virtual 
processors per processor. The results of the experiment 
appear in Table 2. 

In Table 2, entries marked “DNF” means that the al- 
gorithm did not finish. The reason these tests did not 
finish was that in those cases marked “DNF”, the al- 
gorithms mapped more tuples with “1”s in the join at- 
tribute to a single processor than can simultaneously fit 
in the memory of that processor. In the current Gamma 
implementation, the per-node hybrid hash code does not 
handle this extreme case. We see that Hybrid Hash 
(HH) is clearly the algorithm of choice for the zero skew 

case (xl W xl). This is because when compared to the 
skew handling algorithms, (1) Hybrid Hash does not in- 
cur the overhead of collecting the samples, sorting the 
samples, and computing an approximate splitting vec- 
tor, and (2) in Hybrid Hash, to determine a destination 
processor during redistribution one need only compute a 
hash function, while in all the other algorithms it is nec- 
essary to search a sorted list for the appropriate range 
entry. 

The difference in performance for Range Partitioning 
(Range) and Weighted Range Partitioning (W. Range) 
at zero skew is an artifact of the implementation - 
Weighted Range Partitioning was implemented second 
and uses a more efficient table search during repartition- 
ing. We expect that if Range Partitioning were reimple- 
mented using this new code, it would be slightly faster 
at zero skew since it doesn’t need to check the weights 
before choosing a destination in the subset phase. 

At xlOK, both Range Partitioning and Weighted 
Range Partitioning effect the same partitioning, send- 
ing the tuples with l’s in the join attribute along with 
about 6K other tuples to processor zero. However, at 
x20K, Range Partitioning sends all 20K tuples with l’s 
to processor zero, while Weighted Range Partitioning 
sends about 16K of these tuples to processor zero and 
4K of these tuples (plus about 12K other tuples) to pro- 
cessor one. Weighted Range Partitioning performs worse 
on xlOK than on xl because even though the same num- 
ber of tuples are distributed to each processor in both 
cases, in the xlOK case the join hash table for processor 
zero contains one bucket with 1OK tuples (the bucket 
to which “1” is mapped.) At 2OK the situation is even 
worse, as there is a bucket with about 16K ones in that 
case. 

Virtual Processor Range Partitioning with Round 
Robin allocation (VP-RR) starts off at zero skew with 
slightly higher overhead than Weighted Range because 
during redistribution, to determine a destination proces- 
sor it must search a much bigger range table (bigger by 
a factor of 60.) Virtual Processor Range Partitioning 
with Processor Scheduling (VP-PS) has even more over- 
head, since it must sample and sort the probing relation 
and then run the LPT scheduling algorithm. However, 
in the skewed cases both these algorithms outperform 
Range and W. Range because they map the tuples with 
l’s to more processors, avoiding the large hash table en- 
try effect. 

Next we wanted to test the effect that a skewed prob- 
ing relation would have on the algorithms. Note that 
since the first four algorithms do not sample the probing 
relation, these algorithms use the same splitting vector 
independent of the skew in the probing relation. For 
this reason, the performance deteriorates rapidly, so we 
do not go beyond xl W x201(. Note that Hybrid Hash 
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Alg. xl w xl xlOK W xl x20K W xl x30K W xl x401( W xl x501( W xl 
HH 33.0 52.2 79.5 DNF DNF DNF 
Range 43.1 43.4 58.9 DNF DNF DNF 
W. Range 41.8 41.9 51.7 52.2 52.9 52.6 
VP-RR 43.9 44.2 44.0 43.4 43.8 43.3 
VP-PS 47.7 47.3 47.5 47.6 47.9 47.6 

Table 2: Effect of skewed building relation. 

does relatively well here. VP-PS samples the probing 
relation, but its estimates of the per virtual processor 
execution times were too inaccurate to provide good per- 
formance. 

Algorithm ( xl W xl 1 xl W xlOK 1 xl W x20K 
HH 1 33.0 1 44.5 55.3 

Table 3: Effect of skewed probing relation. 

An alternative approach to handling single relation 
skew would be to sample the probing relation, then use 
these samples to compute a splitting vector that could 
be used for both the building and probing relations. We 
did not pursue this approach for the following reason: if 
the probing relation is highly skewed, and we distribute 
the building relation using a splitting vector that evenly 
distributes the probing relation, then greatly varying 
numbers of building tuples are sent to each processor. 
This in turn causes some processor(s) to use many more 
buckets that would be necessary if the building relation 
were evenly distributed, which will cause performance 
to suffer. 

Join Product Skew 

In this subsection we present experiments in which both 
relations that participate in the join are skewed. In gen- 
eral, this sort of skew is much harder to deal with than 
skew in a single relation. Intuitively, the problem is that 
in join product skew, a relatively small number of re- 
peats can cause a tremendous blowup in the number of 
tuples generated in the join. For example, if we join 
the two relations using the join clause xl0000 W x10000, 
the result will have lo8 tuples generated due to matches 
of tuples with ones in the join attributes. This result 
would be 20G bytes. In addition to exceeding the ca- 
pacity of our disk drives, we don’t think such queries 

make any sense. Accordingly, we decided to experiment 
with more modest skews. The first set of experiments 
below shows the performance of the algorithms using 
the same configuration (number of samples, number of 
virtual processors per node) as in Table 2. 

Algorithm xlOK W x10 xlK W xl00 xl00 W xl000 3 
Table 4: Performance on data with join product skew 

The joins in Table 4 were designed so that the result 
size is roughly comparable to that in Tables 2 and 3. In 
each case the result contains about 6OOK tuples, 1OOK of 
which are due to joining tuples that contain ones in the 
join attribute. It is clear that only the virtual processor 
algorithms have significant success in dealing with this 
sort of skew. Intuitively, the reason is that in each of the 
Range and Weighted Range algorithms, the skew in the 
relation is not enough to cause tuples with one’s in the 
join attribute to be sent to more than one processor. 

With the exception of the xl00 W xl000 join, both 
of the virtual processor algorithms have enough virtual 
buckets that the one’s are mapped to enough proces- 
sors to distribute the work. For the xl00 W ~1000 join, 
the round robin algorithm fails to distribute the one’s 
because there are so few in the building relation. The 
virtual processor range partitioning processor scheduling 
algorithm also fails to distribute the one’s into multiple 
buckets, again because its estimates of the work required 
per virtual processor are too inaccurate. 

It is clear that the performance of the virtual processor 
range partition algorithms is critically dependent upon 
the number of virtual processors per processor. Table 5 
explores the performance of the round robin variant on 
the join xl0000 W xl00 for various numbers of proces- 
sor per node. (Since in our experiments the processor 
scheduling variant was uniformly worse than the round 
robin variant, we omit the data points for that algo- 
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rithm.) The table shows the clear trend that the more 
virtual processors, the better the performance. The rea- 
son for this is that the tuples with “1”s are being dis- 
tributed over more and more (actual) processors, achiev- 
ing better load balancing. 

Phase min seconds max seconds 
Building 15.55 16.48 
Complete Join 48.72 49.77 

Table 7: Maximum and minimum times over all proces- 

virt. 
sors, xl0000 W x10, virtual processor range partitioning. 

procs. ( 1 1 5 1 10 ( 20 1 30 1 60 
exec. sec. 1 147.2 1 95.3 1 64.0 1 54.0 1 51.8 1 49.7 

5 Related Work 

Table 5: Dependence on number of virtual processors, 
xl0000 W x100, virtual processor range partitioning. 

Finally, we wanted to illustrate the dependence of vir- 
tual processor range partitioning on the number of sam- 
ples. Table 6 lists the average time as a function of the 
number of samples for the virtual processor range parti- 
tion round robin algorithm as a function of the number 
of samples for the join xl0000 W x100. Again, since vir- 
tual processor range partitioning with round robin allo- 
cation was uniformly the best skew handling algorithm, 
we only present data for it. Note that the performance is 
relatively stable independent of the number of samples. 
The general trend is that taking too few samples results 
in poor load balancing, while taking too many samples 
results in too much overhead due to sampling (notice in 
Table 6 that the overall running times dip from 1800 to 
3600 samples and then begin to rise again.) 

There has been a wealth of research in the area of paral- 
lel join algorithms. Originally, join attribute values were 
assumed to be uniformly distributed and hence skew was 
not a problem (see, for example, [BFKS87, Bra87, DG85, 
DGS88, KTMo83].) As parallel join algorithms have ma- 
tured, this uniformity assumption has been challenged 
(see, eg., [LY90, SDSS]). In this section, we examine 
a number of previously proposed algorithms for dealing 
with data skew and compare these algorithms with our 
own. 

5.1 Walton, Dale, and Jenevein 

Walton et al. [WDJSl] present a taxonomy of skew in 
parallel databases. First, they distinguish between ai- 
tribute value srl-ew (AL’S) which is skew inherent in the 
dataset, and partition skew which occurs in parallel ma- 
chines when the load is not balanced between the nodes. 
AVS typically leads to partition skew but other factors 
are also involved. These include: 

number of samples 1800 3600 7200 14400 
execution time (set) 49.0 47.8 49.0 49.7 

Table 6: Dependence on number of samples, xl0000 w 
x10, virtual processor range partitioning. 

1. Tuple Placement Skew (TPS): The initial distribu- 
tion of tuples may vary between the nodes. 

2. Selectivity Skew (SS): The selectivity of selection 
predicates may vary between nodes, for example, in 
the case of a range selection on a range-partitioned 
attribute. 

Finally, we would like emphasize that the virtual pro- 
cessor range partition round robin is exceedingly suc- 
cessful at balancing the load among the processors dur- 
ing the execution. Table 7 gives maximum and mini- 
mum times (over all processors) to complete the build- 
ing phase (that is, redistributing the building relation 
and building an in-memory hash table) and the entire 
join of xl000 W x10. As before, we used 14400 samples 
and 60 virtual processors per processor. Note that the 
total time (49.77 seconds) differs from the time reported 
in for this join in Table 4. This is because the times pre- 
sented in that table are averages over five runs, whereas 
the times in Table 7 are from a single run. The dif- 
ference between the maximum and minimum times for 
the building phase is less than 6%; the difference for the 
total execution time is about 2%. 

3. Redistribution Skew (RS): Nodes may receive differ- 
ent numbers of tuples when they are redistributed 
in preparation for the actual join. 

4. Join Product Skew (JPS): The join selectivity on 
individual nodes may differ, leading to an imbalance 
in the number of output tuples produced. 

Walton et al. use an analytical model in order to com- 
pare the scheduling hash-join algorithm of [WDYTSO] 
and the hybrid hash-join algorithm of Gamma [SD89, 
DGS+SO]. The main result is that scheduling hash effec- 
tively handles RS while hybrid hash degrades and even- 
tually becomes worse than scheduling hash as RS in- 
creases. However, unless the join is significantly skewed, 
the absolute performance of hybrid hash is significantly 
better than that of scheduling hash. 
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5.2 Schneider and Dewitt 

In [SD89], we explored the effect of skewed data distri- 
butions on four parallel join algorithms in an 8 processor 
version of the Gamma database machine. The experi- 
ments were designed such that TPS and SS were absent. 
For the tested AVS (normally distributed values), the 
hash function used in the redistribution phase was quite 
effective in balancing the load and hence RS was low. 
Likewise, JPS was low. 

The overall results were that the parallel hash-based 
join algorithms (Hybrid, Grace, and Simple) are more 
sensitive to RS resulting from AVS in the “building” re- 
lation (due to hash table overflow) but are relatively in- 
sensitive to RS for the “probing” relation. Experiments 
with “double-skew” (which lead to JPS) were not run 
but we extrapolated that the problems would be worse 
because this case is a superset of the RS for the building 
relation. 

5.3 Kitsuregawa and Ogawa 

Kitsuregawa and Ogawa [K090] describe two algo- 
rithms, bucket-converging parallel hash-join and bucket- 
spreading parallel hash join. The bucket-converging hash 
join is a basic parallelization of the GRACE join algo- 
rithm [KTMo83]. Relation R is read from disk in par- 
allel and partitioned into p buckets (where p is much 
larger than lc, the number of nodes). Since each bucket 
is statically assigned to a particular node, all of R is 
redistributed during this phase of the algorithm. Next, 
the size of each bucket is examined, and, if necessary, 
enough buckets are redistributed so that the sum of the 
sizes of the buckets at each processor is balanced. Rela- 
tion S is processed similarly. In the last phase, all of the 
respective buckets of R and S on each node are joined 
locally. 

As they point out, the first phase of this algorithm (the 
initial repartitioning) is very susceptible to RS. As an 
alternative, they propose a bucket-spreading hash join 
algorithm. In this algorithm, relations R and 5’ are par- 
titioned into p buckets as before but each bucket is hor- 
izontally partitioned across all available processors dur- 
ing the initial repartitioning phase. During the second 
phase of the algorithm, a very sophisticated network, the 
Omega network, is used to redistribute buckets onto the 
nodes for the local join operation. The Omega network 
contains logic to balance the load during the bucket re- 
distribution. 

Simulation results are presented for the two algo- 
rithms where AVS is modeled using a Zipfian distribu- 
tion. When the data is uniformly distributed, the two 
algorithms are almost identical. The bucket-spreading 
algorithm is shown to effectively reduce RS in the pres- 

ence of increasing AVS, while the bucket-converging al- 
gorithm suffers. 

When compared to our weighted-range and virtual 
processor algorithms, both of these algorithms are likely 
to have higher response times. In particular, our al- 
gorithms redistribute both the joining relations exactly 
once. Their bucket-spreading algorithm redistributes 
both relations twice. In addition, if the two relations 
do not fit in memory, an extra write and read of both 
relations to disk will be required between the two repar- 
titioning phases. The bucket-converging algorithm, on 
the other hand, incurs extra redistribution and I/O costs 
only for those buckets that must be redistributed in or- 
der to balance the load among the processors. However, 
as they point out, this algorithm is very susceptible to 
RS. 

5.4 Hua and Lee 

Hua and Lee [HL91] proposed three algorithms for pro- 
cessing parallel joins in the presence of AVS. The first al- 
gorithm, tuple interleavzng parallel hash join, is based on 
the bucket-spreading hash join algorithm of Kitsuregawa 
and Ogawa [K090]. The major difference is that instead 
of relying on a specially designed intelligent network for 
mapping buckets to nodes, this decision is handled in 
software by a coordinator node. 

The second algorithm, Adaptive Load Balancing par- 
allel hash join, tries to avoid much of the massive data 
redistribution incurred by the tuple interleaving algo- 
rithm. In the case of mild skew, a more selective redis- 
tribution is likely to perform better. In this algorithm, 
relations R and 5’ are partitioned into p buckets where 
each bucket is statically assigned to a single node. In- 
stead of immediately performing local joins, though, a 
partition tuning phase is executed in which a best-fit 
decreasing heuristic is used to determine which buck- 
ets to retain locally versus which ones to redistribute. 
This algorithm is basically identical to Kitsuregawa and 
Ogawa’s bucket-converging algorithm, 

The final algorithm, Extended Adaptive Load Balanc- 
ing parallel hash join, is designed for the case of severe 
skew. Relations R and S are partitioned into p buck- 
ets where each bucket is stored locally. Next, all nodes 
report the size of each local bucket to the coordinator 
who decides on the allocation of buckets to nodes. The 
allocation decision is broadcast to all the nodes and all 
the buckets are redistributed across the network. Local 
joins of respective buckets are then performed on each 
node. The basic form of this algorithm is identical to 
that of Wolf et al. [WDYTSO]. The algorithms differ in 
the computation of the allocation strategy. 

The three algorithms are compared using an analytical 
model. The basic results are that the tuple interleaved 
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and extended adaptive load balancing algorithm are un- 
affected by skew in the size of partitions while the perfor- 
mance of the adaptive load balancing algorithm and the 
bucket-converging algorithm eventually cross over and 
become much worse as the skew increases. 

Since the first two algorithms are basically identical to 
those of Kitsuregawa, they have the same relative per- 
formance to our algorithms. Like our algorithms, the 
extended adaptive load balancing parallel hash join algo- 
rithm repartitions each relation exactly once. However, 
unless both relations fit in memory, an extra read and 
write of both relations occurs during the initial bucket 
forming phase. The cost of this step is certainly higher 
than the cost we incur sampling one or both relations 
(about l/2 second each in our implementation). 

5.5 Wolf, Dias and Yu 

Wolf et al. [WDYTSO], propose an algorithm for paral- 
lelizing hash joins in the presence of severe data skew. 
The scheduling hash algorithm is as follows. Relations 
R and S are read, local selections or projections are ap- 
plied, and the results are written back locally as a set 
of coarse hash buckets. Additionally, statistics based on 
a finer hash function are maintained for each bucket. 
Next, a scheduling phase occurs in which a coordina- 
tor collects all the fine and coarse bucket statistics and 
computes an allocation of buckets to nodes. The alloca- 
tion strategy is broadcast to all nodes and relations R 
and S are redistributed across the network accordingly. 
Hash-joins are then performed locally for each bucket. 

Several heuristics are proposed for computing the allo- 
cation strategy in the scheduling phase including longest 
processing time first, first fit decreasing, and skew. 

An analytical model is used to briefly compare the 
strategies. AVS is modeled with a zipfian distribution. 
No TPS or SS skew occurs. A double-skew (skew in 
both join relations) style join is specifically modeled. 
The load-balancing heuristics are shown to be highly 
effective in balancing the load especially as the number 
of processors becomes large. However, no comparison 
is made with the performance of other join algorithms 
(skew handling or non-skew handling.) 

Like Hua’s extended adaptive load balancing paral- 
lel hash join algorithm, this algorithm incurs an extra 
read and write of both relations during the initial bucket 
forming phase. The cost of this step will certainly be 
higher than the cost of sampling both relations. How- 
ever, it may be the case that the increased accuracy 
in skew information that is obtained by looking at ev- 
ery tuple will sufficiently improve the variance in the 
response time among the processors that the cost of the 
extra read and write pass is worthwhile. Without im- 
plementing both algorithms on the same hardware and 

software base it is probably impossible to determine pre- 
cisely which algorithm provides the best overall perfor- 
mance. 

5.6 Omiecinski 

Omiecinski [Omigl] proposed a load balancing hash- 
join algorithm for a shared memory multiprocessor. 
The algorithm is based on the bucket-spreading algo- 
rithm of Kitsuregawa and Ogawa [K090]. It differs in 
that it doesn’t rely on special-purpose hardware, it as- 
signs buckets to processor(s) using a first-fit decreasing 
heuristic, and it has other optimizations for the shared- 
memory environment. 

Analytical and limited experimental results from a 10 
processor Sequent machine show that the algorithm is 
effective in limiting the effects of AVS even for double- 
skew joins. (AVS is modeled by having a single value 
account for X% of the relation while the other l-X% of 
the values are uniformly distributed.) 

6 Conclusion 

The algorithms for skew handling proposed in this pa- 
per represent a simple way to augment existing parallel 
database systems to make their performance more ro- 
bust in the presence of skewed joins. The modifications 
needed to install these changes in an existing system are 
simple - all that is needed is to add extent-map sam- 
pling (or some equivalent), support for subset-replicate 
virtual processor split tables, and finally a small amount 
of code to analyze the samples and build the necessary 
split tables. 

The experiments we performed suggest the following 
approach to running multiprocessor joins: 

1. Take a pilot sample of both relations involved in the 
join. 

2. Inspect the resulting set of samples to determine 
which relation is more highly skewed (by counting 
the number of repeated samples in each.) 

3. If neither of the relations appears skewed, revert to 
simple hybrid hash. 

4. If at least one of the relations appears to be skewed, 
use the virtual processor range partition round 
robin join algorithm. The most skewed relation 
should be the building relation. 

This scheme incorporates a number of heuristics, and, 
like all optimizer heuristics, it can be tricked into choos- 
ing a sub-optimal plan in some situations. Yet it is sim- 
ple, implementable, and in general runs non-skewed joins 
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in time comparable to that of standard hybrid hash (the 
overhead outlined above takes just a few seconds in our 
implementation) and runs skewed joins without suffer- 
ing the terrible worst-case performance that would result 
from running hybrid hash on highly skewed data. 

A number of interesting open questions remain to be 
addressed in future work. First, as our experiments illus- 
trate, the virtual processor range partitioning algorithm 
depends critically on the number of virtual processors 
chosen. The optimal number for this parameter depends 
upon the system configuration (most importantly the 
number of processors) and how little skew you are will- 
ing to tolerate. The values we used in our experiments 
(60 virtual processors per processor) are reasonable and 
performed well over the test data, but we do not claim 
that they are globally optimal. 

Second, in this work we did not address the question of 
how to handle joins in which the operands are of greatly 
different size. Our experience from these experiments 
suggest that a critical point is to keep the number of 
buckets of the building relation to a minimum. There are 
two ways that a large number of buckets could result: a 
large building relation, or a skewed building relation. A 
reasonable heuristic is that if the relations are of roughly 
comparable size, the more skewed relation should be the 
building relation; if they are of very different size, then 
the smaller relation should be the building relation and 
skew should be handled by building a split table based 
upon samples of the probing relation. We intend to ex- 
periment with this heuristic in future work. 

Finally, as the number of processors in the system 
grows to the thousands, the overhead of sorting and an- 
alyzing the samples will grow (the cost of obtaining the 
samples does not, as we can use a constant number of 
samples per processor as the system scales.) It is not 
clear that this overhead will grow as fast as the cost of 
performing the join itself (if one is using 1000 proces- 
sors for a join, presumably it is a big join!), but still 
there is room for reducing this overhead by doing some 
of the processing in parallel instead of doing everything 
at a central coordinating processor. For example, as a 
first step every processor could sort its local set of sam- 
ples before sending them to the coordinator, which could 
then do a simple merge instead of a sort. 
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