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Abstract. It is widely recognized that production rules in 
database systems can be used to automatically maintain de- 
rived data such as views. However, writing a correct set of 
rules for efficiently maintaining a given view can be a diffi- 
cult and ad-hoc process. We provide a facility whereby a user 
delines a view as an SQL select expression, from which the 
system automatically derives set-oriented production rules 
that maintain a materialization of that view. 

The maintenance rules are triggered by operations on the 
view’s base tables. Generally, the rules perform incremental 
maintenance: the materialized view is modified according to 
the sets of changes made to the base tables, which are ac- 
cessible through logical tables provided by the rule language. 
However, for some operations substantial recomputation may 
be required. We give algorithms that, based on key infor- 
mation, perform syntactic analysis on a view definit,ion to 
determine when efficient maintenance is possible. 

1 Introduction 

In relational database systems, a vieur is a logical table 
derived from one or more physical (base) tables. Views 
are useful for presenting different levels of abstraction or 
different portions of a database to different users. Typi- 
cally, a view is specified as an SQL select expression. A 
retrieval query over a view is written as if the view were 
a physical table; the query’s answer is logically equiv- 
alent to evaluating the view’s select expression, then 
performing the query using the result. There are two 
well-known approaches to implementing views. In the 
first approach, views are virtual: queries over views are 
modified into queries over base tables iSto75j. In t,hc 
second approach, views are marerlalrzed: they are com- 
puted from the base tables and stored in the database 
[BLT86,KP81,SI84]. Different applications favor one or 
the other approach. In this paper we consider the prob- 
lem of view materialization. 

Production rules in database systems allow specifica- 
tion of data manipulation operations that are executed 
automatically when certain events occur or conditions 
are met, e.g. jDE89, MD89, SJGPSO, WFSO]. Clearly, 
production rules can be used to maintain materialized 
views: when base tables change, rules are triggered that 
modify the view.’ Writing a correct set of rules for effi- 

*Permanent address: Dip. di Elettronica, Politecnico di 
Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy 

‘Production rules also can be used to implement virtual 
views, as shown in [SJGPSO]. 
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Figure 1: Rule derivation system 

ciently maintaining a given view can be a difficult pro- 
cess, however. The rules could simply rematerialize the 
view from the base tables, but this can be very inef- 
ficient. Efficiency -is achieved by incremental mainte- 
nance, in which the changed portions of the base tables 
are propagated to the view, without full recomputation. 
WP have developed a method that automatically derives 
inc.remental maintenance rules for a wide class of views. 
The rules produced are executable using the rule lan- 
guage of the Starburst database system at the IBM Al- 
maden Research Center [WCLSl]. 

Figure 1 shows the structure ofour system, which is in- 
voked at compile-time when a view is created. Initially, 
the user enters the view as an SQL select expression, 
along with information about keys for the view’s base 
tables2 Our system then performs syntactic analysis on 
the view definition; this analysis determines two things: 
(1) whether the view may contain duplicates (2) for each 
base table referenced in the view, whether efficient view 
maintenance rules are possible for operations on that ta- 
ble. The user is provided with the results of this analysis. 
The results may indicate that, in order to improve the 
efficiency of view maintenance, further interaction with 
the system is necessary prior to rule generation. In par- 
ticular: 

‘Key information is essential for view analysis, as we will 
show. Functional dependencies could be specified as well, but 
we assume that keys are more easily understood and specified 
by the user; in normalized tables, functional dependencies are 
captured by keys anyway. 
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Views with duplicates cannot be maintained efi- 
ciently, as explained in Section 4.3. Hence, if t,he 
system detects that the view may contain duplicatrs. 
then the user should add distinct to the view defi- 
nition. (In SQL, distinct eliminates duplicates.) 

If the system detects that efficient maintenance rules 
are not possible for some base table operations, this 
may indicate to the user that not all key information 
has been included, or the user may choose to modify 
the view definition. 

If changes are made, view analysis is repeated. In prac- 
tice, we have discovered that, efficient rules are possible 
for most views and operations once all key information 
is provided. However, there are cases when certain base 
table operations cannot be supported efficiently. If these 
operations are expected to occur frequently, view mate- 
rialization may be inappropriate. The responsibility for 
considering these trade-offs lies with the user; our system 
provides all necessary information. 

Once the user is satisfied with the view definit,ion 
and its properties, the system generates the set of 
view-maintaining rules. Rules are produced for insert, 
delete, and update operations on each base table ref- 
erenced in the view. The rule language we use is set- 
oriented, meaning that rules are triggered aft.er arbitrary 
sets of changes to the database (Section 3). For those 
operations for which the system has determined that effi- 
ciency is possible, the maintenance rules modify the view 
incrementally according to the c.hanges made to the base 
tables. These changes are accessible using the rule sys- 
tem’s transition table mechanism (Section 3). For those 
operations for which efficienc,y is not, possible, remat,eri- 
alization is performed. 

Note that the view must be computed in its ent,iret> 
once, after which it is maintained automatically. The fre- 
quency of view maintenance depends on the frequency 
of rule invocation, whic.h is flexible; see Section 3. Our 
method is directly applicable for simultaneous mainte- 
nance of multiple views; see Section 9. 

1.1 Related Work 

Most other work in incremental view maintenance dif- 
fers from ours in two ways: (1) It takes an algebraic 
approach, considering a restricted class of views and op- 
erations. In contrast, we consider a practical class of 
views specified using a standard query language, and 
we consider arbitrary database operations. (2) It sug- 
gests view maintenance mechanisms that must be built 
into the database system. In contrast, we propose view 
maintenance as an application of an existing mechanism. 
In addition, our system provides interaction whereby the 
user can modify a view so the system will guarantee ef- 
ficient maintenance. 

In [BLT86], views are specified as relational algebra 
expressions. Algorithms are given for determining when 
base table changes are irrelevant to the view and for 
differentially reevaluating a view after a set of insert 
and delete operations. [Han87j ext,ends this work t.o 
exploit common subexpressions and proposes an alter- 
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native approach using RETE networks; [Han871 also 
includes algorithms for incremental aggregate mainte- 
nance. In (RCBB89], an algebra of “delta relations” is 
described, including a “changes” operator that can be 
applied to views. There is a suggested connection to the 
production rules of HiPAC [MD89], but rule derivation 
is not included. In [SP89], incremental maintenance of 
single-table views is considered, with emphasis on issues 
of distribution. 

Our work here is loosely related to that reported in 
ICWSO], where we gave a method for deriving produc- 
tion rules that maintain integrity constraints. Our so- 
lutions to the two problems differ considerably, but the 
approaches are similar: In both cases we describe a gen- 
eral L ompile-time facility in which the user provides a 
high-level declarative specification, then the system uses 
syntactic analysis to produce a set of lower-level produc- 
tion rules with certain properties relative to the user’s 
specification. 

1.2 Outline 

Section 2 defines our SQL-based syntax for view defini- 
tion and Section 3 provides an overview of our produc- 
tion rule language. Section 4 motivates our approach: 
it gives an informal overview of view analysis, explains 
incremental maintenance, and describes certain difficul- 
ties encountered with duplicates and updates.8 Subse- 
quent sections contain the core technical material, for- 
mally describing our methods for view analysis and rule 
generation. We consider top-level table references in Sec- 
tion 5, posatively nested subqueries in Section 6, nega- 
tively nested subqueries in Section 7, and set operators 
in Section 8. In each of these sections we describe how 
view analysis can guarantee certain properties, and we 
show how these properties are used to determine if effi- 
cient maintenance is possible. Section 9 addresses SYS- 
tern execution, showing that the generated rules behave 
correctly at run-time. Finally, in Section 10 we conclude 
and discuss future work. 

Due to space constraints, some details have been omit- 
ted. For further details and additional examples see 
jCW9lj. 

2 View Definition Language 

Views are defined using a subset of the SQL syntax for 
select expressions. The grammar is given in Figure 2 
and should be self-explanatory to readers familiar with 
SQL [IBh/188].4 Several examples are given in subsequent 
sections. Our view definition language is quite powerful, 
but, for brevity and to make our approach more pre- 
r Ye, the language does include certain restrictions: 

3Note that we are not dealing with the view update prob- 
lem, which addresses how updates on views are propagated 
t,o updates on base tables. We are considering how updates 
on base tnhles are propagated to updates on views. 

“We include multi-column in (grammar productions 12 
and Ifi), which is not standard in all SQL implementations. 
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1. View-De! 

2. View-Exp 
3. Select- Exp 

4. Set- Exp 

5. 

6. Col- List 
7. co1 
8. Table- List 

9. Predicate 
10. 
11. 
12. 
13. 
14. 
15. 
16. Item 

17. Comp 
18. Simple-Select 

19. Simple-Pred 
20. 

*.- 
.*- 

..- 
*.- 

..- 
*.- 

..- 

..- 

I 

.*- 
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..- 
..- 

..- 
..- 

*.- 
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I 

I 
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.a- 
a*- 

..- 

..- 

::= 

..- 

.*- 

I 

deflne view V( Col-List): 
View- Exp 
Select-Erp / Set.Etp 

select [distinct] Cal-Lwt 
from Table-List 
[where Predicate] 

Select-Ezpl union distinct 
Select-Exps union distinct 
. . . Select-Ezpp, 

Select-Expcpl intersect 
Select-Expcpz intersect 
* . * Select- Ezp,, 
Cal,, . * . ( Cal, 1 * 

[T.]C I [ Var.]C 

[Varl], . . ..T. [Var,] 
Item Comp Item 
exists (Sample.Select) 
not exists (Szmple-Select) 

Jtem in (Simple-Select) 
Item not in (Simple-Select) 
Item Comp any (Simple-Select) 

Predicate and Predicate 

Co1 ! (Col-Li3t) j constant 
=/<!<=/>/>Il!= 
select Cal-List from Tab/e-Ltst 
[where Simple-Pred] 

Item Comp Item 
Simple-Pred and Simple-Pred 

Figure 2: Grammar for View Definitions 

Disjunction in predicates is omitted. (There is lit- 
tle loss of expressive power since or usually can be 
simulated using union.) 

Subqueries are limited to one level of nesting. 

Set operators union and intersect may not he 
mixed; set operator minus is omitted. 

Comparison operators using all are omitted. 

The reader will see that our method could certainly be 
extended to eliminate these restrictions, but the details 
are lengthy. Note also that we have omitted aggregates. 
Incremental methods for maintaining aggregates have 
been presented elsewhere [Han87]; these techniques can 
be adapted for our framework. 

3 Production Rule Language 

We provide a brief but self-contained overview of the 
set-oriented, SQL-based production rule language used 
in the remainder of the paper. Further details and nu- 
merous examples appear in [WF90,WCLSl]. Here we 
describe only the subset of the rule language used by the 
view maintenance rules. 

Our rule facility is fully integrated into the St,arburst. 
database system. Hence, all the usual database func- 
tionality is available; in addition, a set of rules may be 
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defined. Rules are based on the notion of transitions, 
which are database state changes resulting from execu- 
tion of a sequence of data manipulation operations. We 
consider only the net effect of transitions, as in [BLTSG, 
WFSO]. The syntax for defining production rules is:ll 

create rule name 
when tranhtion predicate 
then action 
[ precedes rule-list ] 

Transition predicates specify one or more operations on 
tables: inserted into T, deleted from T, or updated 
T. A rule is triggered by a given transition if at least 
one of the specified operations occurred in the net effect 
of the transition. The action part of a rule kpecifies an 
arbitrary sequence of SQL data manipulation operations 
to be executed when the rule is triggered. The optional 
precedes clause is used to induce a partial ordering on 
the set of defined rules. If a rule RI specifies Ra in its 
precedes list, then RI is higher than R, in the ordering. 
When no ordering is specified between two rules, their 
order is arbitrary but deterministic [ACLSl]. 

A rule’s action may refer to the current state of the 
database through top-level or nested SQL select oper- 
ations. In addition, rule actions may refer to lransiiion 
tables. A transition table is a logical table reflecting 
changes that have occurred during a transition. At the 
end of a given transition, transition table “inserted T” 
refers to those tuples of table T in the current state 
that were inserted by the transition, transition table 
“deleted T” refers to those tuples of table T in the 
pre-transition state that were deleted by the transition, 
transition table “old updated T” refers to those tuples 
of table T in the pre-transition state that were updated 
by the transition, and transition table “new updated 
T” refers to the current values of the same tuples. Tran- 
sition tables may be referenced in place of tables in the 
from clauses of select operations. 

Rules are activated at rule assertion points. There is 
an assertion point at the end of each transaction, and 
there may be additional user-specified assertion points 
within a transaction.’ We describe the semantics of rule 
execution at an arbitrary assertion point. The state 
change resulting from the user-generated database op- 
erations executed since the last assertion point (or start 
of the transaction) create the first relevant transition, 
and some set of rules are triggered by this transition. 
A triggered rule R is chosen from this set such that no 
other triggered rule is higher in the ordering. R’s action 
is executed. After execution of R’s action, all other rules 
are triggered only if their transition predicate holds with 
respect to the composite transition created by the ini- 
tial transaction and subsequent execution of R’s action. 
That is, these rules consider R’s action as if it were exe- 
cuted as part of the initial transition. Rule R, however, 

“Rules also may contain condition8 in if clauses, but these 
are not. needed for view maintenance. 

“Currently, assertion points are at transaction commit 
only. We will soon extend the system with a flexible mecha- 
nism that supports additional points [WCLSI]. 

579 
Barcelona, September, 1991 



has already “processed” the initial transition; thus, R is 
triggered again only if its transition predicate holds with 
respect to the transition created by its action. From the 
new set of triggered rules, a rule is chosen such that no 
other triggered rule is higher in the ordering, and its ac- 
tion is executed. At an arbitrary time in rule processing, 
a given rule is triggered if its transition predicate holds 
with respect to the (composite) transition since the last 
time at which its action was executed; if its action has 
not yet been executed, it is considered with respect. to 
the transition since the last rule assertion point or start 
of the transaction. When the set of triggered rules is 
empty, rule processing terminates. 

For view maintenance, it sometimes is necessary for 
a rule to consider the entire pre-transition value of a 
table (see, e.g., Section 5.4). Currently there is no direct 
mechanism in the rule language for obtaining this value, 
but it can be derived from transition tables. In the action 
part of view maintenance rules, we use “old T” to refer 
to the value of table T at the start of the transition 
triggering the rule. old T is translated to: 

(T minus inserted T minus new updated T) 
union deleted T union old updated T 

This expression may seem rather complex, but one 
should observe that in most cases the transition tables 
are small or empty. 

4 Motivation 

4.1 View Analysis 

Initially, the user defines a view using the language of 
Section 2, and the user specifies a srt, of (single- or mult,i- 
column) keys for the view’s base tables. Al! known keys 
for each table should be specified, since this provides 
important information for view analysis. Using the key 
information, during view analysis the system considers 
each list of table references in the view definition. For 
each list, it first computes the “bound columns” of the 
table references. Based on the bound columns, it then 
determines for each table reference whether the reference 
is “safe”. When a table reference is safe, incremental 
view maintenance rules can be generat.ed for operations 
on that table, as described in Section 4.2. The system 
also uses the bound columns for the top-level tables to 
determine if the view may contain duplicates. Formal 
definitions for bound columns and safety are based on t.he 
context of table references and are given in Sections 5-i. 

4.2 Incremental Maintenance 

The definition of a view V can be interpreted as an 
expression mapping base tables to table V. That is, 
V = Vezp(Tl, .., T,), where Tl, .., T, are the base tables 
appearing in V’s definition. Efficient maintenance of ‘I/ 
is achieved when changes to Tl, ,,, Z’,, can be propagated 
incrementally to V, without suhst.antia! recomputation. 
Consider any table reference T; in P’, and assume for thr 
moment that Ti appears only once in V’s definition. If 
view analysis determines that Ti is safe, then changes to 
Ti can be propagated incrementally to V. More formally, 
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changes to Ti (sets of insertions, deletions, or updates), 
denoted AT;, produce changes to V, denoted AV, that 
c.an be computed using only ATi and the other base ta- 
bles: AV = V,izp(T~, .., ATi, a.,Tn), where Vi,, is an 
expression derived from Vetp. Table V is then modified 
by inserting or deleting tuples from AV as appropriate. 
We assume that ATi is small with respect to Ti and AV 
is small with respect to V; hence, safe table references 
result in efficient maintenance rules. If Ti appears more 
than once in V’s definition, we separately analyze each 
reference. If all references are safe, then changes to Ti 
can he propagated incrementally to V. If any reference 
is unsafe, changes to Ti may cause rematerialization. 

4.3 Duplicates 

Our method does not support efficient maintenance of 
views with duplicates. The main difficulty lies in gen- 
erating rule actions in SQL that can manipulate exact 
numbers of duplicates. As an example, the SQL delete 
operation is based on truth of a predicate; hence, if a 
table contains four copies of a tuple (say), there is no 
SQL operation that can delete exactly two copies. To 
correctly maintain views with duplicates, such partial 
deletions can be necessary. [BLT86] also considers the 
problem of duplicates in views, proposing two solutions. 
In the first solution, an extra column is added in the 
view table to count the number of occurrences’ of each 
tuple. We choose not to use this approach because rule 
generation can become quite complex and the result is 
not transparent to the user. (The user must reference 
duplicates in the view through the extra column.) The 
second solution proposed in [BLT86] ensures that a view 
will not contain dup!ic.ates by requiring it to include key 
columns for each of the base tables. We have essentially 
taken this approach, however we have devised algorithms 
that allow us to loosen the key requirement considerably, 
yet still guarantee that a view will not contain duplicates. 

4.4 Update Operations 

When update operations are performed on a view’s base 
tables, we would like to consequently perform an update 
operation on the view. In many cases, however, this is 
not the semantic effect. As a simple example, consider 
two tables TI(A ,B) and T2(C,D) where Ti contains tu- 
ples (x,y>, (z,y), and (u,v), and T2 contains tuples 
(x ,z) and (v ,x). Consider the following view: 

define view V(A): select T1.A from Tl, T2 
where T1.B = T2.C 

Initially, v contains only one tuple, (u). Now suppose 
the following two update operations are performed on 
table T2: 

update T2 set C = u where D = x; 
update T2 set C = y where D = z 

The’effect of the first update is to remove tuple (u) from 
view V, while the effect of the second update is to add 
tuples (x) and (z) to V. There is no way to reflect the 
update operations on base table T2 as an update opera- 
tion on view V; rather, the updates must be reflected as 
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delete and insert operations on V. There do exist some 
cases in which update operations on base tables can be 
reflected as updates on views. However, for general and 
automatic rule derivation, in our approach update op- 
erations on base tables always result in delete and/or 
insert operations on the view. 

5 Top-Level Table References 

Assume now that the user has defined a view and has 
specified key information for the view’s base tables. As- 
sume that the view does not include set operators union 
or intersect; views with set operators are covered in 
Section 8. The system first analyzes the top-level ta- 
ble references, i.e., those references generated from the 
Table-List in grammar production 3 of Figure 2. This 
analysis reveals both whether the view may contain du- 
plicates and whether efficient maintenance rules are pos- 
sible for operations on the top-level tables. Consider a 
view V with the general form:’ 

deflne view V( Cd-List): 
select Cl, .., C, from TI, ..,T,.,, where P 

where 7’1, .., T,,, are the top-level table references, 
Cl, **, C,, are columns of Tl , . ,, T,, and P is a predicate. 

5.1 Bound Columns 

View analysis relies on the concept of bound cohmns. 
The bound columns of the top-level table references in 
view V are denoted B(V) and are computed as follows: 

Definition 5.1 (Bound Columns for Top-Level 
Table References) 

1. Initialize B(V) to contain the columns Cl, .., C,, pro- 
jected in the view definition. 

2. Add to E(V) all columns of Tl, .., T,,, such that pred- 
icate P includes an equality comparison between t,he 
column and a constant. 

3. Repeat until B(V) is unchanged: 
(a) Add to B(V) all columns of Tl, .., T,,, such that 

predicate P includes an equality comparison be- 
tween the column and a column in B(V). 

(b) Add to B(V) all columns of any table z, 1 < i < 
m, if B(V) includes a key for Ti. 0 

Bound columns can be computed using syntact,ic analy- 
sis and guarantee the following useful property (Lemma 
5.2 below): If two tuples in the cross-product of top- 
level tables Tl, ..,T, satisfy predicate P and differ in 
their bound columns, then the tuples also must differ 
in view columns Cl , .., C,,,. Let Proj(t, Cl, .., Cj) denote 
the projection of a tuple t ontoa set of columns Cl, .., Cj. 

Lemma 5.2 (Bound Columns Lemma for Top- 
Level Tables) Let 21 and 12 be tuples in the cross- 
product of Tl, .., T,,, such that tl and tz both satisfy P. 
By definition, columns Cl ,.., C, are in B(V). If D1, .., Dk 
are additional columns in B(V) such that t1 and 22 are 

‘For clarity and without loss of generality, we omit the 
use of table variables here. 
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guaranteed to differ in Ci, .., C,,, Dr , .., Dh, i.e. Proj (21, 
CI, ..I Cn, LA, .., Dh) # Proj(h Cl, .., G, DI, .., Dh), 
then r1 and t2 also are guaranteed to differ in Cl, .., C,, 
i.e. PFoj(tl, CI, .., C,) # Proj(t2, Cl, .., Cm). 
Proof: Suppose, for the sake of a contradiction, that 
Proj(tl, Cl, -., 12’~) = Proj(t2, Cr, ..,C,). Then there 
must be some Di in Dl, .., Dk such that Proj(tl, Di) # 
Proj (12, Di), We show that this is impossible. Consider 
any column Di in Dl, .., Dk. Since Df is in B(V), by 
the recursive definition of B(V) and since tl and t2 both 
satisfy predicate P, the value of column Di in both tl 
and t2 must either 
1. satisfy an equality with a constant k, or 

2. satisfy an equality with a column Cj in Cl, ..,C,,, or 
3. be functionally dependent on a constant k or column 

Cj. (This is the case where Di was added to i?(V) 
because a key for Di’s table was present; recall that 
all columns of a table are functionally dependent on 
any key for that table.) 

In the case of a constant, Proj(tl, Di) and Proj(t2, Di) 
are both equal to or functionally dependent on the same 
constant, so Proj(tl, Df) = Proj(t2, Di). In the case of 
a column Cj, Proj(tl, Cj) = Proj (tz, Cj) by our SUPPO- 

sition, SO Proj(t,, Di) = Proj(t2, Di). 0 

5.2 Duplicate Analysis 

If V’s definition does not include distinct, then our sys- 
tem performs duplicate analysis. If this analysis reveals 
that V may contain duplicates, then the user is notified 
that maintenance rules cannot be generated for V unless 
V’s definition is modified to include distinct. (The sys- 
tem does not add distinct automatically since it may 
change the view’s semantics.) Once the bound columns 
for top-level table references have been computed, dupli- 
cate analysis is straightforward: 

Theorem 5.3 (Duplicates) If B( V) includes a key for 
every top-level table, then V will not contain duplicates. 

Proof: Let tl and t2 be two different tuples in the 
cross-product of the top-level tables in V such that 11 
and tz both satisfy predicate P. We must show that 
11 and t2 cannot produce duplicate tuples in V, i.e. 
Proj(tl, CI, -., C,,) # Proj(t2, CI, .., C,,). By the the- 
orem’s assumption, there must be additional columns 
DI, .., DI, in B(Y) such that Cl, .,, C,,, Dl, .., Dk include 
a key for every top-level table. Then 21 and 12 must dif- 
fer in 6’1, .., C,, DI, .., Dk. Consequently, by Lemma 5.2, 
PTOj(h, Cl, ‘., G) # Proj(t2, Cl, .., G). 0 

5.3 Safety Analysis 
Safety of top-level table references is similar to duplicate 
analysis: 

Definition 5.4 (Safety of Top-Level Table Refer- 
ences) Top-level table reference Ti is safe in V if B(V) 
includes a key for Ti. 0 

The following three theorems show that if table reference 
Ti is safe, then insert, delete, and update operations 
on T; can be reflected by incremental changes to V. 
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Theorem 5.5 (Insertion Theorem for Top-Level 
Tables) Let Ti be a safe top-level table reference in V 
and suppose a tuple 1 is inserted into Ti. If v is a tuple 
in the cross-product of the top-level tables using t,uple 
t from Ti, and v satisfies predicate P so that Proj (v~ 

Cl, **I CT&) is in view V after the insertion, then Proj(v, 
Cl, .., C,) was not in V before the insertion. 

Proof: Suppose, for the sake of a contradiction, that 
there was a tuple v’ in V before the insertion such that 
PToj(u’, cl, ..!cn) = hoj(u, cl, ..,c,%). Let &, ,., Dk 
be additional bound columns so that Cl, .,, C,,, Do, ,., Db 
includes a key for x. (We know such columns exist 
since Ti is safe.) Since v and tl’ include different tuples 
from Ti, then Proj(v, Cl,..,&, Dl,.., L?k) # Proj(y’, 
Cl, -.,Cn, Dl, .., Dk). Hence, by Lemma 5.2, Proj (v, 
Cl I.., c-n) # Proj(v’, Cl, .I( C,). 0 

The practical consequence of this theorem is that if a set 
of tuples ATi are inserted into Ti, then the tuples AL’ 
that should be inserted into V can be derived from the 
cross-product of the top-level tables using ATi instead 
of Ti. This exactly corresponds to the definition of incre- 
mentalmaintenance in Section 4.2, and is implemented 
in the rules given below. 

Similar theorems with similar consequences apply for 
delete and update operations. The proofs are omitted 
since they also are similar [CW91]. 

Theorem 5.6 (Deletion Theorem for Top-Level 
Tables) Let Ti be a safe top-level table reference in 
V and suppose a tuple t is deleted from Ti. If 1’ is 
a tuple in the cross-product of the top-level tables us- 
ing tuple t from Ti, and v satisfies predicate P so that 
PTOj(V, Cl, .‘, Cn) was in view V before the deletion, 
then Proj(v, Cl, .., C,,) is not in V after the deletion. 0 

Theorem 5.7 (Update Theorem for Top-Level 
Tables) Let T; be a safe top-level table reference in V 
and suppose a tuple i is updated in T;. Let 210 he a tuplc 
in the cross-product of the top-level t,ables using the old 
value of tuple t from Ti, where vg satisfies P so that, 
PToj(vo, Cl, .., C,) was in view V before the update. 
Let UN be a tuple in the cross-product of the top-level 
tables using the new value of tuple t from Ti, where UN 
satisfies P so that Proj(vN, Cl, .., C,) is in V after the 
update. Finally, let u be a tuple in the cross-product of 
the top-level tables not using t, where t) satisfies P so v 
is in V both before and after the update. Then Proj (vo, 
Cl, .., C,,) # Proj(v, Cl, .., C,,) and PToj(vN, Cl, .., C,) 
# PTOj(V, Cl, .., Cn)* 0 

5.4 Rule Generation 

We describe how maintenance rules are generated for the 
top-level tables. We first consider safe table references. 
then unsafe references. Initially, for each table reference 
we generate four rules-one triggered by inserted, one 
by deleted, and two by updated. Subsequently we 
explain how some rules can be combined and how the 
entire rule set is ordered. 

Let Ti be a safe top-level table reference in view V 
defined as above. If tuples are inserted into TiI then we 
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want to insert into V those tuples produced by the view 
definition using inserted Ti instead of Ti in the top- 
level table list. By Theorem 5.5, these insertions cannot 
create duplicates in the view. However, if a similar rule is 
applied because tuples also were inserted into a different 
top-level table, then duplicates could appear. Hence, 
before inserting a new tuple, the rule must ensure that 
the tuple has not already been inserted by a different 
rule. This is checked efficiently using transition table 
inserted V. The rule for inserted is: 

create rule ins-Ti-V 
when inserted into Ti 
then insert into V 

(select Cl...,Cn 
from Tl,.. ,insertsd Ti,..,Tm 
where P and CC1 ,..,Cn> not in inserted V) 

If tuples are deleted from T<, then we want to delete 
from V those tuples produced by the view definition us- 
ing deleted Ti instead of Ti in the top-level table list. 
By Theorem 5.6, we know that these tuples should no 
longer be in the view. Again, however, we must remem- 
ber that other tables in the top-level table list may have 
been modified. Hence, to identify the correct tuples to 
delete from V, we must consider the pre-transition value 
of all other tables, obtained using the old feature de- 
scribed in Section 3. For predicate P, let P-old denote 
P with all table references T replaced by old T. .The 
rule for deleted is: 

create rule del-Ti-V 
when deleted from Ti 
then delete from V 

where cCl,..,Cn> in 
(select Cl,..,Cn 
from old Tl,..,deleted Ti,..,old Tm 
where P-old) 

As explained in Section 4.4, update operations on base 
t.ables always cause delete and/or insert operations on 
views. In fact, we generate two separate rules triggered 
by updated-one to perform deletions and the other 
to perform insertions. They are similar to the rules 
for deleted and inserted, and their correctness follows 
from Theorem 5.7: 

create rule old-upd-Ti-V 
when updated Ti 
then delete from V 

where <Cl ,..,Cn> in 
(select Cl,..,Cn 
from old Tl, . . ,old updated Ti,. . ,old Tm 
where P-old) 

create rule new-upd-Ti-V 
when updated Ti 
then insert into V 

(select Cl,..,Cn 
from Tl,.. ,new updated Ti,. . ,Tm 
where P and <Cl,. . , Cn> not in inserted V) 

If a table appears more than once in the top-level 
table list, then rules are generated for each reference. 
Rules with identical triggering operations whose actions 
perform the salne operation (either insert or delete) are 
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merged into one rule by sequencing or combining their 
actions. Once the entire set of rules is generated (includ- 
ing those for nested table references, described below), 
they are ordered by adding precedes clauses so that all 
rules performing deletions precede all rules performing 
insertionsea 

NOW consider the case when a top-level table reference 
Ti is unsafe, so the properties guaranteed by the theo- 
rems may not hold. For insertions, incremental maintc- 
nance is still possible; the only difference from the safe 
case is that all new tuples must be checked against V 
itself to guarantee that duplicates are not produced. If 
V is indexed, this can be performed efficiently. 

create rule ins-Ti-V 
when inserted into Ti 
then insert into V 

(select Cl,..,Cn 
from Tl,.. ,insertsd Ti,. . ,Tm 
where P and CC1 ,..,Cn> not in V) 

Delete and update operations are more difficult, and 
this is where recomputation must occur. If a tuple is 
deleted from Ti, without Theorem 5.6 we cannot de- 
termine whether corresponding tuples should be deleted 
from V-those tuples still may be produced by other 
base table tuples that have not been deleted: a simi- 
lar problem occurs with update. The only solution is 
to reevaluate the view expression itself. Since t,his is 
equivalent to rematerializing the view, we choose to cre- 
ate a single distinguished rule that performs remateri- 
alization. This rule will be triggered by all operations 
for which efficient maintenance is impossible. (As men- 
tioned above, if these operations are expected to occur 
frequently, then materialization may br inappropriate 
for this view.) The rematerialization rule with triggering 
operations for Ti is: 

create rule rematerialize-V 
when deleted from Ti, 

updated Ti 
then delete from V; 

insert into V 
(select Cl ,,.,Cn from Tl ,..,Tm where P); 

deactivate-rules(V) 
This rule will have precedence over all other rules for 
V. Since execution of the first two rule actions entirely 
rematerializes V, the rule’s final action, deactivate- 
rules(V), deactivates all other rules for V until the next 
rule assertion point.g Note that when a triggering op- 
eration appears in the rematerialization rule, any other 
rules triggered by that operation can be eliminated. 

5.5 Examples 

We draw examples from a simple airline reservations 
database with the following schema: 

‘This is why WC merge only rules with the same action op- 
eration and why we create two separate rules for updated- 
for ordering, we cannot generate rule actions that perform 
both deletions and insertions. 

‘This feature is not included in the current rule system but 
can easily be simulated using rule conditions; see [WidSl]. 
We intend to add this feature in the near future. 

Proceedings of the 17th International 
Conferenceon Very Large Data Bases 

flight (FLIGHT-ID, flight-no, date) 
res (RES-ID, psgr-id, flight-id, seat) 
psgr (PSGR-ID, name, phone, meal, fin) 
ff (FFN, miles) 

Most of the schema is self-explanatory, with res denot- 
ing reservation, ff denoting frequent flier, and fin de- 
noting frequent flier number. Primary keys for each ta- 
ble are capitalized; other keys are <flight-no ,date> for 
table flight, cpsgr-id,flight-id> or <flight-id, 
seat> for table res, and fin for table psgr. 

Consider the following view, which provides the seat 
numbers and meal preferences of all passengers on a 
given flight (FID) who have ordered special meals: 

define view special-meals(seat, meal): 
select re.s.seat, psgr.meal 
from res, psgr 
where res.flight-id = FID 
and res.psgr-id = psgr.psgr-id 
and psgr.meal != null 

Using Definition 5.1, we determine that the bound 
columns of top-level table references res and psgr 
are: projected columns res . seat and psgr .meal, col- 
umn res *flight-id since it is equated to a constant 
in the predicate, all remaining columns of res since 
<flight-id, seat> is a key, and psgr .psgr-id since it 
is equated to bound column res.psgr-id. Since the 
bound columns include keys for both top-level tables, the 
view will not contain duplicates, and incremental main- 
tenance rules can be generated for both tables. The rules 
triggered by operations on table res are given here; the 
rules for t,able psgr are similar: 

create rule ins-res-special-meals 
when inserted into res 
then insert into special-meals 

(select res.seat, psgr.meal 
from inserted res, psgr * 
where res.flight-id = FID 
and res.psgr-id = psgr.psgr-id 
and psgr .meal != null 
and <seat ,meal> not in 

inserted special-meals) 

create rule del-res-special-meals 
when deleted from res 
then delete from special-meals 

where <seat ,meal> in 
(select res *seat, psgr .meal 
from deleted res, old psgr 
where res.flight-id - FID 
and res.psgr-id = psgr.psgr-id 
and psgr .meal != null) 

create rule old-upd-res-special-meals 
when updated res 
then delete from special-meals 
where <seat,meal> in 

(select res.seat, psgr.meal 
from old updated res, old psgr 
where res.flight-id = FID 
and res.psgr-id - psgr.psg-id 
and psgr.meal !p null) 
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create rule new-upd-ree-special-meals 
when updated res 
then insert into special-meals 

(select res.seat, psgr.meal 
from new updated res, psgr 
where res.flight-id - FID 
and res.psgr-id = psgr.psgr-id 
and psgr.meal != null 
and <seat ,meal> not in 

inserted special-meals) 

As a second example, consider the following view, 
which provides the frequent flier numbers of all passen- 
gers currently holding reservations: 

define view ff-res(ffn): 
select psgr.ffn 
from psgr, res 
where psgr.psgr-id = res.psgr-id 

The bound columns are all columns of table psgr (since 
ffnis a key) and column res .psgr-id. Since the bound 
columns do not include a key for table res, the view 
may contain duplicates, and distinct must be added. 
Table reference psgr is safe, so the rules for operations 
on psgr ace similar to those in the previous example. 
Table reference res is unsafe, however, so the following 
rules ace generated: 

create rule ins-res-ff-res 
when inserted into res 
then insert into ff-res 

(select distinct psgr.ffn 
from psgr, inserted res 
where psgr.psgr-id = res.psgr-id 
and ffn not in ff-real 

create rule rematerialize-ff-res 
when deleted from res, 

updated res 
then delete from if-res; 

insert into ff-res 
(select distinct psgr.ffn from psgr, res 
where psgr.psgr-id = res.psgr-id); 

deactivate-rulss(ff-ree) 

6 Positively Nested Subqueries 

A positively nested subquery is a nested select expces- 
sion preceded by exists, in, or Comp any, where Contp 
is any comparison operator except ! =. We first describe 
safety analysis and rule generation for table references in 
exists subqueries. Similar methods apply for the other 
positively nested subqueries and ace explained in Sec- 
tion 6.3. Consider a view V as follows, where N1, ..? NI 
ace the table references under consideration: 

deflne view V( Cd-List): 
select Cl, .., C, from Tl, ..,T,,, 
where P’ and exists 

(select Cok from NI 1 ..* A’! where P) 

6.1 Bound Columns and Safety Analysis 
To analyze nested table references we introduce the con- 
cept of columns that ace bou.nd by correlation to the 
bound columns of the top-level tables. We assume 
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that set B(V) of top-level bound columns already has 
been computed. Correlated bound columns ace denoted 
C(V), and for exists they ace computed as follows: 

Definition 6.1 (Correlated Bound Columns for 
Exists) 

Initialize C(V) to contain all columns of Nl, .., Nl 
such that predicate P includes an equality compari- 
son between the column and a column in B(V). 
Add to C(V) all columns of Nl, .., Nf such that pred- 
itate P includes an equality comparison between the 
column and a constant. 
Repeat until C(V) is unchanged: 

(a) Add to C(V) all columns of Nl, .., Nl such that 
predicate P includes an equality comparison be- 
tween the column and a column in C(V). 

(b) Add to C(V) all columns of any table Ni, 1 < i < 
1, if C(V) includes a key for Ni* 0 

Correlated bound columns for exists guarantee the fol- 
lowing property: 

Lemm,a 6.2 (Bound Columns Lemma for Exists) 
Consider four tuples, f1 and t2 in the cross-product of 
TI, -5, T,.,, and nl and n2 in the cross-product of iV1, .., Nl, 
such that il and t2 satisfy predicate P’, n1 satisfies 
nested predicate P using 11 for the top-level CIOSS- 

product, and n2 satisfies P using 12 for the top-level 
cross-product. Let D1, .., Dk be columns of NI, .., NI 
in C(V) such that nl and n2 ace guaranteed to dif- 
fer in Dl, .., Dk, i.e. Proj(nl, DI, ..,Dk) # PrOj(na, 

DI, ..I Dk). Then t1 and t2 ace guaranteed to differ in 
Cl,..!G, i.e. Proj(tl, Cl, .., G) # proj(t2, Cl, .., Cd 

Proof: Suppose, for the sake of a contradiction, that 
Proj (tl, Cl, .., Cn) = Proj(t2, Cl, .., CL). By supposi- 
tion there is some D; in Dl, .., Dk such that Proj(nl, 
Di) # PToj(n2, Di). Di is in C(V), so by the recursive 
definitions of C(V) and B(V), since tl and t2 satisfy P’, 
and since nl with t1 and n2 with t2 both satisfy predi- 
cate P, the value of column Di in both n1 and ng must 
either 

1. satisfy an equality with a constant k, or 

2. satisfy an equality with a column Cj in Cl, .., C,, oc 

3. be functionally dependent on a constant k or column 

As in Bound Columns Lemma 5.2, in all cases Proj(nl, 
Di) = Proj(n2, Di). 0 

Safety analysis and rule generation for positively nested 
subqueries is similar to top-level tables: 

Definition 6.3 (Safety of Table References for Ex- 
ists) Table reference Ni in an exists subquery is safe 
in 11 if C(V) includes a key for Ni. 0 

The following three theorems show that if Ni is safe, 
then insert, delete, and update operations on Ni can be 
reflected by incremental changes to V. We include a 
proof for the insertion theorem only; the other proofs 
follow by analogy. 
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Theorem 6.4 (Insertion Theorem for Exists) Let 
Ni be a safe table reference in an exists subquery in 
V and suppose a tuple ni is inserted into Ni. Let I? 
be a tuple in the cross-product of the top-level tables 
such that 2r satisfies P’ and there is a tuple n in the 
cross-product of the nested tables using ni such that n 
satisfies P using 2r, so Proj(v, Cl, ,., Cn) is in view V 
after the insertion. Then Proj(u, Cl, .., C,.,) was not in 
V before the insertion. 

Proof: Suppose, for the sake of a contradiction, that 
Proj(v, Cl, .., G) was in V before the insertion. Then 
there must have been a tuple n’ in the cross-product, of 
the nested tables before the insertion and a tuple v’ in 
the top-level cross-product such that Proj (d, Cl, .., C,) 
= Proj(u, Cl, .., C,,), u’ satisfies P’, and n’ satisfies P 
using u’. Let Dl, .., Dk be correlated bound columns of 
NI, .., Nr such that Dl, .., Dk includes a key for Ni. Since 
n and n’ use different tuples from Ni, Proj(n, D1~ .., Dk) 
& PToj(n’, DI, .., Ck). Then, by Lemma 6.2, Proj(?j’, 

, .., CL) # Pwj(v, Cl, .., C,). 0 
Theorem 6.5 (Deletion Theorem for Exists) Let 
Ni be a safe table reference in an exists subquery in 
V and suppose a tuple ni is deleted from Ni. Let ‘L’ 
be a tuple in the cross-product of the top-level tables 
such that v satisfies P’ and there is a tuple n in the 
cross-product of the nested tables using ni such that n 
satisfies P using u, so Proj(v, Cl, .., C,) was in view l/ 
before the deletion. Then Proj(u, Cl, ,.! C,) is not in V 
after the deletion. 0 

Theorem 6.6 (Update Theorem for Exists) Let 
Ni be a safe table reference in an exists subquery in 
V and suppose a tuple Iti is updated in *Vi, Let 1’0 be 
a tuple in the cross-product of the top-level tables snch 
that vg satisfies P’ and there is a tuple no in the cross- 
product of the nested tables using the old value of ni 
such that no satisfies P using vg , so Proj ( VO, Cl, . . , C,) 
was in view V before the update. Let UN be a tuple in 
the cross-product of the top-level tables such that UN 
satisfies P’ and there is a tupl? nN in the cross-product 
of the nested tables using the new valne of ni such that 
nN satisfies P using UN, so Proj (IIN, Cl, #., C,) is in 
V after the update. If Proj(uo, Cl,..,C,,) # Proj(aArt 
Cl, ‘.! C,), then Proj(u0, Cl, .,, C,,) is not in V after the 
update and Proj(vN, Cl, .., C,) was not in V before the 
update. •I 

6.2 Rule Generation 

First consider safe table references. The properties guar- 
anteed by Theorems 6.4-6.6 allow incremental mainte- 
nance to be performed just as for safe top-level table ref- 
erences: Ni is replaced by inserted Ni in the inserted 
rule, by deleted Ni in the deleted rule, and by old up- 
dated Ni and new updated Ni in the two updated 
rules. In the rules that perform insertions, we must check 
that tuples have not already been inserted by another 
rule; in the rules that perform deletions we must use the 
old value of other tables. If a table appears more than 
once in N1, .., NI, or if a table in N1, .., NI also appears 
elsewhere in the view definition, then rules are merged 
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as previously desc.ribed. Unsafe table references also are 
handled similarly to top-level tables: If nested table ref- 
erence Ni is unsafe, triggering operations deleted from 
Ni and updated Ni are included in the distinguished 
rematerialisation rule for V. The inserted rule is sim- 
ilar to the safe rule, except “not in V” is added to the 
predicate rather than “not in inserted V”. 

6.3 Other Positively Nested Subqueries 

Safety analysis and rule generation for subqueries pre- 
ceded by <any, <=any, >any, and >=any is identical 
to exists. The method for =any and in (which are 
equivalent) also is identical to exists, except the set of 
correlated bound columns may be larger. Consider a 
view V of the form: 

deflne view V( Cal-List): 
select Cl , .., C, from Tl , ..,T, 
where P’ and (01, .., Dj) in 

(select El,.+,Ej from Nl,..,Nf where P) 

Definition 6.1 of correlated bound columns is modified 
to include the case: 

l Add to C(V) every column Ei such that correspond- 
ing column Di is in B(V), 1 5 i < j. 

The reader may note that view V above is equivalent to 
view V’: 

define view V’( Cal-List): 
select Cl 1 .., C, from Tl, .., T,,, 
where P’ and exists 

(select * from Nl, .., Nl where P 
and D1 = El and . . . and D, = Ej) 

As expec.ted, the correlated bound columns of view V’ 
using Definition 6.1 for exists are equivalent to the cor- 
related bound columns of V using the extended defini- 
tion for in.‘O 

6.4 Example 

Using the airline reservations database introduced in 
Section 5.5, the following view provides the ID’s of all 
passengers with more than 50,000 frequent flier miles: 

define view many-miles(id): 
select pagr-id from psgr 
where psgr.ffn in 

(select ffn from ff where miles > 60,000) 

All columns of top-level table psgr are bound since 
psgr-id is a key. Using our extended definition for in, 
f f . ffn is a correlated bound column. Since ffn is a 
key, nested table reference f f is safe. The inserted and 
deleted rules for table f f follow; the updated rules are 
similar. 

“The reader may also note that select expressions with 
positive subqueries often can be transformed into equivalent 
select expressions without subqueries, as in [CG85,Kim82]. 
By considering the actual transformations, we see that the 
maint.enance rules produced for any transformed view are 
equivalent to the maintenance rules produced for the original 
view. 
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create ruls,ins-if-many-miles 
when inserted into it 
then insert into many-miles 

(select psgr-id from psgr 
whore psgr.ffn in 

(select fin from inserted ff 
where miles > 50,000) 

and psgr-id not in inserted many-miles) 

create rule del-if-many-miles 
whrn delatrd from if 
than delete from many-miles 

where psgt-id in 
(select psgr-id from old psgr 
where psgr.ffn in 

(8slrct fin from deleted if 
where miles > 50,000)) 

7 Negatively Nested Subqueries 
A negatively nested subquery is a nested select expres- 
sion preceded by not exists, not in, or != any. We 
describe safety analysis and rule generation for table ref- 
erences in not exists subqueries. Similar methods apply 
for the other negatively nested subqueries; see [CWQlj. 
Consider a view V of the form: 

deflne view V( Cal-Liat): 
select Cl,..,& Rom Tl,..,T, 
where P’ and not exists 

(select Co18 Rom NI, .., NJ where P) 
With negatively nested subqueries, insert operations on 
nested tables result in delete operations on the view, 
while delete operations on nested tables result, in insert 
operations on the view. 

7.1 Safety Analysis 

For a negatively nested table reference Ni, we define two 
notions of safety: I-safety indicates that insert opera- 
tions on Ni can be reflected by incremental changes to 
V, and DU-safety indicates that delete and update oper- 
ations on Ni can be reflected by incremental changes to 
V. The definition of I-safety is somewhat different from 
previous safety definitions-correlated bound columns 
are not used, and all nested table references are consid- 
ered together. Assume that set B(V) of top-level bound 
columns already has been computed. 
Definition 7.1 (I-Safety of Table References for 
Not Exists) Table references N1, ,., Nl in a not ex- 
ists subquery are I-safe in V if predicate P refers only 
to columns of Ni, 1 5 i < 1, columns in B(V), and 
constants. Cl 
Using this notion of safety, we prove the following theo- 
rem for insertions: 
Theorem 7.2 (Insertion Theorem for Not Exists) 
Let Ni be an I-safe table reference in a not exists sub- 
query in V and suppose a tuple ni is inserted into Ni. 
Let v be a tuple in the cross-product of the top-level ta- 
bles such that v satisfies top-level predicate P’ and there 
is a tuple n in the cross-product of the nested tables us- 
ing ni such that n. satisfies nested predicate P using 1’. 
Then Proj(v, C1, ,., Cm) is not in I’ after the insertSion. 
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Proof: Suppose, for the sake of a contradiction, that 
Proj(ih Cl, .., c ,, is in V after the insertion. Then there ) 
must be a tuple v’ other than w in the cross-product 
of the top-level tables such that Proj(v’, Cl, .,, C,) = 
pwj(v, Cl, .., C,), v’ satisfies P’, and there is no tuple 
n’ in the cross-product of the nested tables such that n’ 
satisfies P using 21’. We show that there is such an n’, 
namely n. By Definition 5.1 of B(V), since u and u’ both 
satisfy P’ and Proj (v’, Cl, .., C,,) = Proj (v, Cl, .., C,), 
v and u’ are equivalent in all columns of B(V). Since ZVd 
is I-safe and since n satisfies P using w, by Definition 7.1 
of safety, n also satisfies P using v’. 0 

For deletes and updates, we combine our new notion of 
I-safety with the previous notion of safety ‘using keys. 
Correlated bound columns for negatively nested table 
references are defined as for positive references (Defini- 
tion 6.1), and Bound Columns Lemma 6.2 still holds. 

Definition 7.3 (DU-Safety of Table References 
for Not Exists) Table reference Ni in a not exists 
subquery is DU-safe in V if it is I-safe and C(V) in- 
cludes a key for Ni. 0 

Theorem 7.4 (Deletion Theorem for Not Exists) 
Let Ni be a DU-safe table reference in a not exists 
subquery in V and suppose a tuple ni is deleted from 
Ni. Let ‘u be a tuple in the cross-product of the top-level 
tables such that v satisfies P’ and there is a tuple n in 
the cross-product of the nested tables using ni such that 
n satisfies P using v. Then: (1) Proj(v, Cl, .., C,,) was 
not in V before the deletion. (2) Proj(v, Cl, .., C,,) is in 
V after the deletion. 

Proof: The proof of (1) is analogous to the proof of 
Insertion Theorem 7.2. For (2), suppose, for the sake 
of a contradiction, that Proj(u, Cl, .., Cn) is not in V 
after the deletion. Then there must be a tuple n’ in the 
cross-product of the nested tables such that n’ satisfies 
P using v. Let D1, .., Dk be correlated bound columns of 
NI, .., Nl such that D1, . . , Dk includes a key for Ni. Since 
n and n’ use different tuples from Ni, Proj(n, DI , .., Dk) 
# Proj (n’, DI, .., Ck). Then, by Lemma 6.2, Proj(v, 
Cl, .., Cn) # Proj(u, C1, .., C,), which is impossible. CI 

Theorem 7.5 (Update Theorem for Not Exists) 
Let Ni be a DU-safe table reference in a not exists 
subquery in V and suppose a tuple ni is updated in Ni. 
Let vg be a tuple in the cross-product of the top-level 
tables such that vg satisfies P’ and there is a tuple no 
in the cross-product of the nested tables using the old 
value of ni such that no satisfies P using v. Let VN be 
a tuple in the cross-product of the top-level tables such 
that 11~ satisfies P’ and there is a tuple nN in the cross- 
product of the nested tables using the new value of ni 
such that nN satisfies P using v. If Proj(vO, Cl, .., Cn) 
# Proj(vN, Cl, ‘., Cn) then: (1) PrOj(VN, Cl, .., Cn) is 
not in V after the update. (2) Proj(vo, Cl, .., C,) was 
not in V before the update. (3) Proj(vo, Cl, .., G) is in 
V after the update. 

Proof: Analogous to Theorems 7.2 and 7.4. 0 
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7.2 Rule Generation 

If nested table reference Ni is I-safe, then, using Theo- 
rem 7.2, the following incremental rule is generated: 

where flight .f light-id = 
res.flight-id)) 

create rule del-flight-bad-flight 
when deleted from flight 
then insert into bad-flight 

(select res-id from ren 
where exists 

create rule ins-Ni-V 
when inserted into Ni 
then delete from V 

where <Cl ,..,Cn> in 
(select Cl ,.., Cn from Tl,..,Tm 
where P’ and exists 

(select CO18 
from Nl , . . ,inserted Ni, , . .Nl 
where P)) 

(select + from deleted flight 
where flight .f light-id = 

res .f light-ld) 
and res-id not in inserted bad-flight) 

Notice that the subauerv’s “not exists” is converted 8 Set Operators 
to “exists”; this conversion occurs in the deleted and 
updated rules as well. If Ni is not I-safe, then the view Finally, consider views with set operators. A view defi- 

expression would need to be reevaluated to determine nition may include either union distinct or intersect. 

which tuples should be deleted. Hence in the unsafe case, For these views, view analysis and rule generation ini- 

inserted into Ni is included in the rematerialization tially is performed independently on each component 

rule for V. select expression. The rules are then modified to in- 

If N; is DU-safe, then. using Theorems 7.4 and 7.5. corporate the set operators. 

the following incremental rule for deleted is generated: 
The rules for updated correspond to the inserted and 8.1 Union Views 

deleted rules as previously. Consider a view V of the form: 

create rule del-Ni-V 
when deleted from Ni 
then insert into V 

(select Cl ,.., Cn from Tl,.., Tm 
where P’ and exists 

(select Cole 
from old Nl ,..,deleted Ni,..,old Nl 
where P) 

and <Cl,. .Cn> not in inserted V) 

If table reference N+ is not DU-safe, updated Ti 
is included in the rematerialization rule for 17. For 
deleted, however, incremental maintenance still can be 
performed-as previously, for the unsafe case the rule 
above is modified to use “not in V” rather than “not 
in inserted V”. 

7.3 Example 
Using the airline reservations database introduced in 
Section 5.5, the following view provides the ID’s of all 
reservations whose flight-id is not in table flight: 

define view bad-f light (res-id) : 
select res-id from res 
where not exists 

(select * from flight 
where flight .flight-id = res.flight-id) 

By Definitions 7.1 and 7.3, nested table reference flight 
is both I-safe and DU-safe. The inserted and deleted 
rules for table flight follow; the updated rules are 
similar. 

create rule ins-flight-bad-flight 
when inserted into flight 
then delete from bad-flight 

where res-id in 
(select res-id from res 
where exists 

(select + from inserted flight 

deflne view V( Cal-List): 
select Cols~ fkom Tables1 where PI 
union distinct . . . 
union distinct select Colsk from Tablesk where Pb 

First, duplicate analysis is performed on each select ex- 
pression as in Section 5.2; if any select expression may 
contain duplicates, the user is required to add distinct 
to that select expression. ,For each select expression, 
an initial set of view-maintaining rules is generated using 
the methods of the preceding sections. The rules’ actions 
are then modified to incorporate union. In actions that 
perform insert operations, if “not in inserted V” has 
been added to predicate Pi due to a safe table reference, 
it is changed to “not in V”; this ensures that duplicates 
are not added by different select expressions. If the rule 
already includes “not in V” due to an unsafe table ref- 
erence, it remains unchanged. Modifications for delete 
operations are more complicated. If a tuple no longer 
is produced by one of the select expressions, it should 
he deleted from V only if it is not produced by any of 
the other select expressions. Without loss of general- 
ity, consider a delete operation in the action of a rule 
generated from the first select expression in V. The fol- 
lowing conjunct must be added to the delete operation’s 
where clause: 

and CCols> not in 
(select Cole2 from Tables2 where P2) 

and . . . 
and CCols> not in 

(select Colsk from Tablesk where Pk) 

Clearly, such conjuncts may cause considerable recom- 
putation, depending on the complexity of the select ex- 
pressions. For rules in which the recomputation cost ap- 
pears large, the user may choose to move the triggering 
operation to the rematerialization rule for V. 
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As usual, rules with common triggering and action 
operations are merged, and rules whose triggering oper- 
ations also appear in the rematerialization rule are elim- 
inated. 

8.2 Intersect Views 
A view V with intersect operators is handled similarly 
to views with union operators. In rule modification, 
however, all rules performing delete operations remain 
unchanged. (If a tuple is deleted from any select expres- 
sion, then it always should be deleted from V.) Modifi- 
cations for insert operations are similar to the modifi- 
cations for delete operations in union views: If a Cuple 
is newly produced by one of the select expressions, it 
should be inserted into V only if it also is produced by 
all the other select expressions. Consider an insert op- 
eration in the action of a rule generated from the first 
select expression in V. The following conjunct must 
be added to the where clause of the insert operation’s 
select expression: 

and CCols> in 
(select Cola2 from Tables2 where P2) 

and . . + 
and CCols> in 

(select Colsk from Tablesk where Pk) 

Again, if the select expressions are sufficiently complex, 
the user may decide that rematerialization is more ap- 
propriate. 

9 System Execution 

So far, we have described only the compile-time aspects 
of our facility. View definition, view analysis, and rule 
generation all occur prior to database system execution. 
We still must ensure that, at run-time, derived rules will 
behave as desired, i.e., views will be maintained cor- 
rectly. Suppose our facility has been used to derive sets 
of maintenance rules for several views. The system or- 
ders the set of rules for each view so that all delete oper- 
ations in rule actions precede all insert operations. No 
ordering is necessary between rules for different views- - 
the action part of each rule modifies only the view itself, 
so rules for different views have no effect on each other. 

Consider the set of rules for a given view I/, and sup- 
pose an arbitrary set of changes has been made to V’s 
base tables. If the rematerialization rule for V is trig- 
gered, the view certainly is maintained correctly: V is 
recomputed from its base tables; all other rules for 1/ 
are deactivated, so V cannot be modified until the base 
tables change again. Suppose the rematerialization rule 
is not triggered. During rule processing, first some rules 
delete tuples from V, then other rules insert tuples into 
V. Consider the deletions. For each type of table refer- 
ence, our theorems guarantee that the generated delete 
operations never delete tuples that should remain in V. 
Furthermore, these operations always delete all Iuples 
that should no longer be in V. Consider the insertions. 
First, notice that all generated insert operations use 
nested select expressions based on the view definition 
itself. Since we know the view definition cannot produce 
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duplicates, the set of tuples in insert operations never 
includes duplicates. Furthermore, our theorems (along 
with the “not in inserted V” clauses) guarantee that 
tuples already in V are never inserted. Finally, in each 
case the insert operations produce all tuples that should 
be added to V. 

We must consider that other production rules in ad- 
dition to view-maintaining rules may be defined in the 
system. Although these rules cannot modify views, they 
can modify base tables. Our view-maintaining rules be- 
have correctly even in the presence of other rules, and 
no additional rule ordering is necessary. Recall the se- 
mantics of rule execution (Section 3): a rule is consid- 
ered with respect to the transition since the last time 
its action was executed; if its action has not yet been 
executed, it is considered with respect to the transition 
since the last rule assertion point (or start of the transac- 
tion). Hence, the first time a view-maintaining rule R is 
triggered during rule processing, it processes all base ta- 
ble changes since the last assertion point. Suppose that, 
subsequently during rule processing, the base tables are 
changed by a non-view-maintaining rule. Then R will 
be triggered again and will modify the view according to 
the new set of changes. When rule processing terminates, 
no rules are triggered, so all view-maintaining rules will 
have processed all relevant changes to base tables. 

10 Conclusions and Future Work 

We have described a facility that automatically derives a 
set of production rules to maintain a materialization of 
a user-defined view. This approach both frees the view 
definer from handling view maintenance and guarantees 
that the view remains correct. Through analysis tech- 
niques based on key information, incremental mainte- 
nance rules are generated whenever possible. Our facility 
allows the user to interact with the system: view defini- 
tions and key information can be modified to guarantee 
that the system produces efficient maintenance rules for 
frequent base table operations. In practice, efllcient rules 
are possible for a wide class of views-efficiency relies on 
safe t,able references, and it can be seen from our crite- 
ria for safety that table references routinely fall into this 
class. In those cases where efficiency is not possible for 
the user’s desired view, our system provides recognition 
of this fact; the user either may use the rules produced 
for automatic rematerialization or may decide that query 
modification is more appropriate. 

We plan to implement our facility using the Starburst 
Rule System, then conduct experiments to evaluate the 
run-time efficiency of our approach on a variety of views. 
Meanwhile, we want to extend view analysis and rule 
generation so that the full power of SQL select state- 
ments can be used in view definitions. (We have started 
this and expect it to be tedious but not difficult.) Cur- 
rcntly, the biggest drawback of our approach is that 
views wit,h duplicates are not handled; we will consider 
ways to remove this restriction. We would like to add 
automatic. rule optimization as a post-rule-generation 
component in our system. The rules produced by our 
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method have a standard form, and in some cases can 
be optimized as in [CWQO]. In addition, rules for differ- 
ent views could be merged and common subexpressions 
could be exploited as in [Han87]. Finally, the properties 
guaranteed by our algorithms are useful in other areas 
(such as query optimization), and we intend to explore 
this connection. 
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