
Deriving Production Rules for Incremental View Maintenance

S t.efano Ceri l

Jennifer Widow
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

ceriOcs.stanford.edu. widomQibm.com

Abstract. It is widely recognized that production rules in
database systems can be used to automatically maintain de-
rived data such as views. However, writing a correct set of
rules for efficiently maintaining a given view can be a diffi-
cult and ad-hoc process. We provide a facility whereby a user
delines a view as an SQL select expression, from which the
system automatically derives set-oriented production rules
that maintain a materialization of that view.

The maintenance rules are triggered by operations on the
view’s base tables. Generally, the rules perform incremental
maintenance: the materialized view is modified according to
the sets of changes made to the base tables, which are ac-
cessible through logical tables provided by the rule language.
However, for some operations substantial recomputation may
be required. We give algorithms that, based on key infor-
mation, perform syntactic analysis on a view definit,ion to
determine when efficient maintenance is possible.

1 Introduction

In relational database systems, a vieur is a logical table
derived from one or more physical (base) tables. Views
are useful for presenting different levels of abstraction or
different portions of a database to different users. Typi-
cally, a view is specified as an SQL select expression. A
retrieval query over a view is written as if the view were
a physical table; the query’s answer is logically equiv-
alent to evaluating the view’s select expression, then
performing the query using the result. There are two
well-known approaches to implementing views. In the
first approach, views are virtual: queries over views are
modified into queries over base tables iSto75j. In t,hc
second approach, views are marerlalrzed: they are com-
puted from the base tables and stored in the database
[BLT86,KP81,SI84]. Different applications favor one or
the other approach. In this paper we consider the prob-
lem of view materialization.

Production rules in database systems allow specifica-
tion of data manipulation operations that are executed
automatically when certain events occur or conditions
are met, e.g. jDE89, MD89, SJGPSO, WFSO]. Clearly,
production rules can be used to maintain materialized
views: when base tables change, rules are triggered that
modify the view.’ Writing a correct set of rules for effi-

*Permanent address: Dip. di Elettronica, Politecnico di
Milano, Piazza L. Da Vinci 32, 20133 Milano, Italy

‘Production rules also can be used to implement virtual
views, as shown in [SJGPSO].

Proceediigs of the 17th International
Conference on Very Large Data Bases

View Editor (User)

I
View Definition and Key Information

r7Gi+-tLrck

Final View with Analysis Information

““‘“i”“““’
View-Maintaining Rules

Figure 1: Rule derivation system

ciently maintaining a given view can be a difficult pro-
cess, however. The rules could simply rematerialize the
view from the base tables, but this can be very inef-
ficient. Efficiency -is achieved by incremental mainte-
nance, in which the changed portions of the base tables
are propagated to the view, without full recomputation.
WP have developed a method that automatically derives
inc.remental maintenance rules for a wide class of views.
The rules produced are executable using the rule lan-
guage of the Starburst database system at the IBM Al-
maden Research Center [WCLSl].

Figure 1 shows the structure ofour system, which is in-
voked at compile-time when a view is created. Initially,
the user enters the view as an SQL select expression,
along with information about keys for the view’s base
tables2 Our system then performs syntactic analysis on
the view definition; this analysis determines two things:
(1) whether the view may contain duplicates (2) for each
base table referenced in the view, whether efficient view
maintenance rules are possible for operations on that ta-
ble. The user is provided with the results of this analysis.
The results may indicate that, in order to improve the
efficiency of view maintenance, further interaction with
the system is necessary prior to rule generation. In par-
ticular:

‘Key information is essential for view analysis, as we will
show. Functional dependencies could be specified as well, but
we assume that keys are more easily understood and specified
by the user; in normalized tables, functional dependencies are
captured by keys anyway.

577
Barcelona, September, 1991

Views with duplicates cannot be maintained efi-
ciently, as explained in Section 4.3. Hence, if t,he
system detects that the view may contain duplicatrs.
then the user should add distinct to the view defi-
nition. (In SQL, distinct eliminates duplicates.)

If the system detects that efficient maintenance rules
are not possible for some base table operations, this
may indicate to the user that not all key information
has been included, or the user may choose to modify
the view definition.

If changes are made, view analysis is repeated. In prac-
tice, we have discovered that, efficient rules are possible
for most views and operations once all key information
is provided. However, there are cases when certain base
table operations cannot be supported efficiently. If these
operations are expected to occur frequently, view mate-
rialization may be inappropriate. The responsibility for
considering these trade-offs lies with the user; our system
provides all necessary information.

Once the user is satisfied with the view definit,ion
and its properties, the system generates the set of
view-maintaining rules. Rules are produced for insert,
delete, and update operations on each base table ref-
erenced in the view. The rule language we use is set-
oriented, meaning that rules are triggered aft.er arbitrary
sets of changes to the database (Section 3). For those
operations for which the system has determined that effi-
ciency is possible, the maintenance rules modify the view
incrementally according to the c.hanges made to the base
tables. These changes are accessible using the rule sys-
tem’s transition table mechanism (Section 3). For those
operations for which efficienc,y is not, possible, remat,eri-
alization is performed.

Note that the view must be computed in its ent,iret>
once, after which it is maintained automatically. The fre-
quency of view maintenance depends on the frequency
of rule invocation, whic.h is flexible; see Section 3. Our
method is directly applicable for simultaneous mainte-
nance of multiple views; see Section 9.

1.1 Related Work

Most other work in incremental view maintenance dif-
fers from ours in two ways: (1) It takes an algebraic
approach, considering a restricted class of views and op-
erations. In contrast, we consider a practical class of
views specified using a standard query language, and
we consider arbitrary database operations. (2) It sug-
gests view maintenance mechanisms that must be built
into the database system. In contrast, we propose view
maintenance as an application of an existing mechanism.
In addition, our system provides interaction whereby the
user can modify a view so the system will guarantee ef-
ficient maintenance.

In [BLT86], views are specified as relational algebra
expressions. Algorithms are given for determining when
base table changes are irrelevant to the view and for
differentially reevaluating a view after a set of insert
and delete operations. [Han87j ext,ends this work t.o
exploit common subexpressions and proposes an alter-

Proceedings of the 17th International
Conference on Very Large Data Bases

native approach using RETE networks; [Han871 also
includes algorithms for incremental aggregate mainte-
nance. In (RCBB89], an algebra of “delta relations” is
described, including a “changes” operator that can be
applied to views. There is a suggested connection to the
production rules of HiPAC [MD89], but rule derivation
is not included. In [SP89], incremental maintenance of
single-table views is considered, with emphasis on issues
of distribution.

Our work here is loosely related to that reported in
ICWSO], where we gave a method for deriving produc-
tion rules that maintain integrity constraints. Our so-
lutions to the two problems differ considerably, but the
approaches are similar: In both cases we describe a gen-
eral L ompile-time facility in which the user provides a
high-level declarative specification, then the system uses
syntactic analysis to produce a set of lower-level produc-
tion rules with certain properties relative to the user’s
specification.

1.2 Outline

Section 2 defines our SQL-based syntax for view defini-
tion and Section 3 provides an overview of our produc-
tion rule language. Section 4 motivates our approach:
it gives an informal overview of view analysis, explains
incremental maintenance, and describes certain difficul-
ties encountered with duplicates and updates.8 Subse-
quent sections contain the core technical material, for-
mally describing our methods for view analysis and rule
generation. We consider top-level table references in Sec-
tion 5, posatively nested subqueries in Section 6, nega-
tively nested subqueries in Section 7, and set operators
in Section 8. In each of these sections we describe how
view analysis can guarantee certain properties, and we
show how these properties are used to determine if effi-
cient maintenance is possible. Section 9 addresses SYS-
tern execution, showing that the generated rules behave
correctly at run-time. Finally, in Section 10 we conclude
and discuss future work.

Due to space constraints, some details have been omit-
ted. For further details and additional examples see
jCW9lj.

2 View Definition Language

Views are defined using a subset of the SQL syntax for
select expressions. The grammar is given in Figure 2
and should be self-explanatory to readers familiar with
SQL [IBh/188].4 Several examples are given in subsequent
sections. Our view definition language is quite powerful,
but, for brevity and to make our approach more pre-
r Ye, the language does include certain restrictions:

3Note that we are not dealing with the view update prob-
lem, which addresses how updates on views are propagated
t,o updates on base tables. We are considering how updates
on base tnhles are propagated to updates on views.

“We include multi-column in (grammar productions 12
and Ifi), which is not standard in all SQL implementations.

578
Barcelona, September, 1991

1. View-De!

2. View-Exp
3. Select- Exp

4. Set- Exp

5.

6. Col- List
7. co1
8. Table- List

9. Predicate
10.
11.
12.
13.
14.
15.
16. Item

17. Comp
18. Simple-Select

19. Simple-Pred
20.

*.-
.*-

..-
*.-

..-
*.-

..-

..-

I

.*-
.*-

..-
..-

..-
..-

*.-
.*-

I

I

I

I

I

I

.a-
a*-

..-

..-

::=

..-

.*-

I

deflne view V(Col-List):
View- Exp
Select-Erp / Set.Etp

select [distinct] Cal-Lwt
from Table-List
[where Predicate]

Select-Ezpl union distinct
Select-Exps union distinct
. . . Select-Ezpp,

Select-Expcpl intersect
Select-Expcpz intersect
* . * Select- Ezp,,
Cal,, . * . (Cal, 1 *

[T.]C I [Var.]C

[Varl],T. [Var,]
Item Comp Item
exists (Sample.Select)
not exists (Szmple-Select)

Jtem in (Simple-Select)
Item not in (Simple-Select)
Item Comp any (Simple-Select)

Predicate and Predicate

Co1 ! (Col-Li3t) j constant
=/<!<=/>/>Il!=
select Cal-List from Tab/e-Ltst
[where Simple-Pred]

Item Comp Item
Simple-Pred and Simple-Pred

Figure 2: Grammar for View Definitions

Disjunction in predicates is omitted. (There is lit-
tle loss of expressive power since or usually can be
simulated using union.)

Subqueries are limited to one level of nesting.

Set operators union and intersect may not he
mixed; set operator minus is omitted.

Comparison operators using all are omitted.

The reader will see that our method could certainly be
extended to eliminate these restrictions, but the details
are lengthy. Note also that we have omitted aggregates.
Incremental methods for maintaining aggregates have
been presented elsewhere [Han87]; these techniques can
be adapted for our framework.

3 Production Rule Language

We provide a brief but self-contained overview of the
set-oriented, SQL-based production rule language used
in the remainder of the paper. Further details and nu-
merous examples appear in [WF90,WCLSl]. Here we
describe only the subset of the rule language used by the
view maintenance rules.

Our rule facility is fully integrated into the St,arburst.
database system. Hence, all the usual database func-
tionality is available; in addition, a set of rules may be

Proceedings of the 17th International
Conference on Very Large Data Bases

defined. Rules are based on the notion of transitions,
which are database state changes resulting from execu-
tion of a sequence of data manipulation operations. We
consider only the net effect of transitions, as in [BLTSG,
WFSO]. The syntax for defining production rules is:ll

create rule name
when tranhtion predicate
then action
[precedes rule-list]

Transition predicates specify one or more operations on
tables: inserted into T, deleted from T, or updated
T. A rule is triggered by a given transition if at least
one of the specified operations occurred in the net effect
of the transition. The action part of a rule kpecifies an
arbitrary sequence of SQL data manipulation operations
to be executed when the rule is triggered. The optional
precedes clause is used to induce a partial ordering on
the set of defined rules. If a rule RI specifies Ra in its
precedes list, then RI is higher than R, in the ordering.
When no ordering is specified between two rules, their
order is arbitrary but deterministic [ACLSl].

A rule’s action may refer to the current state of the
database through top-level or nested SQL select oper-
ations. In addition, rule actions may refer to lransiiion
tables. A transition table is a logical table reflecting
changes that have occurred during a transition. At the
end of a given transition, transition table “inserted T”
refers to those tuples of table T in the current state
that were inserted by the transition, transition table
“deleted T” refers to those tuples of table T in the
pre-transition state that were deleted by the transition,
transition table “old updated T” refers to those tuples
of table T in the pre-transition state that were updated
by the transition, and transition table “new updated
T” refers to the current values of the same tuples. Tran-
sition tables may be referenced in place of tables in the
from clauses of select operations.

Rules are activated at rule assertion points. There is
an assertion point at the end of each transaction, and
there may be additional user-specified assertion points
within a transaction.’ We describe the semantics of rule
execution at an arbitrary assertion point. The state
change resulting from the user-generated database op-
erations executed since the last assertion point (or start
of the transaction) create the first relevant transition,
and some set of rules are triggered by this transition.
A triggered rule R is chosen from this set such that no
other triggered rule is higher in the ordering. R’s action
is executed. After execution of R’s action, all other rules
are triggered only if their transition predicate holds with
respect to the composite transition created by the ini-
tial transaction and subsequent execution of R’s action.
That is, these rules consider R’s action as if it were exe-
cuted as part of the initial transition. Rule R, however,

“Rules also may contain condition8 in if clauses, but these
are not. needed for view maintenance.

“Currently, assertion points are at transaction commit
only. We will soon extend the system with a flexible mecha-
nism that supports additional points [WCLSI].

579
Barcelona, September, 1991

has already “processed” the initial transition; thus, R is
triggered again only if its transition predicate holds with
respect to the transition created by its action. From the
new set of triggered rules, a rule is chosen such that no
other triggered rule is higher in the ordering, and its ac-
tion is executed. At an arbitrary time in rule processing,
a given rule is triggered if its transition predicate holds
with respect to the (composite) transition since the last
time at which its action was executed; if its action has
not yet been executed, it is considered with respect. to
the transition since the last rule assertion point or start
of the transaction. When the set of triggered rules is
empty, rule processing terminates.

For view maintenance, it sometimes is necessary for
a rule to consider the entire pre-transition value of a
table (see, e.g., Section 5.4). Currently there is no direct
mechanism in the rule language for obtaining this value,
but it can be derived from transition tables. In the action
part of view maintenance rules, we use “old T” to refer
to the value of table T at the start of the transition
triggering the rule. old T is translated to:

(T minus inserted T minus new updated T)
union deleted T union old updated T

This expression may seem rather complex, but one
should observe that in most cases the transition tables
are small or empty.

4 Motivation

4.1 View Analysis

Initially, the user defines a view using the language of
Section 2, and the user specifies a srt, of (single- or mult,i-
column) keys for the view’s base tables. Al! known keys
for each table should be specified, since this provides
important information for view analysis. Using the key
information, during view analysis the system considers
each list of table references in the view definition. For
each list, it first computes the “bound columns” of the
table references. Based on the bound columns, it then
determines for each table reference whether the reference
is “safe”. When a table reference is safe, incremental
view maintenance rules can be generat.ed for operations
on that table, as described in Section 4.2. The system
also uses the bound columns for the top-level tables to
determine if the view may contain duplicates. Formal
definitions for bound columns and safety are based on t.he
context of table references and are given in Sections 5-i.

4.2 Incremental Maintenance

The definition of a view V can be interpreted as an
expression mapping base tables to table V. That is,
V = Vezp(Tl, .., T,), where Tl, .., T, are the base tables
appearing in V’s definition. Efficient maintenance of ‘I/
is achieved when changes to Tl, ,,, Z’,, can be propagated
incrementally to V, without suhst.antia! recomputation.
Consider any table reference T; in P’, and assume for thr
moment that Ti appears only once in V’s definition. If
view analysis determines that Ti is safe, then changes to
Ti can be propagated incrementally to V. More formally,

Proceedings of the 17th International
Conference on Very Large Data Bases

changes to Ti (sets of insertions, deletions, or updates),
denoted AT;, produce changes to V, denoted AV, that
c.an be computed using only ATi and the other base ta-
bles: AV = V,izp(T~, .., ATi, a.,Tn), where Vi,, is an
expression derived from Vetp. Table V is then modified
by inserting or deleting tuples from AV as appropriate.
We assume that ATi is small with respect to Ti and AV
is small with respect to V; hence, safe table references
result in efficient maintenance rules. If Ti appears more
than once in V’s definition, we separately analyze each
reference. If all references are safe, then changes to Ti
can he propagated incrementally to V. If any reference
is unsafe, changes to Ti may cause rematerialization.

4.3 Duplicates

Our method does not support efficient maintenance of
views with duplicates. The main difficulty lies in gen-
erating rule actions in SQL that can manipulate exact
numbers of duplicates. As an example, the SQL delete
operation is based on truth of a predicate; hence, if a
table contains four copies of a tuple (say), there is no
SQL operation that can delete exactly two copies. To
correctly maintain views with duplicates, such partial
deletions can be necessary. [BLT86] also considers the
problem of duplicates in views, proposing two solutions.
In the first solution, an extra column is added in the
view table to count the number of occurrences’ of each
tuple. We choose not to use this approach because rule
generation can become quite complex and the result is
not transparent to the user. (The user must reference
duplicates in the view through the extra column.) The
second solution proposed in [BLT86] ensures that a view
will not contain dup!ic.ates by requiring it to include key
columns for each of the base tables. We have essentially
taken this approach, however we have devised algorithms
that allow us to loosen the key requirement considerably,
yet still guarantee that a view will not contain duplicates.

4.4 Update Operations

When update operations are performed on a view’s base
tables, we would like to consequently perform an update
operation on the view. In many cases, however, this is
not the semantic effect. As a simple example, consider
two tables TI(A ,B) and T2(C,D) where Ti contains tu-
ples (x,y>, (z,y), and (u,v), and T2 contains tuples
(x ,z) and (v ,x). Consider the following view:

define view V(A): select T1.A from Tl, T2
where T1.B = T2.C

Initially, v contains only one tuple, (u). Now suppose
the following two update operations are performed on
table T2:

update T2 set C = u where D = x;
update T2 set C = y where D = z

The’effect of the first update is to remove tuple (u) from
view V, while the effect of the second update is to add
tuples (x) and (z) to V. There is no way to reflect the
update operations on base table T2 as an update opera-
tion on view V; rather, the updates must be reflected as

580
Barcelona, September, 1991

delete and insert operations on V. There do exist some
cases in which update operations on base tables can be
reflected as updates on views. However, for general and
automatic rule derivation, in our approach update op-
erations on base tables always result in delete and/or
insert operations on the view.

5 Top-Level Table References

Assume now that the user has defined a view and has
specified key information for the view’s base tables. As-
sume that the view does not include set operators union
or intersect; views with set operators are covered in
Section 8. The system first analyzes the top-level ta-
ble references, i.e., those references generated from the
Table-List in grammar production 3 of Figure 2. This
analysis reveals both whether the view may contain du-
plicates and whether efficient maintenance rules are pos-
sible for operations on the top-level tables. Consider a
view V with the general form:’

deflne view V(Cd-List):
select Cl, .., C, from TI, ..,T,.,, where P

where 7’1, .., T,,, are the top-level table references,
Cl, **, C,, are columns of Tl , . ,, T,, and P is a predicate.

5.1 Bound Columns

View analysis relies on the concept of bound cohmns.
The bound columns of the top-level table references in
view V are denoted B(V) and are computed as follows:

Definition 5.1 (Bound Columns for Top-Level
Table References)

1. Initialize B(V) to contain the columns Cl, .., C,, pro-
jected in the view definition.

2. Add to E(V) all columns of Tl, .., T,,, such that pred-
icate P includes an equality comparison between t,he
column and a constant.

3. Repeat until B(V) is unchanged:
(a) Add to B(V) all columns of Tl, .., T,,, such that

predicate P includes an equality comparison be-
tween the column and a column in B(V).

(b) Add to B(V) all columns of any table z, 1 < i <
m, if B(V) includes a key for Ti. 0

Bound columns can be computed using syntact,ic analy-
sis and guarantee the following useful property (Lemma
5.2 below): If two tuples in the cross-product of top-
level tables Tl, ..,T, satisfy predicate P and differ in
their bound columns, then the tuples also must differ
in view columns Cl , .., C,,,. Let Proj(t, Cl, .., Cj) denote
the projection of a tuple t ontoa set of columns Cl, .., Cj.

Lemma 5.2 (Bound Columns Lemma for Top-
Level Tables) Let 21 and 12 be tuples in the cross-
product of Tl, .., T,,, such that tl and tz both satisfy P.
By definition, columns Cl ,.., C, are in B(V). If D1, .., Dk
are additional columns in B(V) such that t1 and 22 are

‘For clarity and without loss of generality, we omit the
use of table variables here.

Proceedings of the 17th International
Conference on Very Large Data Bases

guaranteed to differ in Ci, .., C,,, Dr , .., Dh, i.e. Proj (21,
CI, ..I Cn, LA, .., Dh) # Proj(h Cl, .., G, DI, .., Dh),
then r1 and t2 also are guaranteed to differ in Cl, .., C,,
i.e. PFoj(tl, CI, .., C,) # Proj(t2, Cl, .., Cm).
Proof: Suppose, for the sake of a contradiction, that
Proj(tl, Cl, -., 12’~) = Proj(t2, Cr, ..,C,). Then there
must be some Di in Dl, .., Dk such that Proj(tl, Di) #
Proj (12, Di), We show that this is impossible. Consider
any column Di in Dl, .., Dk. Since Df is in B(V), by
the recursive definition of B(V) and since tl and t2 both
satisfy predicate P, the value of column Di in both tl
and t2 must either
1. satisfy an equality with a constant k, or

2. satisfy an equality with a column Cj in Cl, ..,C,,, or
3. be functionally dependent on a constant k or column

Cj. (This is the case where Di was added to i?(V)
because a key for Di’s table was present; recall that
all columns of a table are functionally dependent on
any key for that table.)

In the case of a constant, Proj(tl, Di) and Proj(t2, Di)
are both equal to or functionally dependent on the same
constant, so Proj(tl, Df) = Proj(t2, Di). In the case of
a column Cj, Proj(tl, Cj) = Proj (tz, Cj) by our SUPPO-

sition, SO Proj(t,, Di) = Proj(t2, Di). 0

5.2 Duplicate Analysis

If V’s definition does not include distinct, then our sys-
tem performs duplicate analysis. If this analysis reveals
that V may contain duplicates, then the user is notified
that maintenance rules cannot be generated for V unless
V’s definition is modified to include distinct. (The sys-
tem does not add distinct automatically since it may
change the view’s semantics.) Once the bound columns
for top-level table references have been computed, dupli-
cate analysis is straightforward:

Theorem 5.3 (Duplicates) If B(V) includes a key for
every top-level table, then V will not contain duplicates.

Proof: Let tl and t2 be two different tuples in the
cross-product of the top-level tables in V such that 11
and tz both satisfy predicate P. We must show that
11 and t2 cannot produce duplicate tuples in V, i.e.
Proj(tl, CI, -., C,,) # Proj(t2, CI, .., C,,). By the the-
orem’s assumption, there must be additional columns
DI, .., DI, in B(Y) such that Cl, .,, C,,, Dl, .., Dk include
a key for every top-level table. Then 21 and 12 must dif-
fer in 6’1, .., C,, DI, .., Dk. Consequently, by Lemma 5.2,
PTOj(h, Cl, ‘., G) # Proj(t2, Cl, .., G). 0

5.3 Safety Analysis
Safety of top-level table references is similar to duplicate
analysis:

Definition 5.4 (Safety of Top-Level Table Refer-
ences) Top-level table reference Ti is safe in V if B(V)
includes a key for Ti. 0

The following three theorems show that if table reference
Ti is safe, then insert, delete, and update operations
on T; can be reflected by incremental changes to V.

581
Barcelona, September, 1991

Theorem 5.5 (Insertion Theorem for Top-Level
Tables) Let Ti be a safe top-level table reference in V
and suppose a tuple 1 is inserted into Ti. If v is a tuple
in the cross-product of the top-level tables using t,uple
t from Ti, and v satisfies predicate P so that Proj (v~

Cl, **I CT&) is in view V after the insertion, then Proj(v,
Cl, .., C,) was not in V before the insertion.

Proof: Suppose, for the sake of a contradiction, that
there was a tuple v’ in V before the insertion such that
PToj(u’, cl, ..!cn) = hoj(u, cl, ..,c,%). Let &, ,., Dk
be additional bound columns so that Cl, .,, C,,, Do, ,., Db
includes a key for x. (We know such columns exist
since Ti is safe.) Since v and tl’ include different tuples
from Ti, then Proj(v, Cl,..,&, Dl,.., L?k) # Proj(y’,
Cl, -.,Cn, Dl, .., Dk). Hence, by Lemma 5.2, Proj (v,
Cl I.., c-n) # Proj(v’, Cl, .I(C,). 0

The practical consequence of this theorem is that if a set
of tuples ATi are inserted into Ti, then the tuples AL’
that should be inserted into V can be derived from the
cross-product of the top-level tables using ATi instead
of Ti. This exactly corresponds to the definition of incre-
mentalmaintenance in Section 4.2, and is implemented
in the rules given below.

Similar theorems with similar consequences apply for
delete and update operations. The proofs are omitted
since they also are similar [CW91].

Theorem 5.6 (Deletion Theorem for Top-Level
Tables) Let Ti be a safe top-level table reference in
V and suppose a tuple t is deleted from Ti. If 1’ is
a tuple in the cross-product of the top-level tables us-
ing tuple t from Ti, and v satisfies predicate P so that
PTOj(V, Cl, .‘, Cn) was in view V before the deletion,
then Proj(v, Cl, .., C,,) is not in V after the deletion. 0

Theorem 5.7 (Update Theorem for Top-Level
Tables) Let T; be a safe top-level table reference in V
and suppose a tuple i is updated in T;. Let 210 he a tuplc
in the cross-product of the top-level t,ables using the old
value of tuple t from Ti, where vg satisfies P so that,
PToj(vo, Cl, .., C,) was in view V before the update.
Let UN be a tuple in the cross-product of the top-level
tables using the new value of tuple t from Ti, where UN
satisfies P so that Proj(vN, Cl, .., C,) is in V after the
update. Finally, let u be a tuple in the cross-product of
the top-level tables not using t, where t) satisfies P so v
is in V both before and after the update. Then Proj (vo,
Cl, .., C,,) # Proj(v, Cl, .., C,,) and PToj(vN, Cl, .., C,)
PTOj(V, Cl, .., Cn)* 0

5.4 Rule Generation

We describe how maintenance rules are generated for the
top-level tables. We first consider safe table references.
then unsafe references. Initially, for each table reference
we generate four rules-one triggered by inserted, one
by deleted, and two by updated. Subsequently we
explain how some rules can be combined and how the
entire rule set is ordered.

Let Ti be a safe top-level table reference in view V
defined as above. If tuples are inserted into TiI then we

Proceedings of the 17th International
Conference on Very Large Data Bases

want to insert into V those tuples produced by the view
definition using inserted Ti instead of Ti in the top-
level table list. By Theorem 5.5, these insertions cannot
create duplicates in the view. However, if a similar rule is
applied because tuples also were inserted into a different
top-level table, then duplicates could appear. Hence,
before inserting a new tuple, the rule must ensure that
the tuple has not already been inserted by a different
rule. This is checked efficiently using transition table
inserted V. The rule for inserted is:

create rule ins-Ti-V
when inserted into Ti
then insert into V

(select Cl...,Cn
from Tl,.. ,insertsd Ti,..,Tm
where P and CC1 ,..,Cn> not in inserted V)

If tuples are deleted from T<, then we want to delete
from V those tuples produced by the view definition us-
ing deleted Ti instead of Ti in the top-level table list.
By Theorem 5.6, we know that these tuples should no
longer be in the view. Again, however, we must remem-
ber that other tables in the top-level table list may have
been modified. Hence, to identify the correct tuples to
delete from V, we must consider the pre-transition value
of all other tables, obtained using the old feature de-
scribed in Section 3. For predicate P, let P-old denote
P with all table references T replaced by old T. .The
rule for deleted is:

create rule del-Ti-V
when deleted from Ti
then delete from V

where cCl,..,Cn> in
(select Cl,..,Cn
from old Tl,..,deleted Ti,..,old Tm
where P-old)

As explained in Section 4.4, update operations on base
t.ables always cause delete and/or insert operations on
views. In fact, we generate two separate rules triggered
by updated-one to perform deletions and the other
to perform insertions. They are similar to the rules
for deleted and inserted, and their correctness follows
from Theorem 5.7:

create rule old-upd-Ti-V
when updated Ti
then delete from V

where <Cl ,..,Cn> in
(select Cl,..,Cn
from old Tl, . . ,old updated Ti,. . ,old Tm
where P-old)

create rule new-upd-Ti-V
when updated Ti
then insert into V

(select Cl,..,Cn
from Tl,.. ,new updated Ti,. . ,Tm
where P and <Cl,. . , Cn> not in inserted V)

If a table appears more than once in the top-level
table list, then rules are generated for each reference.
Rules with identical triggering operations whose actions
perform the salne operation (either insert or delete) are

582
Barcelona, September, 1991

merged into one rule by sequencing or combining their
actions. Once the entire set of rules is generated (includ-
ing those for nested table references, described below),
they are ordered by adding precedes clauses so that all
rules performing deletions precede all rules performing
insertionsea

NOW consider the case when a top-level table reference
Ti is unsafe, so the properties guaranteed by the theo-
rems may not hold. For insertions, incremental maintc-
nance is still possible; the only difference from the safe
case is that all new tuples must be checked against V
itself to guarantee that duplicates are not produced. If
V is indexed, this can be performed efficiently.

create rule ins-Ti-V
when inserted into Ti
then insert into V

(select Cl,..,Cn
from Tl,.. ,insertsd Ti,. . ,Tm
where P and CC1 ,..,Cn> not in V)

Delete and update operations are more difficult, and
this is where recomputation must occur. If a tuple is
deleted from Ti, without Theorem 5.6 we cannot de-
termine whether corresponding tuples should be deleted
from V-those tuples still may be produced by other
base table tuples that have not been deleted: a simi-
lar problem occurs with update. The only solution is
to reevaluate the view expression itself. Since t,his is
equivalent to rematerializing the view, we choose to cre-
ate a single distinguished rule that performs remateri-
alization. This rule will be triggered by all operations
for which efficient maintenance is impossible. (As men-
tioned above, if these operations are expected to occur
frequently, then materialization may br inappropriate
for this view.) The rematerialization rule with triggering
operations for Ti is:

create rule rematerialize-V
when deleted from Ti,

updated Ti
then delete from V;

insert into V
(select Cl ,,.,Cn from Tl ,..,Tm where P);

deactivate-rules(V)
This rule will have precedence over all other rules for
V. Since execution of the first two rule actions entirely
rematerializes V, the rule’s final action, deactivate-
rules(V), deactivates all other rules for V until the next
rule assertion point.g Note that when a triggering op-
eration appears in the rematerialization rule, any other
rules triggered by that operation can be eliminated.

5.5 Examples

We draw examples from a simple airline reservations
database with the following schema:

‘This is why WC merge only rules with the same action op-
eration and why we create two separate rules for updated-
for ordering, we cannot generate rule actions that perform
both deletions and insertions.

‘This feature is not included in the current rule system but
can easily be simulated using rule conditions; see [WidSl].
We intend to add this feature in the near future.

Proceedings of the 17th International
Conferenceon Very Large Data Bases

flight (FLIGHT-ID, flight-no, date)
res (RES-ID, psgr-id, flight-id, seat)
psgr (PSGR-ID, name, phone, meal, fin)
ff (FFN, miles)

Most of the schema is self-explanatory, with res denot-
ing reservation, ff denoting frequent flier, and fin de-
noting frequent flier number. Primary keys for each ta-
ble are capitalized; other keys are <flight-no ,date> for
table flight, cpsgr-id,flight-id> or <flight-id,
seat> for table res, and fin for table psgr.

Consider the following view, which provides the seat
numbers and meal preferences of all passengers on a
given flight (FID) who have ordered special meals:

define view special-meals(seat, meal):
select re.s.seat, psgr.meal
from res, psgr
where res.flight-id = FID
and res.psgr-id = psgr.psgr-id
and psgr.meal != null

Using Definition 5.1, we determine that the bound
columns of top-level table references res and psgr
are: projected columns res . seat and psgr .meal, col-
umn res *flight-id since it is equated to a constant
in the predicate, all remaining columns of res since
<flight-id, seat> is a key, and psgr .psgr-id since it
is equated to bound column res.psgr-id. Since the
bound columns include keys for both top-level tables, the
view will not contain duplicates, and incremental main-
tenance rules can be generated for both tables. The rules
triggered by operations on table res are given here; the
rules for t,able psgr are similar:

create rule ins-res-special-meals
when inserted into res
then insert into special-meals

(select res.seat, psgr.meal
from inserted res, psgr *
where res.flight-id = FID
and res.psgr-id = psgr.psgr-id
and psgr .meal != null
and <seat ,meal> not in

inserted special-meals)

create rule del-res-special-meals
when deleted from res
then delete from special-meals

where <seat ,meal> in
(select res *seat, psgr .meal
from deleted res, old psgr
where res.flight-id - FID
and res.psgr-id = psgr.psgr-id
and psgr .meal != null)

create rule old-upd-res-special-meals
when updated res
then delete from special-meals
where <seat,meal> in

(select res.seat, psgr.meal
from old updated res, old psgr
where res.flight-id = FID
and res.psgr-id - psgr.psg-id
and psgr.meal !p null)

583
Barcelona, September, 1991

create rule new-upd-ree-special-meals
when updated res
then insert into special-meals

(select res.seat, psgr.meal
from new updated res, psgr
where res.flight-id - FID
and res.psgr-id = psgr.psgr-id
and psgr.meal != null
and <seat ,meal> not in

inserted special-meals)

As a second example, consider the following view,
which provides the frequent flier numbers of all passen-
gers currently holding reservations:

define view ff-res(ffn):
select psgr.ffn
from psgr, res
where psgr.psgr-id = res.psgr-id

The bound columns are all columns of table psgr (since
ffnis a key) and column res .psgr-id. Since the bound
columns do not include a key for table res, the view
may contain duplicates, and distinct must be added.
Table reference psgr is safe, so the rules for operations
on psgr ace similar to those in the previous example.
Table reference res is unsafe, however, so the following
rules ace generated:

create rule ins-res-ff-res
when inserted into res
then insert into ff-res

(select distinct psgr.ffn
from psgr, inserted res
where psgr.psgr-id = res.psgr-id
and ffn not in ff-real

create rule rematerialize-ff-res
when deleted from res,

updated res
then delete from if-res;

insert into ff-res
(select distinct psgr.ffn from psgr, res
where psgr.psgr-id = res.psgr-id);

deactivate-rulss(ff-ree)

6 Positively Nested Subqueries

A positively nested subquery is a nested select expces-
sion preceded by exists, in, or Comp any, where Contp
is any comparison operator except ! =. We first describe
safety analysis and rule generation for table references in
exists subqueries. Similar methods apply for the other
positively nested subqueries and ace explained in Sec-
tion 6.3. Consider a view V as follows, where N1, ..? NI
ace the table references under consideration:

deflne view V(Cd-List):
select Cl, .., C, from Tl, ..,T,,,
where P’ and exists

(select Cok from NI 1 ..* A’! where P)

6.1 Bound Columns and Safety Analysis
To analyze nested table references we introduce the con-
cept of columns that ace bou.nd by correlation to the
bound columns of the top-level tables. We assume

Proceedings of the 17th International
Conference on Very Large Data Bases

that set B(V) of top-level bound columns already has
been computed. Correlated bound columns ace denoted
C(V), and for exists they ace computed as follows:

Definition 6.1 (Correlated Bound Columns for
Exists)

Initialize C(V) to contain all columns of Nl, .., Nl
such that predicate P includes an equality compari-
son between the column and a column in B(V).
Add to C(V) all columns of Nl, .., Nf such that pred-
itate P includes an equality comparison between the
column and a constant.
Repeat until C(V) is unchanged:

(a) Add to C(V) all columns of Nl, .., Nl such that
predicate P includes an equality comparison be-
tween the column and a column in C(V).

(b) Add to C(V) all columns of any table Ni, 1 < i <
1, if C(V) includes a key for Ni* 0

Correlated bound columns for exists guarantee the fol-
lowing property:

Lemm,a 6.2 (Bound Columns Lemma for Exists)
Consider four tuples, f1 and t2 in the cross-product of
TI, -5, T,.,, and nl and n2 in the cross-product of iV1, .., Nl,
such that il and t2 satisfy predicate P’, n1 satisfies
nested predicate P using 11 for the top-level CIOSS-

product, and n2 satisfies P using 12 for the top-level
cross-product. Let D1, .., Dk be columns of NI, .., NI
in C(V) such that nl and n2 ace guaranteed to dif-
fer in Dl, .., Dk, i.e. Proj(nl, DI, ..,Dk) # PrOj(na,

DI, ..I Dk). Then t1 and t2 ace guaranteed to differ in
Cl,..!G, i.e. Proj(tl, Cl, .., G) # proj(t2, Cl, .., Cd

Proof: Suppose, for the sake of a contradiction, that
Proj (tl, Cl, .., Cn) = Proj(t2, Cl, .., CL). By supposi-
tion there is some D; in Dl, .., Dk such that Proj(nl,
Di) # PToj(n2, Di). Di is in C(V), so by the recursive
definitions of C(V) and B(V), since tl and t2 satisfy P’,
and since nl with t1 and n2 with t2 both satisfy predi-
cate P, the value of column Di in both n1 and ng must
either

1. satisfy an equality with a constant k, or

2. satisfy an equality with a column Cj in Cl, .., C,, oc

3. be functionally dependent on a constant k or column

As in Bound Columns Lemma 5.2, in all cases Proj(nl,
Di) = Proj(n2, Di). 0

Safety analysis and rule generation for positively nested
subqueries is similar to top-level tables:

Definition 6.3 (Safety of Table References for Ex-
ists) Table reference Ni in an exists subquery is safe
in 11 if C(V) includes a key for Ni. 0

The following three theorems show that if Ni is safe,
then insert, delete, and update operations on Ni can be
reflected by incremental changes to V. We include a
proof for the insertion theorem only; the other proofs
follow by analogy.

584
Barcelona, September, 1991

Theorem 6.4 (Insertion Theorem for Exists) Let
Ni be a safe table reference in an exists subquery in
V and suppose a tuple ni is inserted into Ni. Let I?
be a tuple in the cross-product of the top-level tables
such that 2r satisfies P’ and there is a tuple n in the
cross-product of the nested tables using ni such that n
satisfies P using 2r, so Proj(v, Cl, ,., Cn) is in view V
after the insertion. Then Proj(u, Cl, .., C,.,) was not in
V before the insertion.

Proof: Suppose, for the sake of a contradiction, that
Proj(v, Cl, .., G) was in V before the insertion. Then
there must have been a tuple n’ in the cross-product, of
the nested tables before the insertion and a tuple v’ in
the top-level cross-product such that Proj (d, Cl, .., C,)
= Proj(u, Cl, .., C,,), u’ satisfies P’, and n’ satisfies P
using u’. Let Dl, .., Dk be correlated bound columns of
NI, .., Nr such that Dl, .., Dk includes a key for Ni. Since
n and n’ use different tuples from Ni, Proj(n, D1~ .., Dk)
& PToj(n’, DI, .., Ck). Then, by Lemma 6.2, Proj(?j’,

, .., CL) # Pwj(v, Cl, .., C,). 0
Theorem 6.5 (Deletion Theorem for Exists) Let
Ni be a safe table reference in an exists subquery in
V and suppose a tuple ni is deleted from Ni. Let ‘L’
be a tuple in the cross-product of the top-level tables
such that v satisfies P’ and there is a tuple n in the
cross-product of the nested tables using ni such that n
satisfies P using u, so Proj(v, Cl, .., C,) was in view l/
before the deletion. Then Proj(u, Cl, ,.! C,) is not in V
after the deletion. 0

Theorem 6.6 (Update Theorem for Exists) Let
Ni be a safe table reference in an exists subquery in
V and suppose a tuple Iti is updated in *Vi, Let 1’0 be
a tuple in the cross-product of the top-level tables snch
that vg satisfies P’ and there is a tuple no in the cross-
product of the nested tables using the old value of ni
such that no satisfies P using vg , so Proj (VO, Cl, . . , C,)
was in view V before the update. Let UN be a tuple in
the cross-product of the top-level tables such that UN
satisfies P’ and there is a tupl? nN in the cross-product
of the nested tables using the new valne of ni such that
nN satisfies P using UN, so Proj (IIN, Cl, #., C,) is in
V after the update. If Proj(uo, Cl,..,C,,) # Proj(aArt
Cl, ‘.! C,), then Proj(u0, Cl, .,, C,,) is not in V after the
update and Proj(vN, Cl, .., C,) was not in V before the
update. •I

6.2 Rule Generation

First consider safe table references. The properties guar-
anteed by Theorems 6.4-6.6 allow incremental mainte-
nance to be performed just as for safe top-level table ref-
erences: Ni is replaced by inserted Ni in the inserted
rule, by deleted Ni in the deleted rule, and by old up-
dated Ni and new updated Ni in the two updated
rules. In the rules that perform insertions, we must check
that tuples have not already been inserted by another
rule; in the rules that perform deletions we must use the
old value of other tables. If a table appears more than
once in N1, .., NI, or if a table in N1, .., NI also appears
elsewhere in the view definition, then rules are merged

Proceedings of the 17th International
Conference on Very Large Data Bases

as previously desc.ribed. Unsafe table references also are
handled similarly to top-level tables: If nested table ref-
erence Ni is unsafe, triggering operations deleted from
Ni and updated Ni are included in the distinguished
rematerialisation rule for V. The inserted rule is sim-
ilar to the safe rule, except “not in V” is added to the
predicate rather than “not in inserted V”.

6.3 Other Positively Nested Subqueries

Safety analysis and rule generation for subqueries pre-
ceded by <any, <=any, >any, and >=any is identical
to exists. The method for =any and in (which are
equivalent) also is identical to exists, except the set of
correlated bound columns may be larger. Consider a
view V of the form:

deflne view V(Cal-List):
select Cl , .., C, from Tl , ..,T,
where P’ and (01, .., Dj) in

(select El,.+,Ej from Nl,..,Nf where P)

Definition 6.1 of correlated bound columns is modified
to include the case:

l Add to C(V) every column Ei such that correspond-
ing column Di is in B(V), 1 5 i < j.

The reader may note that view V above is equivalent to
view V’:

define view V’(Cal-List):
select Cl 1 .., C, from Tl, .., T,,,
where P’ and exists

(select * from Nl, .., Nl where P
and D1 = El and . . . and D, = Ej)

As expec.ted, the correlated bound columns of view V’
using Definition 6.1 for exists are equivalent to the cor-
related bound columns of V using the extended defini-
tion for in.‘O

6.4 Example

Using the airline reservations database introduced in
Section 5.5, the following view provides the ID’s of all
passengers with more than 50,000 frequent flier miles:

define view many-miles(id):
select pagr-id from psgr
where psgr.ffn in

(select ffn from ff where miles > 60,000)

All columns of top-level table psgr are bound since
psgr-id is a key. Using our extended definition for in,
f f . ffn is a correlated bound column. Since ffn is a
key, nested table reference f f is safe. The inserted and
deleted rules for table f f follow; the updated rules are
similar.

“The reader may also note that select expressions with
positive subqueries often can be transformed into equivalent
select expressions without subqueries, as in [CG85,Kim82].
By considering the actual transformations, we see that the
maint.enance rules produced for any transformed view are
equivalent to the maintenance rules produced for the original
view.

585
Barcelona, September, 1991

create ruls,ins-if-many-miles
when inserted into it
then insert into many-miles

(select psgr-id from psgr
whore psgr.ffn in

(select fin from inserted ff
where miles > 50,000)

and psgr-id not in inserted many-miles)

create rule del-if-many-miles
whrn delatrd from if
than delete from many-miles

where psgt-id in
(select psgr-id from old psgr
where psgr.ffn in

(8slrct fin from deleted if
where miles > 50,000))

7 Negatively Nested Subqueries
A negatively nested subquery is a nested select expres-
sion preceded by not exists, not in, or != any. We
describe safety analysis and rule generation for table ref-
erences in not exists subqueries. Similar methods apply
for the other negatively nested subqueries; see [CWQlj.
Consider a view V of the form:

deflne view V(Cal-Liat):
select Cl,..,& Rom Tl,..,T,
where P’ and not exists

(select Co18 Rom NI, .., NJ where P)
With negatively nested subqueries, insert operations on
nested tables result in delete operations on the view,
while delete operations on nested tables result, in insert
operations on the view.

7.1 Safety Analysis

For a negatively nested table reference Ni, we define two
notions of safety: I-safety indicates that insert opera-
tions on Ni can be reflected by incremental changes to
V, and DU-safety indicates that delete and update oper-
ations on Ni can be reflected by incremental changes to
V. The definition of I-safety is somewhat different from
previous safety definitions-correlated bound columns
are not used, and all nested table references are consid-
ered together. Assume that set B(V) of top-level bound
columns already has been computed.
Definition 7.1 (I-Safety of Table References for
Not Exists) Table references N1, ,., Nl in a not ex-
ists subquery are I-safe in V if predicate P refers only
to columns of Ni, 1 5 i < 1, columns in B(V), and
constants. Cl
Using this notion of safety, we prove the following theo-
rem for insertions:
Theorem 7.2 (Insertion Theorem for Not Exists)
Let Ni be an I-safe table reference in a not exists sub-
query in V and suppose a tuple ni is inserted into Ni.
Let v be a tuple in the cross-product of the top-level ta-
bles such that v satisfies top-level predicate P’ and there
is a tuple n in the cross-product of the nested tables us-
ing ni such that n. satisfies nested predicate P using 1’.
Then Proj(v, C1, ,., Cm) is not in I’ after the insertSion.

Proceedings of the 17th International
Conference on Very Large Data Bases

Proof: Suppose, for the sake of a contradiction, that
Proj(ih Cl, .., c ,, is in V after the insertion. Then there)
must be a tuple v’ other than w in the cross-product
of the top-level tables such that Proj(v’, Cl, .,, C,) =
pwj(v, Cl, .., C,), v’ satisfies P’, and there is no tuple
n’ in the cross-product of the nested tables such that n’
satisfies P using 21’. We show that there is such an n’,
namely n. By Definition 5.1 of B(V), since u and u’ both
satisfy P’ and Proj (v’, Cl, .., C,,) = Proj (v, Cl, .., C,),
v and u’ are equivalent in all columns of B(V). Since ZVd
is I-safe and since n satisfies P using w, by Definition 7.1
of safety, n also satisfies P using v’. 0

For deletes and updates, we combine our new notion of
I-safety with the previous notion of safety ‘using keys.
Correlated bound columns for negatively nested table
references are defined as for positive references (Defini-
tion 6.1), and Bound Columns Lemma 6.2 still holds.

Definition 7.3 (DU-Safety of Table References
for Not Exists) Table reference Ni in a not exists
subquery is DU-safe in V if it is I-safe and C(V) in-
cludes a key for Ni. 0

Theorem 7.4 (Deletion Theorem for Not Exists)
Let Ni be a DU-safe table reference in a not exists
subquery in V and suppose a tuple ni is deleted from
Ni. Let ‘u be a tuple in the cross-product of the top-level
tables such that v satisfies P’ and there is a tuple n in
the cross-product of the nested tables using ni such that
n satisfies P using v. Then: (1) Proj(v, Cl, .., C,,) was
not in V before the deletion. (2) Proj(v, Cl, .., C,,) is in
V after the deletion.

Proof: The proof of (1) is analogous to the proof of
Insertion Theorem 7.2. For (2), suppose, for the sake
of a contradiction, that Proj(u, Cl, .., Cn) is not in V
after the deletion. Then there must be a tuple n’ in the
cross-product of the nested tables such that n’ satisfies
P using v. Let D1, .., Dk be correlated bound columns of
NI, .., Nl such that D1, . . , Dk includes a key for Ni. Since
n and n’ use different tuples from Ni, Proj(n, DI , .., Dk)
Proj (n’, DI, .., Ck). Then, by Lemma 6.2, Proj(v,
Cl, .., Cn) # Proj(u, C1, .., C,), which is impossible. CI

Theorem 7.5 (Update Theorem for Not Exists)
Let Ni be a DU-safe table reference in a not exists
subquery in V and suppose a tuple ni is updated in Ni.
Let vg be a tuple in the cross-product of the top-level
tables such that vg satisfies P’ and there is a tuple no
in the cross-product of the nested tables using the old
value of ni such that no satisfies P using v. Let VN be
a tuple in the cross-product of the top-level tables such
that 11~ satisfies P’ and there is a tuple nN in the cross-
product of the nested tables using the new value of ni
such that nN satisfies P using v. If Proj(vO, Cl, .., Cn)
Proj(vN, Cl, ‘., Cn) then: (1) PrOj(VN, Cl, .., Cn) is
not in V after the update. (2) Proj(vo, Cl, .., C,) was
not in V before the update. (3) Proj(vo, Cl, .., G) is in
V after the update.

Proof: Analogous to Theorems 7.2 and 7.4. 0

586
Barcelona, September, 1991

7.2 Rule Generation

If nested table reference Ni is I-safe, then, using Theo-
rem 7.2, the following incremental rule is generated:

where flight .f light-id =
res.flight-id))

create rule del-flight-bad-flight
when deleted from flight
then insert into bad-flight

(select res-id from ren
where exists

create rule ins-Ni-V
when inserted into Ni
then delete from V

where <Cl ,..,Cn> in
(select Cl ,.., Cn from Tl,..,Tm
where P’ and exists

(select CO18
from Nl , . . ,inserted Ni, , . .Nl
where P))

(select + from deleted flight
where flight .f light-id =

res .f light-ld)
and res-id not in inserted bad-flight)

Notice that the subauerv’s “not exists” is converted 8 Set Operators
to “exists”; this conversion occurs in the deleted and
updated rules as well. If Ni is not I-safe, then the view Finally, consider views with set operators. A view defi-

expression would need to be reevaluated to determine nition may include either union distinct or intersect.

which tuples should be deleted. Hence in the unsafe case, For these views, view analysis and rule generation ini-

inserted into Ni is included in the rematerialization tially is performed independently on each component

rule for V. select expression. The rules are then modified to in-

If N; is DU-safe, then. using Theorems 7.4 and 7.5. corporate the set operators.

the following incremental rule for deleted is generated:
The rules for updated correspond to the inserted and 8.1 Union Views

deleted rules as previously. Consider a view V of the form:

create rule del-Ni-V
when deleted from Ni
then insert into V

(select Cl ,.., Cn from Tl,.., Tm
where P’ and exists

(select Cole
from old Nl ,..,deleted Ni,..,old Nl
where P)

and <Cl,. .Cn> not in inserted V)

If table reference N+ is not DU-safe, updated Ti
is included in the rematerialization rule for 17. For
deleted, however, incremental maintenance still can be
performed-as previously, for the unsafe case the rule
above is modified to use “not in V” rather than “not
in inserted V”.

7.3 Example
Using the airline reservations database introduced in
Section 5.5, the following view provides the ID’s of all
reservations whose flight-id is not in table flight:

define view bad-f light (res-id) :
select res-id from res
where not exists

(select * from flight
where flight .flight-id = res.flight-id)

By Definitions 7.1 and 7.3, nested table reference flight
is both I-safe and DU-safe. The inserted and deleted
rules for table flight follow; the updated rules are
similar.

create rule ins-flight-bad-flight
when inserted into flight
then delete from bad-flight

where res-id in
(select res-id from res
where exists

(select + from inserted flight

deflne view V(Cal-List):
select Cols~ fkom Tables1 where PI
union distinct . . .
union distinct select Colsk from Tablesk where Pb

First, duplicate analysis is performed on each select ex-
pression as in Section 5.2; if any select expression may
contain duplicates, the user is required to add distinct
to that select expression. ,For each select expression,
an initial set of view-maintaining rules is generated using
the methods of the preceding sections. The rules’ actions
are then modified to incorporate union. In actions that
perform insert operations, if “not in inserted V” has
been added to predicate Pi due to a safe table reference,
it is changed to “not in V”; this ensures that duplicates
are not added by different select expressions. If the rule
already includes “not in V” due to an unsafe table ref-
erence, it remains unchanged. Modifications for delete
operations are more complicated. If a tuple no longer
is produced by one of the select expressions, it should
he deleted from V only if it is not produced by any of
the other select expressions. Without loss of general-
ity, consider a delete operation in the action of a rule
generated from the first select expression in V. The fol-
lowing conjunct must be added to the delete operation’s
where clause:

and CCols> not in
(select Cole2 from Tables2 where P2)

and . . .
and CCols> not in

(select Colsk from Tablesk where Pk)

Clearly, such conjuncts may cause considerable recom-
putation, depending on the complexity of the select ex-
pressions. For rules in which the recomputation cost ap-
pears large, the user may choose to move the triggering
operation to the rematerialization rule for V.

Proceedings of the 17th International
Conference on Very Large Data Bases

587

As usual, rules with common triggering and action
operations are merged, and rules whose triggering oper-
ations also appear in the rematerialization rule are elim-
inated.

8.2 Intersect Views
A view V with intersect operators is handled similarly
to views with union operators. In rule modification,
however, all rules performing delete operations remain
unchanged. (If a tuple is deleted from any select expres-
sion, then it always should be deleted from V.) Modifi-
cations for insert operations are similar to the modifi-
cations for delete operations in union views: If a Cuple
is newly produced by one of the select expressions, it
should be inserted into V only if it also is produced by
all the other select expressions. Consider an insert op-
eration in the action of a rule generated from the first
select expression in V. The following conjunct must
be added to the where clause of the insert operation’s
select expression:

and CCols> in
(select Cola2 from Tables2 where P2)

and . . +
and CCols> in

(select Colsk from Tablesk where Pk)

Again, if the select expressions are sufficiently complex,
the user may decide that rematerialization is more ap-
propriate.

9 System Execution

So far, we have described only the compile-time aspects
of our facility. View definition, view analysis, and rule
generation all occur prior to database system execution.
We still must ensure that, at run-time, derived rules will
behave as desired, i.e., views will be maintained cor-
rectly. Suppose our facility has been used to derive sets
of maintenance rules for several views. The system or-
ders the set of rules for each view so that all delete oper-
ations in rule actions precede all insert operations. No
ordering is necessary between rules for different views- -
the action part of each rule modifies only the view itself,
so rules for different views have no effect on each other.

Consider the set of rules for a given view I/, and sup-
pose an arbitrary set of changes has been made to V’s
base tables. If the rematerialization rule for V is trig-
gered, the view certainly is maintained correctly: V is
recomputed from its base tables; all other rules for 1/
are deactivated, so V cannot be modified until the base
tables change again. Suppose the rematerialization rule
is not triggered. During rule processing, first some rules
delete tuples from V, then other rules insert tuples into
V. Consider the deletions. For each type of table refer-
ence, our theorems guarantee that the generated delete
operations never delete tuples that should remain in V.
Furthermore, these operations always delete all Iuples
that should no longer be in V. Consider the insertions.
First, notice that all generated insert operations use
nested select expressions based on the view definition
itself. Since we know the view definition cannot produce

Proceedings of the 17th International
Conference on Very Large Data Bases

duplicates, the set of tuples in insert operations never
includes duplicates. Furthermore, our theorems (along
with the “not in inserted V” clauses) guarantee that
tuples already in V are never inserted. Finally, in each
case the insert operations produce all tuples that should
be added to V.

We must consider that other production rules in ad-
dition to view-maintaining rules may be defined in the
system. Although these rules cannot modify views, they
can modify base tables. Our view-maintaining rules be-
have correctly even in the presence of other rules, and
no additional rule ordering is necessary. Recall the se-
mantics of rule execution (Section 3): a rule is consid-
ered with respect to the transition since the last time
its action was executed; if its action has not yet been
executed, it is considered with respect to the transition
since the last rule assertion point (or start of the transac-
tion). Hence, the first time a view-maintaining rule R is
triggered during rule processing, it processes all base ta-
ble changes since the last assertion point. Suppose that,
subsequently during rule processing, the base tables are
changed by a non-view-maintaining rule. Then R will
be triggered again and will modify the view according to
the new set of changes. When rule processing terminates,
no rules are triggered, so all view-maintaining rules will
have processed all relevant changes to base tables.

10 Conclusions and Future Work

We have described a facility that automatically derives a
set of production rules to maintain a materialization of
a user-defined view. This approach both frees the view
definer from handling view maintenance and guarantees
that the view remains correct. Through analysis tech-
niques based on key information, incremental mainte-
nance rules are generated whenever possible. Our facility
allows the user to interact with the system: view defini-
tions and key information can be modified to guarantee
that the system produces efficient maintenance rules for
frequent base table operations. In practice, efllcient rules
are possible for a wide class of views-efficiency relies on
safe t,able references, and it can be seen from our crite-
ria for safety that table references routinely fall into this
class. In those cases where efficiency is not possible for
the user’s desired view, our system provides recognition
of this fact; the user either may use the rules produced
for automatic rematerialization or may decide that query
modification is more appropriate.

We plan to implement our facility using the Starburst
Rule System, then conduct experiments to evaluate the
run-time efficiency of our approach on a variety of views.
Meanwhile, we want to extend view analysis and rule
generation so that the full power of SQL select state-
ments can be used in view definitions. (We have started
this and expect it to be tedious but not difficult.) Cur-
rcntly, the biggest drawback of our approach is that
views wit,h duplicates are not handled; we will consider
ways to remove this restriction. We would like to add
automatic. rule optimization as a post-rule-generation
component in our system. The rules produced by our

588
Barcelona, September, 1991

method have a standard form, and in some cases can
be optimized as in [CWQO]. In addition, rules for differ-
ent views could be merged and common subexpressions
could be exploited as in [Han87]. Finally, the properties
guaranteed by our algorithms are useful in other areas
(such as query optimization), and we intend to explore
this connection.

Acknowledgements

Thanks to Guy Lohman and Laura Haas for helpful com-
ments on an initial draft.

References
[ACLSI]

[BLT86]

[CG85]

[CW90]

[CW91]

[DE891

[Han871

[IBM881

[Kim821

[KP81]

R. Agrawal, R.J. Cochrane, and El. Lindsay. On
maintaining priorities in a product,ion rule sys-
tem. In Proceedings of the ,Teuenteenth Inter-
nattonal Conference on Very Large Data Bases,
Barcelona, Spain, September 1991.

J.A. Blakeley, P.-A. Larson, and F.W. Tompa. Ef-
ficiently updating materialized views. In Proceed-
zngs of the ACM SIGMOD International Confer-
ence on Management of Pata, pages 61-71, Wash-
ington, D.C., June 1986.

S. Ceri and G. Gottlob. Translating SQL into
relational algebra: Optimization, semantics, and
equivalence of SQL queries. JEEE Transnctrons
on Software Engzneering, 11(4):324-345, April
1985.

S. Ceri and J. Widom. Deriving production rules
for constraint maintenance. In Proceedzngs of the
Sizteenth International Conference on Very Large
Data Bases, pages 566-577, Brisbane, Australia,
August 1990.

S. Ceri and J. Widom. Deriving production rules
for incremental view maintenance, IBM Research
Report RJ 8027, IBM Almaden Research Cent,er.
March 1991.

L.M.L. Delcambre and J.N. Etheredge. The Re-
lational Production Language: A production lan-
guage for relational databases. In L. Kerschberg,
editor, Expert Database Systems-Proceedings
from the Second International Conference, pages
333-351. Benjamin/Cummings, Redwood City,
California, 1989.

E. Hanson. Eficient Support for Rules and De-
rived Objects in Relation.al Database Systems.
PhD thesis, University of California, Berkeley,
August 1987.

IBM Form Number sC26-4348-l. IBM Systems
Application Architecture, Common Programming
Interface: Database Reference, October 1988.

W. Kim. On optimizing an SQL-like nested
query. ACM Transactions on Database Systems,
7(3):443-469, September 1982.

S. Koenig and R. Paige. A transformational
framework for the automatic control of derived
data. In Proceedin,gs of the Seventh International
Conference on Very Large Data Bases, pages BOfi- -
318, Cannes, France, September 1981.

Proceedings of the 17th International
Conference on Very Large Data Bases

[MD891

[RCBB89]

[SI84]

:SJGPSO]

(SPRS]

/St0751

[WCLSI]

[WF90]

;WidSl]

589

D.R. McCarthy and U. Dayal. The architecture
of an active database management system. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 215-
224, Portland, Oregon, May 1989.

A. Rosenthal, S. Chakravarthy, B. Blaustein,
and J. Blakeley. Situation monitoring for active
databases. In Proceedings of the Fifteenth Inter-
national Conference on Very Large Data Bases,
pages 455-464, Amsterdam, The Netherlands,
August 1989.

0. Shmueli and A. Itai. Maintenance of views. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 240-
255, Boston, Massachusetts, May 1984.

M. St,onebraker, A. Jhingran, J. Goh, and
S. Potamianos. On rules, procedures, caching
and views in data base systems. In Proceedings
of the ACM SIGMOD International Conference
on Management of Data, pages 281-290, Atlantic
City, New Jersey, May 1990.

A. Segev and J. Park. Updating distributed mate-
rialized views, IEEE Transactions on Knowledge
an.d Data Engineering, 1(2):173-184, June 1989.

M. Stonebraker. Implementation of integrity con-
straints and views by query modification. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 65-78,
San Jose, California, May 1975.

J. Widom, R.J. Cochrane, and B.G. Lindsay. Im-
plementing set-oriented production rules as an ex-
t.ension to Starburst. In Proceedings of the Seo-
enteenth Znternattonal Conference on Very Large
Data Bases, Barcelona, Spain, September 1991.

J. Widom and S.J. Finkelstein. Set-oriented pro-
duction rules in relational database systems. In
Proceedangs of the ACM SIGMOD International
Conference on Management of Data, pages 259-
270, Atlantic City, New Jersey, May 1990.

J. Widom. Deduction in the Starburst production
rule system. Submitted for publication, 1991.

Barcelona, September, 1991

