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Abstract 

Object-oriented data models are receiving wide 
attention since they provide expressive 
abstraction mechanisms to model naturally and 
directly both structural and behavioral aspects of 
complex databases applications. In an object- 
oriented data model, a database is modeled in 
terms of objects grouped in classes, organized 
into subclasses hierarchies. Moreover, 
associations between entities are modeled by 
defining properties of objects whose value is the 
related object. However this way of modeling 
associations has several limitations which make 
the description of some aspects of associations 
unnatural. To overcome these limitations an 
object-relationship data model is proposed which 
supports both the mechanisms of an object- 
oriented data model and a separate mechanism to 
model explicitly associations and to express 
declaratively common constraints on them. 
Constructs to support this model for a statically 
and strongly typed object-oriented database 
programming language are defined. 

1 Introduction 

Object-oriented databases are becoming increasingly 
popular as a means to overcome the limitations of 
commercial DBMS. These limitations concern both the 
data models, which favour the efficient use of secondary 
memory at the expense of expressiveness, and the 
programming languages, which are unsuitable for the 
growing complexity of the applications due to the scarce 
integration of the data model abstraction mechanisms with 
those of the programming language. 
The object-oriented programming paradigm is a very 
promising means to develop a new generation of DBMSs 
since both the problem of the expressivity of the data 
model, and the problem of integrating procedural and data 
modeling aspects can be tackled. The main features of 
object-oriented databases are discussed in [Atkinson 891 
[Dittrich 901 [Zdonik 901. Let us briefly recall some basic 
features of an object-oriented data model, and in 
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particular how associations between entities are modeled. 
An object-oriented data model is based on the notions of 
objects and classes, Objects are used to model real 
world entities, and they have an immutable identity: the 
state of an object can be modilied only by an object’s own 
methods. Classes are sets of objects, used to model sets of 
homogeneous entities, and they are organized into a 
subclass hierarchy.1 Associations between entities are 
modeled as properties of objects, i.e. as attributes whose 
values are the associated objects. A class is associated 
with an object type, in such a way that all the values of 
that object type, and only that particular ob.ject type, 
belong to the class. When objects in two classes a and h, 
whose elements have type A and B, are mutually related 
by an association, an attribute of type B is defined in the 
object type A, and vice versa, to model two one- 
directional relations. The constraint that the relation from 
a to b is the inverse of that from 6 to a, cannot be 
expressed declaratively in the object definitions, but must 
be coded in the methods which implement the association. 
The main advantage of this unification of attributes and 
associations is simplicity, since the same mechanism is 
used to deal with both of them, unifying the mechanism 
used to retrieve an attribute with the one used to retrieve 
associated objects, and the mechanisms to declare 
cardinality, surjectivity or non-modifiability constraints 
for both attributes and associations. However this 
approach has some limitations [Rumbaugh 871: 
- associations are conceptually a higher level abstract 
notion, their implementation should be decided by the 
DBMS; attributes, on the other hand, force the 
programmer to choose a specific implementation for 
them; 
- the association semantics is split between different 
objects; 
- associations are symmetric and the enforcement of the 
inverse relation constraint is not efficient when a method 
is used; 
- associations are not necessarily binary, and they can 
have their own attributes; these aspects can only be 
modeled indirectly by means of attributes; 
- associations relate objects which exist independently, 
and it ought to be possible to define them incrementally 
without having to redefine the structure of existing 
objects; 
- operations on relationships as a whole are generally not 
straightforward. 

‘This use of the term class is different from the standard one 
in the context of object oriented languages, where it refers to the 
type of objects 
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Another fundamental problem with an object-oriented 
data model is the enforcement of the constraint that the 
extension of a class (the set of its elements) coincides with 
the set of all the elements of the related type. This 
“extension coincidence constraint” is used in the object- 
oriented data model to enforce the referential constraint as 
follows: when an attributep of an object is used to model 
an association with objects which must be elements of a 
class b, this constraint is enforced by defining the type of 
the object attribute p to be that of the elements of class 
b. While enforcing the extension coincidence constraint 
when objects are created or inserted into a class is easy, 
enforcing it when objects are removed from classes is 
difficult. Removing an object from a class, by extension 
coincidence, is only allowed if the object can no longer be 
reached by the associated type. In any object oriented 
language this condition is undecidable, and the 
implementation of any reasonable approximation of it 
requires either a system-controlled implementation of 
associations or an extremely costly operation. A common 
alternative approach is to mark any object removed from a 
class as “killed”, which allows raising a failure when that 
object is successively accessed; this is slightly better than 
leaving dangling references, but cannot be regarded as an 
enforcement of the referential constraint. 

To overcome the above limitations in modelling 
association with an object-oriented data model. an objcct- 
relationship data model is presented. The main 
contribution of the proposal is the inclusion of the 
following features in a strongly typed, object-oriented 
database programming language: 
- a construct to represent associations as n-a r y 
symmetric relations among classes; 
- associations can be organized into a specialization 
hierarchy; 
- the referential integrity constraint is actually enforced; 
- several constraints on associations, such as cardinality, 
surjectivity, dependency and non-mutability can be 
defined declaratively; 
- the system is requested to implement associations, and 
the referential constraint can be enforced at a reasonable 
cost. 

The focus will be on the mechanisms to model classes and 
associations. The other features of the database 
programming language, in particular the mechanism to 
model objects, is beyond the scope of this paper, and is 
given in [Albano 901. 

The organization of the remainder of the paper is as 
follows. Section 2 briefly overviews the object- 
relationship data model. Section 3 discusses constructs to 
model classes of objects and associations between classes 
in an object-oriented programming language. Section 4 
presents a minimal set of basic operations, where all the 
high level constructs can be interpreted. Section 5 
compares related works. Conclusion comments on the 
work in progress. 

2 The Object-Relationship Data Model 
In the object-relationship data model, as in the object 
model, real world entities are modeled by objects 
collected in classes. Classes are sets of homogeneous 
objects, and inclusion and mutual disjointness constraints 

can be defined on classes. Associations between objects 
are not represented by the aggregation mechanism, but by 
nary relations relating objects in classes and also other 
values, which represent the attributes of the association. 
An inclusion relation can be defined on pairs of 
associations. The following constraints can be defined on 
associations: 
- Surjectivity constraints can be defined for single 
components of associations. An association AB between 
classes A, and B is surjective (or total) on the class A if 
all the elements of A appear in AB. 
- Dependency constraints can be defined between 
classes and associations. An association AB between 
classes A and B depends on the class A (Ml owned by 
A), when, any time an object is removed from the class 
A, all the associations involving that object are removed. 
Class A depends on AB (AB owns A) if an object is 
automatically removed from A when the last tuple in AB 
involving that object is removed. An association can 
simultaneously own and be owned by a class. Classes and 
associations can own or be owned by any number of other 
associations and classes. AEt owned by A and AB owns B 
together mean that, when the last element in A which 
refers to an element b in B is removed, then b is 
removed too. These constraints can be combined with 
keys and surjectivity to express the many different flavors 
of composite objects described in literature [Kim 891. 
- Constancy constraints can be defined. In the n-ary 
case, the definition of constancy is: Let A1 . ..A. be 
some components of an association Assoc; Assoc is 
constant with respect to A I . ..A. if, for any tuple 
a1 ..*a, of values for A, . . .A,, the set of tuples in 
Assoc with components al . . .a, is always the same in 
any state where aI . ..a. exist (i.e. in any state where 
al . . .a, belong to their classes). 
- Subsets of the components of an association can be 
declared as keys for the association. This means 
cardinality constraints can be expressed, e.g. 
distinguishing between single and multi valued relations. 

The class and association constructs are exemplified 
through a slight modification of the simplified university 
administration application used in [Casanova 891, 
illustrated in Figure 1. 

students 

class inclusion 

key constraint 

I surjectivity constraint 

Figure 1: Examples of classes and associations 
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Schedules is a class of time intervals: rooms are the 
available rooms; events are the events, such as classes, 
seminars etc. that are scheduled: courses are the courses 
that can be offered; basicCourses are the fundamental 
courses which are always offered; classes are the classes 
running; seminars are the scheduled seminars; students 
are the registered students. The relationship allocations 
indicates which rooms are allocated for which events in 
which time intervals; courselnstunce indicates the course 
of each class; enrolled indicates which students are 
enrolled in which classes. The following constraints are 
specified: 
1) inclusion constraints: 
- classes and seminars are disjoint subsets of events 

and basiccourses is a subset of courses; 
2) referential constraints: 
- insertions into ulloculions, courselnstunce and 

enrolled fail if the objects used as components are not 
elements of the corresponding classes; 

- the removal of an element x from the classes rooms. 
events or schedules fails if x appears in allocations 
(i.e. x is the value of a field of an element of 
allocations); 

- the removal of an element x from the class courses 
fails if x appears in courselnstunce; 

- the removal of an element x from the class classes 
fails if x appears in enrolled; 

- the removal of an element x from the class classes 
does not fail if x appears in courselnsrance, but 
forces the removal of the element of courselnstunce 
where x appears; 

- the removal of an element x from the class srudenrs 
forces the removal of all the elements of enrolled 
where x appears: 

3) surjeclivity construinls: 
- each element of classes is associated by 

coursefnstunces with at least one element of courses; 
- each element of busicCouves is associated by 

courselnslunces with at least one element of classes; 
4) key (curdinulity) construinls. 
- each element of classes is associated by 

courseinsfunces with a maximum of one element of 
courses; 

- each pair of elements of rooms and schedules is 
associated by allocations with a maximum of one 
element of evenrs; 

5) constancy constraints: 
- each element of classes is always associated by 

courselnsmnces with the same element of courses; 

For the sake of simplicity, in Figure 1 subclass 
disjointness, dependency and constancy constraints were 
not represented. This database is described by the 
following schema, using the constructs that will be 
defined later; the definition of the object types (like 
ASchedule, ARoom., .) is out of the scope of his paper. 

let schedules = new(classOf ASchedule) 
let rooms = new(classOf ARoom) 
let courses = new(classOf ACourse) 
let basiccourses = new(classOf ARasicCourse 

are courses) 
let students = new(classOf AStudent) 
let events = new(classOf AnEvent) 

let classes = new(classOf AClass are events 
but not seminars) 

let seminars = new(classOf ASeminar are events 
but not classes) 

let allocations = new(assocOf 
TheRoom: ARoom in rooms 
TheSchedule: ASchedule in schedules 
TheEvent: AnEvent in events 
ContactPerson: string 
key (TheRoom TheSchedule)) 

let courseInstance = new(assocOf 
TheCourse: ACourse in courses 

onto basiccourses 
TheClass: AClass owned-by classes 

onto classes 
constant-on (TheClass) 
key (TheClass)) 

let enrolled = new(assocOf 
TheStudent: AStudent owned-by students 
TheClass: AClass in classes ) 

In this model, the typical object-oriented mechanism of 
aggregation can still be used to build relations between 
objects, by defining object attributes with an object type. 

This can be used, for instance, to model complex 
objects, i.e. objects with parts which can be viewed as 
independent objects, when these parts are not collected 
into another class. However, in this model if aggregation 
is used to define associations between classes, the 
referential constraint is not enforced. 

3 Classes and Associations for the Object- 
Relationship Data Model 

This section presents the constructs to describe classes, 
associations, and the constraints supported by the object- 
relationship data model in an object-oriented database 
programming language. The next section shows how the 
semantics of these constructs can be given in terms of a 
minimal nucleus of primitive operators. 

In the language, classes are sets of data, and 
associations are relations, i.e. sets, of bindings, organized 
into a specialization hierarchy. The basic operations on 
classes and associations are creation, insertion and 
removal of elements. Constraints on classes and 
associations can be defined declaratively and are enforced 
by a general trigger mechanism which is described in the 
next section. 

Classes are first class values and class types are first 
class types, like sequences and sequence types are. 
Consequently (a) classes can be used in any combination 
with the other data types constructors of the language to 
build complex structures, (b) no special naming 
mechanism is used for classes, and (c) the interaction of 
classes with other features of the language, such as 
modules functions or object types, is governed by the 
general rules of the language. The same is true for 
associations: classes are just the unary case of the general 
mechanism of n-ary associations. All the operators over 
classes and associations are statically and strongly typed. 
For any class the type of its elements is declared (the 
element type of the class), but the elements of a class are 
generally only a subset of all the values belonging to its 
element typ. 
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Let us give first some definitions about subtyping, new(classOf ElType are C 1,. . . , C, 
equality, bindings and signatures, since these notions are 
used to define associations, which are sets of bindings. 

butnot Al I..., A, 
beforeInsert expr 
beforeRemove expr): Class ElType 

3.1 Subtyping, bindings, equality and signatures 

In the complete language an inclusion hierarchy is defined 
on types, such that if A is a subtype of E, written A33, 
any value belonging to type A also belongs to type B. 

A binding is a set of pairs <label, value>, and a 
signature is a set of pairs <label, type>; in both cases all 
the labels are different. A binding satisfies a signature 
Sign if it contains all the labels of Sign and for any label 
in the signature, the value associated with that label in the 
binding belongs to the type associated in the signature.2 

A binding is denoted as (let l,=v! . . . let l,=v,). A 
signature (I1 :T1 . . . l,:T,,) is a supezslgnattire of another 
one(ml:U1 .., mm:U,) if the set of the labels of Ihe first 
one is a subset of the set of the labels of the second, and if 
the type associated with any label in the super-signature is 
a supertype of the one associated with the same label in 
the subsignature. 

new classOf creates a new class which collects 
elements of type ElType (usually an object type), and 
such that its extension is always included in that of the 
superclasses Cl,..., C, (extensional inclusion 
construinr), and it is always disjoint from that of the 
classes Al ,. . ,, Am (extensional disjointness constraint). 
These constraints are maintained automatically, as shown 
in Section 4. 

beforeInsert expr (beforeRemove expr) specifies 
that e;g7r must be executed before the insertion (removal) 
of an element in (from) the class. The identifier his can 
be used inside expr to denote the element to be inserted 
(removed), and self to denote the whole class. This 
mechanism can be combined with the assert and defer 
constructs described in Section 4 to define pre and post 
conditions. 

In the complete language equality is defined on all the 
types. 11 is defined by identity (i.e. by creation time) on 
functions and updatable values (objects, updatable 
variables, classes and associations), and is defined by 
value on values belonging 10 the other non-updatable type 
constructors (bindings, variants and sequences). 

Equality is type dependent on types where it is value 
defined: for example, if two bindings with labels n and h 
have the same integer value in field a and different 
integer values in field b, [hey are equal if compared with 
type (a:Int) and different if compared with type (a:Int and 
b:Int). On the other hand, equality is type independent in 
the other types: two objects are equal if and only if they 
have the same identity, whatever the type used to compare 
them. 

Two types are compatible if there’is a type V which 
is a supertype of both of them. 

The declaration above is well typed only if the element 
types of the classes C I,..., C, are all supertypes of 
ElType (intensional inclusion constraint). If B is the 
created class, Cl,..., C, are the immediate 
superclasses of B. 

A, on.., A, are classes which must never intersect B. 
If TAi is the type of the elements of the class Ai, the 
clause butnot is well typed only if any TAi is compatible 
with ElType. Both clauses are Cl ,..., C, and butnot 
Al,>.., A, can be omitted. Examples are given in Fig. 1. 

A new empty association can be defined as follows: 

new (assocOf ExlSignafure are A, ,. . ., Aj 
(key keylist) 
(constant-on label [in class] . . . label [in class]) 
(beforeInsert expr) 
(beforeRemove expr)): 

Assoc Signature key keylistl . . . key keylist, 
3.2 Classes and associations 

A class is an ordered set of distinct elements with the 
same type, and an association is an ordered set of distinct 
bindings satisfying a fixed signature. Classes and 
associations are first class values of the language, and 
their structure is described by the first class lypcs 
Class(ElementType) and Assac(Signalure) key keylistl 
. . . key keylisl,. This means that associations can be used 
to form arbitrarily complex structures, although a scheme 
is usually defined by using associations with a flat 
structure, as shown in [he next se&on. 

ExlSignarure is a signature extended with a set of 
constraint specifications, described below, and Signafure 
is ExtSignalure without those specifications. 

A keylisf is a list of attributes of the signature, 
specifying the constraint that two distinct bindings in the 
association must differ in at least the value of one attribute 
for each keylist. 

constant-on is a constancy constraint, explained later. 
beforeInsert expr (beforeRemove expr) specifies 

Classes and associations are created empty, and then 
elements and bindings are inserted and removed. Classes 
and associations are inspected by using relational-like 
bulk data operators. 

that eqr must be executed before the insertion (removal) 
of an element in (from) the association. The labels of the 
association signature can be used inside expr to denote 
the fields of the binding to be inserted, and self to denote 
the whole association. 

3.2.1 Creation 

A new empty class is defined by the following operation: 

2 Bindings are similar to records. although in the full 
language there is a distinction between these two type 
constructors. 

The new assocOf operation builds a new empty 
association to collect bindings with the specified 
signature, The extension of the new association is a subset 
of that of Al ,..., Aj; Signature must be a subsignature 
of those of A 1 ,..., Ajp and the keylists of the new 
association must imply those of A 1 ,..., Aj. An 
implication relation is defined on sets of keylists by the 
transitive and reflexive closure of the following rules 
(where the single keylists and the list of the keylists are 
regarded as sets): 
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key list 1 .,.key lisl, + key list, . . . key list,-, 
key (listI) . . . key list, + key (listI, a), , .key list, 

A description of the constraints which can be declared in 
ExrSignature follows: 

ExrSignature ::= ( label : Type (constrainl )) 
conslraint ::= in class I are class I owned-by class 

I onto class I owns class 

3.2.2 Referential constraints 

label: Type in/are/owned-by class 

The attributes of a binding of an association are divided 
into components, which are attributes whose values must 
belong to a specified class, and association arlribures 
(altributes in short), which have no such constraint. 

There are three different declarative ways of defining a 
referential constraint: in, are and owned-by. 

These three clauses specify the same referential 
constraint to be maintained with different styles, i.e. either 
by raising failures or by forcing its satisfaction. 

In more detail, the in clause means that: a) when a 
new binding is inserted in the association, a failure is 
raised if the value of the component is ‘not contained in 
the specified class; b) when an element is removed from 
the referred class, the operation fails if the element is a 
component of a binding in the association. 

The are clause means that: a) when a binding is 
inserted in the association, the value of the component is 
inserted in the class; and b) when an element is removed 
from the class, all the bindings with that element as a 
component are removed from the association, 

The owned-by clause means that: a) when a new 
binding is inserted in the association, a failure is raised if 
that component is nol contained in the specified class, as 
happens with the in clause: b) when an element is 
removed from the referred class, the bindings referring 
that element are removed, as happens with the are 
clause. So owned-by codifies a dependency constraint, 
and a dependency of the association from the class. 
For the referential constraints in and owned-by, as for the 
surjectivity and constancy constraint, the element type of 
the referred class must be compatible with that of the 
attribute in the signature, even though they are usually 
exactly the same type. For the referential constraint are 
the type of the component must be a subtype of the 
element type of the referred class. 

3.2.3 Surjectivity constraints 

label: Type onto/owns class 

While the referential constraint specifies that the existence 
of a binding in an association implies the existence of a 
value in a class, the surjeclivity (or totality) constraints 
enforce the converse implication: the existence of 
elements in some classes necessitates the existence of a 
binding involving them in some association. 

The onto clause corresponds to the in clause; it mcans 
that when an element is inserted in the class, then in the 
same transaction a binding referring to that element must 
be inserted in the association, and conversely, when the 
last binding in an association referring to an element is 

removed, then in Ihe same transaction that element must 
be removed too. The complete language supports nested 
transactions, as specified in the next section, and this 
constraint is checked at the end of the transaction where 
the class insertion or the association removal take place. 
Elements are supposed to be inserted first into classes and 
then into associations, and conversely for removal. 
Referential constraints can thus be checked immediately, 
whereas surjectivity constraints can only be checked at the 
end of the smallest enclosing transaction. 

The owns clause is the surjectivity counterpart of the 
referential owned-by clause: like onto, when an element 
is inserted in the class, then in the same transaction a 
binding referring to that element must be inserted in the 
association, but when the last binding referring to an 
element is removed from an association, that element is 
removed from the class too, at the end of the transaction. 

In object-relationship schemes, any component has one 
referential constraint, but it can have zero, one or more 
surjectivity constraints, defined on different subclasses of 
the class of the referential constraint (see the 
courselnstance association in Figure 1). 

In the following tables the precise relationships 
between the above constraints are summarized. Tables 2 
and 3 highlight that in fact a fourth kind of referential 
constraint could have been defined, characterized by the 
behaviour“class.insert(x) - fail” (Table 2). But in the 
surjectivity family there are just two possible constraint, 
since there is no alternative to failure if there is class 
insertion (Table 3). 

Table 1: Conditions Enforced and Operations Monitored 
by the Constraints 

Constraint 

referential 

surjectivity 

Enforced Monitored 
condition operations 

XE assoclabel assoc.insert, 
9 x E class class.remove 

XE class class. insert, 
* x E assoclabel assoc.remove 

Table 2: Action requested by a referential constraint, 
before performing an insertion/removal operation 

Constraint assoc.ins(label=x...) class.rem(x) 
ifxeclass if (label=x...)E assoc 

in fail fail 
owned-by fail assoc.rem(label=x) 
are class. insert(x) assoc.rem(labcl=x) 

Table 3: Action requested at commit time by a 
surjectivity constraint, if an insertion/removal 
operation is performed 

Constraint classSins assoc.rem(label=x) 
if (label=x.. .)E assoc if (X)E class 

onto fail fail 
owns fail class. rem(x) 
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3.2.4 Constancy constraints 

constant-on fabel [in c1a.w~ ., , label (in class] 

When an association is constant on one component-class 
pair label-elm, all the bindings involving a value cl of 
label can only be inserted in the association when el is 
inserted in class (or rather in the same transaction), Any 
other attempt to insert or remove associations involving 
el would fail, apart from the final binding removal which 
can take place only when el is removed from its class. 

Constancy on a list of pairs laheli-ClaYSi means that 
the bindings involving a binding 

(<label 1 ,ell>,. . .,&bel,,el,,>) 

must be inserted in the association at the same time as the 
last efi is inserted in its class, and can only be removed 
at the same time as at least one of the eli is removed 
from its class. Constancy on many lists is just the 
conjunction on all the associated conditions. 

This constraint is orthogonal to the cardinality (key), 
referential and surjectivity constraints. Its type rule 
specifies that the type of any label in the signature must 
be compatible with the element type of the corresponding 
class. If exactly one referential constraint is specified for 
a component, the clause in class can be omitted in the 
constancy constraint, and the class specified in the 
referential constraint is assumed. The constraint is well 
typed if the type of the components is compatible with the 
associated classes. 

The constancy constraint completes the list of the 
declarative constraints which can be specified on classes 
and associations. In the next subsection the operators to 
update classes and associations are presented. 

3.2.5 Updating operators 

class. insert(elem), class. remove (elem) 
assoc.insert(binding), assoc. remove (binding) 

The insert operation takes a value of the element type of 
the specified class, executes all the declared constraint 
checking and automatic insertions (if elms has some 
superclasses) and finally inserts the element in the class. If 
the argument of insert is already contained in the class, 
the operation has no effect.3 insert is atomic, which 
implies that if a failure is raised during its execution, all 
its effects are undone. If insert causes an automatic 
insertion in a superclass, the constraints and automatic 
insertion of the superclass are executed too. insert 
behaves exactly in the same way on associations. 

The remove operation on associations takes a binding 
whose signature is compatible with the association, and 
removes all the binding in the association which match 
the argument binding. It verifies all the associated 
constraints for all these elements, executes all the 
automatic removals, and finally removes them from the 
association; like insert, remove is atomic. On classes, it 
takes a value whose type is compatible with the elements 

3 This is enough to maintain the set conslrainr, i.e. the 
constraint that all the elements of a class are different; in fact, 
since all the updatable entities of the language are compared by 
identity, the set constraint cannot be violated as a side effect of 
an update operation. 

of the class, and removes all the elements in the class 
which match the argument. In both cases, remove just 
removes the argument from the class/association, without 
destroying it, so that if that object/binding is accessible in 
some other way, it remains accessible after the removal. 
This is not a problem since the enforcement of the 
referential constraint does not depend on the coincidence 
of the extension of a class with the set of all the elements 
of the associated type. 

Two values a and b belonging to the compatible 
types A and B “match” if they are equal with respect to 
any of the minimal common supertypes of A and B. In 
practice, if a and b are objects, they match if they have 
the same identity, whereas if they are bindings they match 
if the values associated to the common labels match. For 
example, referring to the example in Section 2, the 
binding (let TheEvent = x) matches all the bindings in 
the association allocations whose field TheEvent is 
equal to X. 

3.2.6 Associative access operators 

assoc.has(binding), assoc. get (binding) 
class. has(value), class.get (value) 

has, like remove, receives a binding whose signature is 
compatible with that of the association, and returns true if 
the association contains a binding which matches its 
argument. On classes, it receives a value whose type is 
compatible with the element type of the class, and returns 
true if the class contains an element which matches its 
argument. 

The type constraint for the get operator is slightly 
different. On classes, it receives a value of a type which is 
not only compatible with the element type of the class, but 
also has the same equality, which means that for any pair 
of elements belonging to both types, they are equal when 
compared in one type if they are equal when compared in 
the other one. Any two compatible object types have the 
same equality, since objects are compared by identity. get 
returns the unique value in the class which is equal to its 
argument, and fails if no such value exists. get can be 
used to perform a sort of run-time type coercion: let 
Student be a subtype of Person and (students: Class 
Student) be a subclass of (persons: Class Person), and 
suppose that jo hn has type Person. If 
s&ents.get(john) does not fail, then it returns the same 
object as john, but with type Student. 

On associations, get receives a binding whose 
signature GetSign satisfies the following constraints: (a) 
GetSign is compatible with the signature AssocSign of 
the association; (b) the set of labels of GetSign includes 
a key of the association; (c) for all the labels belonging to 
both GetSign and AssocSign, the associated types have 
the same equality. get returns the unique binding in 
assoc which matches the specified binding, and fails if 
no such binding exists. The conditions (b) and (c) imply 
that a maximum of one element of the association 
matches the get argument. 

3.2.7 Relational-like algebra 

In the full language, a sequence type Seq exists, with a set 
of relational-like operators, transforming sequences into 
sequences. 
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A type Assoc(Signalure keylists) is a subtype of the 
type Seq Signature, and a type Class ElType is a 
subtype of the type Seq ElType, so that the relational- 
like operators of the language can be applied also to 
associations and classes.4 The abstract syntax of the 
relational-like operators is listed below. They are divided 
into the group of the operators defined on all sequences, 
which can be applied to both classes and associations, and 
those defined only on sequences of bindings, which can 
only be applied to associations. 

General operators on sequences: 

R union S, R intersect S, R diff S 
R select condition 
R map function 
R sort sortList 

The meaning of the operators is specified by their name; 
their type constraints are specified below, supposing, 
where needed, that S and R have type Assoc 
(Signature keylisl.. .) or Class ElType. 

union, intersect and diff can be applied to any pair of 
lists with a common supertype, returning a result in that 
type* 

In select, condirion is a function of type 
Signature -+Bool (ElType+ Bool) 

In map,function is a function of type Signature+T 
(ElType+T), applied to all the elements of the 
association (or class) R to obtain a sequence of type Seq 
T. 

In sort, sorflisr is a sort condition for the element type 
of the sequence R; see [Ghelli 90a] for the precise 
language used to express sort conditions. 

Operators on sequences of bindings: 

R project labelList 
R times S 
R rename renameList 
R groupby groupList 

In project, labelLis is a subset of the list of the labels 
of R. 

times takes two sequences of bindings with disjoint 
sets of labels, and returns a sequence of bindings 
containing the union of the labels of the arguments. 
l In rename, renameList is a binding such as the 
expression let n 1 =o 1 . . . n,,,=o,,, where o1 ,, . . , o, are 
labels of the original relation and n1 ,,.., n,,, are all 
mutually different labels not included in the labels which 
remain in the relation after the Oi labels are removed. 

In groupby, if Signature is equal to 

l~:T~..I,:T,,,m~:U~ . ..m.:U, 

and grouplist is equal to II, .I,,,, then R is partitioned 
in sequences where all the fields 1,. ,1,,, have the same 
value, each of these subsequences is transformed into just 
one binding of signature 

(1 1 :T, . l,:T, ml :Seq U 1 . , m,:Seq U,,J 

and the resulting sequence of type 

Seq(ll:T1..I,:T,m~:Seq U1 . ..m.:Seq lJ,,J 

4 Associations and classes are ordered by insertion time; 
this ordering means thay can be viewed as sequences. 

is returned. 

Two operators, makeclass and makeAssoc(keylists), are 
defined to transform sequences and sequences of bindings 
into classes and associations, though these operators are 
usually not needed. 

4 The Kernel Language 
In the previous section a language was presented which 
supports the structure and the constraints of the object- 
relationship data model. This section shows that the 
language can be fully interpreted in a minima1 kernel, 
built around (a) the general failure handling mechanisms 
of the language, (b) a simplified association mechanism 
with no predefined constraint declaration, and (c) a 
general purpose constraint maintenance mechanism for 
associations. In this way a formal semantics is given for 
the constraints presented, and for any possible 
combination of them. Besides this, the general purpose 
mechanism defined here is present in the language 
together with the specialization presented in Section 3, to 
allow the programmer to specify different constraints, or 
different flavors of the same constraints. The most 
appealing feature of the basic mechanism presented here 
is its simplicity, built around just one type operator and 
seven value operators. 

In Section 4.1 the general failure handling and nested 
transaction mechanism of the language are outlined; in 
Section 4.2 the basic association mechanism is defined. In 
Appendix A the semantics of the declarative constraints is 
presented by giving their translation into the basic 
mechanism. 

4.1 The transaction and failure mechanism 

The full language supports nested transactions and a 
nested failure management mechanism, based on the 
following operators. 

Failure management operators: 

let exe excname: type; 
failwith excname=value 
assert bcolexpr elsefail excname=value 
try expr exe excname 1 =varl do handler 1 

..I 

exe excname ,,=varn do handler n 
[else do handler] 

let exe introduces a new exception name excname 
which is associated with values of type rype.5 

failwith raises an exception with name excname and 
value value; excnume has been previously introduced by 
let ext. The exception propagates along the dynamic 
activation chain until an exception handler, defined using 
the try construct below, is found. 

assert is equivalent to if boolexpr then nil else 
failwith excname=value; if the clause elsefail is omitted 
it fails withfailure=nil. 

try executes expr; if it fails with a name excmmi 
then try executes the handler handleri binding VMi to 
the value of the exception. If the exception name is 
different from all the names excnamei, then there are two 
possibilities: if the else do branch IS defined then the 

5 Ty-pe is a ground type built without using object types. 
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corresponding general handler is executed, otherwise the 
exception is propagated. 

Nested transactions operators: 

atomic expr, defer expr, old asscc 

atomic executes expr, and if it fails, before propagating 
the failure, rebuilds the state as it was before executing 
expr. In more detail, it undoes all the variable updates, 
the class/association insertions and removals and the 
effect of the operation extend, defined in the full 
language, which changes the type of an object without 
affecting its identity. atomic is a nested transaction 
mechanism; the outermost atomic is the transaction used 
for concurrency control. 

A list of expressions to be executed before committing 
is associated with any transaction: defer is,uscd to build 
this list, adding the specified expression to the end of the 
list of the current transaction, defer is used typically to 
defer the control of an integrity constraint to the end of a 
transaction, 

old applied to a variable or to an association (or class) 
returns a copy of the value of that variable or association 
at the beginning of the current transaction, It is used to 
check dynamic integrity constraints. 

4.2 The basic association mechanism 

In the kernel of the language, classes are not defined, but 
only associations are. An association is only characterized 
by a signature and a list of keylists, without inclusion 
hierarchies or constraints. 

The primitive creation operation for associations is: 

new (assocOf Signature key keylist . . . key keylistn): 
Assoc Signature key keylist , , . key keylist, 

On the basic associations a general purpose constraint 
verification/enforcement mechanism is defined. Any 
association contains two lists of function, called the 
insertion and removal pre-operations, which are applied 
to each binding which is inscrtcd in an association, or is 
removed from it. If the argument of the insert operation is 
already contained in the association, the pre-operation is 
not executed. These pre-operations are defined with the 
following operators: 

assoc.beforeInsert (fun(Signaturc) exprh) 
assoc.beforeRemove(fun(Signature) expr) 

beforeInsert/beforeRemove add the function 
fun(Signalure) expr at the head of the insertion/removal 
pre-operations lists: Signalure is the signature of the 
association. 

insert, remove, get and has are defined on the basic 
associations as they are on the sugared version. Thcsc 
operators complete the definition of the basic associalion 
mechanism. 

4.3 Translating classes and predefined constraints into 
the basic calculus 

The complete translation of constraints is given in 
Appendix A - here. only the translation of classes is 

6 Actually any function of type Signature-+Type is 
accepted as an argument by beforelmert and beforeRemove. 

specified. 
A class of type Class Type is translated as an 

association of type Assoe (label: Type), where the label is 
arbitrary, and never used. The operations on classes are a 
syntactic abbreviation of the operations on associations, 
where a type ElType substitutes a signature 
label:&lType and values of type ElType substitute 
bindings satisfying 1abel:ElType: 

new (classOf Type): Class Type + 
new (assocof label: Type): Assoc Type 

class. insert/remove(value) + 
assoc.insert/remove (let label = value) 

class. beforeInsert/Remove(func) + 
assoc.beforeInsert/Remove( 

fun(bind: (label:Type)) func(bind.label)) 

class. get/has(value) + 
assoc.get/has(let label = value) 

5 Related Work 
The relation mechanism in data models has been 
extensively studied since the proposal of the relational and 
entity-relationship data models. A recent proposal in the 
field of entity-relationship model, similar to the one 
presented here, is in [Casanova 891, where a data 
definition language is presented for an extended E-R 
model. The language allows entity sets to be defined as 
well as relationship sets. Relationship sets can have keys 
and surjectivity constraints. Besides general assertions, 
mutual exclusion and referential integrity constraints can 
be specified both on entity and relationship sets. These 
assertions are complemented by the facility to specify the 
existence of triggers, immediate or deferred, on 
operations. Only the conditions for firing triggers are 
described, not the triggers themselves, since the paper 
does not propose a particular data manipulation language. 
Entity and relationship sets can be organized into a 
specialization graph, to provide both inheritance and 
inclusion hierarchy. 

While this work is similar to ours from a data modeling 
point of view, our proposal is expressed in the framework 
of a full language, which is both object-oriented and 
strongly and statically typed. Moreover, our kernel 
language is conceptually simpler and more regular. 

From the field of object-oriented languages, both 
[Rumbaugh 871 and [Diaz 901 present a proposal to 
enhance object-oriented languages with a construct to 
represent user-defined relations. Rumbaugh was the first 
to stress the relevance of a relation construct in this 
context. His proposal allows n-ary relations to be defined 
over objects, but only with simple cardinality constraints. 
The language presented is untyped, and no specialization 
is defined over associations. Implementation issues are 
discussed together with the description of an actual 
implementation in a production-quality programming 
system developed by the author at General Electric. The 
proposal in [Diaz 901, expressed in the framework of 
knowledge representation language based on frames, 
presents a construct to define binary relationships between 
objects, with assertions and attributes which belong to the 
relationship as well as assertions and attributes added to 
the objects for as long as they participate in the 
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relationship. In addition, surjectivity, cardinality and 
dependency constraints can bc specified on relationships. 
Relationships are objects which can be specialized, and 
whose methods for creation, retrieval and updating can bc 
modified. General constraints are intended as invariants to 
be preserved in the database: a complex system executes 
this task. In this language there is no concept of type or 
type checking, and, like in the Rumbaugh proposal, there 
are no retrieval or other bulk operators on relations. The 
constructs proposed are embedded in a high level object 
oriented extension of Prolog. 

In [Atkinson 911 a new type constructor called map k 
presented. Whereas associations are inspired by the 
mathematical notion of finite relation, maps are inspired 
by the notion of finite function, The expressive power of 
the two notions is similar, since associations can be seen 
as maps without a range, while maps can be seen as 
associations with just a key. An interesting characteristic 
of this proposal is that both an ordering and an equality 
specification for the key can be declared together with the 
map type, and then become par1 of the type. The only 
constraint which can be defined on a map type is a form 
of constancy constraint. Many operations are provided to 
access and modify elements of maps, either singularly or 
by iterating over a specific subset of a map. An algebra 
over maps is defined, through classical operations on sets 
as well as through an operator similar to comprehension. 
Associations are proposed mainly as a data modelling 
abstraction mechanism, and for this reason they have a 
rich set of constraint specifications and can be organized 
into a specialization hierarchy. Maps, on the other hand, 
are also proposed both as an efficient bulk structure for 
database programming languages and as the data format 
of a canonical store manager for complex structured data. 
Maps could thus be used as a low-level structure to 
implement classes and associations efficiently, as well as 
associative data structures on them. 

6 Conclusions 

A mechanism has been defined to represent classes and 
associations in a database object oriented language. This 
proposal stems from the expericncc gained in designing, 
implementing, and using the Galileo database 
programming language [Albano 851, It is characterized by 
the following features: 

Associations are not described by aggregation, as in the 
standard object oriented data models, but by a separate 
mechanism. With this approach the implementation 
choices about associations arc left to the DBMS. 
Classes and associations arc first class values of the 
language, and their structure is described by a fipst 
class type. This means that these constructors can be 
combined in any way with the other data type 
constructors of the language. 
The following constraints can be defined declaratively: 
class and association inclusion, key, referential. 
surjectivity, dependency and constancy constraints. 
All the above constraints are formally defined in terms 
of a minimal kernel based on just one data type 
constructor (Am). 
All the constructs presented permit a strong type 
checking (no type error is raised at run time by a well 
typed expression) which can be pcrformcd complclely 
at compile time. 

The mechanisms presented arc included in a complete 
database programming language, which is currently under 
implementation, with the following features [Albano 901: 
- it is statically and strongly typed; 
- it supports a module mechanism for structuring 

complex schemes and applications; 
- it supports all the features of an object oriented 

language: object identity, state and methods 
encapsulation, type inclusion, multiple inheritance; 

- it supports an object mechanism with separation 
between interface and implementation of an object type 
definition, and with an operator to change the type of 
an object dynamically without affecting its identity. 
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Appendix A: The translation of the constraints 

In this appendix the constraints presented in Section 3 are 
translated into the basic language presented in Section 4. 
The constraints are translated separately. Each of them 
produces a set of beforeInsert/Remove operations, which 
are all collected together. For simplicity, the sugared 
notation for has insert and remove on classes is used. 

beforeInsert/Remove constraints 

new (assocOf Signulure ( beforeInsert expr ) 
(beforeRemove expr )): Assoc Signature 

The expression above is translated as: 

let self: Asoc Signawe = new (assocof Signalure) 
in ( self. beforeInsert(fun(Signa!ure) expr); 

self. beforeRemove(fun(Signafure) epr); 
self 

> 

fun(Signature) expr returns a function whose formal 
parameters are defined by Signarure. let introduces and 
binds a new identifier; the form let ,, in scope 
introduces it into the local scope scope, (expr;. . .;expr) 
evaluates the expressions and returns the value of the last 
one. 

All the expressions produced by the successive 
translations are added in the scope of the let above, so 
that the identifier self can be used in all of them. 

On classes, beforeInsert/Remove are translated in the 
same way. 

key constraints 

new (assocof Signature key keylistt .., key keylist,) 

key constraints belong to the kernel language, 
nevertheless their precise meaning can be defined by a 
pre-operation, as happens for the derived constraints. Let 
lt:T, ,,.,$;Tj be a subset of the association signature; 
then the constraint key 1 I ,...,li forces the automatic 
production of the following pre-operation: 

self. beforeInsert 
(fun(Signature) assert not self .has(let ll=ll . . .,let lj=lj>); 

Inclusion constraints 

new (assocOf Signature are Al ,, , ..Aj) 
new (classof ElType are Al ,, , , ‘Aj) 

The above declarations ask the system to maintain 
automatically an inclusion relation between the new 
association and each of the immediate superassociations. 
They are enforced by defining an insertion pre-operation 
which inserts the element in the immediate 
superassociations, and a removal pre-operation in any 
superclass which removes the element from immediate 
subassociations (the signatures SignA I (. . .,SignAj of 
A1 ,, ..,Aj are super-signatures of the signature Sign of 
the association defined): 

self. beforeInsert(fun(bind:Sign) C 1 .insert(bind)) 
Cl .beforeRemove(fun(bind:SignA, ) 
self. remove (bind:SignAl )) 
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self. beforeInsert(fun(bind:Sign) C,.insert(bind)) 
C,,beforeRemove(fun(bind:SignA,)) 
self. remove (bind:SignA,)) 

The insertion messages Cj.insert(bind) are type 
correct since Sign is a subsignature of SignA .: 
of the argument of insert must be a subtype o fl 

the type 
the type of 

the association, On the other hand, the messages 
self.remove(Sigru\i) are type correct even though Sign 
SSigtlAj, since remove accepts arguments belonging to 
any supertype of the signature of the association. The 
translation is identical for classes. 

An inclusion constraint R s S only forces a set- 
inclusion relation between two associations R and S if 
the corresponding signatures SignR and Sign S are 
equality compatible, i.e. they are associated with the 
same equality operation. Otherwise, if more bindings, 
which are all mutually different in SignR but equal in 
SignS , are inserted in R, only the first of them is inserted 
in S, and when this binding is removed from R, all the 
corresponding bindings are removed from S. In this case 
this “inclusion” constraint does not model set inclusion 
exactly but only set inclusion modulo equality, i.e. P.E.R. 
inclusion as discussed in [Ghelli 9Ob]. On the other hand, 
inclusion modulo equality coincides with set inclusion on 
associations when a key constraint is defined on a 
component of the superassociation, and on classes when 
the element type is an object type. 

mutual disjointness 

new (classOf ElType butnot Bl ,...,B,): Class Type 

This constraint specifies that the classes B1 ,*..$,, must 
never intersect self. If TEi is the type of the elements of 
the class Bil it is only well typed if ElType is compatible 
with 7E i* 

This constraint is enforced defining the following 
insertion preconditions (beforelns stands for 
beforelnsert): 

self. beforeIns (fun(elem:Typc) assert not (B t . has(elcm)) 
Bt .beforeIns(fun(elem:TBI) assert not (self.has(clem)) 

self. beforeIns(fun(eIem:Type) assert not (B,.has(elem)) 
B,. beforeIns(fun(elem:TB,) assert not (self.has(elem)) 

Note that has is well typed since TBi is compatible with 
ElType. 

referential constraint 

label: Type in/are/owned-by class 

In the cases of in and owned-by , Type is compatible 
with the element type E/Type of class; in the case of are 
Type must be a subtype of EfType. This is the 
translation: 

label: Type in class: class ElType 3 
self. beforeIns(fun(bind:Sign)assert class.has(bind.Iabel)) 
class. beforeRemove 

(fun(el:ElType) assert not (self.has(let label =el))) 
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label: Type owned-by class: class ElType -+ 
self. beforeIns(fun(bind:Sign)assert class. has(bind.label)) 
class. beforeRemove 

(fun(el:ElTypc) self.remove(let label=el)) 

label: Type are class: class ElType + 
self, beforeInsert(fun(bind:Sign) class.insert(bind.labcl)) 
class, beforeRemove 

(fun(el:ElType) self.remove(let label=el)) 

Notice that the translation of the are referential 
constraint is identical to the are inclusion constraints, 
justifying the notation. 

surjectivity constraints 

label: Type onto/owns class 

Type is compatible with the element type E/Type of 
class. This is the translation: 

label: Type onto class: class(EIType) + 

class. beforeInsert(fun(el:ElType) defer assert 
class, has(el) implies self. has(let label=cl)) 

self. beforeRemove(fun(bind:Sign) defer assert 
class. has(bind.label) implies 

self. has(let label=bind.label)) 

label: Type owns class: class(ElType) + 
class, beforeInsert(fun(el:ElType) defer assert 

class. has(el) implies self. has(let label=el)) 
self. beforeRemove(fun(bind:Sign) defer 

if self. has(let label=bind.label) then skip 
else classremove (bind.label): 

A implies B is a boolean expression equivalent to 
((not A) orB). 

constancy constraints 

new (assocOf Signature 
constant-on label t in class 1 label, in class,) 

Constancy on a set of components (each associated with a 
class) means that, once a binding b for those components 
has been fixed, all the bindings extending b must be 
inserted when the elements appearing in b are inserted in 
their classes, and can only be removed when the elements 
in b are removed from their class (at least one of them). 
This is not the only possible interpretation of the 
constancy constraint; different interpretations can be 
enforced procedurally. 

The type constraint is that the type of the components 
must be compatible with the associated classes; the 
translation is as follows: 

self, beforeInsert(fun(bind:Sign) assert 
not ( (old class t), has(bind.labell ) 

and . . . 
and (old class,), has(bind.labeln) 

1 
self. beforeRemove(fun(bind:Sign) defer assert 

not ( (class1 ). has@ind.labell ) and . . . 
and (class,,). has(bind.label,)) 
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