
A Relationship Mechanism for a Strongly Typed
Object-Oriented Database Programming Language

Antonio Albano Giorgio Ghelli
Dip. di Informatica Dip. di Informatica
Universid di Pisa Universid di Pisa
Corso Italia 40,561OO Pisa, Italy Corso Italia 40,561OO Pisa, Italy
albano@dipisa.di.unipi.it ghelli@dipisa.di.unipi.it

Renzo Orsini
Dip. di Informatica ed Applicazioni

Universid di Salerno
Baronissi (SA), Italy

orsini@udsab.unisa.it

Abstract

Object-oriented data models are receiving wide
attention since they provide expressive
abstraction mechanisms to model naturally and
directly both structural and behavioral aspects of
complex databases applications. In an object-
oriented data model, a database is modeled in
terms of objects grouped in classes, organized
into subclasses hierarchies. Moreover,
associations between entities are modeled by
defining properties of objects whose value is the
related object. However this way of modeling
associations has several limitations which make
the description of some aspects of associations
unnatural. To overcome these limitations an
object-relationship data model is proposed which
supports both the mechanisms of an object-
oriented data model and a separate mechanism to
model explicitly associations and to express
declaratively common constraints on them.
Constructs to support this model for a statically
and strongly typed object-oriented database
programming language are defined.

1 Introduction

Object-oriented databases are becoming increasingly
popular as a means to overcome the limitations of
commercial DBMS. These limitations concern both the
data models, which favour the efficient use of secondary
memory at the expense of expressiveness, and the
programming languages, which are unsuitable for the
growing complexity of the applications due to the scarce
integration of the data model abstraction mechanisms with
those of the programming language.
The object-oriented programming paradigm is a very
promising means to develop a new generation of DBMSs
since both the problem of the expressivity of the data
model, and the problem of integrating procedural and data
modeling aspects can be tackled. The main features of
object-oriented databases are discussed in [Atkinson 891
[Dittrich 901 [Zdonik 901. Let us briefly recall some basic
features of an object-oriented data model, and in

This work was carried on with the partial support of
Minister0 dell’Universit& e della Ricerca Scientifica e
Tecnologica, E.E.C. Esprit Basic Research Action 3070 FIDE.
and of Italian C.N.R., P.F. Sistcmi Informatici c Calcolo
Parallelo.

particular how associations between entities are modeled.
An object-oriented data model is based on the notions of
objects and classes, Objects are used to model real
world entities, and they have an immutable identity: the
state of an object can be modilied only by an object’s own
methods. Classes are sets of objects, used to model sets of
homogeneous entities, and they are organized into a
subclass hierarchy.1 Associations between entities are
modeled as properties of objects, i.e. as attributes whose
values are the associated objects. A class is associated
with an object type, in such a way that all the values of
that object type, and only that particular ob.ject type,
belong to the class. When objects in two classes a and h,
whose elements have type A and B, are mutually related
by an association, an attribute of type B is defined in the
object type A, and vice versa, to model two one-
directional relations. The constraint that the relation from
a to b is the inverse of that from 6 to a, cannot be
expressed declaratively in the object definitions, but must
be coded in the methods which implement the association.
The main advantage of this unification of attributes and
associations is simplicity, since the same mechanism is
used to deal with both of them, unifying the mechanism
used to retrieve an attribute with the one used to retrieve
associated objects, and the mechanisms to declare
cardinality, surjectivity or non-modifiability constraints
for both attributes and associations. However this
approach has some limitations [Rumbaugh 871:
- associations are conceptually a higher level abstract
notion, their implementation should be decided by the
DBMS; attributes, on the other hand, force the
programmer to choose a specific implementation for
them;
- the association semantics is split between different
objects;
- associations are symmetric and the enforcement of the
inverse relation constraint is not efficient when a method
is used;
- associations are not necessarily binary, and they can
have their own attributes; these aspects can only be
modeled indirectly by means of attributes;
- associations relate objects which exist independently,
and it ought to be possible to define them incrementally
without having to redefine the structure of existing
objects;
- operations on relationships as a whole are generally not
straightforward.

‘This use of the term class is different from the standard one
in the context of object oriented languages, where it refers to the
type of objects

Proceedings of the 17th International
Conference on Very Large Data Bases

565
Barcelona, September, 1991

Another fundamental problem with an object-oriented
data model is the enforcement of the constraint that the
extension of a class (the set of its elements) coincides with
the set of all the elements of the related type. This
“extension coincidence constraint” is used in the object-
oriented data model to enforce the referential constraint as
follows: when an attributep of an object is used to model
an association with objects which must be elements of a
class b, this constraint is enforced by defining the type of
the object attribute p to be that of the elements of class
b. While enforcing the extension coincidence constraint
when objects are created or inserted into a class is easy,
enforcing it when objects are removed from classes is
difficult. Removing an object from a class, by extension
coincidence, is only allowed if the object can no longer be
reached by the associated type. In any object oriented
language this condition is undecidable, and the
implementation of any reasonable approximation of it
requires either a system-controlled implementation of
associations or an extremely costly operation. A common
alternative approach is to mark any object removed from a
class as “killed”, which allows raising a failure when that
object is successively accessed; this is slightly better than
leaving dangling references, but cannot be regarded as an
enforcement of the referential constraint.

To overcome the above limitations in modelling
association with an object-oriented data model. an objcct-
relationship data model is presented. The main
contribution of the proposal is the inclusion of the
following features in a strongly typed, object-oriented
database programming language:
- a construct to represent associations as n-a r y
symmetric relations among classes;
- associations can be organized into a specialization
hierarchy;
- the referential integrity constraint is actually enforced;
- several constraints on associations, such as cardinality,
surjectivity, dependency and non-mutability can be
defined declaratively;
- the system is requested to implement associations, and
the referential constraint can be enforced at a reasonable
cost.

The focus will be on the mechanisms to model classes and
associations. The other features of the database
programming language, in particular the mechanism to
model objects, is beyond the scope of this paper, and is
given in [Albano 901.

The organization of the remainder of the paper is as
follows. Section 2 briefly overviews the object-
relationship data model. Section 3 discusses constructs to
model classes of objects and associations between classes
in an object-oriented programming language. Section 4
presents a minimal set of basic operations, where all the
high level constructs can be interpreted. Section 5
compares related works. Conclusion comments on the
work in progress.

2 The Object-Relationship Data Model
In the object-relationship data model, as in the object
model, real world entities are modeled by objects
collected in classes. Classes are sets of homogeneous
objects, and inclusion and mutual disjointness constraints

can be defined on classes. Associations between objects
are not represented by the aggregation mechanism, but by
nary relations relating objects in classes and also other
values, which represent the attributes of the association.
An inclusion relation can be defined on pairs of
associations. The following constraints can be defined on
associations:
- Surjectivity constraints can be defined for single
components of associations. An association AB between
classes A, and B is surjective (or total) on the class A if
all the elements of A appear in AB.
- Dependency constraints can be defined between
classes and associations. An association AB between
classes A and B depends on the class A (Ml owned by
A), when, any time an object is removed from the class
A, all the associations involving that object are removed.
Class A depends on AB (AB owns A) if an object is
automatically removed from A when the last tuple in AB
involving that object is removed. An association can
simultaneously own and be owned by a class. Classes and
associations can own or be owned by any number of other
associations and classes. AEt owned by A and AB owns B
together mean that, when the last element in A which
refers to an element b in B is removed, then b is
removed too. These constraints can be combined with
keys and surjectivity to express the many different flavors
of composite objects described in literature [Kim 891.
- Constancy constraints can be defined. In the n-ary
case, the definition of constancy is: Let A1 . ..A. be
some components of an association Assoc; Assoc is
constant with respect to A I . ..A. if, for any tuple
a1 ..*a, of values for A, . . .A,, the set of tuples in
Assoc with components al . . .a, is always the same in
any state where aI . ..a. exist (i.e. in any state where
al . . .a, belong to their classes).
- Subsets of the components of an association can be
declared as keys for the association. This means
cardinality constraints can be expressed, e.g.
distinguishing between single and multi valued relations.

The class and association constructs are exemplified
through a slight modification of the simplified university
administration application used in [Casanova 891,
illustrated in Figure 1.

students

class inclusion

key constraint

I surjectivity constraint

Figure 1: Examples of classes and associations

Proceedings of the 17th International
Conference on Very Large Data Bases

566 Barcelona, September, 1991

Schedules is a class of time intervals: rooms are the
available rooms; events are the events, such as classes,
seminars etc. that are scheduled: courses are the courses
that can be offered; basicCourses are the fundamental
courses which are always offered; classes are the classes
running; seminars are the scheduled seminars; students
are the registered students. The relationship allocations
indicates which rooms are allocated for which events in
which time intervals; courselnstunce indicates the course
of each class; enrolled indicates which students are
enrolled in which classes. The following constraints are
specified:
1) inclusion constraints:
- classes and seminars are disjoint subsets of events

and basiccourses is a subset of courses;
2) referential constraints:
- insertions into ulloculions, courselnstunce and

enrolled fail if the objects used as components are not
elements of the corresponding classes;

- the removal of an element x from the classes rooms.
events or schedules fails if x appears in allocations
(i.e. x is the value of a field of an element of
allocations);

- the removal of an element x from the class courses
fails if x appears in courselnstunce;

- the removal of an element x from the class classes
fails if x appears in enrolled;

- the removal of an element x from the class classes
does not fail if x appears in courselnsrance, but
forces the removal of the element of courselnstunce
where x appears;

- the removal of an element x from the class srudenrs
forces the removal of all the elements of enrolled
where x appears:

3) surjeclivity construinls:
- each element of classes is associated by

coursefnstunces with at least one element of courses;
- each element of busicCouves is associated by

courselnslunces with at least one element of classes;
4) key (curdinulity) construinls.
- each element of classes is associated by

courseinsfunces with a maximum of one element of
courses;

- each pair of elements of rooms and schedules is
associated by allocations with a maximum of one
element of evenrs;

5) constancy constraints:
- each element of classes is always associated by

courselnsmnces with the same element of courses;

For the sake of simplicity, in Figure 1 subclass
disjointness, dependency and constancy constraints were
not represented. This database is described by the
following schema, using the constructs that will be
defined later; the definition of the object types (like
ASchedule, ARoom., .) is out of the scope of his paper.

let schedules = new(classOf ASchedule)
let rooms = new(classOf ARoom)
let courses = new(classOf ACourse)
let basiccourses = new(classOf ARasicCourse

are courses)
let students = new(classOf AStudent)
let events = new(classOf AnEvent)

let classes = new(classOf AClass are events
but not seminars)

let seminars = new(classOf ASeminar are events
but not classes)

let allocations = new(assocOf
TheRoom: ARoom in rooms
TheSchedule: ASchedule in schedules
TheEvent: AnEvent in events
ContactPerson: string
key (TheRoom TheSchedule))

let courseInstance = new(assocOf
TheCourse: ACourse in courses

onto basiccourses
TheClass: AClass owned-by classes

onto classes
constant-on (TheClass)
key (TheClass))

let enrolled = new(assocOf
TheStudent: AStudent owned-by students
TheClass: AClass in classes)

In this model, the typical object-oriented mechanism of
aggregation can still be used to build relations between
objects, by defining object attributes with an object type.

This can be used, for instance, to model complex
objects, i.e. objects with parts which can be viewed as
independent objects, when these parts are not collected
into another class. However, in this model if aggregation
is used to define associations between classes, the
referential constraint is not enforced.

3 Classes and Associations for the Object-
Relationship Data Model

This section presents the constructs to describe classes,
associations, and the constraints supported by the object-
relationship data model in an object-oriented database
programming language. The next section shows how the
semantics of these constructs can be given in terms of a
minimal nucleus of primitive operators.

In the language, classes are sets of data, and
associations are relations, i.e. sets, of bindings, organized
into a specialization hierarchy. The basic operations on
classes and associations are creation, insertion and
removal of elements. Constraints on classes and
associations can be defined declaratively and are enforced
by a general trigger mechanism which is described in the
next section.

Classes are first class values and class types are first
class types, like sequences and sequence types are.
Consequently (a) classes can be used in any combination
with the other data types constructors of the language to
build complex structures, (b) no special naming
mechanism is used for classes, and (c) the interaction of
classes with other features of the language, such as
modules functions or object types, is governed by the
general rules of the language. The same is true for
associations: classes are just the unary case of the general
mechanism of n-ary associations. All the operators over
classes and associations are statically and strongly typed.
For any class the type of its elements is declared (the
element type of the class), but the elements of a class are
generally only a subset of all the values belonging to its
element typ.

Proceedings of the 17th International
Conference on Very Large Data Bases

567
Barcelona, September, 1991

Let us give first some definitions about subtyping, new(classOf ElType are C 1,. . . , C,
equality, bindings and signatures, since these notions are
used to define associations, which are sets of bindings.

butnot Al I..., A,
beforeInsert expr
beforeRemove expr): Class ElType

3.1 Subtyping, bindings, equality and signatures

In the complete language an inclusion hierarchy is defined
on types, such that if A is a subtype of E, written A33,
any value belonging to type A also belongs to type B.

A binding is a set of pairs <label, value>, and a
signature is a set of pairs <label, type>; in both cases all
the labels are different. A binding satisfies a signature
Sign if it contains all the labels of Sign and for any label
in the signature, the value associated with that label in the
binding belongs to the type associated in the signature.2

A binding is denoted as (let l,=v! . . . let l,=v,). A
signature (I1 :T1 . . . l,:T,,) is a supezslgnattire of another
one(ml:U1 .., mm:U,) if the set of the labels of Ihe first
one is a subset of the set of the labels of the second, and if
the type associated with any label in the super-signature is
a supertype of the one associated with the same label in
the subsignature.

new classOf creates a new class which collects
elements of type ElType (usually an object type), and
such that its extension is always included in that of the
superclasses Cl,..., C, (extensional inclusion
construinr), and it is always disjoint from that of the
classes Al ,. . ,, Am (extensional disjointness constraint).
These constraints are maintained automatically, as shown
in Section 4.

beforeInsert expr (beforeRemove expr) specifies
that e;g7r must be executed before the insertion (removal)
of an element in (from) the class. The identifier his can
be used inside expr to denote the element to be inserted
(removed), and self to denote the whole class. This
mechanism can be combined with the assert and defer
constructs described in Section 4 to define pre and post
conditions.

In the complete language equality is defined on all the
types. 11 is defined by identity (i.e. by creation time) on
functions and updatable values (objects, updatable
variables, classes and associations), and is defined by
value on values belonging 10 the other non-updatable type
constructors (bindings, variants and sequences).

Equality is type dependent on types where it is value
defined: for example, if two bindings with labels n and h
have the same integer value in field a and different
integer values in field b, [hey are equal if compared with
type (a:Int) and different if compared with type (a:Int and
b:Int). On the other hand, equality is type independent in
the other types: two objects are equal if and only if they
have the same identity, whatever the type used to compare
them.

Two types are compatible if there’is a type V which
is a supertype of both of them.

The declaration above is well typed only if the element
types of the classes C I,..., C, are all supertypes of
ElType (intensional inclusion constraint). If B is the
created class, Cl,..., C, are the immediate
superclasses of B.

A, on.., A, are classes which must never intersect B.
If TAi is the type of the elements of the class Ai, the
clause butnot is well typed only if any TAi is compatible
with ElType. Both clauses are Cl ,..., C, and butnot
Al,>.., A, can be omitted. Examples are given in Fig. 1.

A new empty association can be defined as follows:

new (assocOf ExlSignafure are A, ,. . ., Aj
(key keylist)
(constant-on label [in class] . . . label [in class])
(beforeInsert expr)
(beforeRemove expr)):

Assoc Signature key keylistl . . . key keylist,
3.2 Classes and associations

A class is an ordered set of distinct elements with the
same type, and an association is an ordered set of distinct
bindings satisfying a fixed signature. Classes and
associations are first class values of the language, and
their structure is described by the first class lypcs
Class(ElementType) and Assac(Signalure) key keylistl
. . . key keylisl,. This means that associations can be used
to form arbitrarily complex structures, although a scheme
is usually defined by using associations with a flat
structure, as shown in [he next se&on.

ExlSignarure is a signature extended with a set of
constraint specifications, described below, and Signafure
is ExtSignalure without those specifications.

A keylisf is a list of attributes of the signature,
specifying the constraint that two distinct bindings in the
association must differ in at least the value of one attribute
for each keylist.

constant-on is a constancy constraint, explained later.
beforeInsert expr (beforeRemove expr) specifies

Classes and associations are created empty, and then
elements and bindings are inserted and removed. Classes
and associations are inspected by using relational-like
bulk data operators.

that eqr must be executed before the insertion (removal)
of an element in (from) the association. The labels of the
association signature can be used inside expr to denote
the fields of the binding to be inserted, and self to denote
the whole association.

3.2.1 Creation

A new empty class is defined by the following operation:

2 Bindings are similar to records. although in the full
language there is a distinction between these two type
constructors.

The new assocOf operation builds a new empty
association to collect bindings with the specified
signature, The extension of the new association is a subset
of that of Al ,..., Aj; Signature must be a subsignature
of those of A 1 ,..., Ajp and the keylists of the new
association must imply those of A 1 ,..., Aj. An
implication relation is defined on sets of keylists by the
transitive and reflexive closure of the following rules
(where the single keylists and the list of the keylists are
regarded as sets):

Proceedings of the 17th International
Conference on Very Large Data Bases

568 Barcelona, September, 1991

key list 1 .,.key lisl, + key list, . . . key list,-,
key (listI) . . . key list, + key (listI, a), , .key list,

A description of the constraints which can be declared in
ExrSignature follows:

ExrSignature ::= (label : Type (constrainl))
conslraint ::= in class I are class I owned-by class

I onto class I owns class

3.2.2 Referential constraints

label: Type in/are/owned-by class

The attributes of a binding of an association are divided
into components, which are attributes whose values must
belong to a specified class, and association arlribures
(altributes in short), which have no such constraint.

There are three different declarative ways of defining a
referential constraint: in, are and owned-by.

These three clauses specify the same referential
constraint to be maintained with different styles, i.e. either
by raising failures or by forcing its satisfaction.

In more detail, the in clause means that: a) when a
new binding is inserted in the association, a failure is
raised if the value of the component is ‘not contained in
the specified class; b) when an element is removed from
the referred class, the operation fails if the element is a
component of a binding in the association.

The are clause means that: a) when a binding is
inserted in the association, the value of the component is
inserted in the class; and b) when an element is removed
from the class, all the bindings with that element as a
component are removed from the association,

The owned-by clause means that: a) when a new
binding is inserted in the association, a failure is raised if
that component is nol contained in the specified class, as
happens with the in clause: b) when an element is
removed from the referred class, the bindings referring
that element are removed, as happens with the are
clause. So owned-by codifies a dependency constraint,
and a dependency of the association from the class.
For the referential constraints in and owned-by, as for the
surjectivity and constancy constraint, the element type of
the referred class must be compatible with that of the
attribute in the signature, even though they are usually
exactly the same type. For the referential constraint are
the type of the component must be a subtype of the
element type of the referred class.

3.2.3 Surjectivity constraints

label: Type onto/owns class

While the referential constraint specifies that the existence
of a binding in an association implies the existence of a
value in a class, the surjeclivity (or totality) constraints
enforce the converse implication: the existence of
elements in some classes necessitates the existence of a
binding involving them in some association.

The onto clause corresponds to the in clause; it mcans
that when an element is inserted in the class, then in the
same transaction a binding referring to that element must
be inserted in the association, and conversely, when the
last binding in an association referring to an element is

removed, then in Ihe same transaction that element must
be removed too. The complete language supports nested
transactions, as specified in the next section, and this
constraint is checked at the end of the transaction where
the class insertion or the association removal take place.
Elements are supposed to be inserted first into classes and
then into associations, and conversely for removal.
Referential constraints can thus be checked immediately,
whereas surjectivity constraints can only be checked at the
end of the smallest enclosing transaction.

The owns clause is the surjectivity counterpart of the
referential owned-by clause: like onto, when an element
is inserted in the class, then in the same transaction a
binding referring to that element must be inserted in the
association, but when the last binding referring to an
element is removed from an association, that element is
removed from the class too, at the end of the transaction.

In object-relationship schemes, any component has one
referential constraint, but it can have zero, one or more
surjectivity constraints, defined on different subclasses of
the class of the referential constraint (see the
courselnstance association in Figure 1).

In the following tables the precise relationships
between the above constraints are summarized. Tables 2
and 3 highlight that in fact a fourth kind of referential
constraint could have been defined, characterized by the
behaviour“class.insert(x) - fail” (Table 2). But in the
surjectivity family there are just two possible constraint,
since there is no alternative to failure if there is class
insertion (Table 3).

Table 1: Conditions Enforced and Operations Monitored
by the Constraints

Constraint

referential

surjectivity

Enforced Monitored
condition operations

XE assoclabel assoc.insert,
9 x E class class.remove

XE class class. insert,
* x E assoclabel assoc.remove

Table 2: Action requested by a referential constraint,
before performing an insertion/removal operation

Constraint assoc.ins(label=x...) class.rem(x)
ifxeclass if (label=x...)E assoc

in fail fail
owned-by fail assoc.rem(label=x)
are class. insert(x) assoc.rem(labcl=x)

Table 3: Action requested at commit time by a
surjectivity constraint, if an insertion/removal
operation is performed

Constraint classSins assoc.rem(label=x)
if (label=x.. .)E assoc if (X)E class

onto fail fail
owns fail class. rem(x)

Proceedings of the 17th International
Conference on Very Large Data Bases

569
Barcelona, September, 1991

3.2.4 Constancy constraints

constant-on fabel [in c1a.w~ ., , label (in class]

When an association is constant on one component-class
pair label-elm, all the bindings involving a value cl of
label can only be inserted in the association when el is
inserted in class (or rather in the same transaction), Any
other attempt to insert or remove associations involving
el would fail, apart from the final binding removal which
can take place only when el is removed from its class.

Constancy on a list of pairs laheli-ClaYSi means that
the bindings involving a binding

(<label 1 ,ell>,. . .,&bel,,el,,>)

must be inserted in the association at the same time as the
last efi is inserted in its class, and can only be removed
at the same time as at least one of the eli is removed
from its class. Constancy on many lists is just the
conjunction on all the associated conditions.

This constraint is orthogonal to the cardinality (key),
referential and surjectivity constraints. Its type rule
specifies that the type of any label in the signature must
be compatible with the element type of the corresponding
class. If exactly one referential constraint is specified for
a component, the clause in class can be omitted in the
constancy constraint, and the class specified in the
referential constraint is assumed. The constraint is well
typed if the type of the components is compatible with the
associated classes.

The constancy constraint completes the list of the
declarative constraints which can be specified on classes
and associations. In the next subsection the operators to
update classes and associations are presented.

3.2.5 Updating operators

class. insert(elem), class. remove (elem)
assoc.insert(binding), assoc. remove (binding)

The insert operation takes a value of the element type of
the specified class, executes all the declared constraint
checking and automatic insertions (if elms has some
superclasses) and finally inserts the element in the class. If
the argument of insert is already contained in the class,
the operation has no effect.3 insert is atomic, which
implies that if a failure is raised during its execution, all
its effects are undone. If insert causes an automatic
insertion in a superclass, the constraints and automatic
insertion of the superclass are executed too. insert
behaves exactly in the same way on associations.

The remove operation on associations takes a binding
whose signature is compatible with the association, and
removes all the binding in the association which match
the argument binding. It verifies all the associated
constraints for all these elements, executes all the
automatic removals, and finally removes them from the
association; like insert, remove is atomic. On classes, it
takes a value whose type is compatible with the elements

3 This is enough to maintain the set conslrainr, i.e. the
constraint that all the elements of a class are different; in fact,
since all the updatable entities of the language are compared by
identity, the set constraint cannot be violated as a side effect of
an update operation.

of the class, and removes all the elements in the class
which match the argument. In both cases, remove just
removes the argument from the class/association, without
destroying it, so that if that object/binding is accessible in
some other way, it remains accessible after the removal.
This is not a problem since the enforcement of the
referential constraint does not depend on the coincidence
of the extension of a class with the set of all the elements
of the associated type.

Two values a and b belonging to the compatible
types A and B “match” if they are equal with respect to
any of the minimal common supertypes of A and B. In
practice, if a and b are objects, they match if they have
the same identity, whereas if they are bindings they match
if the values associated to the common labels match. For
example, referring to the example in Section 2, the
binding (let TheEvent = x) matches all the bindings in
the association allocations whose field TheEvent is
equal to X.

3.2.6 Associative access operators

assoc.has(binding), assoc. get (binding)
class. has(value), class.get (value)

has, like remove, receives a binding whose signature is
compatible with that of the association, and returns true if
the association contains a binding which matches its
argument. On classes, it receives a value whose type is
compatible with the element type of the class, and returns
true if the class contains an element which matches its
argument.

The type constraint for the get operator is slightly
different. On classes, it receives a value of a type which is
not only compatible with the element type of the class, but
also has the same equality, which means that for any pair
of elements belonging to both types, they are equal when
compared in one type if they are equal when compared in
the other one. Any two compatible object types have the
same equality, since objects are compared by identity. get
returns the unique value in the class which is equal to its
argument, and fails if no such value exists. get can be
used to perform a sort of run-time type coercion: let
Student be a subtype of Person and (students: Class
Student) be a subclass of (persons: Class Person), and
suppose that jo hn has type Person. If
s&ents.get(john) does not fail, then it returns the same
object as john, but with type Student.

On associations, get receives a binding whose
signature GetSign satisfies the following constraints: (a)
GetSign is compatible with the signature AssocSign of
the association; (b) the set of labels of GetSign includes
a key of the association; (c) for all the labels belonging to
both GetSign and AssocSign, the associated types have
the same equality. get returns the unique binding in
assoc which matches the specified binding, and fails if
no such binding exists. The conditions (b) and (c) imply
that a maximum of one element of the association
matches the get argument.

3.2.7 Relational-like algebra

In the full language, a sequence type Seq exists, with a set
of relational-like operators, transforming sequences into
sequences.

Proceedings of the 17th International
Conference on Very Large Data Bases

570
Barcelona, September, 1991

A type Assoc(Signalure keylists) is a subtype of the
type Seq Signature, and a type Class ElType is a
subtype of the type Seq ElType, so that the relational-
like operators of the language can be applied also to
associations and classes.4 The abstract syntax of the
relational-like operators is listed below. They are divided
into the group of the operators defined on all sequences,
which can be applied to both classes and associations, and
those defined only on sequences of bindings, which can
only be applied to associations.

General operators on sequences:

R union S, R intersect S, R diff S
R select condition
R map function
R sort sortList

The meaning of the operators is specified by their name;
their type constraints are specified below, supposing,
where needed, that S and R have type Assoc
(Signature keylisl.. .) or Class ElType.

union, intersect and diff can be applied to any pair of
lists with a common supertype, returning a result in that
type*

In select, condirion is a function of type
Signature -+Bool (ElType+ Bool)

In map,function is a function of type Signature+T
(ElType+T), applied to all the elements of the
association (or class) R to obtain a sequence of type Seq
T.

In sort, sorflisr is a sort condition for the element type
of the sequence R; see [Ghelli 90a] for the precise
language used to express sort conditions.

Operators on sequences of bindings:

R project labelList
R times S
R rename renameList
R groupby groupList

In project, labelLis is a subset of the list of the labels
of R.

times takes two sequences of bindings with disjoint
sets of labels, and returns a sequence of bindings
containing the union of the labels of the arguments.
l In rename, renameList is a binding such as the
expression let n 1 =o 1 . . . n,,,=o,,, where o1 ,, . . , o, are
labels of the original relation and n1 ,,.., n,,, are all
mutually different labels not included in the labels which
remain in the relation after the Oi labels are removed.

In groupby, if Signature is equal to

l~:T~..I,:T,,,m~:U~ . ..m.:U,

and grouplist is equal to II, .I,,,, then R is partitioned
in sequences where all the fields 1,. ,1,,, have the same
value, each of these subsequences is transformed into just
one binding of signature

(1 1 :T, . l,:T, ml :Seq U 1 . , m,:Seq U,,J

and the resulting sequence of type

Seq(ll:T1..I,:T,m~:Seq U1 . ..m.:Seq lJ,,J

4 Associations and classes are ordered by insertion time;
this ordering means thay can be viewed as sequences.

is returned.

Two operators, makeclass and makeAssoc(keylists), are
defined to transform sequences and sequences of bindings
into classes and associations, though these operators are
usually not needed.

4 The Kernel Language
In the previous section a language was presented which
supports the structure and the constraints of the object-
relationship data model. This section shows that the
language can be fully interpreted in a minima1 kernel,
built around (a) the general failure handling mechanisms
of the language, (b) a simplified association mechanism
with no predefined constraint declaration, and (c) a
general purpose constraint maintenance mechanism for
associations. In this way a formal semantics is given for
the constraints presented, and for any possible
combination of them. Besides this, the general purpose
mechanism defined here is present in the language
together with the specialization presented in Section 3, to
allow the programmer to specify different constraints, or
different flavors of the same constraints. The most
appealing feature of the basic mechanism presented here
is its simplicity, built around just one type operator and
seven value operators.

In Section 4.1 the general failure handling and nested
transaction mechanism of the language are outlined; in
Section 4.2 the basic association mechanism is defined. In
Appendix A the semantics of the declarative constraints is
presented by giving their translation into the basic
mechanism.

4.1 The transaction and failure mechanism

The full language supports nested transactions and a
nested failure management mechanism, based on the
following operators.

Failure management operators:

let exe excname: type;
failwith excname=value
assert bcolexpr elsefail excname=value
try expr exe excname 1 =varl do handler 1

..I

exe excname ,,=varn do handler n
[else do handler]

let exe introduces a new exception name excname
which is associated with values of type rype.5

failwith raises an exception with name excname and
value value; excnume has been previously introduced by
let ext. The exception propagates along the dynamic
activation chain until an exception handler, defined using
the try construct below, is found.

assert is equivalent to if boolexpr then nil else
failwith excname=value; if the clause elsefail is omitted
it fails withfailure=nil.

try executes expr; if it fails with a name excmmi
then try executes the handler handleri binding VMi to
the value of the exception. If the exception name is
different from all the names excnamei, then there are two
possibilities: if the else do branch IS defined then the

5 Ty-pe is a ground type built without using object types.

Proceedings of the 17th International
Conference on Very Large Data Bases

571
Barcelona, September, 1991

corresponding general handler is executed, otherwise the
exception is propagated.

Nested transactions operators:

atomic expr, defer expr, old asscc

atomic executes expr, and if it fails, before propagating
the failure, rebuilds the state as it was before executing
expr. In more detail, it undoes all the variable updates,
the class/association insertions and removals and the
effect of the operation extend, defined in the full
language, which changes the type of an object without
affecting its identity. atomic is a nested transaction
mechanism; the outermost atomic is the transaction used
for concurrency control.

A list of expressions to be executed before committing
is associated with any transaction: defer is,uscd to build
this list, adding the specified expression to the end of the
list of the current transaction, defer is used typically to
defer the control of an integrity constraint to the end of a
transaction,

old applied to a variable or to an association (or class)
returns a copy of the value of that variable or association
at the beginning of the current transaction, It is used to
check dynamic integrity constraints.

4.2 The basic association mechanism

In the kernel of the language, classes are not defined, but
only associations are. An association is only characterized
by a signature and a list of keylists, without inclusion
hierarchies or constraints.

The primitive creation operation for associations is:

new (assocOf Signature key keylist . . . key keylistn):
Assoc Signature key keylist , , . key keylist,

On the basic associations a general purpose constraint
verification/enforcement mechanism is defined. Any
association contains two lists of function, called the
insertion and removal pre-operations, which are applied
to each binding which is inscrtcd in an association, or is
removed from it. If the argument of the insert operation is
already contained in the association, the pre-operation is
not executed. These pre-operations are defined with the
following operators:

assoc.beforeInsert (fun(Signaturc) exprh)
assoc.beforeRemove(fun(Signature) expr)

beforeInsert/beforeRemove add the function
fun(Signalure) expr at the head of the insertion/removal
pre-operations lists: Signalure is the signature of the
association.

insert, remove, get and has are defined on the basic
associations as they are on the sugared version. Thcsc
operators complete the definition of the basic associalion
mechanism.

4.3 Translating classes and predefined constraints into
the basic calculus

The complete translation of constraints is given in
Appendix A - here. only the translation of classes is

6 Actually any function of type Signature-+Type is
accepted as an argument by beforelmert and beforeRemove.

specified.
A class of type Class Type is translated as an

association of type Assoe (label: Type), where the label is
arbitrary, and never used. The operations on classes are a
syntactic abbreviation of the operations on associations,
where a type ElType substitutes a signature
label:&lType and values of type ElType substitute
bindings satisfying 1abel:ElType:

new (classOf Type): Class Type +
new (assocof label: Type): Assoc Type

class. insert/remove(value) +
assoc.insert/remove (let label = value)

class. beforeInsert/Remove(func) +
assoc.beforeInsert/Remove(

fun(bind: (label:Type)) func(bind.label))

class. get/has(value) +
assoc.get/has(let label = value)

5 Related Work
The relation mechanism in data models has been
extensively studied since the proposal of the relational and
entity-relationship data models. A recent proposal in the
field of entity-relationship model, similar to the one
presented here, is in [Casanova 891, where a data
definition language is presented for an extended E-R
model. The language allows entity sets to be defined as
well as relationship sets. Relationship sets can have keys
and surjectivity constraints. Besides general assertions,
mutual exclusion and referential integrity constraints can
be specified both on entity and relationship sets. These
assertions are complemented by the facility to specify the
existence of triggers, immediate or deferred, on
operations. Only the conditions for firing triggers are
described, not the triggers themselves, since the paper
does not propose a particular data manipulation language.
Entity and relationship sets can be organized into a
specialization graph, to provide both inheritance and
inclusion hierarchy.

While this work is similar to ours from a data modeling
point of view, our proposal is expressed in the framework
of a full language, which is both object-oriented and
strongly and statically typed. Moreover, our kernel
language is conceptually simpler and more regular.

From the field of object-oriented languages, both
[Rumbaugh 871 and [Diaz 901 present a proposal to
enhance object-oriented languages with a construct to
represent user-defined relations. Rumbaugh was the first
to stress the relevance of a relation construct in this
context. His proposal allows n-ary relations to be defined
over objects, but only with simple cardinality constraints.
The language presented is untyped, and no specialization
is defined over associations. Implementation issues are
discussed together with the description of an actual
implementation in a production-quality programming
system developed by the author at General Electric. The
proposal in [Diaz 901, expressed in the framework of
knowledge representation language based on frames,
presents a construct to define binary relationships between
objects, with assertions and attributes which belong to the
relationship as well as assertions and attributes added to
the objects for as long as they participate in the

Proceedings of the 17th International
Conference on Very Large Data Bases

572
Barcelona, September, 1991

relationship. In addition, surjectivity, cardinality and
dependency constraints can bc specified on relationships.
Relationships are objects which can be specialized, and
whose methods for creation, retrieval and updating can bc
modified. General constraints are intended as invariants to
be preserved in the database: a complex system executes
this task. In this language there is no concept of type or
type checking, and, like in the Rumbaugh proposal, there
are no retrieval or other bulk operators on relations. The
constructs proposed are embedded in a high level object
oriented extension of Prolog.

In [Atkinson 911 a new type constructor called map k
presented. Whereas associations are inspired by the
mathematical notion of finite relation, maps are inspired
by the notion of finite function, The expressive power of
the two notions is similar, since associations can be seen
as maps without a range, while maps can be seen as
associations with just a key. An interesting characteristic
of this proposal is that both an ordering and an equality
specification for the key can be declared together with the
map type, and then become par1 of the type. The only
constraint which can be defined on a map type is a form
of constancy constraint. Many operations are provided to
access and modify elements of maps, either singularly or
by iterating over a specific subset of a map. An algebra
over maps is defined, through classical operations on sets
as well as through an operator similar to comprehension.
Associations are proposed mainly as a data modelling
abstraction mechanism, and for this reason they have a
rich set of constraint specifications and can be organized
into a specialization hierarchy. Maps, on the other hand,
are also proposed both as an efficient bulk structure for
database programming languages and as the data format
of a canonical store manager for complex structured data.
Maps could thus be used as a low-level structure to
implement classes and associations efficiently, as well as
associative data structures on them.

6 Conclusions

A mechanism has been defined to represent classes and
associations in a database object oriented language. This
proposal stems from the expericncc gained in designing,
implementing, and using the Galileo database
programming language [Albano 851, It is characterized by
the following features:

Associations are not described by aggregation, as in the
standard object oriented data models, but by a separate
mechanism. With this approach the implementation
choices about associations arc left to the DBMS.
Classes and associations arc first class values of the
language, and their structure is described by a fipst
class type. This means that these constructors can be
combined in any way with the other data type
constructors of the language.
The following constraints can be defined declaratively:
class and association inclusion, key, referential.
surjectivity, dependency and constancy constraints.
All the above constraints are formally defined in terms
of a minimal kernel based on just one data type
constructor (Am).
All the constructs presented permit a strong type
checking (no type error is raised at run time by a well
typed expression) which can be pcrformcd complclely
at compile time.

The mechanisms presented arc included in a complete
database programming language, which is currently under
implementation, with the following features [Albano 901:
- it is statically and strongly typed;
- it supports a module mechanism for structuring

complex schemes and applications;
- it supports all the features of an object oriented

language: object identity, state and methods
encapsulation, type inclusion, multiple inheritance;

- it supports an object mechanism with separation
between interface and implementation of an object type
definition, and with an operator to change the type of
an object dynamically without affecting its identity.

6.2 References

Albano A,, L. Cardelli and R. Orsini, “Galileo: a
Strongly Types Interactive Conceptual Language”, ACM
Tranr on DataBase Systems. 10 (2), pp. 230-260, 1985.

Albano A., Ghelli G. and Orsini R., “Objects and
Classes for a Database Programming Language”, Tech.
Rep. 5/24 Progetto Finalizzato Sistemi Informatici e
CaIcolo ParaIlelo, CNR. Roma, November 1990.

Atkinson M.P., Bancilhon F., Dewitt D., Dittrich K.,
Maier D., and Zdonik S., “The Object-Oriented Database
Manifesto”, Proc. DOOD 89, Kyoto, Japan, 1989.

Atkinson M.P., LBcluse C., and Richard P., “Bulk
Types for Data Base Programming Languages: A
Proposal”, submitted for publication, 1991.

Casanova M.A., Tucherman L., Gualandi P.M.,
Pacheco A., and Cavalcanti M.R., “A Data Definition
Language for Extended Entity-Relationship Model”, Rio
Scientific Center, Technical Report CCR-072, 1989.

Diaz O., and Gray P.M.D., “Semantic-rich User-
defined Relationships as a Main Constructor in Object
Oriented Database”, Conf. on Object-Oriented
Databases, Windermere, UK, 2-6 July 1990.

Dittrich K., “Object-Oriented Database Systems: The
Next Miles of the Marathon”, Information Systems, Vol.
1S5NN. 1,pp. 161-167, 1990a.

Ghelli G., “Proof Theoretic Studies about a Minimal
Type System Integrating inclusion and Parametric
Polymorphism”, PhD Thesis, TD-6/90, Dipartimento di
Informatica, Universiti di Pisa, Italy, 199Ob.

Ghelli G., and R. Orsini, “Types and subtypes as
partial equivalence relations”, In Inheritance hierarchies
in Knowledge Representation, Lenzerini M., Nardi D,
Simi M. (eds.), J. Wiley & Sons, Chichester, England,
pp.191-209, 1991.

Kim W., Bertino E., and Garza J., “Composite objects
revised”, Proc. ACM SIGMOD Conf. Management Data,
Portland, OR, June 1989.

Rumbaugh J., “Relations as Semantic Constructs in an
Object-Oriented Language”, OOPSLA’87,466-481,1987.

Zdonik S.B., and Maier D., “Fundamentals of Object-
Oriented Databases”, in Readings in Object-Oriented
Database Systems, Zdonik S.B., and Maier D. (eds),
Morgan Kaufmann Publishers, San Mateo, CA, 1990.

Proceedings of the 17th International
Conference on Very Large Data Bases

573 Barcelona, September, 1991

Appendix A: The translation of the constraints

In this appendix the constraints presented in Section 3 are
translated into the basic language presented in Section 4.
The constraints are translated separately. Each of them
produces a set of beforeInsert/Remove operations, which
are all collected together. For simplicity, the sugared
notation for has insert and remove on classes is used.

beforeInsert/Remove constraints

new (assocOf Signulure (beforeInsert expr)
(beforeRemove expr)): Assoc Signature

The expression above is translated as:

let self: Asoc Signawe = new (assocof Signalure)
in (self. beforeInsert(fun(Signa!ure) expr);

self. beforeRemove(fun(Signafure) epr);
self

>

fun(Signature) expr returns a function whose formal
parameters are defined by Signarure. let introduces and
binds a new identifier; the form let ,, in scope
introduces it into the local scope scope, (expr;. . .;expr)
evaluates the expressions and returns the value of the last
one.

All the expressions produced by the successive
translations are added in the scope of the let above, so
that the identifier self can be used in all of them.

On classes, beforeInsert/Remove are translated in the
same way.

key constraints

new (assocof Signature key keylistt .., key keylist,)

key constraints belong to the kernel language,
nevertheless their precise meaning can be defined by a
pre-operation, as happens for the derived constraints. Let
lt:T, ,,.,$;Tj be a subset of the association signature;
then the constraint key 1 I ,...,li forces the automatic
production of the following pre-operation:

self. beforeInsert
(fun(Signature) assert not self .has(let ll=ll . . .,let lj=lj>);

Inclusion constraints

new (assocOf Signature are Al ,, , ..Aj)
new (classof ElType are Al ,, , , ‘Aj)

The above declarations ask the system to maintain
automatically an inclusion relation between the new
association and each of the immediate superassociations.
They are enforced by defining an insertion pre-operation
which inserts the element in the immediate
superassociations, and a removal pre-operation in any
superclass which removes the element from immediate
subassociations (the signatures SignA I (. . .,SignAj of
A1 ,, ..,Aj are super-signatures of the signature Sign of
the association defined):

self. beforeInsert(fun(bind:Sign) C 1 .insert(bind))
Cl .beforeRemove(fun(bind:SignA,)
self. remove (bind:SignAl))

Proceedings of the 17th International
Conference on Very Large Data Bases

self. beforeInsert(fun(bind:Sign) C,.insert(bind))
C,,beforeRemove(fun(bind:SignA,))
self. remove (bind:SignA,))

The insertion messages Cj.insert(bind) are type
correct since Sign is a subsignature of SignA .:
of the argument of insert must be a subtype o fl

the type
the type of

the association, On the other hand, the messages
self.remove(Sigru\i) are type correct even though Sign
SSigtlAj, since remove accepts arguments belonging to
any supertype of the signature of the association. The
translation is identical for classes.

An inclusion constraint R s S only forces a set-
inclusion relation between two associations R and S if
the corresponding signatures SignR and Sign S are
equality compatible, i.e. they are associated with the
same equality operation. Otherwise, if more bindings,
which are all mutually different in SignR but equal in
SignS , are inserted in R, only the first of them is inserted
in S, and when this binding is removed from R, all the
corresponding bindings are removed from S. In this case
this “inclusion” constraint does not model set inclusion
exactly but only set inclusion modulo equality, i.e. P.E.R.
inclusion as discussed in [Ghelli 9Ob]. On the other hand,
inclusion modulo equality coincides with set inclusion on
associations when a key constraint is defined on a
component of the superassociation, and on classes when
the element type is an object type.

mutual disjointness

new (classOf ElType butnot Bl ,...,B,): Class Type

This constraint specifies that the classes B1 ,*..$,, must
never intersect self. If TEi is the type of the elements of
the class Bil it is only well typed if ElType is compatible
with 7E i*

This constraint is enforced defining the following
insertion preconditions (beforelns stands for
beforelnsert):

self. beforeIns (fun(elem:Typc) assert not (B t . has(elcm))
Bt .beforeIns(fun(elem:TBI) assert not (self.has(clem))

self. beforeIns(fun(eIem:Type) assert not (B,.has(elem))
B,. beforeIns(fun(elem:TB,) assert not (self.has(elem))

Note that has is well typed since TBi is compatible with
ElType.

referential constraint

label: Type in/are/owned-by class

In the cases of in and owned-by , Type is compatible
with the element type E/Type of class; in the case of are
Type must be a subtype of EfType. This is the
translation:

label: Type in class: class ElType 3
self. beforeIns(fun(bind:Sign)assert class.has(bind.Iabel))
class. beforeRemove

(fun(el:ElType) assert not (self.has(let label =el)))

574 Barcelona, September, 1991

label: Type owned-by class: class ElType -+
self. beforeIns(fun(bind:Sign)assert class. has(bind.label))
class. beforeRemove

(fun(el:ElTypc) self.remove(let label=el))

label: Type are class: class ElType +
self, beforeInsert(fun(bind:Sign) class.insert(bind.labcl))
class, beforeRemove

(fun(el:ElType) self.remove(let label=el))

Notice that the translation of the are referential
constraint is identical to the are inclusion constraints,
justifying the notation.

surjectivity constraints

label: Type onto/owns class

Type is compatible with the element type E/Type of
class. This is the translation:

label: Type onto class: class(EIType) +

class. beforeInsert(fun(el:ElType) defer assert
class, has(el) implies self. has(let label=cl))

self. beforeRemove(fun(bind:Sign) defer assert
class. has(bind.label) implies

self. has(let label=bind.label))

label: Type owns class: class(ElType) +
class, beforeInsert(fun(el:ElType) defer assert

class. has(el) implies self. has(let label=el))
self. beforeRemove(fun(bind:Sign) defer

if self. has(let label=bind.label) then skip
else classremove (bind.label):

A implies B is a boolean expression equivalent to
((not A) orB).

constancy constraints

new (assocOf Signature
constant-on label t in class 1 label, in class,)

Constancy on a set of components (each associated with a
class) means that, once a binding b for those components
has been fixed, all the bindings extending b must be
inserted when the elements appearing in b are inserted in
their classes, and can only be removed when the elements
in b are removed from their class (at least one of them).
This is not the only possible interpretation of the
constancy constraint; different interpretations can be
enforced procedurally.

The type constraint is that the type of the components
must be compatible with the associated classes; the
translation is as follows:

self, beforeInsert(fun(bind:Sign) assert
not ((old class t), has(bind.labell)

and . . .
and (old class,), has(bind.labeln)

1
self. beforeRemove(fun(bind:Sign) defer assert

not ((class1). has@ind.labell) and . . .
and (class,,). has(bind.label,))

Proceedings of the 17th International
Conference on Very Large Data Bases

515
Barcelona, September. 1991

