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Abstract 
Shared nothing multiprocessor archit.ecture is known t.o be 
more scalable to support very large databases. Compared 
to other join strategies, a hash-ba9ed join algorithm is par- 
ticularly efficient and easily parallelized for this compu- 
tation model. However, this hardware structure is very 
sensitive to the data skew problem. Unless the parallel 
hash join algorithm includes some load balancing mecha- 
nism, skew effect can deteriorate t.he system performance 
severely. 

In this paper, we propose two sl;ew avoidance techniques 

and one skew resolution method. In particular, three new 
parallel hash join algorithms are presented. We developed 

an analytical model to study the effectiveness of these algo- 

rithms. The performance study indicates that the proposed 
techniques offer substant,ial improvement. over the conven- 

tional strategies in the presence of data skew. It is also 

interesting to observe that the skew avoidance t,echniques 

provide join strategies that are robust against data skew; 

where as the skew resolution met,hod offers an adaptive join 

strategy that outperforms the conventional algorithms for 

any skew condition. 

1 Introduction 
There are several architectures for designing multipro- 
cessor database computers. However, The multicom- 
puter model [l], is most popularly used for its scalabil- 
ity to support very large databases (2, 3, 4, 5, 61. The 
hardware structure of this computat,ion model c.on- 
sists of a number of processing nodea (PN) intcrcon- 
netted through a communication network. Each PN 
has its own private memory and dedicat.ed disk drives. 
This architecture is also known as message passing or 
shared nothing [7] multiprocessor structure. In this en- 
vironment, the relations are typically declustered into 
fragments and spreaded across the PNs. Since in t.his 
model each PN processes the portion of t.he database 
on its disks, t,he degree of parallelism is det,ermincd by 
the distribution of data in the syst,em. When serious 
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data skew occurs, balancing the load on all the PNs is 
needed to ensure high system performan,ce. 

The join operation has been the most intensively 
studied among the relational operations for this struc- 
ture. Since join operations are generally very expen- 
sive, a query optimizer typically defers the join oper- 
ations until the data reduction process is performed 
by less costly operations, such sa selections and pro- 
jections. For this reason, the distribution of the input 
relations to a join operation is typically hard to pre- 
dict. Most likely the data fragments result from the 
earlier data reduction operations will vary in size, and 
a load balancing mechanism will be necessary to en- 
sure the efficient performance of the succeeding join 
operation [8]. 

Several parallel join algorithms have been proposed. 
Among them, hash-based algorithms [9, lo] are par- 
t,icularly suitable for the multicomputer model. In 
these strategies the relations are hashed (partitioned) 
into buckets, and each bucket is allocated to a distinct 
PN. Since tuples of a relation in one bucket are never 
joined with tuples of the other relation in other buck- 
ets, matching buckets can be joined independently in 
parallel by all PNs. The effectiveness of these schemes 
depends on the uniformity of the tuple distribution. 
Although they have been demonstrated to be very ef- 
fective, these techniques do not guarantee the balanced 
workload among the local join operations. When se- 
vere fluctuation occurs among the bucket sizes, the 
skew effect deteriorates the performance of the join 
operations. A Bucket Spreading Parallel Hash Join 
(BSJ) was introduced in [ll] to correct this problem. 

IJnlike the conventional hash-based join algorithms 
t,hat, statically assigned the buckets to the PN prior 
t.o the data partitioning process, BSJ algorithm defers 
the bucket allocation until the data partitioning pro- 
cess is completed. Since the distribution of the data 
among the buckets then becomes known, the buckets 
can be assigned to the PNs dynamically based on the 
bucket sizes to ensure a balanced data load at each PN. 
However, when buckets are to be allocated dynami- 
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tally, the destination of a tuple cannot be determined 
during partitioning because “which PN to handle the 
tuple” is not assigned yet. BSJ solves this problem 
by spreading the original bucket8 across all PNs, and 
collecting them later to the appropriate destinations 
just prior to the join operations. To avoid a bottle- 
neck during the bucket collection phase, BSJ uses a 
special Omega network [12] to ensure that the buckets 
evenly spread across all PNs. The implementation of 
this switch includes at each switch element, as many 
number of counter8 as there are numher of bucket8 in- 
volved. Such a switch design may face two problems. 
First, it does not scale well with the rest of the sys- 
tem. As the number of PNs increases to support larger 
databases, the number of buckets increases causing the 
increase in the complexity of the switch elements (i.e., 
need more counters). Even when the system does not 
yet have a large number of PNs, the switch element 
must have enough number of counters to anticipate 
system growth. In other words, the complexity in the 
switch design could penalize the smaller system config- 
urations. Secondly unless other operation8 can be de- 
signed to take advantage of the data spreading feature 
of the functional switch, the complexity in the switch 
design may affect the communication performance of 
the switch, and consequently the performance of the 
whole system. Depending on the transact,ion mix, it. 
may not be worthwhile to improve the performance 
of joins on the expense of other operations. Finally 
the complexity explodes when we consider a muhiuser 
environment. Managing different sets of counters for 
different users becomes quite expensive. 

In (131, we proposed an adaptive load balancing 
strategy using Partition Tuning, In t,his approach, a 
relation is organized as a set of d8t.a cells (dnt.a frag- 
mente), and balanced work load is achieved by rcas- 
signing data cells from overflow PNs to underflow PNs 
using a Besl Fil Decreasing strategy. In this paper, we 
discuss the load balancing technique in the context of 
join operation. We will introduce three parallel join 
algorithm8 with dynamic load balancing capability us- 
ing the partition tuning concept,: 

Tuple Interleaving Parallel Hash Join 
(TIJ): This scheme is similar t)o BSJ algorithm. 
However, instead of relying on a specially de- 
signed switch to maintain uniform bucket spread- 
ing across PNs, it uses software control to inter- 
leave the tuples among PNs as they are being 
spread to their destinations. 

Adaptive Load Balancing Paralla Hash 
Join (ABJ): This technique int,roduces an addi- 
tional step to the conventional parallel hash join 
algorithm8 [9, lo]. This added process relocates 
the excess buckets from the larger PNs to the 
smaller PNs attempting to balance the dat,a load 
prior to the join operations. 

Extended Adaptive Load Balancing Paral- 
lel Hash Join (ABJ+): In this st#rategy, each 
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Figure 1: Architectures for multiprocessor database 
computers. 

PN hashes its local portion of the relations into lo- 
cal subbuckets. These local subbuckets are stored 
back in the local disks. After this partitioning 
process is complete, the distribution of the data 
in each bucket can be computed. The match- 
ing local subbuckets are then collected to their 
final destination to form the corresponding buck- 
ets. The gathering of the subbuckets are based on 
the bucket sizes to ensure balanced work load for 
each of the PNs during the join phase. 

In the following sections we will describe these algo- 
rit)hma in more det.ails. A performance model will be 
int(roduced and it will be used to compare the perfor- 
mance of these st,rategies. 

The rest of this paper is organized as follows. The 
design environment and assumptions are described in 
Section 2. Some problems in hash-based join strat- 
egy is discussed, and the proposed join algorithms are 
presented in Section 3. In Section 4, we introduce 
an analytical model and discuss the performance com- 
parison of t.he proposed schemes. Finally, we offer our 
conclusions in Section 5. 

2 System Environment 
Basically, there are three different architectures for 
multiprocessor database computers: Shared Every- 
thing (SE), Shared Disk (SD), and Shared flothing (SN) 
(Figure 1). There has been a lot of debate in the 
database management community about which archi- 
tecture is most suitable for a database management 
system. The coherency control problem limits the 
number of processors that can efficiently cooperate in 
a SE or a SD system. In a SE system, processors share 
a single global memory address space. The shared 
memory is t,ypically a physically distributed memory 
to accommodat,e the aggregate demand on the shared 
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memory from a large number of processors. An inter- 
connection network is usually used to allow any pro- 
cessor to access any memory module. This communi- 
cation network, however, increases the memory-access 
latency. The performance of conventional processors 
is quite sensitive to memory-access latency, If the 
memory-access latency exceeds one inst,ruction time, 
the processor must idle until the storage cycle com- 
pletes. A popular solution to this problem is to have 
cache memory with each processor. However, the use 
of caches requires a mechanism to ensure cache co- 
herency. As we increase the number of processors, the 
number of messages due to cache coherency control 
(i.e., cross interrogation) increases. Unless t,his prob- 
lem can be solved, scaling a SE system into the range 
of hundreds of processors will be impractical. Simi- 
larly in a SD system, it is obvious that inter-processor 
coherency control is necessitated due to the caching of 
the shared database pages in main memory database 
buffers. The buffer invalidation problem tends to be 
the limiting factor for the size of a SD system. 

In contrast, data coherency cont,rol is not a problem 
in a SN system. Besides, the processor and memory 
are physically localized in a node, and memory-access 
latency is not a problem. Nevertheless, SN systems are 
very sensitive to the data skew problem [S]. When the 
data are seriously skewed, rebalancing the data load 
among the PNs is necessary to resume good system 
performance. 

From the above discussion, it, seems that there is no 
absolute winner. When the individual processors are 
very powerful as in the case of mainframe comput- 
ers, since we don’t need a lot of processors in order to 
achieve the required performance level a small num- 
ber of very high performance processors can be inter- 
connected in a shared memory st,ructure to avoid t.he 
communication overhead and t*he dala skew problems 
(e.g., IBM 3090 Model 600). On the other hand if t,hc 
applications demand a performance level far exceed- 
ing the capability of typical mainframe syst,ems, then 
a microprocessor-based SN structure offers a solution 
for handling very large databases (e.g., iPSC/2 version 
of GAMMA [3], Nonstop SQL [4], [5], Super Database 
Computer (SDC) [ll], DBC/1024 [6]). In this paper 
we assume the latter environment and discuss dynamic 
load balancing strategies for parallel join operations in 
these systems. We would like to note that a combina- 
tion of the three generic parallel architectures can also 
be employed to benefit from the advantages of each 
scheme. One such hybrid structure wss discussed in- 
dependently in [14] and [l l]. 

3 New Parallel Hash Join Algo- 
rit hms 

There are two major problems associated with hash- 
based parallel join algorithms: 

1. Bucket overffow: In hash-based join algorithms, 
the size of each bucket should be smaller than t,he 
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memory capacity. However, nonuniform distribu- 
tion of the join attribute values occasionally gen- 
erates bucket ouerfiow, in which the sizes of the 
buckets exceed the memory capacity. The perfor- 
mance diminishes because it requires extra I/O to 
repartition the buckets into smaller fragments so 
that each will fit in the memory. 

2. Data skew: The performance of the conventional 
parallel hash join algorithms relies on the random- 
izing hash function to redistribute the tuplea of 
the join relations evenly across all PNs in the sys- 
tem. Their performance degrades when the join 
attribute values of the relations are non-uniformly 
distributed [9, 8, 151. This phenomenon is known 
i19 the dala skew problem, in which some PNs have 
significantly more tuples than the remaining PNs. 

To overcome the bucket overflow problem, Hybrid 
Hash Join [lo] uses a second hash function, hl, to 
stream the overflow tuples to a temporary file on disk. 
In other words, ha redistributes the overflow bucket 
between an in-memory hash table and overflow buck- 
ets on disk. GRACE Hash Join [9] tries to avoid the 
bucket overflow problem by splitting the relations into 
a large number of smaller buckets, and then these small 
buckets are combined into buckets to fit the memory 
capacity. This process is referred to as buckef lun- 
ing in [9]. Although these conventional parallel hash 
join algorithms effectively resolves the bucket overflow 
problem,‘no mechanism is provided to avoid the data 
skew effect. This problem is addressed in the Bucket 
Spreading Purallel Hash Join (BSJ) algorithm [ll] by 
deferring the bucket allocation process until after the 
data partitioning procedure is completed, The delay 
allows the buckets to be allocated to PNe based on 
the bucket sizes to ensure a balanced data load in the 
system. 

BSJ algorithm provides an effective parallel algo- 
rithm for performing join under skew conditions. This 
scheme, however, requires an expensive specially de- 
signed network to support the bucket spreading mech- 
anism. As discussed in Section 1, the additional com- 
plexity in the communication network may also cause 
the following problems: 

1. It does not scale well with the rest of the system. 
2. It could degrade the communication performance 

of the network. 

In this section we present three new efficient al- 
gorithms that require only conventional hardware, 
Therefore, they are immediately applicable to many 
existing parallel database computers. 

3.1 Tuple Interleaving Parallel Hash 
Join 

The purpose of the special hardware used in [ll] is to 
ensure the uniform distribution of each bucket across 
all PNs. Alternatively, the bucket spreading effect can 
be achieved by software control. One way to achieve 
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the uniform bucket distribution effect is to send each 
tuple to the PN currently containing the smallest sub- 
bucket among all the subbuckets of its bucket. Thus 
to determine the destination of a tuple, each PN has 
to keeps track of data distribution on every PN. As 
criticized in [ll], this approach would require a high 
volume of data transfer between PNs, resulting in con- 
siderable performance degradation. For this reason, 
a highly functional Omega network is used in [l I] to 
resolve the problem. Alternatively, this problem can 
be avoided by having each PN interleaving the tuples 
among the PNs as they were spread out from a bucket. 
This tuple interleaving strategy is described in more 
details in the Tuple Interleaving Parallel Hash Join 
(TIJ) algorithm given below. 

Split Phase: R and then S are partitioned in par- 
allel. Each PN independently divides its partition 
ofeach of the relations R and S stored therein into 
p buckets where p is considerably larger than the 
number of PNs in the system. During this parti- 
tioning process, tuples belonging to each of these 
buckets are spread across t,he PNs. The spread- 
ing is done by interleaving t,he consecutive tuples 
from each bucket among the PNs in the syst,em. 
For each PN, the ith tuple of a bucket is sent to t,he 
(((i-l) mod hr)+l)th PN, where N is the number 
of PNs in the system. Since this spreading strat- 
egy guarantees that each bucket is spread evenly 
among PNs, the N subbuckets of each bucket such 
derived, t,herefore, should he uniform in size. 
Bucket Tuning Phase: Since buckets are dis- 
tributed evenly among the PNs, the dist#rihut,inn 
of subbuckets in each PN is representative of the 
distribution of buckets among all PNs. There- 
fore a predetermined coordinating PN can decide 
how to tune the size of buckets to fit the mem- 
ory capacity based only on its local dist#ribution 
of subbuckets. The remaining PNs can t,hen tune 
their subbuckets accordingly as directed by the 
coordinator. 
Partition Tuning Phase: The coordinating PN 
groups the buckets into N equal partitions, and 
allocates each partition to a distinct PN. The 
bucket-to-PN mapping information is then broad- 
cast t.o all the remaining PNs. Each PN t*han 
forms its partition by sending and receiving tuples 
as directed in the mapping information. Even af- 
ter bucket size tuning, the buckets vary slightly 
in size. To reduce the effect of this nonunifor- 
mity, we can sort the buckets according to size. 
Then the sorted buckets are allocated to the PNs 
in a round-robin fashion [Ill. Tn the case that 
the buckets vary great.ly in size, a part,ition t,un- 
ing strategy aa described in [13] can be employed, 
in which the tuning algorithm is performed hy 
first sorting in descending order the bucket ac- 
cording to size. The buckets are then allocated t#o 
the PNs in the sorted order. The assignment is 
done by allocating the currently largest buckets in 
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the sorted list to the currently smallest PN. The 
bucket is then removed from the list. This pro- 
cess is repeated until the sorted list is exhausted. 
Hereafter, we will refer to this process aa the Bcsl 
Fif Decreasing strategy. 
Join Phase: Each PN performs the local joins of 
respectively matching buckets. 

We note that TIJ algorithm is a variation of the BSJ 
algorithm originally proposed in 11). Except for the 

6 Split Phase, the remaining three p ases of TIJ are sim- 
ilar to the corresponding steps in the BSJ algorithm. 
Our bucket spreading strategy employs software con- 
trol at each PN instead of using special hardware as 
proposed in the original BSJ algorithm. The overhead 
associated with the software control is essentially nee 
ligible. For instance, a simple round-robin strategy 1s 
sufficient to keep track of the next destination for each 
bucket in a PN. This mechanism can also be imple- 
mented in hardware by providing a simple spreading 
processor at each of the input to the communication 
network. This spreading processor maintains a set of 
round-robin counters, one for each bucket involved. 
When a tupte is received by the spreading processor, 
t#he content of the round-robin counter is used as the 
destination for the tuple transfer. The counter is then 
incremented by one (modulo N, where N is the num- 
ber of PNs). Comparing this scheme to the hardware 
design proposed in Ill], we see two advantages. First, 
t,he number of counters used in the proposed scheme 
is proportional to N; whereas the complexity of the 
scheme proposed in [I l] is 0( N log N). Second, decou- 
pling the complexity of the bucket spreading hardware 
from the communication media is a good idea to main- 
tain the high communication throughput for all oper- 
ations. An alternative to this design is to emulate the 
round-robin mechanism in the communication proces- 
sor at) each PN. Most today’s communication processor 
should be capable of performing this additional simple 
task without becoming a bottleneck in the system. 

We note also that the data transfer as described in 
the TIJ algorithm does not have to be performed at 
the tuple level. In practice, each PN maintains N out- 
going buffers. Tuples belonging to the same destina- 
tion are piggybacked to the same buffer, and the buffer 
is sent to its dest,ination when it is full. In addition, 
if an appropriate network (e.g., Omega) is used the 
transfer of buffers can be synchronized to follow the 
cyclic shift pattern [16] in order to avoid access con- 
flict. The four possible cyclic shift patterns for a 4-PN 
system is depicted in Figure 2. 

Furthermore, if the system is designed for a mul- 
t,iuser environment it is advantageous to employ a 
pnrt.itionable communication network [17] (e.g., mul- 
t,istnge shuffle-exchange networks) so that the system 
can be reconfigured dynamically into smaller “inde- 
pendent” parallel engines to serve different queries if 
necessary. In such an environment, not all base rela- 
tions are large; smaller relations need to store on fewer 
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Figure 3: Cube network of size eight partitioned int,o 
two subnetworks of sizes four. 

PNs only to reduce the skew effect, and communication 
overhead, They are assigned t,o the PNs in such a way 
to take advantages of the partitioning properties of the 
communication network. Similarly for non-base rela- 
tions, the intermediate operations can be centralized 
to as little or to as great an extent as is appropriate 
to maximize the system throughput. These individual 
operators can be scheduled to run on different, part i- 
tions of the hardware in order to eliminate net,work 
contention among concurrent queries. In addition, the 
data transmission due to an individual query is syn- 
chronized within a hardware partition to follow a cyclic 
shift pattern [16] in order to avoid regional access con- 
flict. For example, Figure 3 shows a cube network 
of size eight partitioned into two independent, subnet,- 
works. The first group con&s of PNs connected t,o 
ports 0 to 3. The second group c0nsist.s of PNs con- 
nected to ports 4 to 7. Since the original network sup- 
ports the cyclic shift permutat,ions without conflicts, 
the partitioning properties of the cube network guar- 
antee that each of the two subnetworks will have all 
the connection properties of a cube network including 
the cyclic shift communicat,ion patt’erns. In R mul- 
tiuser environment, we are ronrcrned about system 
throughput in addition to response times. The use 
of a partitionable network reduces net.work contIent,ion 
among concurrent queries, and consequently improves 
the throughput of the multiprocessor system. 
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3.2 Adaptive Load Balancing Parallel 
Hash Join 

A major advantage of the TIJ algorithm is that the 
work load is very balanced at each PN for all phases of 
the algorithm. A drawback.of this strategy, however, 
lies in the fact that it shuffles the whole tuple space 
entirely during their load balancing process regardless 
of the degree of data skew. When the skew condition is 
mild, this strategy tends to result in unnecessary com- 
munication and computation overhead. The Adaptive 
Load Balancing Parallel Hash Join (ABJ) algorithm 
given in the following addresses this problem. 

3. 

4. 

Split Phase: R and then S are partitiohed into a 
large number of buckets in parallel. Each bucket 
is statically allocated to a PN as in GRACE Hash 
Join algorithm. Each tuple in a bucket is collected 
t.o the corresponding PN through the interconnec- 
t#ion network. 
Partition Tuning Phase: This phase consists 
of two stages. 
(a) Bucket Retaining Stage: For each rela- 

tion, each Plvi retains n buckets using some 
best-fit strategy so that their aggregated size 
snt,isfies the following condition: 

where IAl is the size of the corresponding re- 
lation, and IBij/ is the size of the jth bucket 
of PNi. The remaining buckets not retained 
in this stage are termed the etcess buckets. 

(b) Bucket Relocating Stage: Each PN re- 
ports its size and the size of the excess buck- 
ets to a designated coordinating PN. The co- 
ordinator then use these information to real- 
locate the excess buckets to the underflow 
PNs using the Best Fit Decreasing strategy 
described in the last subsection. Once the 
destination of the excess buckets has been 
determined, this information is broadcast to 
the PNs, and the excess buckets are physi- 
cally collected by the PNs accordingly. 

Bucket Tuning Phase: Each PN combines the 
small buckets to form more optimal size join buck- 
ets. 
Join Phase: Each PN performs the local joins of 
respect,ively matching buckets. 

We note in the Bucket Retaining Stage that each 
PN should try to retain the larger buckets since the 
Best Fit Decreasing Strategy employed by the follow- 
ing Bucket Relocation Stage works better with smaller 
buckets. Comparing the Bucket Relocating Stage of 
t.his algorit,hm with the Partition Tuning Phase of the 
TIJ algorithm, we see that the former attempts to 
keep the data transfer to minimal, whereas the lat- 
ter strategy shufftes on average w of the tuples of 
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each relation. When the skew condition is mild, the 
number of tuplea at each PN varies very slightly and 
only little data movement will be needed during the 
Bucket Relocating Phase of the ABJ algorithm. In 
this sense, ABJ is capable of adapting dynamically to 
the degree of skew. For this reason, we call this strat- 
egy Adaptive Load Balancing Parallel Join algorithm. 
Since the skew conditions are typically mild (that is 
why the conventional hash join algorithms are so ef- 
fective e.g., GRACE Hash Join, Hybrid Hash Join), 
we expect the proposed ABJ algorithm to have good 
performance for many applications. 

3.3 Extended Adaptive Load Balanc- 
ing Parallel Hash Join 

When the skew condition is serious, disk overflow may 
occur during the Split Phase of the ABJ strat,egy. In 
addition, the severe skew condition causes the trans- 
fer of tuples concentrate on the skewed PN result.ing 
in communication hot spot. Moreover, it further de- 
grades the performance since these excess tuples must 
be reallocated to the underflow PNs during the Par- 
tition Tuning Phase. The Extended Adaptive Load 
Balancing Parullel Hash Join (ABJ+) algorithm pre- 
sented in this subsect,ion correct%s t,his problem by de- 
ferring the tuple transfer until the Part,ition Tuning 
Phase. The details of the algorithm is outlined bellow. 

Split Phase: Each PN partit.ions its port.ion of 
each relation into considerably small subbuckets. 
Each subbucket is stored back in the local disks 
(no disk overflow). 
Partition tuning: Each PN report.s the sizes of 
its subbuckets to a designated coordinating PN. 
The coordinator adds up the sizes of the m&h- 
ing subbuckets distributed across the PNs to de- 
rive the sizes of the corresponding buckets. The 
coordinator then allocates the buckets to the PNs 
using the following strategy: 
(4 

(b) 

The buckets are sorted into descending order 
according to their sizes. 
The buckets are then allocated to the PNs 
in the sorted order. For each bucket, it is 
assigned to the PN with the largest matching 
subbucket among the qualified PNs’ in order 
to minimize communication overhead. The 
size of that PN is then updated to reflect the 
addition of the new bucket. When the size 
of a PN satisfies the following condition: 

where IA] is the size of the corresponding re- 
lation, and lBij/ is the size of the jth bucket 
of PNi, it is disqunlifipd from considcrat.ion 
for any further bucket allocation. 

1 PNs which have (L matching subbucket 
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4. 

This iterative process continues until all buckets 
are allocated. Once this process is complete, the 
allocation information is broadcast to all PNs, 
and the subbuckets are physically collected ac- 
cordingly to their respective destination to form 
the corresponding local buckets, 
Bucket Tuning Phase: Each PN combines the 
small buckets to form more optimal size (i.e., fit 
the memory capacity) join buckets. 
Join Phase: Each PN perform the local joins of 
respectively matching buckets. 

We note in this strategy that no tuple travels across 
a PN boundary more than once during the entire algo- 
rithm. Furthermore, it takes advantage of the already 
balanced portion of the tuple space to minimize the 
disk l/O and communication overheads. In this sense, 
it is capable of adapting dynamically to the current 
condition of the tuple distribution in the system. 

4 Performance Analysis 
In this section, we develop an analytical model for 
the four parallel join algorithms: TIJ, ABJ, ABJ+and 
GRACE. First we describe the performance model, 
and present’ the cost function for each of the join algo- 
rithms. These cost functions are then used to perform 
sensit,iiity analysis with respect to three parameters: 
degree of data skew, I/O bandwidth, and communi- 
cation bandwidth. In this paper, GRACE algorithm 
which does not handle skew problems is used as the ref- 
erence for the comparison of the three proposed tech- 
niques. 

4.1 Performance Model 

The following parameters are designed for cost evalu- 
ation. They are similar to those used in [8]. 

l Workload Parameters: 
/RI: Relation size in tuples for each of the joining 

relations. 
IP,]: Size in tuples of the skewed partition. 
lPuI: Size in tuples of each of the remaining 

unskewed partitions. 
u: The delrree of data skew which is defined as 
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t: Size in bytes of each tuple. 

l System Parameters: 
N: Number of PNs in the system. 
M: Memory capacity in bytes for each PN. 
p: CPU processing rate in million-instructions- 

per-second (MIPS). 
wio: I/O bandwidth between a processor and its 

secondary storage. 
QCOmm: Effective communication channel band- 

width per PN. 
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I CP" : CPU pathlength for processing a t,uple in 
any step of the join operat,ion. 

l Measurement Parameters 
T split: Time cost in seconds due to a Split Phase. 
T parti: Time cost in seconds due to a Partition 

Tuning Phase. 
Tbueker: Time cost in seconds due to a Bucket 

Tuning Phase. 
Tjoin: Time cost in seconds due to a Join Phase. 
Tsplitbo: Time cost in seconds for disk accesses 

during a Split Phase. 
EPlit,cpu: Time cost in seconds for processing tu- 

pies during a Split Phase. 
Tspritdomm: Time cost in seconds for transferring 

data among PNs during a Split Phase. 
T parti-iot Time cost in seconds for disk accesses 

during a Partition Tuning Phase. 
T portisomm: Time coat in seconds for transferring 

data among PNs during a Partition Tuning 
Phase. 

qoinbash: Time cost is seconds for building a 
hash table for a bucket in memory. 

Ts joingprobe: Time cost in seconds for prohing t,he 
in-memory hash ttable using t,uples from t,he 
matching bucket. 

TTJJ: Time cost in seconds for joining two rela- 
tions using the TIJ algorithm. 

TABJ: Time cost in seconds for joining two rela- 
tions using the ABJ algorithm. 

T ABJ+: Time cost in seconds for joining t,wo re- 
lations using the ARJ+algorit’hm. 

TGRACE: Time cost in seconds for joining t,wo re- 
lations using the GRACE Hash Join algo- 
rithm. 

In this study, the system environment as described 
in Section 2 is assumed. we assume t,hat initially both 
relations are horizontally part,it,ionrd and evenlv dis- 
tributed among the PNs (i.e., t,he sizes of all parctiona 
of a relation are equal). In the join operation, we fur- 
ther assume that under the skew condition the rela- 
tions are evenly distributed among all PNs, except one 
(i.e., The skewed PN) which has excess data. In other 
words, for each of the joining relations the skewed PN 
has u x 100% more tuples than each of the remaining 
PNs, d is called the degree of skew, and it has value 
ranging between 0 and 1. This assumption is based on 
the fact that the most seriously skewed PN constit,utes 
the bottleneck in our shared nothing environment. It 
dictates the performance of the parallel execution re- 
gardless of those less severely skewed PNs. Therefore, 
it is sufficient to assume a single skewed PN for our 
purpose. Based on this assumption, we thus have: 
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\P., land IF;, jderived here will be used in the following 
subsections to compute the time costs for the parallel 
join algorithms. 

4.2 Cost Functions 
In this subsection, we present the cost functions for 
the join algorithms based on the described architecture 
and workload. Since partial overlap can exist between 
the phases of the join algorithms, the total join cost, 
Ttotol is bounded by: 

madTpho,e,1, Tpharc-2, * * * Tphorad 6 ~otar 

5 Tpha,c,l + Tphare,a + * * 9 + TphoseJ, 
Where max represents the maximum function. Sim- 
ilarly, each phase consists of several steps (disk ac- 
cesses, tuple processing, communication). Overlap- 
ping of those steps is also achievable. A performance 
upper bound and lower bounds for the phases can be 
derived accordingly. In our study, we made the follow- 
ing assumptions: 

The overlap within each phase is perfect. The 
system is assumed to include a separate I/O pro- 
cessor and a separate communication processor 
which allow the overlap among disk I/O, CPU 
computation, and data communication [5]. 
The overlap between two phases is not allowed. 
That is, a simple barrier type synchronization [18] 
is used between the phases to guarantee the cor- 
rect parallel execution. 

Therefore, the join time can be computed as: 
T toid = Tphoae,l + Tphaae,2 + * * * + Tphorc,n 

4,2.1 Time Cost for GRACE Hash Join 

GRACE Parallel Hash Join consists of two distinct 
phases. Its cost is computed below: 

TGRACE = TIP/it + Tjoin 

Kplit = max(Taprit-io, Taplit-cput T split~omm 1 

T 2lRI t 21p,1t 
rplit,io =N’wi,+- 

Wo 

T split,cpu 
_ WI ICPU 

N P 

T#plit,comm = 
N-2 214 

2lpaI + 7 * 7 
, t 
Wcomm 

Tjoin = I 1 y ’ (qoinAarh + qoin+robe) 
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4.2.2 Time Cost for Tuple Interleaving Paral- 
lel Hash Join Algorithms 

TIJ algorithm consists of four phases, Jts time cost is 
computed below: 

.TTIJ = Taplit + Tparti + Tbuctet + Tjoin 

T @it = max (Taplit-to, ‘J’spttt,epu , Taplit-cornrn) 

T rpfilh =2* T 
rphtmcpu 

_ WI . Iepu 
iv P 

T spiit4omm =2 N-1 2lRlt .-I 
N NW 

= 4(N - 1)IW 
comm N2 u Wiomm 

Tbucket = 0 

T ’ parts = max (Tpcrrtiio, Tporti-comm 1 

T porti = 2 * 
N - 1 2)Rlt 
-.-= 

4(N - 1)IRlt 
N Nwio N2 *wio 

Tparti,eomm = 2 ’ 
N-l Wit -. 

N NW 
= 4(N - l)IRl~ 

comm N2 ’ Wcomm 

T. loin = I 1 fi ’ (qoin-harh + qoingrobe) 

4.2.3 Time Cost for Adaptive Load Balancing 
Parallel Hash Join Algorithm 

ABJ algorithm consists of four phases, Its time cost is 
computed below: 

TABJ = Tgplit + Tparti + Tbucket + Tjoin 

T split = max (T,plit,io U Tsp/it,rpu 1 Tsp/it,comm ) 

Wt 
Tdp/it>o = ~w + - 

‘lP#tt T 
split,cpu 

21RI Icpu 

io Wio =N’T- 

Tsplitromm = 

11 t *- 
Wcomm 

T parti = max (Tpartiiar T porti-comm I 

T partid2mm =~*(lww--& 

As in TIJ algorithm, we let, Tbtcckel kz 0. Also, t.he 
time cost for the Join Phase, Tjoin, is t,he same as that 
of TIJ algorithm (Section 5.2.2). 
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4.2.4 Time Cost for Extended Adaptive Load 
Balancing Parallel Hash Join Algorithm 

ABJ+algorithm consists of four phases. Its time cost 
is computed below: 

T ABJ+ = Taplit + Tporti + Tbuekst + Tjoin 
T rplit = max (Tlpwo, Tlp~~tApu, T rplit~omm 1 

T rplitio 
= WI , Icpu 

N cc 

T rplit,comm = 0 

T part; = max (Tporttio, TportiAomm) 

Tportijo = 2 * 
N - 1 2lRJt 
-9-z 

4(N - 1)IRlt 
N Nwio N2 . wio 

T 
N-l 

parti,comm = 2 * - * 
W 

N NW 
= W - Wit 

comm N2 * Wcomm 

Finally Tbueket w 0 and the time cost for the Join 
Phase can be computed a8 in TIJ algorithm (Section 
5.2.2). 

4.3 Sensitivity Analysis 
With the model we developed, we are able to do the 
performance sensitivity study for the proposed parallel 
join algorithms under different parameters. The values 
of the parameters we used in our study are listed in 
the following: 

1 q Workload Parameters: 
l Relation size (IRI): 1 million tuples each 
a Tuple size (t): 200 Bytes per tuple 
l Degree of skew (a): varies from 0.1 to 1.0 

2. System Parameters: 
Number of PNs (N): 64 
Memory Capacity (M): 2 MBytes per PN 
CPU processing rate (p): 20 MIPS 
I/O bandwidth (wio): varies from .25 to 4 
MBytes/Second per PN 
Effective communication channel Band- 
width (Wcomm): varies from .25 to 4 
MBytes/Second per PN 
Instruction pathlength (lepu): 1,000 instruc- 
tions 

Among these parameters, we select the degree of data 
skew, disk I/O bandwidth, and communication band- 
width for the sensitivity analysis. 

We note that the I/O bandwidth is set to 4 
MBytes/set which is typical for the industry standard 
SCSI bus. The communication bandwidth for each 
port of the communication network is also set to 4 
MBytes/set to match the data transfer rate of the disk 
controller. We could have set the bandwidth of the 
communication network to a fixed number indepen- 
dent! of the number of PNs in the system. In practice, 
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Figure 4: Skew effect on the parallel join algorithms. 

this is the case for systems using a common bus for 
interprocessor communication. For inst,ance, Tandem 
Nonstop Computer consists of 2 to 16 PNs connect.ed 
by two high-speed SOMb/sec buses [19]. Our model 
represents communication network topologies whose 
bandwidth increases with the increase in the number of 
communication ports. Crossbar switches, multi-stage 
networks are examples of this category* For simplicit,y, 
we assume the effective bandwidth of the communi- 
cation network increases linearly wit,h the number of 
PNs. 

To prevent the processor from becoming a bott,le- 
neck, the processing rate of each PN is set to 20 MIPS 
which is derived as follows: 

p = Iepu ’ y = 2OMIPS 

We present the results of the sensit.ivit,y analysis in t.he 
following subsections. 

4.3.1 Skew Effect 

The three parallel hash join algorithms proposed in 
this papers can be loosely grouped int,o two categories: 
TIJ and ABJ+are skew nuoidnnce lech.niques, whercns 
ABJ is a sbelo resolution melhod. This classificat,ion 
is baaed on the fact that, TIJ and ABJ+maint,ain bal- 
anced data load for each PN a.t all time t,o prevent. t,he 
skew problems. On the other hand, ABJ attempt,s t,o 
resolve the skew problems as they arise. 

The effect of the data skew on the parallel join algo- 
rithms is plotted in Figure 4. The corresponding datsa 
are also given wherein. It, is int.errst,ing t,o obsprvc I.haf. 
the algorithms TIJ and ABJ+are robust against. t,he 
skew effect. Their time costs are constant regradless 
of the degree of skew. Furthermore t,he two algorithms 
share the same performance curve in this study. This is 
due to the fact that I/O operation can be overlapped 
with the data communication process in our model. 
Although ABJ+reduces one round of dat,a transfer in 
the Split Phase aa compared to TTJ, this commllnica- 
tion reduction does not have an effect, on the savings 
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Figure 5: Effect of I/O bandwidth on the parallel join 
algorithms. 

unless the communication network becomes the bottle 
neck in the system (Wan,.,,” < wio). In order to perform 
the sensitivity analysis with respect to the skew effect, 
we designed the perfect parameters (i.e., weomm = wiO) 
to avoid this bottleneck. 

The drawbacks of TIJ and ABJ+are the I/O and 
communication overheads associated with the deferred 
bucket allocation strategies. In TIJ, subbuckets of a 
bucket are temporarily saved at all PNs, and must be 
collected to their appropriate PN later. In ABJ+, the 
subbuckets of a bucket are stored back to the local 
disks during the Split Phase, and must be reloaded 
in order to send them to their final destination. Due 
to these disk I/O and communication overheads, TIJ 
and ABJ+cannot provide savings over GRACE alge 
rithm until d > 45% (i.e., one of the 64 PNs has 2.8% 
of the total tuples) as depicted in Figure 4. Similarly, 
ABJ performs better than TIJ and ABJ+for cr < 60%. 
Since the skew conditions are typically mild for many 
applications, it makes ABJ attractive for some envi- 
ronments. Nevertheless, both GRACE and ABJ are 
sensitive to data skew, the robustness of the TIJ and 
ARJ’against skew conditions makes them uniquely 
appeiiling to highly parallel database systems. 

In comparing ABJ to GRACE, we see that ABJ per- 
forms better for d > 20% (i.e., one of the 64 PNs has 
1.94% of the total tuples). In practice, at the begin- 
ning of the Partition Tuning Phase of ABJ, we can de- 
cide whether to proceed with the tuning process based 
on t.he skew condition. With this extension, it is pos- 
sible t,o implement ABJ to perform at least as well as, 
or brl.ter t,han GR.ACE for any skew condition. 

4.3.2 Effect of I/O Bandwidth 

In the sensitivity study with respect to the degree of 
data skew, we assume that the hardware design is “per- 
fect” - the processors, the I/O subsystems, and the 
communication processors are tuned for the join op- 
eration. In t,his and the following subsection, we are 
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Figure 6: Effect of communication bandwidth on the 
parallel join algorithms. 

interested in an environment that is less than ideal. 
In this subsection, we study how the performance of 
the I/O subsystems can affect the algorithms. In par- 
ticular, how the overhead due to load balancing is re- 
lated to the I/O bandwidth. In order to compare t)he 
three load balancing strategies over a wide range of 
I/O bandwidths, we purposely set the skew condition 
to a large number, namely d = 80%. This means that 
one of the 64 PNs has 7.3% of the total tuples accord- 
ing to our model. The results of this study is ploted 
in Figure 5. The corresponding data are also given 
wherein. 

This study shows that TIJ and ABJ+are the bet- 
ter choices when the I/O bandwidth is low. Further- 
more, the savings due to the 1oa.d balancing strategies 
with respect to GRACE algorithm increases as the I/O 
bandwidth decreases. This suggests that load balanc- 
ing will become even more critical when the perfor- 
mance gap between t,he processor technology and I/O 
technology widen - a phenomenon we are observing 
today. 

Finally, we also observe here that TIJ and 
ABJ+share the same performance curve. This is due 
to the fact that wio < Waft,,, in this sensitivity study. 

4.3.3 Effect of Communication Bandwidth 

We are also interested in the effect of t,he commu- 
nicat,ion bandwidth on the proposed join algorithms. 
Again, we set u = 80% for this sensitivity analysis. 
The results of this study is plot#ed and the correspond- 
ing data are given in Figure 6. 

We observe that ABJ+is the best scheme in 
this st,udy. We also note t,hat, although TTJ and 
ABJ+perform equally well in Figure 4 and Figure 5, 
ABJ+outperforms TIJ in systems with limited com- 
munication capability as shown in Figure 6. From this 
study, it suggests that ABJ+is t,he better approach of 
the two proposed skew avoidance techniques. 
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Finally, comparing Figure 5 to Figure 6 we see that 
load balancing is even more critical in a system with 
limited communication capability than in a system 
with inadequate I/O performance. In Figure 4, we 
made the assumption that the effective bandwidth of 
the communication network increases linearly with the 
number of PNs. This is over optimistic. In practice, 
the rate of increase in communication bandwidth de- 
creases as the number of PNs increases, and we expect 
to see the benefits of the proposed schemes at even 
lower skew conditions than those suggested in Figure 4. 

5 Conclusion 
In this paper, we discussed dynamic load balancing 
strategies for parallel hash join algorithms. In partic- 
ular, we proposed three new parallel hash join strata 
gies. They are categorized as follows: 

1. Skew Resolution Technique: 

l Adaptive Load Balancing Parallel Hash Join 
Algorithm (ABJ) 

2. Skew Avoidance Techniques: 

l Tuple Interleaving Parallel Hash Join Algo- 
rithm (TIJ) 

l Extended Adaptive Load Balancing Parallel 
Bash Join Algorithm (ABJ+) 

We developed a performance model, and did sensi- 
tivity analysis to study the effect of data skew, I/O 
bandwidth, and communication bandwidth on the pro- 
posed schemes. The results of our study indicate that: 

l ABJ algorithm should be used if the degree of 
skew is mild. 

l ABJfalgorithm should be used if the degree of 
skew is significant. 

l TIJ algorithm should be used in lieu of 
ABJtalgorithm if 

1. the relations are very seriously skewed ini- 
tially, and 

2. the communication bandwidth is sufficiently 
large. 

Overall, the proposed schemes are able to provide sav- 
ings over conventional parallel hash-based join algo- 
rithms even at low skew conditions. 

In addition to the comparison results, we also ob- 
served that load balancing is more critical to sys- 
tems with limited I/O and communication capabilities. 
With the cost of communication hardware remains ex- 
pensive, and the performance gap between micropro- 
cessor technology and I/O technology widen rapidly, 
the benefits of the proposed join strategies are evident 
for today’s muhicomputer database management sys- 
tems. 

Finally, although we assumed a barrier synchronyaa- 
tion between join phases in our performance model for 
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simplicity, in practice techniques used in the popular 
Hybrid Hash Join algorithm [20] can be employed to 
overlap the join phases whenever possible, This strat- 
egy is particularly beneficial when the memory capac- 
ity is large. In addition, the concept of cellas described 
in [13] can also be used, in which tuples are organized 
into cells to facilitate the environment for efficient ex- 
ecution of the Best Fit Decreasing algorithm during 
partition tuning. 
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