Handling Data Skew in Multiprocessor Database Computers
Using Partition Tuning

Kien A, Hua

Department of Computer Science
University of Central Florida
Orlando, FL 32816-0362
U.S. A.

Abstract

Shared nothing multiprocessor architecture is known to be
more scalable to support very large databases. Compared
to other join strategies, a hash-based join algorithm is par-
ticularly efficient and easily parallelized for this compu-
tation model. However, this hardware structure is very
sensitive to the data skew problem. Unless the parallel
hash join algorithm includes some load balancing mecha-
nism, skew effect can deteriorate the system performance
severely.

In this paper, we propose two skew avoidance technigues
and one skew resolution method. In particular, three new
parallel hash join algorithms are presented. We developed
an analytical model to study the effectiveness of these algo-
rithms. The performance study indicates that the proposed
techniques offer substantial improvement over the conven-
tional strategies in the presence of data skew. It is also
interesting to observe that the skew avoidance techniques
provide join strategies that are robust against data skew;
where as the skew resolution method offers an adaptive join
strategy that outperforms the conventional algorithms for
any skew condition.

1 Introduction

There are several architectures for designing multipro-
cessor database computers. However, The multicom-
puter model (1], is most popularly used for its scalabil-
ity to support very large databases {2, 3, 4, 5, 6]. The
hardware structure of this computation model con-
sists of a number of processing nodes (PN) intercon-
nected through a communication network. Each PN
has its own private memory and dedicated disk drives.
This architecture is also known as message passing or
shared nothing [7) multiprocessor structure. In this en-
vironment, the relations are typically declustered into
fragments and spreaded across the PNs. Since in this
model each PN processes the portion of the database
on its disks, the degree of parallelism is determined by
the distribution of data in the system. When serious

Proceedings of the 17th International
Conference on Very Large Data Bases

525

Chiang Lee

Institute of Information Engineering
National Cheng Kung University
Tainan, Taiwan, 70101
Republic of China

data skew occurs, balancing the load on all the PNs is
needed to ensure high system performance.

The join operation has been the most intensively
studied among the relational operations for this struc-
ture. Since join operations are generally very expen-
sive, a query optimizer typically defers the join oper-
ations until the data reduction process is performed
by less costly operations, such as selections and pro-
jections. For this reason, the distribution of the input
relations to a join operation is typically hard to pre-
dict. Most likely the data fragments result from the
earlier data reduction operations will vary in size, and
a load balancing mechanism will be necessary to en-
sure the efficient performance of the succeeding join
operation [8].

Several parallel join algorithms have been proposed.
Among them, hash-based algorithms [9, 10] are par-
ticularly suitable for the multicomputer model. In
these strategies the relations are hashed (partitioned)
into buckets, and each bucket is allocated to a distinct
PN. Since tuples of a relation in one bucket are never
joined with tuples of the other relation in other buck-
ets, matching buckets can be joined independently in
parallel by all PNs. The effectiveness of these schemes
depends on the uniformity of the tuple distribution.
Although they have been demonstrated to be very ef-
fective, these techniques do not guarantee the balanced
workload among the local join operations. When se-
vere fluctuation occurs among the bucket sizes, the
skew effect deteriorates the performance of the join
operations. A Buckel Spreading Parallel Hash Join
(BSJ) was introduced in [11] to correct this problem.

Unlike the conventional hash-based join algorithms
that statically assigned the buckets to the PN prior
to the data partitioning process, BSJ algorithm defers
the bucket allocation until the data partitioning pro-
cess is completed. Since the distribution of the data
among the buckets then becomes known, the buckets
can be assigned to the PNs dynamically based on the
hucket sizes to ensure a balanced data load at each PN.
However, when buckets are to be allocated dynami-

Barcelona, September, 1991

cally, the destination of a tuple cannot be determined
during partitioning because “which PN to handle the
tuple” is not assigned yet. BSJ solves this problem
by spreading the original buckets across all PNs, and
collecting them later to the appropriate destinations
just prior to the join operations. To avoid a bottle-
neck during the bucket collection phase, BSJ uses a
special Omega network [12] to ensure that the buckets
evenly spread across all PNs. The implementation of
this switch includes at each switch element, as many
number of counters as there are number of buckets in-
volved. Such a switch design may face two problems.
First, it does not scale well with the rest of the sys-
tem. As the number of PNs increases to support larger
databases, the number of buckets increases causing the
increase in the complexity of the switch elements (i.e.,
need more counters). Even when the system does not
yet have a large number of PNs, the switch element
must have enough number of counters to anticipate
system growth. In other words, the complexity in the
switch design could penalize the smaller system config-
urations. Secondly unless other operations can be de-
signed to take advantage of the data spreading feature
of the functional switch, the complexity in the switch
design may affect the communication performance of
the switch, and consequently the performance of the
whole system. Depending on the transaction mix, it
may not be worthwhile to improve the performance
of joins on the expense of other operations. Finally
the complexity explodes when we consider a multiuser
environment. Managing different sets of counters for
different users becomes quite expensive.

In [13], we proposed an adaptive load balancing
strategy using Parfition Tuning., In this approach, a
relation is organized as a set, of data cells (data frag-
ments), and balanced work load is achieved by reas-
signing data cells from overflow PNs to underflow PNs
using a Best Fit Decreasingstrategy. In this paper, we
discuss the load balancing technique in the context of
join operation. We will introduce three parallel join
algorithms with dynamic load balancing capability us-
ing the partition tuning concept:

1. Tuple Interleaving Parallel Hash Join
(T1J): This scheme is similar to BSJ algorithm.
However, instead of relying on a specially de-
signed switch to maintain uniform bucket spread-
ing across PNs, it uses software control to inter-
leave the tuples among PNs as they are being
gpread to their destinations.

2. Adaptive Load Balancing Parallel Hash
Join (ABJ): This technique introduces an addi-
tional step to the conventional parallel hash join
algorithms [9, 10]. This added process relocates
the excess buckets from the larger PNs to the
smaller PNs attempting to balance the data load
prior to the join operations.

3. Extended Adaptive Load Balancing Paral-
lel Hash Join (ABJ*): In this strategy, each

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

M- & -

Communication i
Communication 7-8 Nerwork @
Network
’ -

QOO -0 ugg %
Shared Bverything (SE) Shared Disk (SD)
Communication

Network
E 1 Memory Module

@ : Processor -
8 : Disk Drive -

Shared Nothing (SN)

Figure 1: Architectures for multiprocessor database
computers.

PN hashes its local portion of the relations into lo-
cal subbuckets. These local subbuckets are stored
back in the local disks. After this partitioning
process is complete, the distribution of the data
in each bucket can be computed. The match-
ing local subbuckets are then collected to their
final destination to form the corresponding buck-
ets. The gathering of the subbuckets are based on
the bucket sizes to ensure balanced work load for
each of the PNs during the join phase.

In the following sections we will describe these algo-
rithms in more details. A performance model will be
introduced and it will be used to compare the perfor-
mance of these strategies.

The rest of this paper is organized as follows. The
design environment and assumptions are described in
Section 2. Some problems in hash-based join strat-
egy is discussed, and the proposed join algorithms are
presented in Section 3. In Section 4, we introduce
an analytical model and discuss the performance com-
parison of the proposed schemes. Finally, we offer our
conclusions in Section 5.

2 System Environment

Basically, there are three different architectures for
multiprocessor database computers: Shared Every-
thing (SE), Shared Disk (SD), and Shared Nothing (SN)
(Figure 1). There has been a lot of debate in the
database management community about which archi-
tecture is most suitable for a database management
system. The coherency control problem limits the
number of processors that can efficiently cooperate in
a SE or a SD system. In a SE system, processors share
a single global memory address space. The shared
memory is typically a physically distributed memory
to accommodate the aggregate demand on the shared

526 Barcelona, September, 1991

memory from a large number of processors. An inter-
connection network is usually used to allow any pro-
cessor to access any memory module. This communi-
cation network, however, increases the memory-access
latency. The performance of conventional processors
is quite sensitive to memory-access latency. If the
memory-access latency exceeds one instruction time,
the processor must idle until the storage cycle com-
pletes. A popular solution to this problem is to have
cache memory with each processor, However, the use
of caches requires a mechanism to ensure cache co-
herency. As we increase the number of processors, the
number of messages due to cache coherency control
(i.e., cross interrogation) increases, Unless this prob-
lem can be solved, scaling a SE system into the range
of hundreds of processors will be impractical. Simi-
larly in a SD system, it is obvious that inter-processor
coherency control is necessitated due to the caching of
the shared database pages in main memory database
buffers. The buffer invalidation problem tends to be
the limiting factor for the size of a SD system.,

In contrast, data coherency control is not a problem
in a SN system. Besides, the processor and memory
are physically localized in a node, and memory-access
latency is not a problem. Nevertheless, SN systems are
very sensitive to the data skew problem [8]. When the
data are seriously skewed, rebalancing the data load
among the PNs is necessary to resume good system
performance.

From the above discussion, it seems that there is no
absolute winner. When the individual processors are
very powerful as in the case of mainframe comput-
ers, since we don't need a lot of processors in order to
achieve the required performance level a small num-
ber of very high performance processors can be inter-
connected in a shared memory structure to avoid the
communication overhead and the data skew problems
(e.g., IBM 3090 Model 600). On the other hand if the
applications demand a performance level far exceed-
ing the capability of typical mainframe systems, then
a microprocessor-based SN structure offers a solution
for handling very large databases (e.g., iPSC/2 version
of GAMMA (3], NonStop SQL {4}, [5], Super Database
Computer (SDC) [11], DBC/1024 [6]). In this paper
we assume the latter environment and discuss dynamic
load balancing strategies for parallel join operations in
these systems. We would like to note that a combina-
tion of the three generic parallel architectures can also
be employed to benefit from the advantages of each
scheme. One such hybrid structure was discussed in-
dependently in {14] and [11].

3 New Parallel Hash Join Algo-
rithms

There are two major problems associated with hash-
based parallel join algorithms:

1. Bucket overflow: In hash-based join algorithms,
the size of each bucket should be smaller than the

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

527

memoty capacity. However, nonuniform distribu-
tion of the join attribute values occasionally gen-
erates buckel overflow, in which the sizes of the
buckets exceed the memory capacity. The perfor-
mance diminishes because it requires extra I/O to
repartition the buckets into smaller fragments so
that each will fit in the memory.

2. Data skew: The performance of the conventional
parallel hash join algorithms relies on the random-
izing hash function to redistribute the tuples of
the join relations evenly across all PNs in the sys-
tem. Their performance degrades when the join
attribute values of the relations are non-uniformly
distributed [9, 8, 15]. This phenomenon is known
as the data skew problem, in which some PNs have
significantly more tuples than the remaining PNs.

To overcome the bucket overflow problem, Hybrid
Hash Join [10] uses a second hash function, hj, to
stream the overflow tuples to a temporary file on disk.
In other words, hy redistributes the overflow bucket
between an in-memory hash table and overflow buck-
ets on disk. GRACE Hash Join [9] tries to avoid the
bucket overflow problem by splitting the relations into
a large number of smaller buckets, and then these small
buckets are combined into buckets to fit the memory
capacity. This process is referred to as bucket tun-
ing in [9]. Although these conventional parallel hash
join algorithms effectively resolves the bucket overflow
problem, no mechanism is provided to avoid the data
skew effect. This problem is addressed in the Bucket
Spreading Parallel Hash Join (BSJ) algorithm [11] by
deferring the bucket allocation process until after the
data partitioning procedure is completed. The delay
allows the buckets to be allocated to PNs based on
the bucket sizes to ensure a balanced data load in the
system.

BSJ algorithm provides an effective parallel algo-
rithm for performing join under skew conditions. This
scheme, however, requires an expensive specially de-
signed network to support the bucket spreading mech-
anism. As discussed in Section 1, the additional com-
plexity in the communication network may also cause
the following problems:

1. Tt does not scale well with the rest of the system.

2. It could degrade the communication performance
of the network.

In this section we present three new efficient al-
gorithms that require only conventional hardware.
Therefore, they are immediately applicable to many
existing parallel database computers.

3.1 Tuple Interleaving Parallel Hash
Join

The purpose of the special hardware used in [11] is to

ensure the uniform distribution of each bucket across

all PNs. Alternatively, the bucket spreading effect can
be achieved by software control. One way to achieve

Barcelona, September, 1991

the uniform bucket distribution effect is to send each
tuple to the PN currently containing the smallest sub-
bucket among all the subbuckets of its bucket. Thus
to determine the destination of a tuple, each PN has
to keeps track of data distribution on every PN. As
criticized in [11], this approach would require a high
volume of data transfer between PNs, resulting in con-
siderable performance degradation. For this reason,
a highly functional Omega network is used in [11] to
resolve the problem. Alternatively, this problem can
be avoided by having each PN interleaving the tuples
among the PNs as they were spread out from a bucket.
This tuple interleaving strategy is described in more
details in the Tuple Interleaving Parallel Hash Join
(T1J) algorithm given below.

1. Split Phase: R and then S are partitioned in par-
allel. Each PN independently divides its partition
of each of the relations R and S stored therein into
p buckets where p is considerably larger than the
number of PNs in the system. During this parti-
tioning process, tuples belonging to each of these
buckets are spread across the PNs. The spread-
ing is done by interleaving the consecutive tuples
from each bucket among the PNs in the system.
For each PN, the ith tuple of a bucket is sent to the
(((i—1) mod N)+1)th PN, where N is the number
of PNs in the system. Since this spreading strat-
egy guarantees that each bucket is spread evenly
among PNs, the N subbuckets of each bucket such
derived, therefore, should he uniform in size.

2. Bucket Tuning Phase: Since buckets are dis-
tributed evenly among the PNs, the distribution
of subbuckets in each PN is representative of the
distribution of buckets among all PNs. There-
fore a predetermined coordinating PN can decide
how to tune the size of buckets to fit the mem-
ory capacity based only on its local distribution
of subbuckets. The remaining PNs can then tune
their subbuckets accordingly as directed by the
coordinator.

3. Partition Tuning Phase: The coordinating PN
groups the buckets into N equal partitions, and
allocates each partition to a distinct PN. The
bucket-to-PN mapping information is then broad-
cast to all the remaining PNs. Fach PN then
forms its partition by sending and receiving tuples
as directed in the mapping information. Even af-
ter bucket size tuning, the buckets vary slightly
in size. To reduce the effect of this nonunifor-
mity, we can sort the buckets according to size.
Then the sorted buckets are allocated to the PNs
in a round-robin fashion {11]. In the case that
the buckets vary greatly in size, a partition tun-
ing strategy as described in [13] can be employed,
in which the tuning algorithm is performed by
first sorting in descending order the bucket ac-
cording to size. The buckets are then allocated to
the PNs in the sorted order. The assignment is
done by allocating the currently largest buckets in

Proceedings of the 17th Intemnational
Conference on Very Large Data Bases

the sorted list to the currently smallest PN, The
bucket is then removed from the list. This pro-
cess i8 repeated until the sorted list is exhausted.
Hereafter, we will refer to this process as the Best
Fit Decreasing strategy.

4. Join Phase: Each PN performs the local joins of
respectively matching buckets.

We note that TIJ algorithm is a variation of the BSJ
algorithm originally proposed in [11]. Except for the
Split Phase, the remaining three phases of T1J are sim-
ilar to the corresponding steps in the BSJ algorithm.
Our bucket spreading strategy employs software con-
trol at each PN instead of using special hardware as
proposed in the original BSJ algorithm. The overhead
associated with the software control is essentially neg-
ligible. For instance, a simple round-robin strategy 1s
sufficient to keep track of the next destination for each
bucket in a PN. This mechanism can also be imple-
mented in hardware by providing a simple spreading
processor at each of the input to the communication
network. This spreading processor maintains a set of
round-robin counters, one for each bucket involved.
When a tuple is received by the spreading processor,
the content of the round-robin counter is used as the
destination for the tuple transfer. The counter is then
incremented by one (modulo N, where N is the num-
ber of PNs). Comparing this scheme to the hardware
design proposed in [11], we see two advantages. First,
the number of counters used in the proposed scheme
is proportional to N; whereas the complexity of the
scheme proposed in {11) is O(N log N). Second, decou-
pling the complexity of the bucket spreading hardware
from the communication media is a good idea to main-
tain the high communication throughput for all oper-
ations. An alternative to this design is to emulate the
round-robin mechanism in the communication proces-
sor at each PN. Most today’s communication processor
should be capable of performing this additional simple
task without becoming a bottleneck in the system.

We note also that the data transfer as described in
the TIJ algorithm does not have to be performed at
the tuple level. In practice, each PN maintains N out-
going buffers. Tuples belonging to the same destina-
tion are piggybacked to the same buffer, and the buffer
is sent to its destination when it is full. In addition,
if an appropriate network (e.g., Omega) is used the
transfer of buffers can be synchronized to follow the
cyclic shift pattern [16] in order to avoid access con-
flict. The four possible cyclic shift patterns for a 4-PN
system is depicted in Figure 2.

Furthermore, if the system is designed for a mul-
tiuser environment it is advantageous to employ a
partitionable communication network [17] (e.g., mul-
tistage shuffle-exchange networks) so that the system
can be reconfigured dynamically into smaller “inde-
pendent” parallel engines to serve different queries if
necessary, In such an environment, not all base rela-
tions are large; smaller relations need to store on fewer

528 Barcelona, September, 1991

DESTINATIONS DESTINATIONY DESTINATIONS DESTINATIONY
SOURCES OURCES SOURCRS SOURCES
No Shift One-Shift Two-Shift Thres-Shift

Figure 2: Cyclic shift patterns.
.
OROWP |
\
”
arour 2
-

Figure 3: Cube network of size eight partitioned into
two subnetworks of sizes four.

PNs only to reduce the skew effect and communication
overhead. They are assigned to the PNs in such a way
to take advantages of the partitioning properties of the
communication network. Similarly for non-base rela-
tions, the intermediate operations can be centralized
to as little or to as great an extent as is appropriate
to maximize the system throughput. These individual
operators can be scheduled to run on diflerent parti-
tions of the hardware in order to eliminate network
contention among concurrent queries. In addition, the
data transmission due to an individual query is syn-
chronized within a hardware partition to follow a cyclic
shift pattern {16] in order to avoid regional access con-
flict. For example, Figure 3 shows a cube network
of size eight partitioned into two independent subnet-
works. The first group consists of PNs connected to
ports 0 to 3. The second group consists of PNs con-
nected to ports 4 to 7. Since the original network sup-
ports the cyclic shift permutations without conflicts,
the partitioning properties of the cube network guar-
antee that each of the two subnetworks will have all
the connection properties of a cube network including
the eyclic shift communication patterns. In a mul-
tiuser environment, we are concerned about system
throughput in addition to response times. The use
of & partitionable network reduces network contention
among concurrent queries, and consequently improves
the throughput of the multiprocessor system.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

3.2 Adaptive Load Balancing Parallel
Hash Join

A major advantage of the TIJ algorithm is that the
work load is very balanced at each PN for all phases of
the algorithm. A drawback of this strategy, however,
lies in the fact that it shuffles the whole tuple space
entirely during their load balancing process regardless
of the degree of data skew. When the skew condition is
mild, this strategy tends to result in unnecessary com-
munication and computation overhead. The Adaptive
Load Balancing Parallel Hash Join (ABJ) algorithm
given in the following addresses this problem.

1. Split Phase: R and then S are partitioned into a
large number of buckets in parallel. Each bucket
is statically allocated to a PN as in GRACE Hash
Join algorithm. Each tuple in a bucket is collected
to the corresponding PN through the interconnec-
tion network.

2. Partition Tuning Phase: This phase consists
of two stages.

(a) Bucket Retaining Stage: For each rela-
tion, each PN; retains n buckets using some
best-fit strategy so that their aggregated size
satisfies the following condition:

n+1

A
0,4
J=1

where |A| is the size of the corresponding re-
lation, and |By;]| is the size of the jth bucket
of PN;. The remaining buckets not retained
in this stage are termed the excess buckels.

(b) Bucket Relocating Stage: Each PN re-
ports its size and the size of the excess buck-
ets to a designated coordinating PN, The co-
ordinator then use these information to real-
locate the excess buckets to the underflow
PNs using the Best Fit Decreasing strategy
described in the last subsection. Once the
destination of the excess buckets has been
determined, this information is broadcast to
the PNs, and the excess buckets are physi-
cally collected by the PNs accordingly.

3. Bucket Tuning Phase: Each PN combines the
small buckets to form more optimal size join buck-
ets.

n

|4
> 1Bl < 5 and
j=1 N

4. Join Phase: Each PN performs the local joins of
respectively matching buckets.

We note in the Bucket Retaining Stage that each
PN should try to retain the larger buckets since the
Best Fit Decreasing Strategy employed by the follow-
ing Bucket Relocation Stage works better with smaller
buckets, Comparing the Bucket Relocating Stage of
this algorithm with the Partition Tuning Phase of the
TI1J algorithm, we see that the former attempts to
keep the data transfer to minimal, whereas the lat-
ter strategy shuffles on average %5—‘- of the tuples of

529 Barcelona, September, 1991

each relation. When the skew condition is mild, the
number of tuples at each PN varies very slightly and
only little data movement will be needed during the
Bucket Relocating Phase of the ABJ algorithm. In
this sense, ABJ is capable of adapting dynamically to
the degree of skew. For this reason, we call this strat-
egy Adaptive Load Balancing Parallel Join algorithm.
Since the skew conditions are typically mild (that is
why the conventional hash join algorithms are so ef-
fective e.g., GRACE Hash Join, Hybrid Hash Join),
we expect the proposed ABJ algorithm to have good
performance for many applications.

3.3 Extended Adaptive Load Balanc-
ing Parallel Hash Join

When the skew condition is serious, disk overflow may
occur during the Split Phase of the ABJ strategy. In
addition, the severe skew condition causes the trans-
fer of tuples concentrate on the skewed PN resulting
in communication hot spot. Moreover, it further de-
grades the performance since these excess tuples must
be reallocated to the underflow PNs during the Par-
tition Tuning Phase. The Ezrtended Adaptive Load
Balancing Parallel Hash Join (ABJ*) algorithm pre-
sented in this subsection corrects this problem by de-
ferring the tuple transfer until the Partition Tuning
Phase. The details of the algorithm is outlined hellow.

1. Split Phase: Each PN partitions its portion of
each relation into considerably small subbuckets.
Each subbucket is stored back in the local disks
(no disk overflow).

2. Partition tuning: Each PN reports the sizes of
its subbuckets to a designated coordinating PN.
The coordinator adds up the sizes of the match-
ing subbuckets distributed across the PNs to de-
rive the sizes of the corresponding buckets. The
coordinator then allocates the buckets to the PNs
using the following strategy:

(a) The buckets are sorted into descending order
according to their sizes.

(b) The buckets are then allocated to the PNs
in the sorted order. For each bucket, it is
assigned to the PN with the largest matching
subbucket among the qualified PNs! in order
to minimize communication overhead. The
size of that PN is then updated to reflect the
addition of the new bucket. When the size
of a PN satisfies the following condition:

n+l

Al
> 181> I
i=1

where |A| is the size of the corresponding re-
lation, and |By;] is the size of the jth bucket
of PNy, it is disqualified from consideration
for any further bucket allocation.

n

%y
E |Bij| £ == and
i=1 N

1PNs which have a matching subbucket

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

530

This iterative process continues until all buckets
are allocated. Once this process is complete, the
allocation information is broadcast to all PNs,
and the subbuckets are physically collected ac-
cordingly to their respective destination to form
the corresponding local buckets.

3. Bucket Tuning Phase: Each PN combines the
small buckets to form more optimal size (i.e., fit
the memory capacity) join buckets.

4. Join Phase; Each PN performs the local joins of
respectively matching buckets.

We note in this strategy that no tuple travels across
a PN boundary more than once during the entire algo-
rithm. Furthermore, it takes advantage of the already
balanced portion of the tuple space to minimize the
disk 1/0 and communication overheads. In this sense,
it is capable of adapting dynamically to the current
condition of the tuple distribution in the system.

4 Performance Analysis

In this section, we develop an analytical model for
the four parallel join algorithms: T1J, ABJ, ABJ *and
GRACE. First we describe the performance model,
and present the cost function for each of the join algo-
rithms. These cost functions are then used to perform
sensitivity analysis with respect to three parameters:
degree of data skew, I/O bandwidth, and communi-
cation bandwidth. In this paper, GRACE algorithm
which does not handle skew problems is used as the ref-
erence for the comparison of the three proposed tech-
niques.

4.1 Performance Model

The following parameters are designed for cost evalu-
ation. They are similar to those used in (8].

¢ Workload Parameters:

|Rl: Relation size in tuples for each of the joining
relations.

|P,|: Size in tuples of the skewed partition,

|Py|: Size in tuples of each of the remaining
unskewed partitions.

o: The degree of data skew which is defined as

t: Size in bytes of each tuple.
e System Parameters:
N: Number of PNs in the system.
M: Memory capacity in bytes for each PN.

p: CPU processing rate in million-instructions-
per-second (MIPS).

wiot 1/0 bandwidth between a processor and its
secondary storage.

Weomm: Effective communication channel band-
width per PN.

Barcelona, September, 1991

Iepus CPU pathlength for processing a tuple in
any step of the join operation.

. Measurgment Parameters
Typiirs Time cost in seconds due to a Split Phase.
Tpartit Time cost in seconds due to a Partition
Tuning Phase.
Tyucker: Time cost in seconds due to a Bucket
Tuning Phase.

Tjsint Time cost in seconds due to a Join Phase.

Tspiit_iot Time cost in seconds for disk accesses
during a Split Phase.

T,ptit_cput Time cost in seconds for processing tu-
ples during a Split Phase.

Tsptit_comm? Time cost in seconds for transferring
data among PNs during a Split Phase.
Tpartiiot Time cost in seconds for disk accesses

during a Partition Tuning Phase.
Toarti_comm? Time cost in seconds for transferring
data among PNs during a Partition Tuning
Phase.
Tjoin_nasnt Time cost is seconds for building a
hash table for a bucket in memory.

Tjoin_probet Time cost in seconds for probing the
in-memory hash table using tuples from the
matching bucket.

Trrs: Time cost in seconds for joining two rela-
tions using the TIJ algorithm.

T4ps: Time cost in seconds for joining two rela-
tions using the ABJ algorithm.

Tpaps+: Time cost in seconds for joining two re-
lations using the ABJ*+algorithm.

Tgracet Time cost in seconds for joining two re-
lations using the GRACE Hash Join algo-
rithm.

In this study, the system environment as described
in Section 2 is assumed. we assume that initially both
relations are horizontally partitioned and evenly dis-
tributed among the PNs (i.e., the sizes of all partitions
of a relation are equal). In the join operation, we fur-
ther assume that under the skew condition the rela-
tions are evenly distributed among all PNs, except one
(i.e., The skewed PN) which has excess data. In other
words, for each of the joining relations the skewed PN
has ¢ x 100% more tuples than each of the remaining
PNs. o is called the degree of skew, and it has value
ranging between 0 and 1. This assumption is based on
the fact that the most seriously skewed PN constitutes
the bottleneck in our shared nothing environment. It
dictates the performance of the parallel execution re-
gardless of those less severely skewed PNs. Therefore,
it is sufficient to assume a single skewed PN for our
purpose. Based on this assumption, we thus have:

R
[Pl = 1+TT7'L-‘4('1)
. 1-0)|R
|Pul = 13 %W—J'(_I_S-ax -0

[Pl + (N = 1)|Pu| = |R| =

Proceedings of the 17th International
Conference on Very Large Data Bases

| Pyland |Fyiderived here will be used in the following
subsections to compute the time costs for the parallel
Jjoin algorithms.,

4.2 Cost Functions

In this subsection, we present the cost functions for
the join algorithms based on the described architecture
and workload. Since partial overlap can exist between
the phases of the join algorithms, the total join cost,
Tiotat is bounded by:

m&x(Tphau-l) Tphau-% v ’Tphau.n) < Tiotat
S Tphau-l + Tpha:e-z +-+ Tphaae.n

Where max represents the maximum function. Sim-
ilarly, each phase consists of several steps (disk ac-
cesses, tuple processing, communication). Overlap-
ping of those steps is also achievable. A performance
upper bound and lower bounds for the phases can be
derived accordingly. In our study, we made the follow-
ing assumptions:

o The overlap within each phase is perfect. The
system is assumed to include a separate I/O pro-
cessor and a separate communication processor
which allow the overlap among disk 1/0, CPU
computation, and data communication [5].

o The overlap between two phases is not allowed.
That is, a simple barrier type synchronization [18]
is used between the phases to guarantee the cor-
rect parallel execution.

Therefore, the join time can be computed as:
Tiotal = Tphau-I + Tphau-? +.-+ Tphnu..n
4,2.1 Time Cost for GRACE Hash Join

GRACE Parallel Hash Join consists of two distinct
phases. Its cost is computed below:

TeracE = Toplit + Tjoin

T.«plit = max(Tapli!.t'm T:ph't.cpm Taph’t.comm)

2|R| t | 2|P,Jt
Tcplit-io = —% . :; + ‘I‘)‘,:l
2|R| I
T’Plit-cpu = —l]—v-l- . _%ﬂ

N-2 2|R 1
Taplit-comm = (2|Pn|+ N . LII) *

Weomm

Tioin = [%" (Tjoinnash + Tjoinprobe)
Tjoinhash = max (%, AT'!. , [gﬁg)

Tjoinprobe = Max (—A:[—o, Atl—) _I_sz_“)

= fon= [BE] o (3 5 222)]

531 Barcelona, September, 1991

4.2.2 Time Cost for Tuple Interleaving Paral-
lel Hash Join Algorithms

computed below:

Trrs = Typtit + Tparti + Toucker + Tjoin

Taph't = max (Tsplit.ioyTapIit-cpmTaph't.comm)

2|RJt 2|R| I
Toptitso =2 (-N-w:) Taptitocpu = N -%‘-‘-
- _, N=1 _2RE _ 4N - DIR
split.comm = N chomm ~ N2 - Weomm

Tbucket =0

Tpartt’ = max (T,'parﬁ_io, T_nartigcomm,)

N-1 2Rl _ 4(N 1R}t

Toartise = 2 - -
partiso 2 N Nw.'o B o
Tyors o N-1 _2R{t _ 4N~ 1)|R}
parti_comm = N chomm = e —
Rit
Tiom = "—"‘"'AL - ‘M.] ' (noin.haah + Tjain.probe)
Tjoinhash = Max (-Ai, M. &’_“.)
Wio 1 u
M M I
Tjot’n.probe = max (;;':, -—t- . CZ“)
T |Rlt M M L
= T}Otn"z'[m +max ;—i:‘ —t-. “

4.2.3 Time Cost for Adaptive Load Balancing
Parallel Hash Join Algorithm

ABJ algorithm consists of four phases. Its time cost is
computed below:

TaBs = Typiis + Tparti + Thucker + Tjoin

T.yph’t = max (Taph‘t-:'ou Taplit..cpu \ TAplit..ccmm)

ARt 2Pt AR| I
Taplit.}'o = m + —;-i_:_— Tapli!-cpu = -N'l' : "C;};‘li

Taplit.comm =

N-1 2R
{T'T+ [2“"""

L 2R } t
N Weomm

N

Tparti = max(TpartiJa\ Tpart:’.comm)
N-1 1
Wio

Tparh’..io = N (lPa‘ - ‘Pu” '
N-1 t
Tparti.camm = _]V__ : (Ile -~ ’Pul) . m

As in TIJ algorithm, we let Ty,crer = 0. Also, the
time cost for the Join Phase, Tj4in. is the same as that
of T1J algorithm (Section 5.2.2).

Proceedings of the 17th Intemnational
Conference on Very Large Data Bases

4.2.4 Time Cost for Extended Adaptive Load
Balancing Parallel Hash Join Algorithm

ARI+alearithm nan
ADe SIgOTiv COnNsi

is computed below:

Taps+ = Tiptit + Tparti + Toucket + Tjoin

L}
&

o o~
o U

Tsph'l = max (Taph't_io; T:plit.cpuynplit.comm)

2|Rt 2|R| I
T:ph’t_a'o =2 (m) Taph't_cpu = -TV- . -i;ﬁ

T;ph't_comm =0

Tparti = max (Tparh‘_io, Tpcrﬁ.r.omm)

N =1 2[Rt _ 4N - 1)|R}
N Nw.-,, - N3. Wio

N-1 2Rt 4(N - 1)|R}t
N Nweomm = N? . weomm

Finally Thyeker = 0 and the time cost for the Join
Phase can be computed as in TIJ algorithm (Section
5.2.2).

Tparﬁ.»‘o =2

Tparti-comm =2

4.3 Sensitivity Analysis

With the model we developed, we are able to do the
performance sensitivity study for the proposed parallel
Join algorithms under different parameters. The values
of the parameters we used in our study are listed in
the following:

1. Workload Parameters:

¢ Relation size (JR]): 1 million tuples each

e Tuple size (t): 200 Bytes per tuple

o Degree of skew (o): varies from 0.1 to 1.0

2. System Parameters:

o Number of PNs (N): 64

e Memory Capacity (M): 2 MBytes per PN

e CPU processing rate (u): 20 MIPS

e I/O bandwidth (wi,): varies from .25 to 4
MBytes/Second per PN

o Effective communication channel Band-
width (wcomm): varies from .25 to 4
MBytes/Second per PN

e Instruction pathlength (Zpy): 1,000 instruc-
tions

Among these parameters, we select the degree of data
skew, disk I/O bandwidth, and communication band-
width for the sensitivity analysis.

We note that the I/O bandwidth is set to 4
MBytes/sec which is typical for the industry standard
SCSI bus. The communication bandwidth for each
port of the communication network is also set to 4
MBytes/sec to match the data transfer rate of the disk
controller. We could have set the bandwidth of the
communication network to a fixed number indepen-
dent of the number of PNs in the system. In practice,

532 Barcelona, September, 1991

Join Cost “

(Second) f
24 Number of Proceasor = 64 / .
n 1O = 64 X 4MBytos/sec /

kation = 4 /
20 Communication = 64 X 4 MBytca/sec [am
18 !
16 !
4
12
10

TU & ABS

-
-

01 02 03 04 05 06 07 08 0% 10
Degree of Skew

Figure 4: Skew effect on the parallel join algorithms.

this is the case for systems using a common bus for
interprocessor communication. For instance, Tandem
NonStop Computer consists of 2 to 16 PNs connected
by two high-speed 20Mb/sec buses {19]. Our model
represents communication network topologies whose
bandwidth increases with the increase in the number of
communication ports. Crossbar switches, multi-stage
networks are examples of this category. For simplicity,
we assume the effective bandwidth of the communi-

cation network increases linearly with the number of
PNs.

To prevent the processor from becoming a bottle-
neck, the processing rate of each PN is set to 20 MIPS
which is derived as follows:

p=Ipy - “’—t'- = 20MIPS
We present the results of the sensitivity analysis in the
following subsections.

4.3.1 Skew Effect

The three parallel hash join algorithms proposed in
this papers can be loosely grouped into two categories:
TIJ and ABJ+are skew avoidance techniques, whereas
ABIJ is a skew resolution methad. This classification
is based on the fact that TIJ and ABJ*maintain bal-
anced data load for each PN at all time to prevent the
skew problems. On the other hand, ABJ attempts to
resolve the skew problems as they arise,

The effect of the data skew on the parallel join algo-
rithms is plotted in Figure 4. The corresponding data
are also given wherein. It is interesting to observe that
the algorithms TIJ and ABJtare robust against the
skew effect. Their time costs are constant regradless
of the degree of skew. Furthermore the two algorithms
share the same performance curve in this study. This is
due to the fact that I/O operation can be overlapped
with the data communication process in our model.
Although ABJ*reduces one round of data transfer in
the Split Phase as compared to TIJ, this communica-
tion reduction does not have an effect on the savings

Proceedings of the 17th International
Conference on Very Large Data Bases

Join Cost “
(Second)
120

110

Number of Procassor = 64
\ Communication = 64 X 4 MBytas/sec
Degree of Skew = 80%

Ry
— T
10 S —

0 2B S0 75 10 1S 20 25 30 35 40
/O Bandwidth (MBy1es/Sec)

Figure 5: Effect of I/O bandwidth on the parallel join
algorithms.

unless the communication network becomes the bottle
neck in the system (weomm < wio). In order to perform
the sensitivity analysis with respect to the skew effect,
we designed the perfect parameters (i.e., Weomm = Wio)
to avoid this bottleneck.

The drawbacks of TIJ and ABJtare the I/O and
communication overheads associated with the deferred
bucket allocation strategies. In TIJ, subbuckets of a
bucket are temporarily saved at all PNs, and must be
collected to their appropriate PN later. In ABJ*, the
subbuckets of a bucket are stored back to the local
disks during the Split Phase, and must be reloaded
in order to send them to their final destination. Due
to these disk I/O and communication overheads, T1J
and ABJ*cannot provide savings over GRACE algo-
rithm until ¢ > 45% (i.e., one of the 64 PNs has 2.8%
of the total tuples) as depicted in Figure 4. Similarly,
ABJ performs better than TI1J and ABJtfor ¢ < 60%.
Since the skew conditions are typically mild for many
applications, it makes ABJ attractive for some envi-
ronments. Nevertheless, both GRACE and ABJ are
sensitive to data skew, the robustness of the TIJ and
ABJ*against skew conditions makes them uniquely
appedling to highly parallel database systems.

In comparing ABJ to GRACE, we see that ABJ per-
forms better for ¢ > 20% (i.e., one of the 64 PNs has
1.94% of the total tuples). In practice, at the begin-
ning of the Partition Tuning Phase of ABJ, we can de-
cide whether to proceed with the tuning process based
on the skew condition. With this extension, it is pos-
sible to implement ABJ to perform at least as well as,
or better than GRACE for any skew condition.

4,3.2 Effect of I/O Bandwidth

In the sensitivity study with respect to the degree of
data skew, we assume that the hardware design is “per-
fect” - the processors, the /O subsystems, and the
communication processors are tuned for the join op-
eration, In this and the following subsection, we are

533 Barcelona, September, 1991

Join Cost 4\

(Second)
120 !
110 ORACE\ § Number of Processor = 64
(A VO Bandwidth.» 64 X 4 MBytes/sec
100 Degree of Skew = 80%
[} R "

0 2% S0 75 10 15 20 25 30 35 40
Communication Bandwidth (MBytes/Sec)

Figure 6: Effect of communication bandwidth on the
paralle] join algorithms.

interested in an environment that is less than ideal.
In this subsection, we study how the performance of
the I/O subsystems can affect the algorithms. In par-
ticular, how the overhead due to load balancing is re-
lated to the I/O bandwidth. In order to compare the
three load balancing strategies over a wide range of
I/O bandwidths, we purposely set the skew condition
to a large number, namely ¢ = 80%. This means that
one of the 64 PNs has 7.3% of the total tuples accord-
ing to our model. The results of this study is ploted
in Figure 5. The corresponding data are also given
wherein.

This study shows that TIJ] and ABJ%*are the bet-
ter choices when the I/O bandwidth is low. Further-
more, the savings due to the load balancing strategies
with respect to GRACE algorithm increases as the I/O
bandwidth decreases. This suggests that load balanc-
ing will become even more critical when the perfor-
mance gap between the processor technology and 1/0
technology widen - a phenomenon we are observing
today.

Finally, we also observe here that TIJ and
ABJ%share the same performance curve. This is due
to the fact that wio < Weomm in this sensitivity study.

4.3.3 Effect of Communication Bandwidth

We are also interested in the effect of the commu-
nication bandwidth on the proposed join algorithms.
Again, we set ¢ = 80% for this sensitivity analysis.
The results of this study is ploted and the correspond-
ing data are given in Figure 6.

We observe that ABJ*is the best scheme in
this study. We also note that although TIJ and
ABJ*perform equally well in Fignre 4 and Figure 5,
ABJ*outperforms TIJ in systems with limited com-
munication capability as shown in Figure 6. From this
study, it suggests that ABJ*is the better approach of
the two proposed skew avoidance techniques.

Proceedings of the 17th Intemnational
Conference on Very Large Data Bases

534

Finally, comparing Figure 5 to Figure 6 we see that
load balancing is even more critical in a system with
limited communication capability than in a system
with inadequate I/O performance. In Figure 4, we
made the assumption that the effective bandwidth of
the communication network increases linearly with the
number of PNs. This is over optimistic. In practice,
the rate of increase in communication bandwidth de-
creases as the number of PNs increases, and we expect
to see the benefits of the proposed schemes at even
lower skew conditions than those suggested in Figure 4.

5 Conclusion

In this paper, we discussed dynamic load balancing
strategies for parallel hash join algorithms. In partic-
ular, we proposed three new paralle] hash join strate-
gies. They are categorized as follows:

1. Skew Resolution Technique:

e Adapiive Load Balancing Parallel Hash Join
Algorithm (ABJ)

2. Skew Avoidance Techniques:

o Tuple Interleaving Parallel Hash Join Algo-
rithm (T1J)

o Ertended Adaptive Load Balancing Parallel
Hash Join Algorithm (ABJ*)

We developed a performance model, and did sensi-
tivity analysis to study the effect of data skew, I/O
bandwidth, and communication bandwidth on the pro-
posed schemes. The results of our study indicate that:

o ABIJ algorithm should be used if the degree of
skew is mild.

o ABJtalgorithm should be used if the degree of
skew is significant,

e TIJ algorithm should be used in lieu of
ABlJ*algorithm if

1. the relations are very seriously skewed ini-
tially, and

2. the communication bandwidth is sufficiently
large.

Overall, the proposed schemes are able to provide sav-
ings over conventional parallel hash-based join algo-
rithms even at low skew conditions.

In addition to the comparison results, we also ob-
served that load balancing is more critical to sys-
tems with limited I/O and communication capabilities.
With the cost of communication hardware remains ex-
pensive, and the performance gap between micropro-
cessor technology and 1/O technology widen rapidly,
the henefits of the proposed join strategies are evident
for today's multicomputer database management sys-
tems.

Finally, although we assumed a barrier synchronyza-
tion between join phases in our performance model for

Barcelona, September, 1991

simplicity, in practice techniques used in the popular
Hybrid Hash Join algorithm [20] can be employed to
overlap the join phases whenever possible. This strat-
egy is particularly beneficial when the memory capac-
ity is large. In addition, the concept of cellas described
in [13] can also be used, in which tuples are organized
into cells to facilitate the environment for efficient ex-
ecution of the Best Fit Decreasing algorithm during
partition tuning.

[10] D. A. Schneider and D. J. DeWitt. A perfor-
mance evaluation of four parallel join algorithms
in a shared-nothing multiprocessor environment.
In Proceedings of the SIGMOD Conference, pages
110-121, 1989.

[11] M. Kitsuregawa and Yasushi Ogawa. Bucket

spreading parallel hash: A new, robust, paral-

lel hash join method for data skew in the su-

References

{1] Danial A. Reed and Richard M. Fujimoto. Multi-
computer Networks: Message-Based Parallel Pro-
cessing. Scientific Computation. MIT Press, 1987,

[2] H. Boral, W. Alexander, L. Clay, G, Copeland,
S. Danforth, M. Franklin, B. Hart, M. Smith, and
P. Valduriez. Prototyping bubba, a highly parallel
database system. JEEE Transactions on Knowl-
edge and Data Engineering, 2(1):4-24, 1990.

[3] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schnei-
der, A. Bricker, H.-I Hsiao, and R. Rasmussen.
The gamma database machine project. JEEE
Transaclions on Knowledge and Data Engineer-
ing, 2(1):44-62, 1990.

[4] Susanne Englert, Jim Gray, Terry Kocher, and
Praful Shah. A benchmark of nonstop sql release
2 demonstrating near-linear speedup and scaleup
on large databases. Technical Report 89.4, Tan-
dem Computer Inc., 1989,

(5] Kien A. Hua and Honesty C.Young. Designing a
highly parallel database server using off-the-shelf
components. In Proceedings of The Inlernational
Computer Symposium, Hsinchu, Taiwan, Decem-
ber 1990,

[6) Teradata Corporation, Los Angesles, Calafornia.
Teradata DBC/1012 Dala Base Computer Con-
cepls and Facilities, release 3.1 edition, 1988, Ter-
adata Document C02-0001-05.

(7] M. Stonebraker. The case for shared nothing.

(12]

13]

(14]

(15}

[16]

(17]

(18]

per database computer (sdc). In Proceedings
of 16th International Conference on Very Large
Datla Bases, pages 210-221, Brisbane, Australia,
August 1990.

D. H. Lawrie. Access and alignment of data in an
array processor. IEEE Transaction on Compul-
ers, ¢-24(12):1145-1155, December 1975.

Kien A. Hua and Chiang Lee. An adaptive data
place scheme for parallel database computer sys-
tems. In Proceedings of 16th Inilernational Con-
ference on Very Large Datla Bases, pages 493-506,
Brisbane, Australia, August 1990.

Kien A. Hua, Chiang Lee, and Jih-Kwon Peir. A
high-performance hybrid architecture for concur-
rent query execution. In Proceedings of Sympo-
sium on Parallel and Distributed Processing, Dal-
las, Texas, December 1990.

S. Lakshmi and P. S. Yu. Limiting factors of join
performance on parallel processors. In Proceed-
ings of 5th International Conference on Data En-
gineering, pages 488-496, 1989.

Jacques Lenfant. Paralle] permutations of data:
A benes network control algorithm for frequently
used permutations. JEEE Transaction on Com-
pulers, c-27(7):637-647, July 1978.

Howard Jay Siegel. The theory underly-
ing the partitioning of permutation networks.
IEEE Transaction on Computers, c-29(9):791-
800, September 1980.

Harry F. Jordan. A special purpose architecture
for finite element analysis. In Proceedings of 1978
International Conference on Parallel Processing,
pages 263-266, 1978.

, : 19] Robert Holbrook. Nonstop sql - a distributed re-
IEEE Database Engineering, 9(1), 1986.) lational dbms for oltp. In Proceedings of Compson
[8] S. Lakshmi and P. S. Yu. Effect of skew on join 88, San Francisco, California, Februaray 1988.
performance in parallel architectures. In Proceed- [20] D. J. DeWitt, R. Katz, F. Olken, L. Shapiro,
ings of International Symposium on Databases in M. Stonebraker, and D. Wood. Implementation
Parallel and Distributed Systems, pages 107-117, techniques for main memory database systems.
Austin, Texas, December 1988, In Proceedings of the 1984 SIGMOD Conference,
pages 1-8, Boston, MA, June 1984.
[9) M. Kitsuregawa, H. Tanaka, and T. Moto-oka.
Application of hash to database machine and
its architecture. New Generation Computing,
1(1):66-74, 1983.
Proceedings of the 17th Intemnational 535 Barcelona, September, 1991

Conference on Very Large Data Bases

