
On Maintaining Priorities in a Production Rule System

Rakes h Agrawal
ragrawalQibm.com

Roberta Cochrane*
bobbie@cs.umd.edu

IBM Almaden Research Center
San Jose, California 95120

Bruce Lindsay
bruceQibm.com

Abstract

We present a priority system which is par-
ticularly suited for production rules coupled
to databases. In this system, there are de-
fault priorities between all rules and overrid-
ing user-defined priorities between particular
rules. Rule processing using this system is re-
peatable: for a given set of rules and priori-
ties, the rules are considered for execution in
the same order if the same set of transactions
is executed twice on the same initial database
state. The rule order adheres to the default
order as closely as possible: rules are consid-
ered in the same order as the default order un-
less user-defined precedence constraints force
an inversion.
We present data structures and efficient algo-
rithms for implementing such a priority sys-
tem. We show how the data structures can be
incrementally maintained as user-defined pri-
orities are altered. We also discuss how the
proposed scheme can be extended to build a
multi-level hierarchical priority system.

1 Introduction

Incorporation of production rules into database sys-
tems has recently received considerable attention
(6,7,8,~1,19,21,25,26,27,30]. A central issue in produc-
tion rule systems is conflict resolution [20,14]. Given
that two or more rules are triggered, a conflict resolu-
tion mechanism determines which rule is considered first
for execution. Some rule systems (for example, Postgres
[26]) require that the rule definer specify an absolute
numeric priority to conflicting rules which is used to re-
solve conflicts at run time. Other systems (for example,
OPS5 (91) use a combination of some static properties
of the rules (such as the complexity of the antecedents)
and some dynamic properties of the data (such as the
recency of the tuples satisfying the rules) to determine

‘Current address: Computer Science Department, Uni-
versity of Maryland, College Park, Maryland 20742

Proceedings of the 17th International
Chference on Very Large Data Bases

479

relative priority. In the case that no criterion resolves
the conflict, a rule is chosen randomly, making the rule
system non-deterministic.

Non-determinism in production rule systems has led
to systems that have turned out to be much more com-
plex and unwieldy than had been expected [15], which in
turn has inspired research into deterministic production
rule systems [12,24,32]. Although not necessarily appro-
priate for all applications, deterministic production rule
systems are more easily understood, maintained, and
extended. They are particularly useful for rule bases
coupled to databases, since the primary purpose of a
rule base in such an environment is to automate deter-
ministic activities [121.

We propose a new priority system for determinis-
tic production rule systems that has the following at-
tributes:

1. Default Priorities. The rules in the production rule
system have default relative priorities that are a
function of the static properties of the rules. This
function, p, defines a default total order over the
production rules. A function yielding the creation
timestamp of the rules (assuming creation times-
tamps are unique) is an example of such a function
which gives higher priority to older rules. Produc-
tion order rules, described in [20], provide other ex-
amples of such a function. We represent the default

total order by 5 such that, given two rules R and

S, if p(R) < p(S) then RZS. Default priorities may
be user-specified or induced by the system.

2. User-Defined Priorities. The user may explicitly
specify relative priorities between particular rules by
defining a precedes relationship between them. If the
user has specified that rule R precedes S, and if both
R and S have been triggered, then R is considered
first for execution, regardless of the default total or-
dering. User-defined priorities are transitive; that
is, if R precedes S and S precedes T, then R pre-
cedes T even if S is not triggered. Cycles are not
permitted in the user-defined priorities. R=+S rep
resents that rule R has user-defined priority over S.
We assume for convenience that for every rule R,

Barcelona, September, 1991

R*R. If there are Ic rules Tk (k could be 0) such
that R=Cl=+Taa . . .TI,JS, we say R>S.
User-defined priorities override default priorities.
The user may define priorities at the time of rule
definition or separately. User-defined priorities are
dynamic - they may be dropped and added at any
point during the existence of the rule set,
Precedence relationships are a natural way of ex-
pressing user-defined priorities [29] because they in-
crease rule autonomy [20]: they do not force the rule
designer to know about all the rules in the system,
Such relationships are also often the result of rule
analysis [24] and rule generation [2&J], which specify
only the precedences that must be satisfied.

3. Repeatability. If the same set of transactions is exe-
cuted twice with the same database state, the same
set of rules, and the same user-defined and default
priorities between the rules, then all rules are con-
sidered in the same order. This repeatability prop-
erty is important since it is essential for a system to
have predictable behavior. The repeatability prop-
erty can be guaranteed if, given a default total order
5 over a set of rules ?E and an overriding partial
order & over a subset of rules in ‘R, we can obtain
a new unique total order. The new total order is
represented by 3.
The repeatability property is stricter than the de-
terminism property considered in [12,24,32], For ex-
ample, (121 only requires that the production system
have a unique fixed point, whereas the repeatability
property insists that the computation path to the
fixed point is also unique. However, [12] places con-
straints on rule sets to realize production systems
with unique fixed points. The repeatability prop-
erty guarantees determinism without constraining
rule sets. Also, just having a unique fixed point can
be inadequate for applications having side effects (an
action external to the database, for example), and
we need the stronger repeatability property.

4. Adherence to Default Order. The new total order
-% adheres to the default order to the extent per-
missible within user-defined precedence constraints.
Starting with the first rule in the default order, the
rules are put in the new order in the same order
as the default order unless a user-defined priority
forces a rule to come earlier. Consider, for example,
the rule system consisting of rules Ro, RI, Rz, and
Rs, where the subscripts associated with the rules
also denote their timestamps. Assume that the de-
fault order is to order the rules in increasing order of
their timestamps, and the user-defined priorities are
Ra=+Ro and Rs*Rl. If it weren’t for Ra*Ro, the
adherence property would require that Ro come be-
fore any other rule in a, as Rc is the first rule in the
default order. However, due to user-defined priority
of Ra over Ro, Ra comes first and then RD. Hav-
ing placed Ro, the adherence property requires that

Proceedings of the 17th International
Conference on Very Large Data Bases

RI be placed next in 1. However, the user-defined
priority of Rz over RI forces that R, be placed be-
fore RI, and thus Ra~RoLR~~R~ is the new total
order.

Formally, for 2 to adhere to 2, it must be that
R2.S and S:R if and only, if i) S$ R, or ii) S&R

and 3T such that S$T,*R+T, and TkJ for all U

such that R&-U and S+U. Otherwise, R% and
R:S. In other words, if R precedes S in the default
total order then their ordering is reversed in the new
total order if and only if the user has specified that
S must precede R or that S must precede a rule T
that precedes in the default order all the rules that
R must precede. Any rule that has been specified
by the user to follow both R and S is ignored in this
decision.
The adherence property has a relationship to inver-

sions [16] in the sense that 3 is an inversion of 2
that satisfies user-defined precedence constraints. In
addition, the adherence property requires that this
inversion be such that, starting with the first item in
d -+, items have the same order in 1 as in 5 unless

a user-defined precedence dictates otherwise. This
requirement resembles the priority-driven deadline
scheduling of jobs in real-time systems [18,4]. How-
ever, in deadline scheduling, if the deadline for a task
is missed, the task may not be scheduled at all. On
the contrary, rules are never dropped in rule systems
(although a higher priority rule may cancel the firing
of a lower priority rule).

The priority system proposed in this paper is the re-
sult of an effort to define a priority system for the Star-
burst Production Rule System [30]. An initial design
[29] allowed the user to define relative priorities between
some rules and required the rule system to be repeat-
able, However, the algorithm for determining ordering
between rules in [29] can lead to cycles in the rule prior-
ities and, hence, does not produce a total order. Letting
is(R) represent the creation time of rule R, the order-
ing between two rules R and S in [29] is determined as
follows:

1. If RjS and R#S, then R:S.

2. If S&R and S#R, then SZR.

3. Otherwise, if ts(R) < h(S), then RZS else S:R.
However, consider rules Ro, RI, and R2, such that
ts(Ro) = 0, ts(RJ) = 1, Js(R2) = 2, and Ra*Ro.
RoLR1 since Ra+Rl, Rl+Ro, and ts(Ro) < ts(R1).
Similarly, RI -2 Rz. Also R$Ro, since Rs*Ro. Thus,
Ro-%R12R,lf;R,-,, a cycle.

The problem of task allocation with precedence rela-
tions [5,17,31] has similarities to the priority problem
considered in this paper. Task allocation with prece-
dence relations also considers the effect of precedence re-
lations between modules on task scheduling. The prece-

480
Barcelona. September, 1991

dence relations put constraints on the final order, and
the total order satisfies the partial order imposed by
these relations. However, conflicts are resolved using
dynamic information about the jobs, which does not
necessarily impose a total order. We, on the other hand,
use the adherence property to arrive at the unique total
order.

The organization of the remainder of the paper is as
follows. In Section 2, we present an algorithm for de-
termining the order between two rules given a default
total order over a set of rules and an overriding partial
order over some rules in this set. We show that this
algorithm leads to a new total order that adheres to
the default order and guarantees repeatability. Section
3 discusses efficient implementation of this algorithm.
Section 4 describes how changes in the user-defined pri-
orities between rules can be handled incrementally.

Section 5 shows how our scheme can be extended to
build a hierarchical priority system. Related rules are
grouped into rule classes, as in [13]. User-defined prior-
ities are specified separately for rules in each class and
also for rule classes themselves. This scheme extends
naturally to multi-level hierarchies. We conclude with
a summary in Section 6.

2 Rule Ordering

Definition 1 (Distinguished Rule) Given two rules
R and 5’ and an ordering function p that determines
the default total order, the distinguzshed rule for R with
respect to S and p, ~(R)s,~, is defined as follows:

1. If S+R, then ~(R),Q, = R.
2. If SPR, then d(R) Q is defined to be the rule T

such that all of the following hold:

(a) R+T,
(b) S+T, and

(c) V U such that R&-U and S&U, p(V) 1. p(T).

For example, assuming that p is the function yielding
the creation time of a rule and that S+R, the distin-
guished rule for rule R with respect to rule S is the
oldest rule T that R must precede and that S does not
precede in the user-defined priority ordering. Note that
~(R)s,~ always exists and is unique. Also, ~(R),Q could
be R itself.

Algorithm 1 (Relative Rule Ordering) Given two
rules R and S and an ordering function p that deter-
mines the default total order, applying the following two
steps in order determines the relative ordering between
two rules R and S:

1. If R&-S and R#S, then R:S. If S&R and Sf R,
then S-%R.

2. Otherwise, let U be d(R).Q, and let V be ~(S)R~~.
If p(U) < p(V), then R-%S; otherwise, S:R.

That is, the relative ordering between two rules is
determined by the user-defined priority (direct or tran-
sitive) between them when there is one. Otherwise, the

Pmceedings of the 17th International
Conference on Very Large Data Bases

relative ordering is determined by the relative value of
the default ordering function p for their respective dis-
tinguished rules.

For example, let the rule system consist of rules &,
RI, Ra, Rs, R4, Rg, and Re, where the subscripts associ-
ated with the rules also denote their creation time. Let
the default total order be determined by the creation
time of the rules, and let the user-defined priorities be
as illustrated below. Then, RsftRs because tf(R~)~,,t,
= RI, ~Rs)R,,,u = R2, and ts(R1) < Is(R2).

RO

R2 v R3 R4 \f R1
R5 R6

Theorem 1 (Repeatability and adherence of
the relative rule ordering algorithm) Given a set of
rules R, the pairwise application of the relative rule or-
dering algorithm over rules in 12 generates a repeatable
and adherent total order.

Proof: See Appendix A. 0

3 Implementation

We now discuss how the relative rule ordering algorithm
can be implemented efficiently.

Definition 2 (Rule Ordering Graph) The rule or-
dering graph G for a given ordering function p and a
given set of production rules ‘R, is obtained as follows:

1. Corresponding to each rule R in 72, create a node
R in G. Associate with node R the value of the
default ordering function p(R).

2. For each user defined priority R+S, create an arc
from node R to node S in G.

3. Create an arc from every node R to itself.

The following are the data structures for the rule or-
dering algorithm:

1. Obtain the rule ordering graph G for the given rule
set a.

2. Compute the transitive closure G’ of graph G [2].

3. Sort the successors of every node R in G’ in ascend-
ing order of their ordering function values.

Given two rules ri and r2, the following function re-
turns the rule that has the higher precedence:

481 Barcelona, September, 1991

function precedencecrule rl, rule r2)
returns rule

{
loop

<
81
62

//
I/

if

= next(successor(ri));
= next(successor(r2));

first use the uaer-defined
precedence, if any

(8.1 == r2)
return rl;

else if (82 == rl)
return r2;

// now use the default precedence

else if (~(81) < ~(82))
return rl;

else if (~(132) < p(sl))
return r2;

else // ~(82) == ~(81)
cant inue ;

1
1

It may not be immediately obvious why the loop in
the above precedence function always terminates be-
fore the shorter of the successor lists of rl and r2 runs
out. Also, if r2 + rl, then ri is not necessarily the first
rule in the successor list of r2 - there may some other
rule 82 that comes before rl in the successor list of r2.
Why does the loop return the correct answer even in
this case? The following theorem comes to our rescue:

present here apply to the general problem of incremen-
tal maintenance of complete transitive closure of acyclic
directed graphs with sorted successors.

4.1 Incremental Additions
Addition of a new rule R simply results in the creation
of a new node R in G’. Also, there is an arc from R to
R in G’.

When the user wants to add a new priority for rule R
over rule S, we need to Arst ensure that SGR dots not
already exist; otherwise, the creation of R=+S will cause
a cycle in the user-defined priorities. If R=+S is a legal
addition, then the successor list of every predecessor of
R needs to be updated, as they can now reach S and ail
the successors of S.

The following procedure incrementally updates G’
when a new user-defined priority R=c-S is added:

// Addition of the user-defined priority,
// R => s

procedure addpriority(rule R, rule S)
c

// check for potential cycle in the
// user-defined priorities

if R is a successor of S in G*
4

disallow priority of R over S;
return;

1

// legal user-defined priority ---
// update data structures

L= successors(S); // new reachable

Theorem 2 (Correctness of the precedence function) // successors;

The function precedence generates the same relative // S is included

ordering between two rules as the relative rule ordering // in successora

algorithm. add(R,L) ;

Proof: See Appendix B. 0
1

The total order 1 may be constructed by sorting all
the rules in 73, using for comparison the precedence
function.

4 Addition and Deletion of Rules and
Rule Priorities

Rule systems are not static. Rules are continuously
added and deleted, and user-defined priorities between
existing rules are altered. One alternative is to form a
new rule ordering graph G and compute its transitive
closure G’, every time rules and/or priorities are added
or deleted. However, instead of recomputing G‘ from
scratch, we can incrementally update G’. The problem
of incrementally updating compressed transitive closure
has been considered in [l] and that of incrementally
updating path information in [3]. The techniques we

Pmceedings of the 17th International
Conference on Very Large Data Bases

482 Barcelona, September. 1991

// Recursive procedure that adds to R and all
// its prsdscrssorr the rules in L

procedure add(rule R, list L)
<

// omit from L those rules that are
// already in the successor list of R

L=L- successors(R) ;

// Add rules in L to the successor list
// of R and its predecessors,
// maintaining the correct order

if L is not empty
i

// update the successor list of R
successors(R) = successors(R) t L;

// maintain order

// update the successor list of
// predecessors of R
for all P such that

P is an immediate predecessor of R do
add(P, L)

1 .

The recursion terminates when all the predecessors
of R have been updated. It is possible that the add
procedure is not executed for some predecessor P if L
becomes empty for all its successors.

Multiple visits to a predecessor of R can be avoided
by some book-keeping. The first time a predecessor is
visited, a bit is set for this rule indicating that this rule
has already been visited. Now, before calling add for a
predecessor P, this bit is tested to ensure that P has
not been already visited.

4.2 Incremental Deletions

Deletion of a user-defined priority Rzs.9 does not nec-
essarily imply that S and all its successors should be
deleted from the successor list of R and all its predcces-
sors - there may be alternative paths.

The following procedure incrementally updates G-
when a user-defined priority RdS is deleted:

// Deletion of the user-defined priority,
// R => S

procedure deletepriority(rule R, rule S)
C
L= successors(S); // rules potentially

// unreachable from R via S;
// S is included in successors(S)

delete(R, S, L);
3

Proceedings of the 17th International
Conference on Very Large Data Bases

// Recursive procedure that deletes from R
// and all its predecessors the rules in L
// that are not anymore reachable from them

procedure delete(rule R, rule S, list L)
c

// omit from L those rules for which
// alternative path exists

L =L-
successors(inunediate-successors(R) - S);

// Delete rules in L from the successor
// list of R and its predecessors

if L is not empty
c

// update the successor list of R
successors(R) = succeseors(R) - L;

/(update the successor list of
// predecessors of R
for all P such that

P is an immediate predecessor of R do
delete(P, R, L)

3
3

As in the case of incremental addition, the recursion
terminates when all the predecessors of R have been
updated. It is possible that the delete procedure is
not executed for some predecessor P of R if L becomes
empty for at least one node on every path from P to R.

However, it is incorrect to apply the marking opti-
mization discussed with addpriority to avoid multiple
visits to a predecessor of R. The reason is that, to prop-
agate the addition of a rule 1 in L to some predecessor
P of R, it is sufficient to add 1 to one of the successors
of P and then let P inherit 1 from this successor. How-
ever, to propagate the deletion of a rule 1 in L to some
predecessor P of R, 1 must not be reachable from any
successor of P. If 1 is only reachable from P through R,
then 1 will only be deleted from P on the last visit to
node P.

Deletion of a rule R results in the deletion of all in-
coming arcs into R and all outgoing arcs from R in G.
The deletepriority procedure can be applied for each
such arc, followed by the deletion of the node R in G.

5 Hierarchical Priority System

Rules are sometimes grouped into rule classes, as in [13].
Rule classes are useful for structuring problem-solving
by allowing related rules to be bundled into a separate
class. User-defined priorities may be specified between
rule classes and between rules within a class. The algo-
rithm presented in Section 3 can be extended to handle
such a hierarchical priority system:

483 Barcelona, September, 1991

Create a class ordering graph CQ as follows:

i. For every rule class C, create a node C in Cg.
Associate with a node C a value which is the
smallest of the value of the application of the
default ordering function p on all the rules in C.

ii. Create an arc C to D in CG if the rule class C
has been specified to have a priority over the rule
class D.

iii. For every rule class C, create an arc from C to
C in C&7.

Compute the transitive closure Cg* of C&!.

Create a rule ordering graph G and its transitive
closure G* separately for each rule class as in Section
3.

Now to determine the relative precedence between
two rules, use CB’ if they belong to different rule
classes, and use the corresponding G’ if they belong
to the same rule class.

The preceding algorithm can be extended in a
straightforward manner to handle multi-level class hier-
archies. However, a limitation of this algorithm is that
it does not directly admit the user-defined precedence
between rules in different classes,

6 Summary

We presented a priority system that is incrementally
maintainable for combining user-defined priorities with
default priorities. Such priority systems are becoming
increasingly important in integrating production sys-
tems with database systems which require deterministic
behavior. Precedence relationships are a natural way of
expressing user-priorities (291 because they increase rule
autonomy [20]: they do not force the rule designer to
know about all the rules in the system. Such relation-
ships are also often the result of rule analysis 1241 and
rule generation [28], which specify only the precedences
that must be satisfied.

Rule processing using this priority system is repeat-
able: for a given set of rules and priorities, the rules
are considered for execution in the same order if the
same set of transactions is executed twice on the same
initial database state. The rule order adheres to the de-
fault order as closely as possible: rules are considered in
the same order as the default order unless user-defined
precedence constraints force an inversion.

We also presented data structures and efficient algo-
rithms for implementing such a priority system. User-
defined priorities are dynamic - new priorities may be
added and existing priorities may be deleted or altered.
We showed how data structures required for priority de-
termination can be incrementally maintained. Finally,
we showed how the proposed scheme can be extended
to build a multi-level hierarchical priority system.

We are considering the implementation of this priority
system in the Starburst extensible database system [lo].

Proceedings of the 17th International
Conference on Very Large Data Bases

484

7 Acknowledgements

Thanks to Joe Hellerstein, Tomasz Imielinslci, and Jen-
nifer Widom for helpful discussions and suggestions, and
to Laura Haas and Guy Lohman for feedback.

A Appendix - Correctness of the
relative rule ordering algorithm

In this appendix, we prove that the relation -!!+ defined
by the relative rule ordering algorithm is a repeatable,
adherent, total ordering of any given of set rules 72 by
proving several lemmas. Repeatability is satisfied by
the fact that 1 satisfies a total order, and adherence
has its own lemma. Let (+e) denote contradiction.

Lemma 1 (Uniqueness) If Rnand S are two distinct
rules in 72 and R 1 S, then 5’ ft R.

Proof: Suppose R 1 S and S -% R for two dis-
tinct rules in 73. Now, R $ S and S $ R cannot both
hold since there are no cycles in the \ser-defined priori-
ties. If R j S, then R 2, S, and S f(R since the first
step of the algorithm is always applied first. A similar
argument holds if S & R. So p(d(S)~,,) < p(d(R)s+,)
and p(d(S)~,) > p(d(R)~,~) must both be true. This is
not possible since < is unique (=+e). 0

Lemma 2 (Totality) Between every pair of distinct
rules R and S in 12, either R -% S or S -% R.

Proof: Consider two distinct rules R and S in
I?. If there is a user-defined priority between these two
rules, then obviously s holds between these two rules.
If there is not a user-defined priority between the rules,
then ~(R)s,~ and ~(S)R,~ determine their relative or-
dering. Now, ~(4%~) < P(~S)R,~) or ~(d(R)s,~) >
p(d(S)R,~) since d(R)Q and d(S)R,~ are distinct and p
is a total order. Therefore, either R 1 S or S 2 R. 0

Lemma 3 (Adherence) p(R) < p(S) and S:R if
and only if i) S&R, or ii) SAT and p(T) < p(U), V
U such that RGU and S+U. Otherwise, p(R) < p(S)
and R:S.

Proof: (if) Suppose p(R) < p(S) and Sl R.
By definition of SZR, either S&R satisfying (i),

or p(d(S)Rvp) * < ~(d(R)s,p)~ Now, SGd(S)R,p,

RkWs,p, WWR)s,p and V U such that R&U and
S+U, p(d(R)s+) <= U, so p(d(S)~,,) < U, satisfying
(ii).

(only if) Suppose SjR. Then, by definition, SZR
even if p(R) < p(S).
Suppose (ii) is satisfied. Then p(d(S)+) <= p(T), and
~(R)s,~ is the U with the minimal value of p(V). So

r-+Wh,) < pW)s,d and S-X.

Barcelona, September, 1991

Therefore, 1 is adherent. c1

Lemma 4 (Transitivity) If R, S, and T are distinct

rules in ‘R such that R 2, S and S -% T, then R 2 T.
Proof: Suppose R, S, and T are distinct rules in

‘R such that R 1 S and S % T. Then exactly one of
the following holds:

R & S and S & T.
Then R & T since user-defined priorities are tran-
sitive and acyclic.
Hence, R 1 T.

R 2 s a,“d P(W)T,~) < ~(d(T)s,~).
Now, T # R, otherwise T 1 S.
Since R & S, p(d(R)~,~) <= p(d(S)~+,) and
z@@~\s,P\ <= P(@‘)R,~). So, ~(d(Rb,p) <

J&P Q

Hence, R 1 T.

~(dfR)s,p) < p(d(S)~,p) and S j T.

T $$ R, otherwise S 1 R.
Since S & T, p(d(S)~,~) <= p(d(T)~,,) and
P(W)T,P <= p(d(R)s,p.
P(~(T)R,P).

So, ~(d(R)rp <

Hence R 5 T.

P(~%P) < P(~S)R,P) and P(~(S)T,~) <
~(d(T)s,~). Is order to prove this case, we first
show that T p R, and then prove by contradic-
tion that p(d(R)~,~) < p(d(T)~,~). The following
observation is useful:

Observation 1 VX
P&X, then Q&X.

3 P(x) < p(d(P)Q) if

Suppose T 5 R. Then p(d(T)~,~) <= p(d(R)~,~)
and ?@(S)R,p) <= P(d(Sh,p), ~0 ~(W)s,p) <
P(@%~,P) (==). So, 2’ P R.
SuPPose ~(d(Rh,p) > dd(T)R,p)*
Consider P(~(S)R~P) and ~(d(Sh,~).

(4 Suppose p(d(S)~,p) <= P(~S)T,~). Then
P(~%,P) < ~(d(S)tr,p < ~(d(T)s,p).
Further consider p(d(R)~,,) and p(d(R)~,~).
i. Suppose ~(d(Rh,~) > ~(d(R)s,~). Now,

RhWs,p, so T&d(R)qp. Obviously,
WWs,p~ 90 p(d(T)s,p) <= ~(d(R)s,p).
But p(d(R)s,p) < ~(d(S)~,p)s so ~(d(T)s,p)
< P(Wh,P) (*e)*

ii. Suppose p(d(R)~,~) <= p(d(R)~,~). Then
p(d(Th,~) < dd@)R,p). But, by as-
sumption p(d(S)R,p) <= p(d(S)T,p)t so
p(d(T)~,p) < ~(d(T)s,p), and according to

the observation, SG~(T)R,~, so p(d(S)~,~)
<= P(~(T)R,P) (*t).

(b) Suppose p(d(S)R,,) > p(d(S)~,,). Recall that
l

P(~(%,P) < p(d(S)R,p)g so R=WSh,p~ Ob-
viously, WNS)T,~~

Proceedings of the 17th International
Conference on Vety Large Data Bases

so p(d(R)~,~) <= p(d(S)~~). But the as-
sumption (P(d(T)R,p) < P(~@T,~)) implies
P(d(Thp) < p(4S)r,p). Then S%Thp,
so p(d(S)~,~) <= p(d(T)~,~). But this implies
p(d(S)R) < p(d(S)T) (a*).

Hence, p(d(Rh,p) < p(d(T)R,p), 80 &T.

So, in all cases, R:T. 0

Lemma 5 (Total Order) The relation -% is a total
order.

Proof: Since 1 is transitive, unique, and total, 1
defines a total order. 0

B Appendix - Correctness of the
precedence function

In this appendix we establish that the function
precedence (Section 3) generates the same relative or-
dering between two rules as the rule ordering algorithm
(Algorithm 1). We must prove that the loop terminates,

and at termination, rl is returned if and only if rl-%2;
r2 is returned if and only if r2qrl. Annotate the func-
tion as follows:

function precedence(rule ri, rule r2)
return8 rule

c
loop

(A)

(B)

(Cl

(D)

(E)

(F)

I

c
81 = next(successor(r1));
a2 = next(euccessor(r2));

// first use the user-defined
// precedence, if any

if (61 == r2)
return rl;

else if (s2 == rl)
return r2;

// now use the default precedence

else if (~(81) < ~(82))
return rl;

else if (~(82) < p(ei))
return r2;

else // ~(82) == p(t31)
cant inue ;

Lemma 6 (Loop Invariant) Assuming 61 and 82 are
initially NULL, sl == s2 at (A) for each iteration.

Proof: This is clearly the case in the first itera-
tion, since 81 == NULL == 82.

485 Barcelona. September, 1991

The loop terminates whenever sI! = a2 since p is a
total order. If sl! = s2 then p(al)! = p(a2), and the
loop exits at (E) with ~(61) < p(a2), or at (F) with
P(8I) > p(s2). q

Lemma 7 (Termination) The loop does not execute
indefinitely.

Proof: The loop will terminate since rI and r2 are
both in their own list of successors and there is a finite
number of rules.

Suppose rI&r2 or r2jrI. Then the loop will ter-
minate at either (C) or (D) if not before.

Suppose rI&2 and r2$rI. Then the loop will ter-
minate when el == rl or s2 == r2, if not before, since
rl is not in r2’s successor list and r2 is not in ri’s suc-
cessor list. q

Observation 2 By
nsxt(succezsorO),

the definition of

l ~(81) > all previously visited successors of rI,
l ~(61) < all unvisited successors of rl,

0 p(s2) > all p reviously visited successors of r2, and
l ~(82) < all unvisited successors of r2.

Lemma 8 (Correctness of Function) Precedence
returns ri if and only if rI3*r2, and precedence re-
turns r2 if and only if r2zrI.

Proof:

1. Suppose precedence returns ri. Then the loop
exited at either CC) or (E).
If the loop exited at (C) then ai == r2. So r2 is

in rl’s successor list. So rIjr2 and ri$r2.
If the loop exited at (E), then I < ~(82).
Let sla be the value of SI and s2a br
the value of 42 in the iteration preceding
loop termination. Now p(sIa) == p(s2a) and
p(ala) < ~(81) < ~(82). So, by observation 2, sI
is a not in r2’s successor list. Note, however, that
s2 might be in rI’s successor list.
Suppose there is a user precedence between rl and
r2. Now, it cannot be the case that r2jr1, be-
cause then sI would be in r2’s successor list. So
ri&r2 and rI%2.
Suppose there is a not a user precedence between
rI and r2. By observation 2 and the loop invari-
ant, al == d(ri)r2,p and 52 == d(r2),I p Since v
p(aI) < p(s2), rlSr2.

2. Suppose precedence returns r2. Then the loop

exited at (D) or (F). The proof that r2zrl follows
in the same fashion as (1).

Proceedings of the 17th International
Conference on Very Large Data Bases

Suppose rIlr2. The loop terminates at exactly 4
points. Suppose precedence does not return rl.
Then precedence returns r2. But then, by (2),

r2zrl. But 2 is unique. (q+). So precedence
must return rl.

Suppose r2%rI. The proof that precedence
turns r2 follows in the same fashion as (3).

rt-

Therefore, the function precedence is correct. 0

References

PI

PI

131

[41

151

161

[71

PI

PI

WI

486

Rakesh Agrawal, Alexander Bocgida, and H. V. Ja-
gadish. Efficient Management of Transitive Rtla-
tionships in Large Data and Knowledge Bases. In
Proc. SIGMOD 89 [23], pages 253-262.

Rakesh Agrawal, Shaul Dar, and H. V. Jagadish.
Direct Transitive Closure Algorithms: Design and
Performance Evaluation. ACM IPrcn8aclions on
Database Systems, 15(3):427-458, September 1990.

Rakesh Agrawal and H.V. Jagadish. Materialize
tion and Incremental Update of Path Information.
In Proc. DE 89 [22], pages 374-383.

A. Buchmann, D. McCarthy, M. Hsu, and
U. Dayal. Time-critical database scheduling: A
framework for integrating real-time scheduling and
concurrency control. In Proc. DE 89 [22], pages
470-480.

W. W. Chu and L. M-T. Lan. Task Allocation
and Precedence Relation for Distributed Real-Time
Systems. IEEE Transactions on Compulers, C-
36(6):667-679, June 1987.

D. Cohen. Compiling Complex Database Transi-
tion Triggers. In Proc. SIGMOD 89 [23], pages
225-234.

C. de Maindreville and E. Simon. A Production
Rule B&sed Approach to Deductive Databases. In
Proc. 4th IEEE In2erna2ional Conference on Data
Engineering, pages 234-241, Los Angeles, February
1988.

L. M. L. Delcabmre and J. N. Etheredge. The Re-
lational Production Language: A Production Lan-
guage for Relational Databases. In Proc, 2nd Inler-
national Conference on Ezpert Database Systems,
pages 153-162, Tysons Corner, Virginia, April
1988.

C. L. Forgy. On dhe Eficient Implemenlation of
Production Systems. PhD thesis, CMU, February
1979.

L.M. Haas, W. Chang, G.M. Lohman, J. McPhtr-
son; P.F. Wilms, G. Lapis, B. Lindsay, H. Pirahesh,
M. Carey, and E. Shekita. Starburst Mid-Flight:
As the Dust Clears. IEEE Transactions on Knowl-
edge and Dala Engineering, pages 143-160, March
1990.

Barcelona, September, 1991

illI

WI

1131

PI

1151

WI

WI

P21

i231

WI

E. Hanson. An Initial Report on the Design of
Ariel: A DBMS with an Integrated Production
Rule System. ACM SIGMOD Record, 18(3):12-19,
September 1989.

Joseph M. Hellerstein and Meichun Hsu. Deter-
minism in Partially Ordered Production Systems.
Research Report RJ 8009, IBM Almaden Research
Center, March 1991.

IBM. IBM Knowledge Engzneertng Enuzron-
ment/370 (KEE/370), User’s Guide, Release 1,
December 1988.

Yannis E. Ioannidis and Timos K. Sellis. Conflict
Resolution of Rules Assigning Values to Virtual At-
tributes. In Proc. SIGMOD 89 [23], pages 205-214.

Peter Jackson. Introduction to Expert Systems.
Addison-Wesley Publishing Co., 1986.

Donald Ervin Knuth. Sorttng an,d Sea.rching, vol-
ume 3 of The Art of Computer Programm.ing.
Addison-Wesley Publishing Co., 1973.

E. L. Lawler. Optimal Sequencing of a Single Ma-
chine Subject to Precedence Constraints. Manage-
ment Science, 19(5):544-546, January 1973.

C. L. Liu and James W. Layland. Scheduling Algo-
rithms for Multiprogramming in a Hard-Real-Time
Environment. Journal of the ACM, 20(1):46.-Al,
January 1973.

D. McCarthy and U. Dayal. The architecture of
an active database management system. In Proc.
SIGMOD 89 [23].

J. McDermott and C. Forgy. Production System
Conflict Resolution Strategies. In D.A. Waterman
and Fredrick Hayes-Roth, editors, Patlern Directed
Inference Systems, pages 177-199. Academic Press,
1978.

M. Morgenstern. Active Databases as a Paradigm
for Enhanced Computing Environments. In Proc.
9th International Conference on Very Large Data
Bases, pages 34-42, Florence, Italy, October 1983.

Proc. 5th IEEE International Conference on. Data
Engineering, Los Angeles, February 1989.

PTOC. ACM-SIGMOD International Conference on
Management of Data, Portland, May-June 1989.

Louiqa Raschid. Maintaining Consistency in a
Stratified Production System Program. In PTOC.

AAAI National Conference on Artificial Intelli-
gence, 1990.

[25] T. Sellis, C.-C. L’ m, and L. Raschid. Implement-
ing Large Production Systems in a DBMS En-
vironment: Concepts and Algorithms. In Proc.
ACM-SIGMOD International Conference on Man-
agement of Data, pages 404-412, Chicago, June
1988.

Proceedings of the 17th International
Conference on Very Large Data Bases

P61

[271

WI

WI

[30]

1311

WI

487

M. Stonebraker, E.N. Hanson, and S. Potamianos.
The POSTGRES Rule Manager. IEEE Transac-
tions on Software Engineering, 14(7):897-907, July
1988.

A. Tzvieli. On the Coupling of a Production Sys-
tem Shell and a DBMS. In Proc. 3rd International
Conference on Data and Knowledge Bases - Im-
proving Usability and Responsiveness, pages 291-
309, Jerusalem, June 1988.

J. Widom and S. Ceri. Deriving Production Rules
for Constraint Maintenance. In Proc. 16th Interna-
tional Conference on Very Large Data Bases, pages
566-577, Brisbane, August 1990.

J. Widom, R. J. Cochrane, and B. G. Lindsay. Im-
plementing Set-Oriented Production Rules as an
Extension to Starburst. Research Report RJ 7979,
IBM Almaden Research Center, February 1991.

J. Widom and S.J. Finkelstein. Set-Oriented Pro-
duction Rules in Relational Database Systems. In
Proc. ACM-SIGMOD International Conference on
Management of Data, pages 259-270, Atlantic City,
May 1990.

J. Xu and D. L. Parnas. Scheduling Processes with
Release Times, Deadlines, Precedence, and Exclu-
sion Relations. IEEE Transactions on Software
Bngzneering, SE-16(3):360-369, March 1990.

Yuli Zhou and Meichun Hsu. A Theory for
Rule Triggering Systems. In Francois Bancilhon,
Costantino Thanos, and Dennis Tsichritais, edi-
tors, PTOC. International Conference on Extending
Data Base Technology, Advances in Database Tech-
nology - EDBT ‘90. Lecture Notes in Computer Sci-
ence, Volume 416, Venice, March 1990. Springer-
Verlag.

Barcelona, September, 1991

