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Abstract 
Alert is an extension architecture designed for 
transforming a passive SQL DBMS into. an ac- 
tive DBMS. The salient features of the design 
of Alert are reusing, to the extent possible, the 
passive DBMS technology, and making mini- 
mal changes to the language and implementa- 
tion of the passive DBMS. Alert provides a lay- 
ered architecture that allows the semantics of a 
variety of production rule languages to be sup- 
ported on top. Rules may be specified on user- 
defined as well as built-in operations. Both 
synchronous and asynchronous event, monit,or- 
ing are possible. This paper presents the de- 
sign of Alert and its implementation in the 
Starburst extensible DBMS. 

1 Introduction 
Passive database management syst.ems (DBMSs) are 
program-dnuen - users query the current stat.e of 
database and retrieve the information ctrrrenf/y avail- 
able in the database. Active DBMSs, on the other hand, 
are data-dn’ven - users specify to the DBMS the infor- 
mation they need. If the information of interest is cur- 
rently available, the DBMS immediately provides it to 
the relevant users; otherwise, the DBMS actively moni- 
tors the arrival of the desired information and provides 
it to the interested users as it becomes available. Tn 
other words, the scope of a query in a passive DBMS is 
limited to the past and present data, whereas the scope 
of a query in an active DBMS additionally includes fu- 
lure data. An active DBMS reverses the control flow 
between applications and the DBMS - instead of only 
applications calling the DBMS, the DBMS may also call 
applications in an active DBMS. 

Active DBMS have recently been the focus of much 
research [CBB+89, HlM88, MD89, RCBB89, DBBt88. 
SLR88, SHP88, SHP89, SJGPQO, WFQO, WCLQl, ZBQO]. 
The research seems to be aimed at developing new lan- 
guage constructs, defining new execution paradigms, 
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and devising new implementation techniques. Later, we 
survey some of the important results that have emerged. 

Alert is an extension architecture, implemented in 
the Starburst extensible DBMS [HCL+QO] at the IBM 
Almaden Research Center, for experimentation with ac- 
tive databases. Rather than starting from scratch, Alert 
takes an evolutionary viewpoint and extends a passive 
DBMS into an active DBMS. Alert takes advantage of 
the passive DBMS services to the extent possible and 
adds active elements to them only if necessary. For 
example, rather than introducing a new rule language 
[WFQO, SJGPQO], Alert introduces active queries to ex- 
press triggers and unifies them with the regular pas- 
sive queries so that active queries may be -expressed in 
SQL with minimal additions to the language; rather 
than adding AI techniques like RETE network [For791 
or designing entirely new techniques such as the tuple 
marking algorithm in [SHP88] for event detection, Alert 
employs indexing and query optimization techniques for 
the same purpose. Alert recognizes that the next gener- 
ation DBMSs will have many features of object-oriented 
syst.ems. In particular, the typed database objects may 
only be manipulated through the methods defined for 
them [ADLQl]. Therefore, rather than limiting the event 
monitoring to low-level database operations like SQL 
INSERT, DELETE, and UPDATE on base tables as in 
[Syb87, ISOQO, SJGPQO, WFQO], Alert allows monitoring 
of user-defined operations like hire specified on abstract 
objects like views. 

Alert proposes a layered architecture as shown in Fig- 
ure Figure 1. This architecture has been motivated by 
the need for providing efficient support to multiple rule 
languages and sharing the same database between them 
and non-rule-based applications. Given the commercial 
availability and success of several production languages 
such as KRL [BW77], OPS5 [ForSl], and KEE [IBM88], 
it is undesirable to require all users to use one rule- 
processing model. These languages have different se- 
mantics Y they have different strategies for conflict 
resolution, modularization of rule sets, and execution 
modes. 

The layered architecture proposed by Alert has a 
lower layer, the monifor, that provides the basic ser- 
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vices. In particular, it provides different communica- 
tion protocols between triggering and triggered actions: 
synchronous or asynchronous cooperation, deferred or 
immediate notification, and execution of the triggered 
action in the same or in a different transaction as the 
triggering action. Various rule languages form the upper 
layer and use the services of the monitor. The desired 
execution mode is communicated to the monitor at the 
time of rule activation. Language specific operations 
such as conflict resolution are not the responsibility of 
the monitor - they are carried out in the correspond- 
ing language system. This architecture is in contrast, to 
an architecture such as that of KEE [IBM88], where thr 
data from the database is extracted and cached in the 
rules system, and the cache is not shared between the 
rule system and the other users of the database. 

The rest of the paper is organized as follows. We 
present Alert’s extensions to the relat,ional model in Sec- 
tion 2. Section 3 presents Alert’s rule language, which is 
aslight extension ofSQL with the primitives introduced 
in Section 2. Several examples of trigger definitions are 
included in this section. This section also presents the 
implementation of the Alert rule system in the Star- 
burst extensible relational DBMS [HCL+90]. The Alert 
monitor component is presented in Section 4. Section 5 
discusses related work. We conclude with a summary 
and directions for future work in Section 6. 

2 Active And Passive Queries 

Current relational DBMSs support only passive tables 
and passive queries. In standard SQL [ISO90], one can 
define a cursor for a passive query specified over one or 
more passive tables. Once a cursor has been opened, 
successive fetch operations yield tuples satisfying the 
query. Following the return of the first EOF (end-of- 
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file) after all the tuples have been returned, all future 
fetches on this cursor yield EOF. 

We introduce the notions of ache iables and active 
queries. Active tables are append-only tables in which 
the tuples are never updated in-place and new tuples 
are added at the end. Active queries are queries that 
range over active tables. Active queries differ from pas- 
sive queries in their cursor behavior. When a cursor is 
opened for an active query involving one or more active 
tables, tuples added to an active table after the cursor 
was opened also contribute to answer tuples. Thus, it 
is possible that a cursor opened for an active query gets 
an EOF in response to a fetch, but then gets new tuples 
in response to future fetches if new tuples are added to 
the underlying active tables. A fetch on a cursor opened 
for a passive query never returns tuples added to a table 
over which the query ranges, after an EOF has been re- 
turned. Thus, the active queries are defined over past, 
present, and future data, whereas the domain of the 
passive queries is limited to past and present data. 

The standard SQL fetch can be viewed as a non- 
blocking read: if no more tuples are available in the 
answer set of the query, the process doing a fetch is not 
blocked but is simply returned an EOF. We introduce 
a new SQL primitive - fetch-wait - to iterate over 
active queries. The fetch-wait corresponds to a blocking 
read. The process doing a fetch-wait is returned a tuple 
if one is available. However, if the current answer set 
is exhausted, the process doing a fetch-wait is blocked 
until one becomes available. A fetch-wait returns EOF 
only if it is guaranteed that no more answer tuples will 
ever be generated. 

Thus, by defining asuitable query over an appropriate 
active table, the user may monitor events being logged 
in the active table by opening the active query and ap- 
plying the fetch-wait operation on the resulting cursor. 
The user may also monitor events in a polling mode by 
applying fetch operations on an opened cursor for an 
active query. 

An active database contains user-defined active ta- 
bles. The user-defined operations are logged in these 
tables. As with other database tables, the format of 
these tables is the user’s responsibility, and applications 
are responsible for adding tuples to these tables. These 
tables are akin to journals created by many applications, 
such as banking transactions [TPC89]. 

In addition to the user-defined active tables, the 
DBMS creates an active table for every user-defined 
passive table. The system automatically logs all the 
system-defined operations on a passive table in the cor- 
responding active table. These tables are accessible to 
the users, and the owner of a passive table is responsible 
for the management of the associated active table. In 
particular,.the user may truncate old tuples to limit the 
size of an active table. 

It is possible to define an active query that involves 
both active and passive tables. Some of the active tables 
in an active query may be system-defined and others 
may be user-defined active tables. 
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NO new SQL syntax has been introduced to define 
active queries - syntactically they appear identical to 
passive queries. The only difference is that an active 
query includes at least one active table in its range. 
This unification of the language for active and passive 
queries is similar to the unification of forward chaining 
and backward chaining languages. We will further dis- 
cuss this point as part of the discussion on the related 
research in Section 5. Due to this unification, active 
queries inherit the closure property of standard SQL, 
allowing active queries to be defined in terms of other 
active and passive queries. 

We now give an example to illustrate active queries. 
Let there be an active table, journal, defined a6 follows: 
Create Active Table journal 

( ename string, company string, event string, 
purpose string, expenseamount integer, 
method-name string, timestamp integer, 
transid integer, date integer); 

Assume a user-defined operation, expense-claim, de- 
fined a6 
expenserlaim (ename, expense-amount, purpose, date): 

This operation increments the number of trips taken 
by an employee, decreases the remaining travel budget 
of employee’s department by the expense-amount, and 
appends a summary tuple to journal. 

We can now define an active query, embedded in an 
application program, that retrieves a t,uple whenever an 
expense-claim exceeds $1000 a6 follows: 
declare Cl cursor for 

SELECT ename, purpose FROH journal 
WHERE method-name=‘expense-claim’ 

AND expense-amount > 1000 
open Cl; 

while (TRUE) 
{fetch-wait Cl into :ename, :purpose; 
/*This call completes when there is an answer 
/*do whatever is desired with the fetched tuple.*/ 

1 
This query first retrieves all the tuples in journal sat- 

isfying the given predicate, and t,hen remains open to 
receive future appends to journal by the method ex- 
pense-claim. Retrieval of the past data can be avoided, 
if desired, by using the timestamp column of journal in 

a predicate in the Where clause. 
Observe that the definition and manipulation of 

an active query is identical to the passive standard 
SQL query, the only differences being that the active 
query has been defined over an active table and t,hc 
fetch-vait call is used rather than ietch. 

3 Alert Rule System 
We have implemented a rule system, henceforth referred 
to 66 the Alert Rule System, based on the concept of 
active queries introduced in Section 2. This section de- 
scribes how Alert rules are defined, activated, and exc- 
cuted. 
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3.1 Rule Definition 
Alert rules are production rules that are fired when their 
conditions are satisfied. Syntactically, Alert rules are 
naned active queries. They are defined by specifying 
rule conditions in the SQL FROH and WHERE clauses, and 
by specifying rule action6 in the SELECT clause. The 
SQL view mechanism is used for naming the rules. 

We give Borne example6 of rule6 written in S 
9 

L en- 
hanced with user-defined function6 [HFLP89, I 0901. 
We first define a rule cost-vatch that sends mail to Irv, 
using the function sbmail whenever an expense claim 
for more than $1000 is filed. This rule is specified 88 an 
active query over journal. The rule condition is spec- 
ified in the WHERE clause. The rule action of invoking 
abmail is specified in the Select clause. This action 
is performed for each tuple selected by the query. The 
rule name is specified in the Create rule clause, that 
mimicks the Create viev clause. Here is the rule defi- 
nition: 
Create rule cost-watch as 

SELECT sbmail(‘Irv’,ename) 
FROH journal 
WHERE method-namez’expense-claim’ 

AND expenseamount > 1000 

A rule, as defined above, is a SQL view. Hence, like 
views, it can be referred to in any other query. This 
definition unifies rule6 and views. 

Since a rule is a query, it can refer not only to base 
tables, but. also to views in its definition. It is an impor- 
tant feature, given the central role played by view6 in 
complex database applications. To illustrate a rule defi- 
nition involving views, let us create a view trip-events 
on journal, which rovides the public relations depart- 

% ment information a out all trips, but hide6 from them 
the expense amounts: 
Create view trip-events (name, purpose, date, company, even 

as 
SELECT ename, purpose, date, company 
FRO!4 journal 
WHERE methodmame=‘expense-claim’ 

Let us now define a rule on the view trip-events. This 
rule informs the public relations department about all 
the trips taken by Irv. 
Create rule pr-watch as 

SELECT shmail(‘prdept’,name, purpose) 
FROM trip-events 
WHERE name = ‘Irv’ 

We now give an example that illustrates the clo- 
sure property and the rule reuse facility of Alert rule6 
by re-using the definition of a condition in two dif- 
ferent rules. Suppose Laura has defined a condition, 
called laura-condit ion, for checking whether an ex- 
pense claim exceed6 $2000. By defining this named con- 
dition separately as 
Create rule laura-condition as 

SELECT ename, expense-amount, purpose 
FROM journal 
WHERE methodmame=‘expenseclaim’ 

AND expense-amount > 2000 

Idaura can allow others to use the condition without 
their knowing exactly what that condition is. Laura 
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can use this condition in a rule, called laura-watch, as 
follows: 

Create rule Iaura-watch a8 
SELECT sbmail(‘Laura’, ename, purpose) 
FROH laurarondition 

SO cm Irv, who refines it with a stricter condition in his 
rule, called irv-wat ch: 

create rule irv,watch a8 
SELECT sbmail(‘irv’,ename, purpose) 
FROH laurarondition 
UHERE expenseamount > 5000 

Both references to laura-condition use standard SQL 
view nesting. 

Since Alert rules output data as well as executing rule 
actions, they can be nested into quite complex rules. 
For example, we can define a rule watch-hierarchy that 
causes different levels of management, to be informed, 
depending on the amount of travel expenses involved. 
If the expense amount is more than $2000 Laura is in- 
formed, and if the amount is more than $5000 Irv is also 
informed: 

Create rule watch-hierarchy as 
SELECT sbmail(‘irv’,ename, purpose) 
FRO!! irv (ename, expense-amount, purpose) AS 

(SELECT ename, expense-amount, purpose, 
sbmail(‘laura’,ename, purpose) 
FRON journal laura 
WHERE laura.method-name = ‘expense-claim’ 
AND laura.expense-amount > 2nOO 
) 

WHERE irv.expenseamount > 5000 

The conditions of Alert rules can even be a union of 
multiple events on multiple tables, as illustrated by the 
following major-events rule. It not.ifies the lab director 
if an expense-claim with amount more t,han SlOOOO is 
filed or if a new department is created. To do this, 
it makes use of the system-generated act iw t.ahle for 
logging the actions on the passive hblr dept. Thcsr 
system-defined tables are accessed using the notat.ion 
elog( table, operation). 

Create rule major-events as 
SELECT sbmail(‘Matisoo’, ‘Significant expense Alert’, 

name, amount) 
FWt! dt(name, amount) AS 

( SELECT ename, expense-amount, 
FRO!! journal 
WERE method~ame=‘expense-claim’ 

AND expense-amount > 10000 
Union 

SELECT deptname, budget 
FROH et AS elog(dept,ins) 

) 

The conditions of Alert rules can also involve joins 
of multiple active tables, as illustrat.ed in the following 
speech-watch rule. This rule notifies a marketing direc- 
tor about the effect of a major speech given by an em- 
ployee of a company on the stock of the company. We 
assume we have another active table containing stock 
transactions. 
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Create rule speech-watch 88 
SELECT sbmail(‘Marketing Director’, name, 

stocktype,stockprice) 
FRDH trip-events, stock 
WEBE trip-events.event=‘Major speech’ 

AND trip-events.company=stock.etocktype 
AND within-week(trip-events.date,stock.date) 

This rule returns an employee’s name who has given a 
major speech, and information about the stocks traded 
within a week of that speech. Observe that both 
operands of the join are active tables in this rule. When 
a major speech tuple is inserted, the rule joins it with 
the stock transaction tuples for the week before, and 
when a stock transaction is inserted, the rule joins it 
with the major speech tuples for the week before. The 
rule sends a notification if there is a match in either 
case. 

In all the examples considered above, the rule action 
was specified to be a scalar function [HFLP89, ISO90]. 
However, the action can be any SQL DML statement. 
The action can also be any general program with embed- 
ded active SQL queries in them, including table func- 
tions [HFLP89]. 

3.2 Rtile Activation 
Before a rule can fire, it must be activated. We have 
added two new SQL commands to activate and deac- 
tivate rules. The Activate command takes a named 
active query, opens it, and sets up an iteration in the 
fetch-wait mode. It also returns a handle that can be 
used to deactivate the rule. The Deactivate command 
uses the handle to close the query. It is possible to 
create several simultaneous activations of a rule since a 
SQL query may be opened several times. 

With each activation of a rule, it is possible to spec- 
ify the attributes of the execution. The user may define 
t,he t,ransaction coupling mode, the time coupling mode, 
and the assertion mode for the rule execution, if and 
when the mile is fired. A rich set of rule execution at- 
tributes were identified in HiPAC [CBB+89]. Hdwever, 
in HiPAC, the execution attributes are rule properties, 
whereas they are activation properties in Alert . Thus, 
the same rule may be activated differently by different 
users. 

The details of the execution modes will be dis- 
cussed momentarily, but let us first. give the syntax for 
Activate and Deactivate: 

Activate 
<RuleName>, 
Transcoupling = Same 1 Separate, 
Timecoupling = Sync 1 Async 
Assertion = Immediate 1 Deferred 

The Activate command returns a unique rule-id for 
each rule activation. This rule-id is used in the 
Deactivate command: 

DEACTIVATE <rule-id> 
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The defaults for transaction coupling, time coupling, 
and assertion mode are Same, Synchronous, and Imme- 
diate respectively. We now discuss the details of these 
execution attributes: 

l Transaction Coupling Mode: Separate, Sam?. 

A rule is triggered due to state changes made to 
a database by some triggering lransaciion that 
causes the rule conditions to become true. From 
a DBMS viewpoint, the triggering and triggered 
actions are two applications that may be part of 
the same or different transactions. The transaction 
coupling mode specifies whether the triggered ac- 
tion should be executed as part of the triggering 
transaction, or as a separate transaction. 
The transaction coupling mode Same means that 
the triggered action runs as part of the triggering 
transaction. For instance, a rule that checks the 
limits on the travel expense items should run as 
part of transaction of expense-claim method, allow- 
ing it to correct any mistakes before it commits. 
Separate means that the triggered action runs as 
a separate transaction. Suppose there is an active 
table containing stock transactions. Stock brokers 
may define rules with conditions on price, stock 
type, etc, the actions being selling or buying st,ocks. 
Potentially, a very large number of such rules may 
be defined. A stock transaction may trigger one 
or more of these rules. The triggered rules should 
perform their actions in a separate transaction. 

l Time Coupling: asynchronous, synchronous. 
The synchronous time coupling means that if a rule 
is triggered due to an action of a triggering t,rans- 
action, the action of the triggered rule is executrd, 
and the execution control returns t,o the triggcr- 
ing transaction only aft,er the completion of tfhe 
triggered action. For example, it is desirable to 
run synchronously a rule that checks the limits on 
spending items in order to detect any errors imme- 
diately. 
The a-synchronous coupling means t,hnt the t.riggcr- 
ing action and the action of any t,riggered transac- 
tion runs in parallel. In the stock example ahove, 
the broker rules should run asynchronously. 

l Assertion Mode: Immediate, Deferred. 
The assertion mode immediate means that the rule 
is triggered as soon as the rule condition is satisfied. 
This mode may be used, for example, to make snrc 
that the raise given to an employee is not negat,ive. 
The deferred assertion mode is used in conjunction 
with the same transaction coupling mode. This 
mode means that the rule condition is evaluated 
only in a region of a triggering transaction brack- 
eted by Begin-assert and End-assert commands. 
The Begin-assert and End-assert commands are 
similar to the Set constraint on and Set constraint. 
off commands in standard SQL. The deferred mode 
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can be used for enforcing deferred constraints using 
rules [MargO]. 

The same transaction coupling can be used only in 
conjunction with synchronous time coupling. Separate 
transaction coupling can be used only in conjunction 
with asynchronous time coupling. The deferred mode is 
applicable only in conjunction with the same transac- 
tion coupling mode. However, the immediate mode can 
be used in conjunction with both same and separate 
transaction couplings. 

A much richer set of coupling modes have been pro 
posed by the HiPAC project [CB8+89]. We feel that 
some of the HiPAC’s coupling modes are not useful 
enough to justify their implementation complexity (con- 
dition testing in a separate transaction, for example), 
and some can be simulated using the coupling modes 
proposed here. For example, nested top transaction in 
HiPAC is equivalent to separate but synchronous cou- 
pling, a combination not directly supported by Alert . 
To simulate this coupling, we define a rule with same 
and synchronous coupling, and the first action of this 
rule creates a new top-level transaction. 

3.3 Rule Execution 
We now describe the implementation of how Alert rule 
system triggers and executes rules. The previous sec- 
t,ion explained how one defines and activates Alert rules. 
Alert Rule system stores in a catalog the definitions and 
activations. The catalog also has some state informa- 
tion - for example, if a deferred rule is in the asserting 
state or not. 

Let us trace the control flow of a rule execution. First, 
assume that the rule has been specified with the at- 
tributes asynchronous, separate, and immediate modes. 
The active query associated with this rule is over the 
act.ive table stocli wit,h predicate stocktype=‘IBM’ AND 
vafue>$J50. Assume that the stock table is initially 
empty. Upon the activation of the rule, the Alert 
rule system opens the active query associated with this 
rule. At some point, a triggering ticker-tape transac- 
tion inserts a tuple in the stock table with values stock- 
type=‘IBM’and price=%151 (message (1) in Figure 2). 
As a result of this update to the database, Alert mon- 
it,or checks the condition of all active queries on this 
active table to determine which ones have new data 
to process. In our example, the query associated with 
our rule qualifies. In general, there might be a set of 
such active queries. From the viewpoint of the Alert 
rule system, all the rules in this set can be triggered in 
some order. Alert. monitor gives the list of qualifying 
act,ive queries to the conflict resolver component of the 
Alert rule system, which determines the order of execu- 
tion (Figure 2, message (2)). The conflict resolver saves 
this list and it returns the control immediately to Alert 
monitor, which in turn returns the control to the trig- 
gering action (messages (3) in Figure 2). The triggering 
action’s transaction may now commit. Note that the 
t,riggering transaction does not wait for initiation of the 
t,riggered rule, making this execution asynchronous. 

473 Barcelona, September, 1991 



i\J 
1 3 cd 

FETCH 

t t 

ACTIVE 
\ 

DBMS 

--if5- 
Figure 2: Triggering message flow 

The conflict resolver chooses a rule to be triggered. 
Alert rule system does a fetch on that rule (messages (4) 
in Figure 2), causing its qualified tuples to be passed to 
the associated action. The processing of this rule stops 
when there are no more qualified tuples, resulting in an 
EOF to be returned to Alert rule system. Now, the con- 
flict resolver can choose the next rule to be processed. 
This process of choosing and processing rules continues 
until no more rules need to be triggered, in which case 
the conflict resolver goes to sleep, waiting for another 
message from Alert monitor. 

Now, let us examine the control flow for the syn- 
chronous, same, immediate case. The triggered rule 
must run as part of the triggering transaction. There- 
fore, the Alert rule system should open a new active 
query for each triggering transaction. But how can the 
Alert monitor inform the Alert rule system about this 
triggering event caused by a triggering transaction, if no 
active query has yet been opened for this rule? To solve 
this problem, Alert rule system does an extra open for 
the associated active query at the rule activation time, 
if the activation mode is synchronous same. No transac- 
tion is assigned to this open (i.e., it runs with degree 0 
consistency [GLPT76]). N ow, when a triggering transac- 
tion changes the database state, the Alert monitor sends 
a message to the the conflict resolver, which chooses a 
synchronous rule to execute. The rest of the control flow 
is similar to the synchronous, separate, immediate case 
discussed earlier. 
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For rules activated with the deferred option, Alert 
rule system defers execution until the rules are in the as- 
serting mode (i.e., between begin-assert and end-assert 
commands.). Otherwise, the behavior is the same as for 
immediate. 

4 Alert Monitor Subsystem 

We now describe the implementation of the Alert mon- 
itor. The Alert monitor has been implemented as an 

extension.to the Starburst DBMS (see Figure 1). The 
Alert monitor manages the active tables associated with 
passive tables, and monitors changes to the database 
state. 

The management of active tables is identical to the 
management of passive tables, except for insertions. For 
active tables, inserts should be done in such a way that 
the cursors on these tables see the inserted data. Active 
tables are implemented as table queues [PMC+90]. 

An active table may become the major source of lock 
contention. To see why, let us go through an example. 
Suppose a stock monitoring rule referencing table stocli 
has a predicate: stocktype=‘ZBM’, and has been acti- 
vated to run as a separate transaction. A large num 
ber of tuples that will be appended to stock will not 
be of interest to this rule. When DBMS reads a tuple, 
a standard locking protocol would require that a lock 
be obtained on behalf of the transaction processing this 
rule. After the lock is granted, the associated page is 
latched for assuring physical consistency [Moh90], the 
rule condition is evaluated, the tuple is extracted from 
the page (assuming it qualifies), the page is unlatched, 
and the qualified tuple is returned.’ This approach of 
acquiring a lock before evaluating the predicates has 
some serious drawbacks. Assuming that many transac- 
tions are .concurrently inserting tuples into stock, the 
rule which is trying to read these inserted tuples has to 
wait frequently for write locks held by these inserting 
transactions. Furthermore, after the locks are granted, 
a large number of the tuples would be found to belong to 
non-IBM stocks and waiting for such locks would turn 
out to have been totally unnecessary. 

To avoid this problem, we slightly extend the concur- 
rency control protocols for such read accesses for active 
tables. The rule reads a tuple by latching the page, 
accessing the tuple, and evaluating the predicate with- 
out first obtaining a lock on the tuple. If the predicate 
is false, then the rule continues to the next tuple. If 
no qualifying tuple is found on the page, then the rule 
unlatches the page and continues to the next page. If 
the rule finds a qualified tuple, then it requests a lock 
on the tuple. This technique is an enhancement of the 
technique of postponing locking to the time after pred- 
icate evaluation, proposed in [Moh90]. With this en- 
hanced method, the rule gains significant performance 
by avoiding unnecessary wait for locks on unqualified 

’ For further optimization, the page can be kept under the 
latch until a qualified tuple is found or the scan of this page 
is finished, whichever happens first. 
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tuples. Avoiding locking under these conditions is not 
only a concurrency advantage, but also a performanct 
advantage because acquiring and releasing a lock costs 
hundreds of instructions, 

The intuitive reasoning for why the above simple and 
effective scheme works is as follows. If a tuple qualifies, 
then we get a lock. This is what standard locking would 
have done. If a tuple does not qualify and it is not in 
the committed state, then two things can happen to it,: 
either the changes will be committed, or the inserting 
transaction will rollback, thereby resulting in the tuple 
being eliminated. If the transaction were to commit. 
subsequently, then our decision made without locking 
will turn out to be the same as the one that would have 
resulted from waiting for the lock: still the tuple does 
not qualify. If the transaction were to rollback, then 
there would not be any inconsistencies between the two 
decisions. Note that we need to consider only insert and 
undo of insert since update operations are not allowed 
on active tables’ tuples .2 Even in the case of tuples 
which qualify, we may be able to avoid locking by mak- 
ing use of the Commit-LSN idea presented in [MohOO]. 

As explained in Section 2, an active query may re- 
ceive an EOF and later do fetch-wait and receive more 
tuples. Passive queries close their cursors once an EOF 
is encountered. Hence, we need to enhance DBMS op- 
erators for active queries. In Starburst, this problem is 
solved by decoupling the closing of cursors and return 
of EOF. Hence, low level operators may return EOF, 
and then when they are called again, they may return 
a tuple. For instance, the union operator returns EOF 
when all of its operands return EOF. Lat,er on, when it 
is activated again, it does fetch on all of it,s operands, 
and returns any newly fetched tuple. 

For fetch-wait, the Alert monitor must do efficient 
monitoring of data changes and filt,erjng of the changes 
that are irrelevant to an active query. We do two lev- 
els of filtering: the first level filtering only deals with 
changes at the table level, whereas the second level fil- 
tering deals with changes at t.he tuple level. WP now 
provide some filtering details. 

An active query references a set, of active tahlcs, 
and only changes to these tables can affect this ac- 
tive query. The Alert monitor creat.es a Starburst at.- 
tachment [LMP87] f or each active table the rules refer 
to. The Starburst data manager sends a message to 
the Alert monitor whenever there is a change affect.ing 
such tables. The Alert monitor keeps, for each active 
query, a list of active tables that it refers to. For first 
level filtering, the Alert monitor uses this list to decide 
which active queries might be affected by a change to 
the database. 

‘We use this locking scheme only if the cursot is not part 
of a universal quantification, such as ALL subqueries. For 
universal quantification, lack of existence of a tuple is sig- 
nificant, hence we must know if the inserting transaction 
commits 01 rolls back before we can proceed. This is not 
a drawback since rules typically do not contain universal 
quantification. 
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The tuple-level filtering is more complex. Varia- 
tions of RETE networks [For791 have been used in ac- 
t.ive DBMSs to perform this kind of filtering. Instead 
of extending RETE to apply in a concurrent/shared 
database environment, we are extending database in- 
dices to perform the task of prefiltering for active 
queries. 

Let us consider an example. Suppose (1) we define an 
act.ive query with condition stocktype=‘ZBM’ on stock 
and (2).we want to avoid doing a complete scan of stock 
to answer this query, then we may create an index on 
the column stocktype of stock. Whenever the DBMS 
inserts a tuple into stock, an entry will be added to 
this index. If this entry has stocktype=‘ZBM’, then we 
can conclude that our rule might be affected. As stated 
earlier, active queries must see future appends. Let us 
see how an index manager can be extended to support 
this requirement. Suppose we use a variant of the B+- 
tree index. When we insert a tuple into active table 
stock with stocktype=‘IBM’, we need to add the TID of 
this tuple to the end of the list of TIDs already present 
in the index that are associated with this key value. 
As a result, the active cursor on this index will see the 
new appends in the future. Further, when the cursor 
reaches the end of this list, it will stay there, so that it 
can read new TIDs when they are appended to the list. 
We can also use a hash index to achieve the same effect. 
Associated with a hash key value, there is a list of TIDs, 
and new TIDs must be appended to this list, similar to 
the B+-tree case. Note that the index is shamd among 
rules, active and passive queries. 

We are investigating the extension of indices to sup- 
port more complex predicates on active tables, such as 
range and join predicat,es. Postgres is also investigating 
a variant of B+ trees to handle range predicates [KS91]. 
[HCKW90] discusses another approach for handling of 
range predicates; however, unlike our index, this index 
cannot be used for passive queries. 

5 Related Work 

This section briefly surveys the related work in this area 
and contrasts our approach with previous efforts. The 
HiPAC project [CBB+89] at CCA addressed several im- 
portant issues and put forward several important re- 
sults. The HiPAC work was not done in the context 
of a particular DBMS or a particular data manipula- 
tion language, and the results were not implemented 
in an integrated comprehensive system prototype. The 
HiPAC project used the relational model for the over- 
all framework and the nested transaction model as the 
framework for the execution of rules. The paradigm of 
event-condition-action is used to express rules, where 
events can be built-in or user-defined. However, there 
is no such concept as set of events that one can refer to. 
In contrast, Alert has formalized events aa first class tu- 
ples of active tables, which can be queried using the rela- 
tional query language. Fteuse of the relational language 
for this purpose has greatly simplified our event speci- 
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fication, particularly event composition, such as union 
and joins of active tables. HiPac introduces a special 
language to express event composition, HiPac keeps the 
changes made by built-in operations to database tuples 
in A relations (A&), which are similar to our active ta- 
bles for built-in operations on passive tables. However, 
Ah% contain only the net-effect of changes, Further- 
more, Alert emphasizes user-defined active tpbles, such 
as journal in our examples, where method activities are 
recorded. In this context, it is not clear what net-effect. 
of changes means. For instance, the net-effect of insert 
followed by update is insert. But what is the net-effect 
of Hire followed by promote? 

POSTGRES Rules System (PRS) is an integrated 
DBMS/rule system, as opposed to the layered approach 
of Alert. The first version of tha.t syst,em’s design 
is described in [SHP88]. A second version (PR.S II) 
[SHP89, SRH90] is still under development. Alert 
rules are based on operations on data (events), whereas 
PRS rules cannot refer to operations, This limitation of 
PRS has been addressed in PRS II, where the syntax for 
rules is more like that of HiPAC; however, events associ- 
ated with only update, insert, delete operations can be 
specified. PRS and PRS II, unlike Alert,, support, only 
synchronous immediate triggers, and there is no explicit’ 
notion of transaction couplings. In PRS as well as PRS 
II, the mechanism used for rule firing is a tuple-marking 
algorithm in which special locks are acquired on tuples 
whose changes or retrievals would be relevant to one 
or more rules. When such data get,s changed, then the 
modifying transaction notices the existence of the new 
types of locks and triggers the rules. In Alert,, we hsvc 
explored the idea of using indices on active tables for 
this purpose. 

Another effort in the Starburst, project has taken a 
somewhat different approach to supporting rules [WF90, 
WCL91]. Similar to Alert , it is based on SQL. Unlike 
Alert, however, rules can only refer to events associ- 
ated with the built-in operations: update, insert, delrfp. 
Triggers are deferred and assert.4 at, t.ransact.ion com- 
mit time. The database changes arc kept, in transition 
logs similar to HiPac’s A Relations or Alert’s active 
tables for built-in operations. Unlike Alert, transit’ion 
logs are not persistent since they are only used within a 
transaction and there is no support for continuation of 
transactions after a system crash. An in-memory t,r;ln- 
sition Iog storage manager is used f.o mainfain f hr t’ran- 
sition logs. The transition log st.oragc manager part.ic- 
ipates in transaction rollbacks. Similar t.o HiPac, t.hrre 
is a notion of net-effects. However, unlike HiPac, nct- 
effects are not associated with transition logs, rather, 
they are associated with each rule. The net-effects of 
each rule are computed for each rule separat)ely based 
on the last time the rule was considcrrd for firing. Iin- 
like Alert’s layered architeclurtb, an irlf.cgrarcd rule sxs- 
tern/DBMS solution is adopted. There is a built,-in colt- 
flict resolver which works based on a user-specified par- 
tial order among the rules. 

Commercial DBMSs have been introducing support 
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for triggers, at various levels, for sometime, mainly due 
to customer needs for better support for integrity con- 
straints. As a result, there has been a major effort in 
the SQL standard committee [ISO90] to support trig- 
gers arid constraints. In the SQL standard, checking 
of constraints, such as salary> 0, or existence of a ref- 
erential integrity constraint between departments and 
employees, is triggered by the DBMS. Users can spec- 
ify whether constraints are to be checked at the end of 
each SQL statement or to be deferred and checked by an 
explicit command, similar to the begin(end) assert com- 
mand of the Alert rule system. Support for triggers in 
the SQL standard is limited. The trigger events can only 
be built-in SQL operations (update, insert, delete) on a 
single base table, Triggers over views are not allowed. 
Triggers can only be part of the triggering transactions, 
and triggers cannot be nested. 

Sybase supp0rt.s triggers. Unlike Alert, only one trig- 
ger can be associated with an operation on a table. The 
action part of a trigger is limited to a sequence of SQL 
statements. Further, triggering is limited to one level, 
where the triggered actions themselves do not cause trig- 
gers to be fired. 

KEE [IBM88], a commercial expert system, can in- 
teract with DBMSs using KEE Connection. However, 
unlike Alert, the emphasis is not on providing an in- 
tegrated shared DBMS. KEE extracts data from the 
DB and builds a cache, and all the rules are applied 
to this cache. KEE provides a unified rule language 
for forward and backward chaining. Use of the unified 
active/passive query language in Alert is analogous to 
this. Forward chaining is analogous to Alert rules ex- 
ecuted by triggering. Backward chaining is similar to 
using an Alert (nested) rule as a regular query, invoked 
by users. KEE rules are on instances of objects (tuples). 
Alert rules are set-oriented, in the sense that SQL is set- 
oriented, allowing (active) queries to deal with a set of 
tuples. KEE’s the rule language does not have the 
closure property, support for rule nesting, and creation 
of rules on views. Triggering is based only on changes 
made by built-in operations. There is no notion of trig- 
gering based on invocation of methods. 

6 Summary 
We presented the design of Alert and its implementa- 
t.ion in the Starburst relational DBMS. Alert is an ex- 
tension architecture designed for transforming a pas- 
sive SQL DBMS into an active DBMS. The salient 
feature of t,he design of Alert is the reuse to the ex- 
tent possible the passive DBMS technology and minimal 
changes to the language and implementation of the pas- 
sive DBMS. Alert provides a layered architecture that 
allows t,he semant,ics of a variety of production rule lan- 
guages t,o he supported on top. Rules may be specified 
on user-defined a.5 well as built-in database operations. 
Both synchronous and asynchronous event monitoring 
are possible. 

The Alert approach of reusing passive DBMS technol- 

476 Barcelona, September, 1991 



ogy paid-off handsomely in its implementat.ion. By hav- 
ing a rule language that is basically identical to the pas- 
sive SQL, we reused almost all of the existing semantic 
checking, optimization, and execution implementations. 
By using active queries to specify rules and unifying ac- 
tive queries with passive queries, we developed a rule 
language that inherits the rich set of SQL construct,s 
to specify arbitrarily complex rule conditions involving 
multiple tables, nesting of query expressions, and par- 
ticularly the closure property. By modeling events as 
tuples in active tables, we reused most of the storage 
management of regular tables to keep track of sets of 
events. We could use database indices and query opti- 
mization techniques for event detection. We could also 
translate large body of concurrency control and recovery 
knowhow for contention reduction and use of product.ion 
rules in a shared environment. 

Several issues need to be further explored in the con- 
text of our approach to adding active DBMS capabili- 
ties to a passive DBMS. These include extension of ef- 
ficient monitoring of changes using indices, particularly 
for range predicates, concurrency control issues involv- 
ing already executing transactions and rule activations, 
multi query optimization of active queries associat,ed 
with rules, and parallel execution of conditions and ac- 
tions. 
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