
A Temporal Knowledge Representation Model OSAM*/T
and Its Query Language OQL/T ’

Stanley Y. W. Su
Electrical Engineering Dept.
and Computer & Information Science Dept.
Database Systems Research
& Development Center, CSE470
University of Florida, Gainesville, FL 32611

Abstract

The importance of temporal database management
and temporal reasoning has long been recognized
by the database and AI communities. Many
techniques for modeling and managing temporal
databases have been introduced. Most of the
existing research on temporal databases have been
based on the relational data model which has
limited capabilities in modeling complex objects,
constraints, and behavioral properties. In this
paper, we present an object-oriented
knowledge-based approach to model and process
temporal information. A temporal knowledge
representation model OSAM*/T is described. It
is an extension of the object-oriented semantic
association model OSAM* to capture the concepts
of time and history. Object time-stamping is used
to record the evolutions of objects, and knowlcdgc
rules instead of extra time notions are used to
capture special temporal requirements. The
temporal model is also featured by its separation
of historical data and current data and its simple
and maintainable representation of complex
objects. In addition to the temporal data model,
this paper also introduces a temporal query
language OQL/T which is an extension of the
object-oriented query language OQL for
processing temporal information. Several
temporal functions, interval comparison operators,
and set operators are described.

1, Introduction
Temporal information is the recording of past
activities which are often important to present and

Hsin-Hsing M. Chen
Electrical Engineering Dept.
Database Systems Research
& Development Center, CSE470
University of Florida,
Gainesville, FL 32611

future decision-making. Temporal information can
be used not only to answer such queries as “What was
John’s title when Mary was a typist?” and “How many
times has John’s title been changed during 1976 to
1982?“, but also as the basic assertions for a
knowledge base management system to reason about
past activities and to derive facts which are not
explicitly stored in a knowledge base [BOL82, ALL83,
McK86, SN086, DE87].

In recent years, the technology in storage media has
made a remarkable progress and has allowed large
quantities of temporal data to be stored and processed
efficiently [SN086]. This has motivated a considerable
amount of research on temporal databases. They
include the extension of data models for modeling
temporal data [AND82, CL183, KL083, SCH83,
LUM84, CLI85, SN085, AD186, ARI86, GAD86,
TAN86, SEG87, LOR88, NAV89, TAN89, ELM9Oc],
the extension of query languages and relational algebra
for accessing temporal data [KLO83, CLI85, GAD86,
TAN86, SN087, LOR88, NAV89, TAN89, ELM9Oa],
and the management of secondary storage to achieve
efficient indexing techniques for data access [LUM84,
SH086, AHN86, AHN88, ELM9Ob, ELMBOd]. Most
of these efforts have been based on the relational
model directly or indirectly because of its well
developed theories.

Techniques used to model temporal information
using the relational model are attribute time-stamping
[KLO83, CL185, GAD86, TAN86, ELM9Oa] and tuple
time-stamping [LUM84, SN085, LOR88]. The
expansion and contraction of data between the
normalized and non-normalized structures required in
the attribute time-stamping technique produce a
serious time overhead in processing temporal data;
whereas, in tuple time-stamping, data-redundancy is
the major shortcoming. In order to take advantages

1. This research is partially supported by the National Science Foundation Grant XDMC-8814989 and the Institute of Standards and Technology Grant
Y6ONANB4DOOI7. The Implementation effort is supported hy the Florida High Technology and Industry Cwncil Grant #UPN 85100316.

Proceediiga of the 17th International
Confetwtce on Very Large Data Bases

431 Barcelona. September. 1991

of these two techniques and to avoid their
shortcomings, Navathe and Ahmed (NAV89] used a
combined approach which is based on the concept of
“temporal normalization”. However, their approach
only works under a weak assumption called
“synchronous attributes”, which is a rare case in the
real world application. If “synchronous attributes” are
not available in an application, the approach will be
degenerated to tuple time-stamping over relations
which contain only two attributes (i.e., the primary key
and a variant attribute). This logical data
representation will be worse than using the tuple
time-stamping technique over non-binary relations
because it generates more redundant data (i.e.,
replication of keys) and needs more join operations
during data processing. In addition to the problems
associated with the existing techniques, there are two

maintenance of the histories of complex objects.
6. In addition to the powerful association operators

introduced in OQL, the query language OQL/r
provides a set of temporal functions, interval
comparison operators, and temporal set operators for
manipulating temporal data.

This paper is organized as follows. Section 2 gives
an ovetview of OSAM*/T with an emphasis ‘on
temporal concepts such as time sequence, event, object
time-stamping, object history, object instance history,
and association history. Section 3 describes OQL/T.
The semantics of a general query structure is discussed
in detail with examples. In addition, interval
comparison operators, temporal functions, and
temporal set operators are also presented. A summary
and a conclusion are given in Section 4.

common problems found in a relational temporal 2. Modeling Temporal Database Using OSAM*/T
database: ihe need for more than two time notions
and the mixture of historical data with current data.
We shall elaborate on these problems in this paper.

Motivated by the above problems of the current
time-stamping,techniques and the use of the relational
model for modeling temporal information, we have
taken an object-oriented, knowledge-based approach
to model temporal information.’ This approach rakes
advantages of Ihe features of object-oriented databases
[BOO861 and the concepts and techniques of
integrating artificial intelligence and database
techniques [DAY85, SU85, ST086, RAS88].

In this work, we extended the object-oriented
semantic association model OSAM* [SU89] and its
query language OQL [ALA891 to model and query
temporal databases. The resulting model and
language are called OSAM*n (temporal OSAM*)
and OQL/T (temporal OQL), respectively. They have
the following key features:

2.1 Basic Concept of Time and Event
A time sequence is a series of continuous time points
t1, 12, . . . tn-1, tn, where tl < t2 < . . . < tn. The
distance between any two adjacent time points is
identical and is called a time unit. The time unit
chosen for a temporal system may be different from
application to application depending on the granularity
needed. It can be microsecond, minisecond, second,
minute, hour, day, month, or etc. A system may
use more than one time granularity for its
applications’ needs by providing functions for the
conversion between different time granularities. In the
rest of this paper, we shall use “day” as the time
granularity in our examples and assume that the
history of object instance is recorded discretely even
though Ihe interpretation of an object history is
continuous.

1. An object time-stamping technique is used which
is a compromise between the attribute time-stamping
and the tuple time-stamping techniques. The history
of objects, object instances, and object associations arc
preserved using this technique.

2. Data redundancy is avoided by adopting the “delta
file” concept [ROC75, SEV76] for object management.

3. Start-time and End-time are the only two time
notions employed in OSAM*/T for recording object
histories. Other time notions [LUM84, SNO85] arc
captured by temporal rules.

In this paper, an event is an action which will cause
a change of the contents of a database. An update,
a delete, or an insert operation is an event. A data
retrieval operation is not considered as an event
because it does not alter the state of a database and,
thus, does not affect the time tags associated with the
data.

4. Historical data and current data are separated
both logically and physically. This separation imposes
an implicit index on historical and current data, and
thus can avoid unnecessary search and sorting during
query evaluation.

5. Hierarchically structured object instances are
allowed, thus, simplifying the representation and

In a temporal database, an object instance will have
a new time tag and new attribute values when an
event occurs (note: in case of a delete operation, the
new values are nulls). The old instance then becomes
a part of the history of the instance. For example, to
adjust John’s salary to $30,000 beginning on November
lOth, 1989 will introduce a new instance to replace the
old one in the current database and the old instance
is shifted into the historical area:

<11-10-89, - , OID, 448, John, S3O,OOO>...New Instance.
~10-01-81, 1 l-9-89 , OID, 448, John, $20,00Oz...Old Instance.

Here, the first two fields represent Start-time and

Proceediigs of the 17th International
Conference. on Very Large Data Bases

432 Barcelona, September, 1991

End-time, “-” stands for the present time, and OID
stands for the object identifier.

2.2 Time Notions Used to Model Temporal
Information
In OSAM*A’, Start-time and End-time are the only
two time notions used to delimit the records of an
object history. Start-time is the time when a new
object (or an object’s instance) becomes active in a
database (or in a class). For example, the operations
of creating an object, inserting an object instance,
and updating an object instance will cause a new
Start-time to be attached to the new object instance
which has new attribute values. The End-time is the
time when an object (or its instance) becomes inactive
in a database (or a class). For example, the
operations of destroying an object in a database,
deleting an object instance from a class, and updating
an object instance in a class will cause an End-time
to be attached to the inactive object or object
instance. The difference between object and object
instance will be explained later.

2.3 Using Knowledge Rules to Capture Special
Notions of Time
It has been suggested in jLUM84, SN085, NAV89]
that extra time notions in addition to the Start-time
and End-time be introduced to capture some
application-specific temporal requirements. -l-hey
include transaction time, effect time, physical time,
logical time, or any other user-defined time notions.
The disadvantage of adding these extra time notions
into a temporal database is the added storage
requirements for storing the extra time tags. It is
important to keep the number of time notions small
because, once a general time notion is added into the
database, extra time tags need to be used in every
object instance in every object class, We observe that
some time notions are applicable only to some specific
data. For example, the fact that “the employee Mary’s
salary, $3OK, is retroactively effective from 12-15-87
instead of from 12-15-88” only affects the object
instance Mary, and it should not be treated as a
general case.

In OSAM*fl, we use only two general time notions:
Start-time and End-time. The other time notions are
expressed by knowledge rules. We shall use the
retroactive update problem as an example to show the
advantage of using knowledge rules over extra time
notions.
Approach I: Introduce “Record-time” time notion lo caplure the
fact thal Mary’s salary of S3OK has been retroactively effective on
12-15-87. The original data base and the updated database are
given below:

(1) Original database:
Name Title Salary Start-time End-time Record-time
<Mary Secretary S2OK 12-15-85 12-14-88 12-14-88~
<Mary Secretary S3OK 12-15-88 - 12-15-88>

(2) Updated database:
Name Title Salary Start-time End-time Record-time
<Mary Secretary SZOK 12-15-85 12-14-88 12-14-88~
<Mary Secretary $3OK 12-15-87 12-14-88 02-14-90>
<Mary Secretary S3OK 12-15-88 - 12-15-88s

In this approach, the extra time notion
“Record-time” is used to record (on 02-14-90) the fact
that Mary’s salary is retroactively updated. This
approach introduces excessive storage requirements
since every object instance in the database will need
a Record-time tag.

Approach 2: Use the following knowledge rule to capture this
specific temporal requirement associated with the object instance
Mary.

Rule 105
T (02-14-90, -]
Trigger-cond (Before Retrieve(Employee))
IF WHEN T[12-15-87, 12-14-881

CONTEXT Employee [Name = Mary]
THEN Salary = S3OK
End

In this approach, rule 105 becomes active on
02-14-90 (rules can have history). It is automatically
triggered before any retrieval operation is performed
on Employee instances. The When and Context
expressions in the IF clause specify that if the
historical instances of Mary during the period between
12-15-87 and 12-14-88 are accessed, her salary should
be $30K instead of the salary recorded in the
database. This approach allows many special temporal
requirements to be captured by the model and
enforced by a DBMSKBMS without the excessive
storage requirement and I/O for data-access of the
first approach. Although the run-time execution of
rules will increase the query response time, it however
can drastically increase the functionalities of the
system in terms of managing temporal data and
constraints. Rules are only triggered when their
associated data are accessed or manipulated. They
can be precompiled into some internal form for run-
time binding of variables [SIN90, CHU90]. Therefore,
they should not significantly degrade the overall
performance of a temporal KBMS. Knowledge rule
specification and management are the key features of
the OSAM* model [SU89, SU91] and the
implemented prototype KBMS [LAM89, SIN90,
CHU90]. Its extension to temporal rule specification
and management is described in another paper
[CHE91].

Proceedings of the 17th International
Conference on Very Large Data Bases

433

2.4 Object Time-Stamping in OSAM*/T -- A
Compromised Approach.
The object time-stamping technique used in this work
is a compromise between the tuple time-stamping
approach and the attribute time-stamping approach,
It aims to reduce data redundancy and, at the same
time, avoid excessive overhead in processing time.
Different from the combined approach used in
[NAV89], time stamps are assigned to a set of
semantically related attributes which form instances of
an object class instead of the so-called “synchronous
attributes”. As pointed out in the introduction, the
absence of synchronous attributes in a relation will
cause the approach in [NAV89] to be degenerated to
tuple time-stamping on many binary relations.

In our approach, every object instance is time
stamped with a time interval, <Start-time, End-time>.
The current database is a snapshot database of the
“current” time which contains the most recently
updated object instances of all the classes. If an
instance is in the current database, it is said to be
currently active; otherwise, it is currently inactive.
Active object instances have the ‘I-” mark as its
End-time. When an event takes place that affects an
object instance, its End-time will be set to the time of
the event, and the object instance becomes an inactive
historical instance which is shifted into a historical
area. A new active instance is then created whose
Start-time is set one time unit after the time of the
event and whose End-time is set to “-“.

The proposed time-stamping technique makes both
logical and physical separations between current data
and historical data which, we believe, is an advantage
over the relational approach in which current and
historical data are mixed. This is because if a user is
interested only in the current information, the
DBMSKBMS only has to search the current database
‘without having to separate the current data from the
historical data in query processing.

2.5 Using the “Delta File” Concept in Object
Management
In order to avoid data redundancy in the object
time-stamping approach, we adopt the “delta file”
concept [ROC75, SEV76] for object management and
introduce the symbol “#” to mark those unchanged
attribute values during object evolution. When a new
object instance is created due to an event, all the
attributes which are not affected by this event will be
marked by “#” instead of storing the unchanged values
in the historical object instance. The current object
instance will always keep a complete copy of the
current values of these attributes. For example, the
adjustment of John’s salary discussed in Section 2.1
will result in the new and old object instances shown

PKNXC&~S of the 17th International
Conference on Very Large Data Bases

below:
~11-10-89, - , OID, 448-44-6050, John, $30,000~ ,. New

<IO-01-81, 11-9-89, # , # , X , $20,000> . . Old

Using the “#” mark to represent unchanged attribute
values can avoid data redundancy during object
evolution, This is particularly important when we are
dealing with the history of complex objects. This
approach of relating current and historical data will
not complicate the search for historical data since,
when a historical object instance is needed, the system
will search from the current object instance, which
carries a complete copy of the current attribute values,
to the historical data area. These values will be kept
during the search until (1) some values other than “#”
marks have been found in the historical data
associated with the attributes and (2) the needed
historical object instance is found. In the first case,
the corresponding attribute values kept by the system
are replaced by the historical data and, in the second
case, the system will stop searching and use the values
kept by the system as the answer.

The above example shows the effect to time tags
when data are updated. Other events such as
insertion and deletion will also cause the change of
time tags and the creation of new instances. In the
case of deleting an object instance, the new instance
will contain null values.

2.6 Object instance history
O&UP/T uses a distributed storage model (DSM)
instead of the more common static storage mode1
(SSM) for representing the structural properties of
objects. In DSM, an object can appear in many
classes. The descriptive data about an object are
distributed in these classes, An instance is the
representation of an object in a specified class and
contains the attribute values that characterize the
object. An instance is uniquely identified by an
instance identification (IID) which is the concatenation
of a class ID and an object ID. When any of these
attribute values is modified, a history of the object
instance is created. If an object participates in more
than one class, each object instance in each class will
have its own history. This storage model is different
from that used in C++, Smalltalk, ONTOS, etc. in
which an object can be a member of only one class
and all inherited attributes appear in its class at the
bottom of the class hierarchy or lattice. A discussion
on the relative advantages of these two approaches is
out of the scope of this paper. Here, we simply note
that time stamps are associated with object instances
instead of objects. Data in an instance can be
independently accessed and manipulated.

There are three temporal events: insertion, update,

434 Barcelona, September, 1991

and deletion. When an object initially participates in
a class, an instance of that object will be inserted into
the class and an object instance history in that class
will be started. Subsequent events will add data to its
history. Figures l(a), (b), (c), and (d) give an
illustration of object instances in the Employee class
as Mary’s instance is created, updated and deleted.

2.7 Object History
Object history can be viewed as the collection of the
histories of its instances in the classes it participates.
Deletion of its instance from a class only means the
withdrawal of its participation as an active instance in
that class and does not affect its other instances.
When an object is created, it must participate in at
least one class in the schema. ‘This participation starts
the object history as well as the object instance history
in that class. If the object participates in only one
class, then the object instance history is the same as
the object history. When an object is destroyed (or
deleted permanently from a database), all the new
instances of this object will have nulls as their
attribute values.

2.8 Association Histories in OSAM*/T
In OSA.M*/T, object classes are defined in terms of
their associations with other classes. Five system
predefined association tY PeS (Aggregation,
Generalization, Interaction, Composition, and
Crossproduct) are provided for the convenience of
database designers and users to specify different
semantic relationships or associations among classes
and their instances, The semantic distinctions among
the association types are captured by knowledge rules
which control the manipulations of object instances
having the association types. In our KBMS
implementation, association types are defined as
classes which are subclasses of the Association class.
Thus, new association types or subtypes of the existing
association types can be introduced by defining
subclasses under the Association class or its
subclasses. It has also been recognized in [ELM9Oa]
that, beside object history and object instance history,
the history of object associations needs to be
maintained. One of the advantages of object
time-stamping is that association histories among
object instances can be derived from object instance
histories. Whenever an event occurs to an object
instance, the corresponding association history can be
inferred from that instance history. We shall use the
Interaction association as an example to illustrate this
point.

Interaction is an association type used to model
some relationships between objects in two or more
classes and the relationships themselves are treated as

Proceedings of the 17th International
Conference on Very Large Data Bases

instances of an object class. An object in a defining
class which has an interaction association with other
classes (called constituent classes) represents a fact
that relates the objects of its constituent classes. For
example, the fact that. specific employee works on a
specific project forms an object of a defining class
Work-on as modeled in Figure Z(a). Since it is an
object, the fact is assigned with an IID. Since
associations are themselves objects, the tracking of the
history of an interaction association is the same as
that of other objects. For example, if employee Mary
has been assigned to project Pl, an interaction object
instance of Works-on will be created and be assigned
with an IID, Wl. This object instance will consist of
Mary and Pl’s IIDs in addition to its own IID Wl.
Any change on either Mary’s attributes or Pl’s
attributes will not affect this interaction association,
However, a deletion of either Mary’s instance or Pl’s
instance from Employee or Project class or Mary’s
withdrawal from Pl will cause the interaction instance
to be deleted (referential constraint). In either case,
nulls will replace Mary and Pl’s IIDs in Wl’s new
version as shown in Figure 2(b). In Wl’s history, the
nulls in the historical record with the time interval
between t2 and t3-1 indicate that the interaction
association between Mary and Pl does not exist.
From t3 on, Mary has been working on project Pl
again. This is represented by storing Mary and Pl’s
IIDs in the object instance Wl. The management of
the histories of other association types can be similarly
handled.

2.9 Operations for a DBA to Correct Errors
In a temporal database, errors in object history due to
careless data entry and update are unavoidable and
should be corrected. Corrections of these errors
should be allowed without treating these operations
as temporal events. For example, mistakes can be
made in entering employee’s salary %27K for %37K
and in making a %lOK salary increase for no increase.
For the first case, the record should be corrected;

whereas, for the second case, the historical record
should be deleted. CorObj and DelObj are the two
operators provided in OSAM*/r for a DBA to deal
with the above cases.

3. The Query Language OQIJT
OQLfl is the query language for processing temporal
data/knowledge bases modeled in OSAM*A’. It is an
extension of the query language OQL [ALA891 to
contain temporal constructs and functions for
specifying temporal conditions. The general structure
of a query in OQWT is shown below:

43.5 Barcelona. September, 1991

WHW Tlm~Jnfenrl
WHERE Intervat Comparison Expression

CXINTEXT Awxiation Pattern Expression
WHERE oonditioas
SELECT object classes a&or attributes

OPERATION(s) object class(cs)

Query structure in OQUT

The main difference between the query structures of
OQL/r and OQL is that the query structure of
OQL/T contains an additional temporal condition (the
WHEN clause) which specifies the time interval of a
snapshot temporal database. The snapshot contains
all the recorded data that fall in that time interval.
If an interval comparison expression is specified in the
optional WHERE subclause, the interval has to
satisfy the expression. Otherwise, the query will not
be processed. The CONTEXT clause specifies the
pattern of object associations that objects in some
referenced classes of the snapshot database should
have (specified by the association pattern expression),
the inter-class attribute conditions or aggregation
conditions of these objects (specified by the optional
WHERE subclause), and the selected objects and
attributes (specified by the optional Select subclause).
The selected objects and attributes are then processed
by the system-predefined and/or user-defined
operations specified by the OPERATION clause. In
the following subsections, we shall explain these
language constructs further by examples. The
emphasis of the following sections will be on the
WHEN clause. More complex examples on the use
of the CONTEXT and OPERATION clauses have
been presented in [ALA89].

3.1 The WHEN Clause
The WHEN clause is used to specify the snapshot
temporal database of interest. It is an optional clause.
If it is not specified in a query, the current database
is assumed in the processing of the query. A time
interval can be specified in lhis clause either by a
specific time reference or by a data reference. In the
former case, the keyword WHEN is followed by an
explicit time interval specification of the form “T[A,
B]“, where A and B are two time points and A is less
than or equal to B. If A is equal to B, the time
reference is called time-point reference and “WHEN
T[A, B]” can be replaced by “AT A”; if A is less than
B, the time reference is called a time-interval
reference. In both cases, the query will be evaluated
against all the data in the snapshot database between
time A and time B. Examples 1 and 2 illustrate the

Proceedings of the 17th International
Conference on Very Large Data Bases

uses of time-interval and time-point references,
respectively. TCOUNT is a temporal function which
counts the number of times that title has been
changed.

01: How many times has Ma@ title beat ehan~ed
during the period between 1983 aad 19867

WHEN ~01-01-83, 12.31-86]
CONTEXT EMt%oYnE (Nrme * May1

,,, ItlmmEm wum(Ti~e)
:,

,. .,.::, .;: “:/,:,. .’ : ::,. :: ,, .,,,, .‘.. :. .: ., .:: ./, ;; .,.,’ . .::.. ” ::, .‘:., : .: j::: :., ,,.,
Example 1: Time-interval reference in a OQUI’ query.

Q2 What is John’s title on 11-29-847

WHEN ,q11-29-84,11-29-841
CON’EXT EMP&LlYEE fName * Johnj
REEVE &MPU3YEETitle
Or

AT 11-29-84
CONTEXT EMPLOYEE [Name = John]
RETRIEVE EMPLOYEETitle

Example 2: Time-point reference in a OQW query.

If data reference is used for the specification of a
time interval, WHEN is followed by an interval
expression of the form “INTERVAL (Data
Condition)“. The Data Condition can specify a simple
data condition of an object instance or a complex
association pattern expression involving multiple
classes. In both cases, the rest of the query will be
evaluated against the temporal snapshot database
defined by the time interval during which the data
condition exists. Examples 3 and 4 illustrate the uses
of data conditions in a simple and a more complex
case, respectively.

In Q3, Employee in the CONTEXT clause is bound
to the Employee specified in the WHEN clause (i.e.,
the employee Mary). In 44 the association pattern
used in the Interval function specifies that the time
interval of interest is the one when employee John
worked on project PI. The association operators “*‘s”
specify that the object instance John should be
associated with some instance of Work-on which is
also associated with the object instance Pl.
Employee-l is an alias of Employee. It represents a
different scan of the Employee instance (i.e., a
different range variable). Very complex patterns of
object associations involving tree and network
structures among objects can also be specified as the
data condition [see ALA90]. Also, the non-associate
operator “!” can be used in the pattern expression to
state that those objects in two classes that are not
associated with each other would satisfy the search.

436 Barcelona, September, 1991

03: What was Mar,+ salary when she was a clerk?

WHEN INTERVAL(EMPLOYEE [Name = Mary,
Title = Clerk])
CONTEXT EMPMYEE
RETRIEVE salary

Example 3: Data Condition of a simple object instance.

Q4: What was Maty’s salary when John worked
on Project PI?

WHEN WTERVAL (Employee(Name = John]
* Worked-On l Project[P# = PI])
CONTEXT Employee-l [Name = Mary]
RETRIKVE Salary

Example 4: Data Condition of a complex association
prttcrn expression.

The data condition in a WHEN clause may
sometimes return multiple time intervals since
multiple snapshot databases defined by different time
intervals may satisfy the data condition. In this case,
different strategies can be followed. One strategy is
to evaluate the rest of the query against all these
intervals; the other is to select only one interval for
query evaluation. In our implementation, we choose
to evaluate a query against all the qualified intervals.

3.2 Temporal Functions
In addition to the interval function discussed above,
several other useful functions are described below.
Examples for these functions make use of the data
shown in Tables 1 and 2.

Start-t End-t OID Name Title Salary

<02-18-88, - lZS.Mary, Matmger, 40K7
<10.21.85, 02-1’9-88, Y, Y. Supetvisor 33k:.
&l-10-83. 10-20-85. f. R. Secretary, 27K7
~06.10-81. 06-09-83, #, #, Clerk 22k>
<ll-09-80, 06-09.81, #, I, I , 1X>

Table 1: Employee Maty’s history

stlrt.1 End-t OID Name Title Salary

<1123-88, - 448, John,P.Manager, 45K7
<07.10-87, 11-22-k Y , iy, PSupetvisor,42K>
<02-02-84, 07-09-87, I , #, Engineer, 38K7
c 11-23X& 02-01-84. # , I, J. Eagineer, 27Kr

Table 2: Employee John’s history

(1) FORMER: FORMER is a function used to

Pmceediigs of the 17th International
Conference on Very Large Datn Bases

retrieve the former historical instance relative to a
reference instance. The general form of FORMER
can be expressed as below:

FORMER(parameter) --> historical object instance
where, parameter is a historical event and the output
is the historical object instance happened prior lo the
historical event. An example of this function is to
find all the employees who had been “Senior
Engineer” before they were promoted to “Project
Supervisor” (see Example 5).

.,’ ‘.,’ ;

Example 5: Illustration of the FORMER function.

In this example, the object instances of
EMPLOYEE specified in the WHEN clause are used
to determine the temporal interval and to serve as an
anchor for the object instances of the EMPLOYEE
class specified in the CONTEXT clause. Therefore,
no alias is needed in this query. When the query is
evaluated, the system will first search for all the object
instances in the EMPLOYEE class to check if any of
their historical instances has a title of Project
Supervisor. Then, based on this reference, the system
will check if the former title relative to Project
Supervisor is Senior Engineer or not. For those
qualified object instances, their names will be
retrieved. In our database example, there is no object
instance which satisfies this temporal condition.

(2) NEXT: NEXT is a function used to retrieve the
historical instance that follows a reference instance.

(3) TIME: TIME is a special function used to return
a lime point. Its parameter is NOW, which is a
keyword representing the current time. The “+” and
‘-’ symbols are used together with NOW to indicate
the relative time to the current time. For example,
“NOW + 3” stands for three time units ahead of the
current time; and “NOW - 2” stands for two time units
behind the current time. The meaning of
TIME(NOW +/- x), therefore, is the projection of the
relative time point to current time when this function
is evaluated. When x is not given, TIME(NOW) is a
projection of the current time. The TIME function
is static whereas the construct NOW is dynamic
because time is dynamic.

(4) START and END: START and END are used
in OQL/r to retrieve the start-time and end-time of
a temporal instance. An example for retrieving the
time when Mary became a manager is shown below:

437 Barcelona, September. 1991

0% When did Maly become a manager?

WHJB INIXRVALJEMPLOYEEjhkme
= Mary, Title = Manager])
CONTEXT EMPLOYEE
ReTRIEVE SURT@MPLOYEE)

Example 6: Illustration of START function

In this example, the system will search through
Mary’s record for the history instances which have the
title Manager. Once the instances are found, the start
time(s) of the interval(s) during which Mary’s title was
Manager will be the answer. Based on the data in
Table 1, 02-18-88 is the answer to this query.

3,3 Interval Comparison Operators
The interval specified in the WHEN clause may
subject to some temporal conditions. In this case, the
WHERE subclause is used to specify a Boolean
expression of time intervals and interval comparison
operators. The expression specifies how the interval
following the WHEN clause is related to some other
time intervals. If the expression in the WHERE
subclause is evaluated to True, the rest of the query
will be processed against the snapshot datahase
defined by the interval following WHEN. Otherwise,
the query will not be executed.

Given two time intervals A = T[tl.t2] and B =
T[t3,t4] which can be defined either by time or data
reference discussed above, their start times and end
rimes can have the following temporal relationships:
Case (1): t2 c t3 and t3 - t2 > one time unit

This case says that an interval A is before interval
B, and the distance between them is greater than one
time unit. The relationship between the two time
intervals is said to he either BEFORE or AFI’ER.
That is, interval A is BEFORI$ interval B, or interval
B is AFTER interval A.
Case (2): t2 < t3 and t3 - t2 = time unit

(A PRECEDING B, B FOLLOWING A)

Case (3): t2 = t3 and t2 > tl and t4 > t3
(A P-ADJACENT B, B F-ADJACENT

ADJACENT B/A)
A, A/B

Here, P stands for preceding and F for following. In
case of a temporal condition in which the relative
order of two time intervals are irrelevant, ADJACENT
can be used to stand for either P-ADJACENT and/or
F-ADJACENT.
Case (4): tl c t3 c t2 < t4

(A P-CROSS B, B F-CROSS A, A/B CROSS B/A)

Case (5): tl = t3 and t2 = t4 (A/B EQUAL B/A)

Proceedings of the 17th International
Conference on Very Large Data Bases

Case (6): tl 5 t3 L t4 s t2
(A CONTAIN B or B WITHIN A)

There are four possible combinations in this case
and we introduce different names for these cases.
(a) tl < t3 < t4 < t2 (A O-CONTAIN B or B
I-WITHIN A; here 0 stands for “Outer” and I stands
for “Inner”)
(b) t1 = t3 < t4 < t2 (A L-CONTAIN B or B
L-WITHIN A; here L stands for “Left”)
(c) t1 < t3 < t4 = t2 (A R-CONTAIN B or B
R-WITHIN A; here R stands for “Right”)
(d) 11 = t3 < t4 = t2 (A EQUAL B or B EQUAL A)

Note: EQUAL is a special case of CONTAIN or
WITHIN.

The above set of interval comparison operators is a
super set of what was presented in [ALL83].
Different keywords are introduced for expressiveness
and clarity. They can be used in a Boolean expression
with parentheses to specify a complex interval
condition in the WHERE subclause of WHEN.

3.4 Temporal Ordering Functions
The main concept of temporal ordering of an object
instance’s history is to sort the historical records of an
object instance in an ascending order basing on their
time stamps so that retrieval of historical records in
a specified order can be specified [NAV89]. In
OSAM*/T, we introduced FIRST, LAST, and NTH as
the forward temporal ordering functions and
B-FIRST, B-LAST, and B-NTH (where B stands for
Backward) as the backward temporal ordering
functions. The parameter for functions FIRST, LAST,
B-FIRST, and B-LAST is either an object instance or
a historical event, and the output is either the first
object instance or the last object instance depending
on the function used. The parameters for functions
NTH and B-NTH are a number and an object
instance, and the output is the object’s historical
instance in the order specified by the number. Query
7 illustrates the use of a forward temporal ordering
function.

.v..
Q7: Re~rievc the names and salaries Oi &csc
employees whose stat’ting salaries were greater
than S25K.

WHEN INTERVAL (FIRST(EMPLOqE))
CONTEXT EMPLOYEE [Salaiy B S?$]
RETRIEVE ‘Name, Salary “,.’

Ekampie 7: Illustration of the lotward temporal ordering
function.

438 Barcelona. September. 1991

3.5 Moving Window and Processing Functions
‘Iwo functions ANY and EVERY are used to
implement the “Moving-Window” concept introduced
in [NAV89]. A “Moving-Window” is a period of time
which moves at a constant pace from the lower bound
toward the upper bound of a time interval. In a
“Moving-Window” application, conditions in a query
will be evaluated as many times as the period shifts
from the lower bound toward the upper bound of the
time interval at a specified constant pace. That is,
each time the period shifts, the conditions in a query
will be re-evaluated in the new specified period.

The general structure of a WHEN clause containing
ANY/EVERY is shown in Table 3 below:

WHEN ~NTl%VAL(parameter) ANY/EVERY C WITHIN
YA, B] INCREMBNTJIY D

Table 3: General structure of ANY and EVERY functions.

ANY/EVERY is followed by a period of time C, a
valid temporal range T[A, B], and the periodical pace
D. Conditions specified in a query is evaluated upon
the snapshot databases within period C. The lower
bound and upper bound of the period C must be
WITHIN T[A, B]. When the evaluation of the
conditions is finished with the first period C, the
lower bound and upper bound of C advance at the
pace D to form the second period C. The operation
in the query will then be evaluated upon the snapshot
database of the second period C. This process
continues until C is no longer WITHIN T[A, B]. If
D is not given, the period C will advance at the pace
of the time unit specified in C. If T[A, B] is not
given, it will be defaulted to the lifespan of the
historical object instance specified in the parameter.
If an object instance’s history starts later than A, then
the lower bound of the first period C will be the
starting time of the first instance of that object.

08: Flnd the employeea whose titles had been changed more
than twice within any two-year period during 1976 and 1988.

WHEN fNTERVAL(EMPLOYEE) ANY 2 YEAR
WITHIN Tj1976, 19881 INCREMENT-BY 1 YEAR

CONTEXT EMPLOYEE
WHERE TCOUNTQ”ttle) > 2

RETRIEVE Name

Enample 8: ANY as Movin8Window.

Proceedings of the 17th International
Conference on Very Large Data Bases

ANY, which is the same as the term
“Moving-Window” used in [NAV89], is used to
capture “there exist” concept; whereas EVERY is used
to capture “for all” concept. Example 8 illustrates the
use of ANY.

3.6 Set Operators
In some applications, it is necessary to involve the
temporal information of different snapshot databases
for the data manipulation of a particular snapshot
database. The temporal information in these
applications are used as the restricting condition in
the time dimension on the interested temporal object
instances. In order to achieve this temporal
referencing, we introduce the Set Operators
INTERSECT, DIFFERENCE, and UNION.

WHEN Time Interval 1
ONTEXT association pattern expression 1

WHERE condition 1.
Set Qpcntor parget ‘Classes)
WHEN Timb Interval 2
CONTEXT associatiott patted :@pk+a$on2

WHERE condition 2.

Table 4: Syntax of a Query with a Set Operator.

The syntax of a query that involves a Set Operator
is given in Table 4. The operands of a Set Operator
are two contexts which define two separate temporal
subdatabases each of which contains object classes and
their instances that satisfy the association pattern and
condition specified in the Context clause. The result
of the set operation is a subdatabase derived from
the two subdatabases. One restriction on the two
contexts is that there must be at least one intersecting
class between them and the operation of the Set
Operator is performed on the intersecting class(es).
For example, Set Operators can not be applied to the
two contexts A * B * C and D * E * F because there
is no intersecting class between them; however, they
can be applied on the two contexts A * B * C and A
* B * D * E because there are two intersecting classes
A and B. In the above example, a set operation can
be applied on class A, class B, or classes A and B
depending on the user’s requirement. The “Target
Classes” following the Set Operator in Table 4 is used
to specify the intersecting classes over which the set
operator is performed. “Target Classes” is a member
of the power set of all intersecting classes. If it is not
provided, the maximal number of intersecting classes
will be used as the default.

Based on this syntax, the INTERSECT set operator
will return a subdatabase derived from “association
pattern expression 1” of the first context. The
subdatabase contains only those patterns of object

439 Barcelona, September, 1991

associatiQns whose object instances of the specified
“Target Classes” are also in the subdatabase generated
by “association pattern expression 2”. An example for
the INTERSECT operation is given in Figures 3(a),
(b), (c), and (d). ln Figure 3(a), two subdalabnscs are
derived basing on the two association pattern
expressions “A*B*C” and “A*B*D*E”. An
INTERSECT set operation is performed between
Context A*B*C and Context A*B*D*E over the
intersecting class A. Since Context A*B*C produces
a subdatabase in which class A contains {al, a3, a4)
and Context A*B*D*E produces a subdatabasc in
which A contains {al a2 a4}, the result of intersection
yields {al, a4) as shown in Figure 3(b). Figure 3(c)
and (d) are the results of performing INTERSECT
operation under two other conditions. The
DIFFERENCE and UNION operators can be
similarly defined.

In general, a OQLfl query can contain mulliple
contexts with each context linked to another through
a set operator. A query with multiple contexts is
evaluated in a bottom-up fashion. The last set
operator in a query is evaluated first. The result of
the evaluation is a subdatabase and is used as the
second operand for the set operator preceding the last
one. This process continues until all the set operators
have hccn evaluated. An example on the use of the
set operators is in Example 9. In this example, the
employees whose salary were greater than $30K during
[03-17-76,03-17-773 and who had ever been a manager
during the period [Ol-08-79, 12-09-831 are retrieved.
In order to properly express this query, three contexts
of different time snapshots and two INTERSECT
operators arc needed. Since the query is intercstcd in
current employees, the top-most context specifics a
subdatabase containina all “current” emplovees.

Conlexr Employee
INTERSJXX (Employee)
WHEN T[Ol-OS-79, 12-09-831
Conrext Employee [Title = Manager]
INTERSECT (Employee)
WHEN [03-17-76, 03.17-771
CONTEXT Employee [Salary S= $3OK]

Retrieve Employec.Namc

Example 9: An OQUTquerywhich contains multiple
contexts linked Ly IWO INTERSECT Operaton.

4. Conclusion
In this paper, we have presented a temporal
object-oriented semanticassociation model, OSAM*/T.
In this model, we use object time-stamping technique
and the notions of Start-time and End-time to record
the evolution of object instances in different classes.
The technique of object time-stamping has led to
several advantages such as the logical and physical

Proceedings of the 17th International
Conference on Very Large Data Bases

separation of historical data and current data, the
avoidance of normalizing hierarchically structured
object instance, and the preservation of object history,
object instance history and association history. In
order to avoid redundant data, we adopted the “delta
file” concept for object management. Additionally, we
use knowledge rules to define special time notions for
special temporal requirements and to avoid the
introduction of many time notions which require an
excessive amount of storage space.

In conjunction with the temporal model, we have
presented a query language OQL/r for temporal
information retrieval and manipulation. In OQL/T,
several useful temporal functions, interval comparison
operators, forward and backward temporal ordering
functions, and set operators have been introduced.
They are needed for expressing various temporal
conditions of a data reference in an OQWT query.
OQL/T inherits all the features of OQL including its
expressive power and non-procedural specification. It
is a super-set of OQL. The implementation of the
temporal OSAM* and temporal OQL takes advantage
of our implemented prototype knowledge base
management system OSAM* KBMS by extending its
object manager, query processor and OQL translator.

[ALA891

[AD1861

[Al INXG]

[AHN88]

[ALLR3]

[AND821

(AR1861

[norsz]

[ROOSG]

(CHE91]

440

References

Alashqur, A.M., S.Y.W. Su, and H. Lam, “OQL - An
Object- Oriented Query Language”, Proc. of the Int’l
Conf. on VLDB, Amsterdam, The Netherlands, 1989,
pp. 433442.
Adiba, M., and Quang, N.B., “Historical Multi-Media
Databases,” Proc. of the Int’l Conf. on VLDB, 1986, pp.
63-70.
hhn, I., “Towards an Implementation of Database
Management Systems with Temporal Support,” IEEE
Proc. of the Int’l Conf. on Data Engineering, 1986, pp.
374-381.
Ahn, I., and S&grass, R., “Partitioned Storage for
Temporal Databases,” Information Systems Vol.13 No.4,
1988, pp.369-391.
Allen, J.F., “Maintaining Knowledge about Temporal
Intervals”, Comm. ACM, Vol.26, No.11, Nov. 1983, pp.
832-843.
Anderson, T.L., “Modelling Time at the Conceplual
Level,” in Improving Database Usability and
Responsiveness, P. Scheuennann (ed.), North Holland,
1982.
Ariav, G., “A Temporally Oriented Data Model,” ACM
TODS, Vol.1 1, No.4, 1986, pp. 499-527.
Bolour, A., Anderson, T.L., Deketser, L.J., and Won&
H.K.T. “The Role of Time in Information Processing:
A Survey,” ACM SIGMOD Rec., 1982, pp. 28-48.
Roach, Grady, “Object-Oriented Development”, IEEE
Trans. on Software Engineering, VolSE-12, No.2,
February, 1986.
Chen, H.M., “Classification, Management, and
Processing of Temporal Rules in OSAM’II”, paper in
preparation, 1991.

Barcelona, September, 1991

[CL1831

[CLISS]

[CHU’)o]

[DAY851

ID=71

[ELMgOal

[ELMgOb]

[ELM90c]

[ELMgOd]

(GAD861

[KL083]

[LAM891

[LOR88]

[LUM84]

[McK86]

(NAV89j

[ROC7S]

[RAS88]

[SCH83]

[SEGB’I]

Clifford, .I., and Warren, D.S., “Formal Semantics for
Time in Databases,” ACM TODS, Vol.8, No.2, 1983,
pp. 214.254.
Clifford, J., and Tansel, A.U., “On an Algebra for
Historical Relational Databases: Two Views,” ACM
SIGMOD Conf., 1985, pp. 247-265.
Chuang, H. 8, “Operational Rule Processing in a
Prototype OSAM’ Knowledge Base Management
System, Master’s Thesis, Dept. of Computer and
Information Science, University of Florida, 1990.
Dayal, LI. and J.M. Smith, “PROBE: A
Knowledge-Oriented Database Management System”,
Proc. of the lslamorada Workshop, Feb., 1985.
De, S., S. Pan, and A. Whinston, ‘Temporal Semantics
and Natural Language Processing in a Decision Support
System”, Information Systems, Vol.12, No.1, 1987,
pp.29-47.
Elmasri, R., and Gene TJ. Wuu, “A Temporal Model
and Query Language for ER Databases”, IEEE proc.
of the Int’l Conf. on Data Engineering, 1990, pp. 76-83.
Elmasri, R., and Gene TJ. Wuu, ‘The Time Index: An
Access Structure for Temporal Data”, Proc. of the
VLDB, 1990.
Elmasri, R., 1. El-Assal, and V. Kouramajian,
“Semantics of Temporal Data in An Extended ER
Model” in ER Conf 1990 ., .
Elmasri, R., and C. Udomwongsa, “An ER Interface
for An Object-Oriented System”, Tech. Report
#UH-CS-90-30, University of Houston, Aug. 1990,
Houston, TX 77204.
Gadia, SK., ‘Toward A Multihomogeneous Model For
A Temporal Database,” IEEE proc. of the Int. Conf.
on Data Engineering, 1986, pp. 390397.
Klapprogge, M.R., and Lockemann, PC., “Modeling
Information Preserving Databases: Consequence of the
Concept of Time,” Proc. of the Int’l Conf. on VLDB.
1983, pp. 399-416.
Lam, H., et. al., “Prototype lmplemenlation of an
Object- oriented Knowledge Base Management System”,
The Second Conference on Productivity in Computer
Integrated Engineering and Manufacturing, Orlando,
Florida, Nov. 1989.
Lorenitzos, N. A., and Johnson R. G., “Fxtending
Relational Algebra to Manipulate Temporal Data.”
Inform. Systems, Vol.13, No.3, 1988, pp. 289-296.
Lum, V., Dadam, P., Erbe, R., Guenauer, J., and Pistor
P., “Designing DBMS Support for The Temporal
Diemnsion,” Proc. ACM SIGMOD Conf., 1984,
pp.llS-130.
McKenzie, E., “Bibliography: Temporal Databases,”
ACM SIGMOD Rec., Vol.15, No.4, 1986, pp. 40-52.
Navathe, S. B., and Ahmed, R., “A Temporal
Relational Model and A Query Language,” An
international Journal of Information Science Journal,
Vol.48, No.2, 1989, pp. 57.73.
Rochkind, Marc J., ‘The Source Code Control System,”
IEEE Trans. on Soft. Eng., VolSE-1, No.4, 1975, pp.
364-370.
Raschid, L., and S.Y.W. Su, “A Transaction Oriented
Mechanism to Control processing in a Knowledge Base
Management System”, Proc. of the Int’l Conf. on
Expert Database Systems, 1988.
Schiel, U., “An Abstract Introduction To the Temporal-
Hierarchic Data Model,” Proc. of the Int’l Conf. on
VLDB, 1983, pp. 322-330.
Segev, A., and Shoshani A., “Logical Modeling of
Temporal Data,” Proc. ACM SIGMOD Conf., 1987,
DD. 454-466.

[SEV76]

[SHO86]

(SIN901

[SNO85]

[SNOB61

[SN087]

[ST0861

[SUSS]

[SU89]

[SIJ91]

[TAN861

[TAN891

Severance Dennis G., and Guy M. Lehman,
“Differential Files: Their Application to The
Maintenance of Large Databases,” ACM TODS, Vol.1,
No.3, 1976, pp. 256-267.
Shoshani, A., and Kawagoe, K., ‘Temporal Data
Management,” Proc. of the Int’l Conf. on VLDB, 1986,
pp. 79-88.
Singh, M., The Enforcement of Integrity Constraints in
Object-oriented Databases, Master’s Thesis, Dept. of
Electrical Engineering, University of Florida, 1990.
Snodgrass, R., Ahn, I., “A Taxonomy of Time in
Database” Proc. ACM SIGMOD Conf., 1985, pp.
236-246.
Snodgrass, R., “Research Concerning Time in
Databases: Project Summaries,” ACM SIGMOD Rec.,
Vol.15, No.4, 1986, pp. 19-39.
Snodgrass, Richard, ‘The Temporal Query Language
TQuel,” ACM TODS, Vol.12, No.2, June 1987.
Stonebraker, M. and LA. Rowe, ‘The Design of
POSTGRES”, Proc. of the ACM SIGMOD, 1986, pp.
340-355.
Su, S.Y.W., and L. Raschid, “Incorporating Knowledge
Rules in a Semantic Data Model: An Approach to
Knowledge Management”, IEEE Conf. on AI
Applications, December 1985.
Su, S.Y.W., Lam, H., Krishnamurthy, V., “An
Object-Oriented Semantic Association Model
(OSAM*)” Chapter 17 in Artificial Intelligence:
Manufacturing Theory and Practice, edited by ST.
Kumara, AL. Soyster, and R.L. Kashyap, Published by
the Institute of Industrial Engineers, Industrial
Engineering and Management Press, Norcrass, GA,
1989.
Su, S.Y.W. and AM. Alashqur, “A Pattern-Based
Constraint Specification Language for Object-Oriented
Databases”, in COMPCON 91 Proc., San Francisco,
Cal., Feb.ZS-Mar.1, 1991.
Tansel, A. U., “Adding Time Dimension to Relational
Model and Extending Relational Algebra” Information
Systems, vol.11, no.4., 1986, pp.343-355.
Tansel, A.U., Arkun, M.E., and Ozsoyoglu, Cl.,
‘Time-by- Example Query Language for Historical
Databases,” IEEE Trans. on Soft. Eng., Vol. lS, No. 4,
1989, pp. 464-478.

Proceedings of the 17th International
Conference on Very Large Data Bases

441 Barcelona, September, 1991

John
Jim 3 .

Fig. l(a) Object instances
in Employee class when Mary
has not been hired as an employee

Mary <tl. t2-

-, . ..>

Fig. l(c) Object instances in
Employee class when object
instance of Mary has been
modified (UPDATE)

1 , ..

Fig. l(b) Object instances in
Employee class when’Msry is
hired as an employee (INSERT)

Fig. l(d) Object instances in

t3-1, . ..>

-, null, “., null>

Employee class when object Mary
has been deleted from Employee
class (DELETE)

Fig 2(a): Interaction relationship between class Employee
and class Project is modeled by Works-On class.

tlctl, Q-1, Wl. Mary, Pl>

Fig. 2(b): History of object Wl in the Works-On class. Mary worked
on project Pl from tl to t2-1 and then was withdrawn from Pl at time
12. Between t2 and 13-1, Mary was not involved in Pl and this is noted
by the absence of links between Wl and Mary and Wl and PI. From
13 on. Mary has been assigned back to project Pl again.

F%ceediigs of the 17th International
Conference on Very Large Data Bases

A * B * C

A * B* D* E
Fig. 3(a) Association patterns of
two contexts A*B*C and A+B*D*E

A * Ii * c
Context A*B+C INTERSECT (A) Context A*B*D*E

Fig 3(b) Result of applying INTERSECT Set Operator
over A between the two contexts (A*B*C)
and (A*B*D+E)

A*B+D* E
Context A*B*D*E INTERSECT (A) Context A*B*C

Fig. 3(c) Result of applying INTERSECT Set Operator
over A between the two context (A*B*D*E) and (A*B*C)

*

A * i3 * C

Context A*B*C) INTERSECT (A, B) Context A*B*D*E

Fig. 3(d) Result of applying INTERSECT Set Operator
over A*B between the two context (A+B*C) and (A*B*D*E)

442 Barcelona. September, 1991

