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Abstract 

The importance of temporal database management 
and temporal reasoning has long been recognized 
by the database and AI communities. Many 
techniques for modeling and managing temporal 
databases have been introduced. Most of the 
existing research on temporal databases have been 
based on the relational data model which has 
limited capabilities in modeling complex objects, 
constraints, and behavioral properties. In this 
paper, we present an object-oriented 
knowledge-based approach to model and process 
temporal information. A temporal knowledge 
representation model OSAM*/T is described. It 
is an extension of the object-oriented semantic 
association model OSAM* to capture the concepts 
of time and history. Object time-stamping is used 
to record the evolutions of objects, and knowlcdgc 
rules instead of extra time notions are used to 
capture special temporal requirements. The 
temporal model is also featured by its separation 
of historical data and current data and its simple 
and maintainable representation of complex 
objects. In addition to the temporal data model, 
this paper also introduces a temporal query 
language OQL/T which is an extension of the 
object-oriented query language OQL for 
processing temporal information. Several 
temporal functions, interval comparison operators, 
and set operators are described. 

1, Introduction 
Temporal information is the recording of past 
activities which are often important to present and 
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future decision-making. Temporal information can 
be used not only to answer such queries as “What was 
John’s title when Mary was a typist?” and “How many 
times has John’s title been changed during 1976 to 
1982?“, but also as the basic assertions for a 
knowledge base management system to reason about 
past activities and to derive facts which are not 
explicitly stored in a knowledge base [BOL82, ALL83, 
McK86, SN086, DE87]. 

In recent years, the technology in storage media has 
made a remarkable progress and has allowed large 
quantities of temporal data to be stored and processed 
efficiently [SN086]. This has motivated a considerable 
amount of research on temporal databases. They 
include the extension of data models for modeling 
temporal data [AND82, CL183, KL083, SCH83, 
LUM84, CLI85, SN085, AD186, ARI86, GAD86, 
TAN86, SEG87, LOR88, NAV89, TAN89, ELM9Oc], 
the extension of query languages and relational algebra 
for accessing temporal data [KLO83, CLI85, GAD86, 
TAN86, SN087, LOR88, NAV89, TAN89, ELM9Oa], 
and the management of secondary storage to achieve 
efficient indexing techniques for data access [LUM84, 
SH086, AHN86, AHN88, ELM9Ob, ELMBOd]. Most 
of these efforts have been based on the relational 
model directly or indirectly because of its well 
developed theories. 

Techniques used to model temporal information 
using the relational model are attribute time-stamping 
[KLO83, CL185, GAD86, TAN86, ELM9Oa] and tuple 
time-stamping [LUM84, SN085, LOR88]. The 
expansion and contraction of data between the 
normalized and non-normalized structures required in 
the attribute time-stamping technique produce a 
serious time overhead in processing temporal data; 
whereas, in tuple time-stamping, data-redundancy is 
the major shortcoming. In order to take advantages 
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of these two techniques and to avoid their 
shortcomings, Navathe and Ahmed (NAV89] used a 
combined approach which is based on the concept of 
“temporal normalization”. However, their approach 
only works under a weak assumption called 
“synchronous attributes”, which is a rare case in the 
real world application. If “synchronous attributes” are 
not available in an application, the approach will be 
degenerated to tuple time-stamping over relations 
which contain only two attributes (i.e., the primary key 
and a variant attribute). This logical data 
representation will be worse than using the tuple 
time-stamping technique over non-binary relations 
because it generates more redundant data (i.e., 
replication of keys) and needs more join operations 
during data processing. In addition to the problems 
associated with the existing techniques, there are two 

maintenance of the histories of complex objects. 
6. In addition to the powerful association operators 

introduced in OQL, the query language OQL/r 
provides a set of temporal functions, interval 
comparison operators, and temporal set operators for 
manipulating temporal data. 

This paper is organized as follows. Section 2 gives 
an ovetview of OSAM*/T with an emphasis ‘on 
temporal concepts such as time sequence, event, object 
time-stamping, object history, object instance history, 
and association history. Section 3 describes OQL/T. 
The semantics of a general query structure is discussed 
in detail with examples. In addition, interval 
comparison operators, temporal functions, and 
temporal set operators are also presented. A summary 
and a conclusion are given in Section 4. 

common problems found in a relational temporal 2. Modeling Temporal Database Using OSAM*/T 
database: ihe need for more than two time notions 
and the mixture of historical data with current data. 
We shall elaborate on these problems in this paper. 

Motivated by the above problems of the current 
time-stamping,techniques and the use of the relational 
model for modeling temporal information, we have 
taken an object-oriented, knowledge-based approach 
to model temporal information.’ This approach rakes 
advantages of Ihe features of object-oriented databases 
[BOO861 and the concepts and techniques of 
integrating artificial intelligence and database 
techniques [DAY85, SU85, ST086, RAS88]. 

In this work, we extended the object-oriented 
semantic association model OSAM* [SU89] and its 
query language OQL [ALA891 to model and query 
temporal databases. The resulting model and 
language are called OSAM*n (temporal OSAM*) 
and OQL/T (temporal OQL), respectively. They have 
the following key features: 

2.1 Basic Concept of Time and Event 
A time sequence is a series of continuous time points 
t1, 12, . . . tn-1, tn, where tl < t2 < . . . < tn. The 
distance between any two adjacent time points is 
identical and is called a time unit. The time unit 
chosen for a temporal system may be different from 
application to application depending on the granularity 
needed. It can be microsecond, minisecond, second, 
minute, hour, day, month, or . . . . etc. A system may 
use more than one time granularity for its 
applications’ needs by providing functions for the 
conversion between different time granularities. In the 
rest of this paper, we shall use “day” as the time 
granularity in our examples and assume that the 
history of object instance is recorded discretely even 
though Ihe interpretation of an object history is 
continuous. 

1. An object time-stamping technique is used which 
is a compromise between the attribute time-stamping 
and the tuple time-stamping techniques. The history 
of objects, object instances, and object associations arc 
preserved using this technique. 

2. Data redundancy is avoided by adopting the “delta 
file” concept [ROC75, SEV76] for object management. 

3. Start-time and End-time are the only two time 
notions employed in OSAM*/T for recording object 
histories. Other time notions [LUM84, SNO85] arc 
captured by temporal rules. 

In this paper, an event is an action which will cause 
a change of the contents of a database. An update, 
a delete, or an insert operation is an event. A data 
retrieval operation is not considered as an event 
because it does not alter the state of a database and, 
thus, does not affect the time tags associated with the 
data. 

4. Historical data and current data are separated 
both logically and physically. This separation imposes 
an implicit index on historical and current data, and 
thus can avoid unnecessary search and sorting during 
query evaluation. 

5. Hierarchically structured object instances are 
allowed, thus, simplifying the representation and 

In a temporal database, an object instance will have 
a new time tag and new attribute values when an 
event occurs (note: in case of a delete operation, the 
new values are nulls). The old instance then becomes 
a part of the history of the instance. For example, to 
adjust John’s salary to $30,000 beginning on November 
lOth, 1989 will introduce a new instance to replace the 
old one in the current database and the old instance 
is shifted into the historical area: 

<11-10-89, - , OID, 448, John, S3O,OOO>...New Instance. 
~10-01-81, 1 l-9-89 , OID, 448, John, $20,00Oz...Old Instance. 

Here, the first two fields represent Start-time and 
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End-time, “-” stands for the present time, and OID 
stands for the object identifier. 

2.2 Time Notions Used to Model Temporal 
Information 
In OSAM*A’, Start-time and End-time are the only 
two time notions used to delimit the records of an 
object history. Start-time is the time when a new 
object (or an object’s instance) becomes active in a 
database (or in a class). For example, the operations 
of creating an object, inserting an object instance, 
and updating an object instance will cause a new 
Start-time to be attached to the new object instance 
which has new attribute values. The End-time is the 
time when an object (or its instance) becomes inactive 
in a database (or a class). For example, the 
operations of destroying an object in a database, 
deleting an object instance from a class, and updating 
an object instance in a class will cause an End-time 
to be attached to the inactive object or object 
instance. The difference between object and object 
instance will be explained later. 

2.3 Using Knowledge Rules to Capture Special 
Notions of Time 
It has been suggested in jLUM84, SN085, NAV89] 
that extra time notions in addition to the Start-time 
and End-time be introduced to capture some 
application-specific temporal requirements. -l-hey 
include transaction time, effect time, physical time, 
logical time, or any other user-defined time notions. 
The disadvantage of adding these extra time notions 
into a temporal database is the added storage 
requirements for storing the extra time tags. It is 
important to keep the number of time notions small 
because, once a general time notion is added into the 
database, extra time tags need to be used in every 
object instance in every object class, We observe that 
some time notions are applicable only to some specific 
data. For example, the fact that “the employee Mary’s 
salary, $3OK, is retroactively effective from 12-15-87 
instead of from 12-15-88” only affects the object 
instance Mary, and it should not be treated as a 
general case. 

In OSAM*fl, we use only two general time notions: 
Start-time and End-time. The other time notions are 
expressed by knowledge rules. We shall use the 
retroactive update problem as an example to show the 
advantage of using knowledge rules over extra time 
notions. 
Approach I: Introduce “Record-time” time notion lo caplure the 
fact thal Mary’s salary of S3OK has been retroactively effective on 
12-15-87. The original data base and the updated database are 
given below: 

(1) Original database: 
Name Title Salary Start-time End-time Record-time 
<Mary Secretary S2OK 12-15-85 12-14-88 12-14-88~ 
<Mary Secretary S3OK 12-15-88 - 12-15-88> 

(2) Updated database: 
Name Title Salary Start-time End-time Record-time 
<Mary Secretary SZOK 12-15-85 12-14-88 12-14-88~ 
<Mary Secretary $3OK 12-15-87 12-14-88 02-14-90> 
<Mary Secretary S3OK 12-15-88 - 12-15-88s 

In this approach, the extra time notion 
“Record-time” is used to record (on 02-14-90) the fact 
that Mary’s salary is retroactively updated. This 
approach introduces excessive storage requirements 
since every object instance in the database will need 
a Record-time tag. 

Approach 2: Use the following knowledge rule to capture this 
specific temporal requirement associated with the object instance 
Mary. 

Rule 105 
T (02-14-90, - ] 
Trigger-cond (Before Retrieve(Employee)) 
IF WHEN T[12-15-87, 12-14-881 

CONTEXT Employee [Name = Mary] 
THEN Salary = S3OK 
End 

In this approach, rule 105 becomes active on 
02-14-90 (rules can have history). It is automatically 
triggered before any retrieval operation is performed 
on Employee instances. The When and Context 
expressions in the IF clause specify that if the 
historical instances of Mary during the period between 
12-15-87 and 12-14-88 are accessed, her salary should 
be $30K instead of the salary recorded in the 
database. This approach allows many special temporal 
requirements to be captured by the model and 
enforced by a DBMSKBMS without the excessive 
storage requirement and I/O for data-access of the 
first approach. Although the run-time execution of 
rules will increase the query response time, it however 
can drastically increase the functionalities of the 
system in terms of managing temporal data and 
constraints. Rules are only triggered when their 
associated data are accessed or manipulated. They 
can be precompiled into some internal form for run- 
time binding of variables [SIN90, CHU90]. Therefore, 
they should not significantly degrade the overall 
performance of a temporal KBMS. Knowledge rule 
specification and management are the key features of 
the OSAM* model [SU89, SU91] and the 
implemented prototype KBMS [LAM89, SIN90, 
CHU90]. Its extension to temporal rule specification 
and management is described in another paper 
[CHE91]. 
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2.4 Object Time-Stamping in OSAM*/T -- A 
Compromised Approach. 
The object time-stamping technique used in this work 
is a compromise between the tuple time-stamping 
approach and the attribute time-stamping approach, 
It aims to reduce data redundancy and, at the same 
time, avoid excessive overhead in processing time. 
Different from the combined approach used in 
[NAV89], time stamps are assigned to a set of 
semantically related attributes which form instances of 
an object class instead of the so-called “synchronous 
attributes”. As pointed out in the introduction, the 
absence of synchronous attributes in a relation will 
cause the approach in [NAV89] to be degenerated to 
tuple time-stamping on many binary relations. 

In our approach, every object instance is time 
stamped with a time interval, <Start-time, End-time>. 
The current database is a snapshot database of the 
“current” time which contains the most recently 
updated object instances of all the classes. If an 
instance is in the current database, it is said to be 
currently active; otherwise, it is currently inactive. 
Active object instances have the ‘I-” mark as its 
End-time. When an event takes place that affects an 
object instance, its End-time will be set to the time of 
the event, and the object instance becomes an inactive 
historical instance which is shifted into a historical 
area. A new active instance is then created whose 
Start-time is set one time unit after the time of the 
event and whose End-time is set to “-“. 

The proposed time-stamping technique makes both 
logical and physical separations between current data 
and historical data which, we believe, is an advantage 
over the relational approach in which current and 
historical data are mixed. This is because if a user is 
interested only in the current information, the 
DBMSKBMS only has to search the current database 
‘without having to separate the current data from the 
historical data in query processing. 

2.5 Using the “Delta File” Concept in Object 
Management 
In order to avoid data redundancy in the object 
time-stamping approach, we adopt the “delta file” 
concept [ROC75, SEV76] for object management and 
introduce the symbol “#” to mark those unchanged 
attribute values during object evolution. When a new 
object instance is created due to an event, all the 
attributes which are not affected by this event will be 
marked by “#” instead of storing the unchanged values 
in the historical object instance. The current object 
instance will always keep a complete copy of the 
current values of these attributes. For example, the 
adjustment of John’s salary discussed in Section 2.1 
will result in the new and old object instances shown 
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below: 
~11-10-89, - , OID, 448-44-6050, John, $30,000~ ,. New 

<IO-01-81, 11-9-89, # , # , X , $20,000> . . Old 

Using the “#” mark to represent unchanged attribute 
values can avoid data redundancy during object 
evolution, This is particularly important when we are 
dealing with the history of complex objects. This 
approach of relating current and historical data will 
not complicate the search for historical data since, 
when a historical object instance is needed, the system 
will search from the current object instance, which 
carries a complete copy of the current attribute values, 
to the historical data area. These values will be kept 
during the search until (1) some values other than “#” 
marks have been found in the historical data 
associated with the attributes and (2) the needed 
historical object instance is found. In the first case, 
the corresponding attribute values kept by the system 
are replaced by the historical data and, in the second 
case, the system will stop searching and use the values 
kept by the system as the answer. 

The above example shows the effect to time tags 
when data are updated. Other events such as 
insertion and deletion will also cause the change of 
time tags and the creation of new instances. In the 
case of deleting an object instance, the new instance 
will contain null values. 

2.6 Object instance history 
O&UP/T uses a distributed storage model (DSM) 
instead of the more common static storage mode1 
(SSM) for representing the structural properties of 
objects. In DSM, an object can appear in many 
classes. The descriptive data about an object are 
distributed in these classes, An instance is the 
representation of an object in a specified class and 
contains the attribute values that characterize the 
object. An instance is uniquely identified by an 
instance identification (IID) which is the concatenation 
of a class ID and an object ID. When any of these 
attribute values is modified, a history of the object 
instance is created. If an object participates in more 
than one class, each object instance in each class will 
have its own history. This storage model is different 
from that used in C++, Smalltalk, ONTOS, etc. in 
which an object can be a member of only one class 
and all inherited attributes appear in its class at the 
bottom of the class hierarchy or lattice. A discussion 
on the relative advantages of these two approaches is 
out of the scope of this paper. Here, we simply note 
that time stamps are associated with object instances 
instead of objects. Data in an instance can be 
independently accessed and manipulated. 

There are three temporal events: insertion, update, 
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and deletion. When an object initially participates in 
a class, an instance of that object will be inserted into 
the class and an object instance history in that class 
will be started. Subsequent events will add data to its 
history. Figures l(a), (b), (c), and (d) give an 
illustration of object instances in the Employee class 
as Mary’s instance is created, updated and deleted. 

2.7 Object History 
Object history can be viewed as the collection of the 
histories of its instances in the classes it participates. 
Deletion of its instance from a class only means the 
withdrawal of its participation as an active instance in 
that class and does not affect its other instances. 
When an object is created, it must participate in at 
least one class in the schema. ‘This participation starts 
the object history as well as the object instance history 
in that class. If the object participates in only one 
class, then the object instance history is the same as 
the object history. When an object is destroyed (or 
deleted permanently from a database), all the new 
instances of this object will have nulls as their 
attribute values. 

2.8 Association Histories in OSAM*/T 
In OSA.M*/T, object classes are defined in terms of 
their associations with other classes. Five system 
predefined association tY PeS (Aggregation, 
Generalization, Interaction, Composition, and 
Crossproduct) are provided for the convenience of 
database designers and users to specify different 
semantic relationships or associations among classes 
and their instances, The semantic distinctions among 
the association types are captured by knowledge rules 
which control the manipulations of object instances 
having the association types. In our KBMS 
implementation, association types are defined as 
classes which are subclasses of the Association class. 
Thus, new association types or subtypes of the existing 
association types can be introduced by defining 
subclasses under the Association class or its 
subclasses. It has also been recognized in [ELM9Oa] 
that, beside object history and object instance history, 
the history of object associations needs to be 
maintained. One of the advantages of object 
time-stamping is that association histories among 
object instances can be derived from object instance 
histories. Whenever an event occurs to an object 
instance, the corresponding association history can be 
inferred from that instance history. We shall use the 
Interaction association as an example to illustrate this 
point. 

Interaction is an association type used to model 
some relationships between objects in two or more 
classes and the relationships themselves are treated as 
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instances of an object class. An object in a defining 
class which has an interaction association with other 
classes (called constituent classes) represents a fact 
that relates the objects of its constituent classes. For 
example, the fact that. specific employee works on a 
specific project forms an object of a defining class 
Work-on as modeled in Figure Z(a). Since it is an 
object, the fact is assigned with an IID. Since 
associations are themselves objects, the tracking of the 
history of an interaction association is the same as 
that of other objects. For example, if employee Mary 
has been assigned to project Pl, an interaction object 
instance of Works-on will be created and be assigned 
with an IID, Wl. This object instance will consist of 
Mary and Pl’s IIDs in addition to its own IID Wl. 
Any change on either Mary’s attributes or Pl’s 
attributes will not affect this interaction association, 
However, a deletion of either Mary’s instance or Pl’s 
instance from Employee or Project class or Mary’s 
withdrawal from Pl will cause the interaction instance 
to be deleted (referential constraint). In either case, 
nulls will replace Mary and Pl’s IIDs in Wl’s new 
version as shown in Figure 2(b). In Wl’s history, the 
nulls in the historical record with the time interval 
between t2 and t3-1 indicate that the interaction 
association between Mary and Pl does not exist. 
From t3 on, Mary has been working on project Pl 
again. This is represented by storing Mary and Pl’s 
IIDs in the object instance Wl. The management of 
the histories of other association types can be similarly 
handled. 

2.9 Operations for a DBA to Correct Errors 
In a temporal database, errors in object history due to 
careless data entry and update are unavoidable and 
should be corrected. Corrections of these errors 
should be allowed without treating these operations 
as temporal events. For example, mistakes can be 
made in entering employee’s salary %27K for %37K 
and in making a %lOK salary increase for no increase. 
For the first case, the record should be corrected; 

whereas, for the second case, the historical record 
should be deleted. CorObj and DelObj are the two 
operators provided in OSAM*/r for a DBA to deal 
with the above cases. 

3. The Query Language OQIJT 
OQLfl is the query language for processing temporal 
data/knowledge bases modeled in OSAM*A’. It is an 
extension of the query language OQL [ALA891 to 
contain temporal constructs and functions for 
specifying temporal conditions. The general structure 
of a query in OQWT is shown below: 
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WHW Tlm~Jnfenrl 
WHERE Intervat Comparison Expression 

CXINTEXT Awxiation Pattern Expression 
WHERE oonditioas 
SELECT object classes a&or attributes 

OPERATION(s) object class(cs) 

Query structure in OQUT 

The main difference between the query structures of 
OQL/r and OQL is that the query structure of 
OQL/T contains an additional temporal condition (the 
WHEN clause) which specifies the time interval of a 
snapshot temporal database. The snapshot contains 
all the recorded data that fall in that time interval. 
If an interval comparison expression is specified in the 
optional WHERE subclause, the interval has to 
satisfy the expression. Otherwise, the query will not 
be processed. The CONTEXT clause specifies the 
pattern of object associations that objects in some 
referenced classes of the snapshot database should 
have (specified by the association pattern expression), 
the inter-class attribute conditions or aggregation 
conditions of these objects (specified by the optional 
WHERE subclause), and the selected objects and 
attributes (specified by the optional Select subclause). 
The selected objects and attributes are then processed 
by the system-predefined and/or user-defined 
operations specified by the OPERATION clause. In 
the following subsections, we shall explain these 
language constructs further by examples. The 
emphasis of the following sections will be on the 
WHEN clause. More complex examples on the use 
of the CONTEXT and OPERATION clauses have 
been presented in [ALA89]. 

3.1 The WHEN Clause 
The WHEN clause is used to specify the snapshot 
temporal database of interest. It is an optional clause. 
If it is not specified in a query, the current database 
is assumed in the processing of the query. A time 
interval can be specified in lhis clause either by a 
specific time reference or by a data reference. In the 
former case, the keyword WHEN is followed by an 
explicit time interval specification of the form “T[A, 
B]“, where A and B are two time points and A is less 
than or equal to B. If A is equal to B, the time 
reference is called time-point reference and “WHEN 
T[A, B]” can be replaced by “AT A”; if A is less than 
B, the time reference is called a time-interval 
reference. In both cases, the query will be evaluated 
against all the data in the snapshot database between 
time A and time B. Examples 1 and 2 illustrate the 
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uses of time-interval and time-point references, 
respectively. TCOUNT is a temporal function which 
counts the number of times that title has been 
changed. 

01: How many times has Ma@ title beat ehan~ed 
during the period between 1983 aad 19867 

WHEN ~01-01-83, 12.31-86] 
CONTEXT EMt%oYnE (Nrme * May1 

,,, ItlmmEm wum(Ti~e) 
:, 

,. .,.::, .;: “:/,:,. .’ : ::,. :: ,, .,,,, .‘.. :. .: ., .:: ./, ;; .,.,’ . .::.. ” ::, .‘:., : .: j::: :., ,,., 
Example 1: Time-interval reference in a OQUI’ query. 

Q2 What is John’s title on 11-29-847 

WHEN ,q11-29-84,11-29-841 
CON’EXT EMP&LlYEE fName * Johnj 
REEVE &MPU3YEETitle 
Or 

AT 11-29-84 
CONTEXT EMPLOYEE [Name = John] 
RETRIEVE EMPLOYEETitle 

Example 2: Time-point reference in a OQW query. 

If data reference is used for the specification of a 
time interval, WHEN is followed by an interval 
expression of the form “INTERVAL (Data 
Condition)“. The Data Condition can specify a simple 
data condition of an object instance or a complex 
association pattern expression involving multiple 
classes. In both cases, the rest of the query will be 
evaluated against the temporal snapshot database 
defined by the time interval during which the data 
condition exists. Examples 3 and 4 illustrate the uses 
of data conditions in a simple and a more complex 
case, respectively. 

In Q3, Employee in the CONTEXT clause is bound 
to the Employee specified in the WHEN clause (i.e., 
the employee Mary). In 44 the association pattern 
used in the Interval function specifies that the time 
interval of interest is the one when employee John 
worked on project PI. The association operators “*‘s” 
specify that the object instance John should be 
associated with some instance of Work-on which is 
also associated with the object instance Pl. 
Employee-l is an alias of Employee. It represents a 
different scan of the Employee instance (i.e., a 
different range variable). Very complex patterns of 
object associations involving tree and network 
structures among objects can also be specified as the 
data condition [see ALA90]. Also, the non-associate 
operator “!” can be used in the pattern expression to 
state that those objects in two classes that are not 
associated with each other would satisfy the search. 
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03: What was Mar,+ salary when she was a clerk? 

WHEN INTERVAL(EMPLOYEE [Name = Mary, 
Title = Clerk]) 
CONTEXT EMPMYEE 
RETRIEVE salary 

Example 3: Data Condition of a simple object instance. 

Q4: What was Maty’s salary when John worked 
on Project PI? 

WHEN WTERVAL (Employee(Name = John] 
* Worked-On l Project[P# = PI]) 
CONTEXT Employee-l [Name = Mary] 
RETRIKVE Salary 

Example 4: Data Condition of a complex association 
prttcrn expression. 

The data condition in a WHEN clause may 
sometimes return multiple time intervals since 
multiple snapshot databases defined by different time 
intervals may satisfy the data condition. In this case, 
different strategies can be followed. One strategy is 
to evaluate the rest of the query against all these 
intervals; the other is to select only one interval for 
query evaluation. In our implementation, we choose 
to evaluate a query against all the qualified intervals. 

3.2 Temporal Functions 
In addition to the interval function discussed above, 
several other useful functions are described below. 
Examples for these functions make use of the data 
shown in Tables 1 and 2. 

Start-t End-t OID Name Title Salary 

<02-18-88, - lZS.Mary, Matmger, 40K7 
<10.21.85, 02-1’9-88, Y, Y. Supetvisor 33k:. 
&l-10-83. 10-20-85. f. R. Secretary, 27K7 
~06.10-81. 06-09-83, #, #, Clerk 22k> 
<ll-09-80, 06-09.81, #, I, I , 1X> 

Table 1: Employee Maty’s history 

stlrt.1 End-t OID Name Title Salary 

<1123-88, - 448, John,P.Manager, 45K7 
<07.10-87, 11-22-k Y , iy, PSupetvisor,42K> 
<02-02-84, 07-09-87, I , #, Engineer, 38K7 
c 11-23X& 02-01-84. # , I, J. Eagineer, 27Kr 

Table 2: Employee John’s history 

(1) FORMER: FORMER is a function used to 
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retrieve the former historical instance relative to a 
reference instance. The general form of FORMER 
can be expressed as below: 

FORMER(parameter) --> historical object instance 
where, parameter is a historical event and the output 
is the historical object instance happened prior lo the 
historical event. An example of this function is to 
find all the employees who had been “Senior 
Engineer” before they were promoted to “Project 
Supervisor” (see Example 5). 

.,’ ‘.,’ ; 

Example 5: Illustration of the FORMER function. 

In this example, the object instances of 
EMPLOYEE specified in the WHEN clause are used 
to determine the temporal interval and to serve as an 
anchor for the object instances of the EMPLOYEE 
class specified in the CONTEXT clause. Therefore, 
no alias is needed in this query. When the query is 
evaluated, the system will first search for all the object 
instances in the EMPLOYEE class to check if any of 
their historical instances has a title of Project 
Supervisor. Then, based on this reference, the system 
will check if the former title relative to Project 
Supervisor is Senior Engineer or not. For those 
qualified object instances, their names will be 
retrieved. In our database example, there is no object 
instance which satisfies this temporal condition. 

(2) NEXT: NEXT is a function used to retrieve the 
historical instance that follows a reference instance. 

(3) TIME: TIME is a special function used to return 
a lime point. Its parameter is NOW, which is a 
keyword representing the current time. The “+” and 
‘-’ symbols are used together with NOW to indicate 
the relative time to the current time. For example, 
“NOW + 3” stands for three time units ahead of the 
current time; and “NOW - 2” stands for two time units 
behind the current time. The meaning of 
TIME(NOW +/- x), therefore, is the projection of the 
relative time point to current time when this function 
is evaluated. When x is not given, TIME(NOW) is a 
projection of the current time. The TIME function 
is static whereas the construct NOW is dynamic 
because time is dynamic. 

(4) START and END: START and END are used 
in OQL/r to retrieve the start-time and end-time of 
a temporal instance. An example for retrieving the 
time when Mary became a manager is shown below: 
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0% When did Maly become a manager? 

WHJB INIXRVALJEMPLOYEEjhkme 
= Mary, Title = Manager]) 
CONTEXT EMPLOYEE 
ReTRIEVE SURT@MPLOYEE) 

Example 6: Illustration of START function 

In this example, the system will search through 
Mary’s record for the history instances which have the 
title Manager. Once the instances are found, the start 
time(s) of the interval(s) during which Mary’s title was 
Manager will be the answer. Based on the data in 
Table 1, 02-18-88 is the answer to this query. 

3,3 Interval Comparison Operators 
The interval specified in the WHEN clause may 
subject to some temporal conditions. In this case, the 
WHERE subclause is used to specify a Boolean 
expression of time intervals and interval comparison 
operators. The expression specifies how the interval 
following the WHEN clause is related to some other 
time intervals. If the expression in the WHERE 
subclause is evaluated to True, the rest of the query 
will be processed against the snapshot datahase 
defined by the interval following WHEN. Otherwise, 
the query will not be executed. 

Given two time intervals A = T[tl.t2] and B = 
T[t3,t4] which can be defined either by time or data 
reference discussed above, their start times and end 
rimes can have the following temporal relationships: 
Case (1): t2 c t3 and t3 - t2 > one time unit 

This case says that an interval A is before interval 
B, and the distance between them is greater than one 
time unit. The relationship between the two time 
intervals is said to he either BEFORE or AFI’ER. 
That is, interval A is BEFORI$ interval B, or interval 
B is AFTER interval A. 
Case (2): t2 < t3 and t3 - t2 = time unit 

(A PRECEDING B, B FOLLOWING A) 

Case (3): t2 = t3 and t2 > tl and t4 > t3 
(A P-ADJACENT B, B F-ADJACENT 

ADJACENT B/A) 
A, A/B 

Here, P stands for preceding and F for following. In 
case of a temporal condition in which the relative 
order of two time intervals are irrelevant, ADJACENT 
can be used to stand for either P-ADJACENT and/or 
F-ADJACENT. 
Case (4): tl c t3 c t2 < t4 

(A P-CROSS B, B F-CROSS A, A/B CROSS B/A) 

Case (5): tl = t3 and t2 = t4 (A/B EQUAL B/A) 
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Case (6): tl 5 t3 L t4 s t2 
(A CONTAIN B or B WITHIN A) 

There are four possible combinations in this case 
and we introduce different names for these cases. 
(a) tl < t3 < t4 < t2 (A O-CONTAIN B or B 
I-WITHIN A; here 0 stands for “Outer” and I stands 
for “Inner”) 
(b) t1 = t3 < t4 < t2 (A L-CONTAIN B or B 
L-WITHIN A; here L stands for “Left”) 
(c) t1 < t3 < t4 = t2 (A R-CONTAIN B or B 
R-WITHIN A; here R stands for “Right”) 
(d) 11 = t3 < t4 = t2 (A EQUAL B or B EQUAL A) 

Note: EQUAL is a special case of CONTAIN or 
WITHIN. 

The above set of interval comparison operators is a 
super set of what was presented in [ALL83]. 
Different keywords are introduced for expressiveness 
and clarity. They can be used in a Boolean expression 
with parentheses to specify a complex interval 
condition in the WHERE subclause of WHEN. 

3.4 Temporal Ordering Functions 
The main concept of temporal ordering of an object 
instance’s history is to sort the historical records of an 
object instance in an ascending order basing on their 
time stamps so that retrieval of historical records in 
a specified order can be specified [NAV89]. In 
OSAM*/T, we introduced FIRST, LAST, and NTH as 
the forward temporal ordering functions and 
B-FIRST, B-LAST, and B-NTH (where B stands for 
Backward) as the backward temporal ordering 
functions. The parameter for functions FIRST, LAST, 
B-FIRST, and B-LAST is either an object instance or 
a historical event, and the output is either the first 
object instance or the last object instance depending 
on the function used. The parameters for functions 
NTH and B-NTH are a number and an object 
instance, and the output is the object’s historical 
instance in the order specified by the number. Query 
7 illustrates the use of a forward temporal ordering 
function. 

.v.. 
Q7: Re~rievc the names and salaries Oi &csc 
employees whose stat’ting salaries were greater 
than S25K. 

WHEN INTERVAL (FIRST(EMPLOqE)) 
CONTEXT EMPLOYEE [Salaiy B S?$] 
RETRIEVE ‘Name, Salary “,.’ 

Ekampie 7: Illustration of the lotward temporal ordering 
function. 
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3.5 Moving Window and Processing Functions 
‘Iwo functions ANY and EVERY are used to 
implement the “Moving-Window” concept introduced 
in [NAV89]. A “Moving-Window” is a period of time 
which moves at a constant pace from the lower bound 
toward the upper bound of a time interval. In a 
“Moving-Window” application, conditions in a query 
will be evaluated as many times as the period shifts 
from the lower bound toward the upper bound of the 
time interval at a specified constant pace. That is, 
each time the period shifts, the conditions in a query 
will be re-evaluated in the new specified period. 

The general structure of a WHEN clause containing 
ANY/EVERY is shown in Table 3 below: 

WHEN ~NTl%VAL(parameter) ANY/EVERY C WITHIN 
YA, B] INCREMBNTJIY D 

Table 3: General structure of ANY and EVERY functions. 

ANY/EVERY is followed by a period of time C, a 
valid temporal range T[A, B], and the periodical pace 
D. Conditions specified in a query is evaluated upon 
the snapshot databases within period C. The lower 
bound and upper bound of the period C must be 
WITHIN T[A, B]. When the evaluation of the 
conditions is finished with the first period C, the 
lower bound and upper bound of C advance at the 
pace D to form the second period C. The operation 
in the query will then be evaluated upon the snapshot 
database of the second period C. This process 
continues until C is no longer WITHIN T[A, B]. If 
D is not given, the period C will advance at the pace 
of the time unit specified in C. If T[A, B] is not 
given, it will be defaulted to the lifespan of the 
historical object instance specified in the parameter. 
If an object instance’s history starts later than A, then 
the lower bound of the first period C will be the 
starting time of the first instance of that object. 

08: Flnd the employeea whose titles had been changed more 
than twice within any two-year period during 1976 and 1988. 

WHEN fNTERVAL(EMPLOYEE) ANY 2 YEAR 
WITHIN Tj1976, 19881 INCREMENT-BY 1 YEAR 

CONTEXT EMPLOYEE 
WHERE TCOUNTQ”ttle) > 2 

RETRIEVE Name 

Enample 8: ANY as Movin8Window. 
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ANY, which is the same as the term 
“Moving-Window” used in [NAV89], is used to 
capture “there exist” concept; whereas EVERY is used 
to capture “for all” concept. Example 8 illustrates the 
use of ANY. 

3.6 Set Operators 
In some applications, it is necessary to involve the 
temporal information of different snapshot databases 
for the data manipulation of a particular snapshot 
database. The temporal information in these 
applications are used as the restricting condition in 
the time dimension on the interested temporal object 
instances. In order to achieve this temporal 
referencing, we introduce the Set Operators 
INTERSECT, DIFFERENCE, and UNION. 

WHEN Time Interval 1 
ONTEXT association pattern expression 1 

WHERE condition 1. 
Set Qpcntor parget ‘Classes) 
WHEN Timb Interval 2 
CONTEXT associatiott patted :@pk+a$on2 

WHERE condition 2. 

Table 4: Syntax of a Query with a Set Operator. 

The syntax of a query that involves a Set Operator 
is given in Table 4. The operands of a Set Operator 
are two contexts which define two separate temporal 
subdatabases each of which contains object classes and 
their instances that satisfy the association pattern and 
condition specified in the Context clause. The result 
of the set operation is a subdatabase derived from 
the two subdatabases. One restriction on the two 
contexts is that there must be at least one intersecting 
class between them and the operation of the Set 
Operator is performed on the intersecting class(es). 
For example, Set Operators can not be applied to the 
two contexts A * B * C and D * E * F because there 
is no intersecting class between them; however, they 
can be applied on the two contexts A * B * C and A 
* B * D * E because there are two intersecting classes 
A and B. In the above example, a set operation can 
be applied on class A, class B, or classes A and B 
depending on the user’s requirement. The “Target 
Classes” following the Set Operator in Table 4 is used 
to specify the intersecting classes over which the set 
operator is performed. “Target Classes” is a member 
of the power set of all intersecting classes. If it is not 
provided, the maximal number of intersecting classes 
will be used as the default. 

Based on this syntax, the INTERSECT set operator 
will return a subdatabase derived from “association 
pattern expression 1” of the first context. The 
subdatabase contains only those patterns of object 
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associatiQns whose object instances of the specified 
“Target Classes” are also in the subdatabase generated 
by “association pattern expression 2”. An example for 
the INTERSECT operation is given in Figures 3(a), 
(b), (c), and (d). ln Figure 3(a), two subdalabnscs are 
derived basing on the two association pattern 
expressions “A*B*C” and “A*B*D*E”. An 
INTERSECT set operation is performed between 
Context A*B*C and Context A*B*D*E over the 
intersecting class A. Since Context A*B*C produces 
a subdatabase in which class A contains {al, a3, a4) 
and Context A*B*D*E produces a subdatabasc in 
which A contains {al a2 a4}, the result of intersection 
yields {al, a4) as shown in Figure 3(b). Figure 3(c) 
and (d) are the results of performing INTERSECT 
operation under two other conditions. The 
DIFFERENCE and UNION operators can be 
similarly defined. 

In general, a OQLfl query can contain mulliple 
contexts with each context linked to another through 
a set operator. A query with multiple contexts is 
evaluated in a bottom-up fashion. The last set 
operator in a query is evaluated first. The result of 
the evaluation is a subdatabase and is used as the 
second operand for the set operator preceding the last 
one. This process continues until all the set operators 
have hccn evaluated. An example on the use of the 
set operators is in Example 9. In this example, the 
employees whose salary were greater than $30K during 
[03-17-76,03-17-773 and who had ever been a manager 
during the period [Ol-08-79, 12-09-831 are retrieved. 
In order to properly express this query, three contexts 
of different time snapshots and two INTERSECT 
operators arc needed. Since the query is intercstcd in 
current employees, the top-most context specifics a 
subdatabase containina all “current” emplovees. 

Conlexr Employee 
INTERSJXX (Employee) 
WHEN T[Ol-OS-79, 12-09-831 
Conrext Employee [Title = Manager] 
INTERSECT (Employee) 
WHEN [03-17-76, 03.17-771 
CONTEXT Employee [Salary S= $3OK] 

Retrieve Employec.Namc 

Example 9: An OQUTquerywhich contains multiple 
contexts linked Ly IWO INTERSECT Operaton. 

4. Conclusion 
In this paper, we have presented a temporal 
object-oriented semanticassociation model, OSAM*/T. 
In this model, we use object time-stamping technique 
and the notions of Start-time and End-time to record 
the evolution of object instances in different classes. 
The technique of object time-stamping has led to 
several advantages such as the logical and physical 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

separation of historical data and current data, the 
avoidance of normalizing hierarchically structured 
object instance, and the preservation of object history, 
object instance history and association history. In 
order to avoid redundant data, we adopted the “delta 
file” concept for object management. Additionally, we 
use knowledge rules to define special time notions for 
special temporal requirements and to avoid the 
introduction of many time notions which require an 
excessive amount of storage space. 

In conjunction with the temporal model, we have 
presented a query language OQL/r for temporal 
information retrieval and manipulation. In OQL/T, 
several useful temporal functions, interval comparison 
operators, forward and backward temporal ordering 
functions, and set operators have been introduced. 
They are needed for expressing various temporal 
conditions of a data reference in an OQWT query. 
OQL/T inherits all the features of OQL including its 
expressive power and non-procedural specification. It 
is a super-set of OQL. The implementation of the 
temporal OSAM* and temporal OQL takes advantage 
of our implemented prototype knowledge base 
management system OSAM* KBMS by extending its 
object manager, query processor and OQL translator. 
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John 
Jim 3 . 

Fig. l(a) Object instances 
in Employee class when Mary 
has not been hired as an employee 

Mary <tl. t2- 

-, . ..> 

Fig. l(c) Object instances in 
Employee class when object 
instance of Mary has been 
modified (UPDATE) 

1 , .. 

Fig. l(b) Object instances in 
Employee class when’Msry is 
hired as an employee (INSERT) 

Fig. l(d) Object instances in 

t3-1, . ..> 

-, null, “., null> 

Employee class when object Mary 
has been deleted from Employee 
class (DELETE) 

Fig 2(a): Interaction relationship between class Employee 
and class Project is modeled by Works-On class. 

tlctl, Q-1, Wl. Mary, Pl> 

Fig. 2(b): History of object Wl in the Works-On class. Mary worked 
on project Pl from tl to t2-1 and then was withdrawn from Pl at time 
12. Between t2 and 13-1, Mary was not involved in Pl and this is noted 
by the absence of links between Wl and Mary and Wl and PI. From 
13 on. Mary has been assigned back to project Pl again. 
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A * B * C 

A * B* D* E 
Fig. 3(a) Association patterns of 
two contexts A*B*C and A+B*D*E 

A * Ii * c 
Context A*B+C INTERSECT (A) Context A*B*D*E 

Fig 3(b) Result of applying INTERSECT Set Operator 
over A between the two contexts (A*B*C) 
and (A*B*D+E) 

A*B+D* E 
Context A*B*D*E INTERSECT (A) Context A*B*C 

Fig. 3(c) Result of applying INTERSECT Set Operator 
over A between the two context (A*B*D*E) and (A*B*C) 

* 

A * i3 * C 

Context A*B*C) INTERSECT (A, B) Context A*B*D*E 

Fig. 3(d) Result of applying INTERSECT Set Operator 
over A*B between the two context (A+B*C) and (A*B*D*E) 
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