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Abstract 

We review attempts at defining a general 
extension to the relational algebra to incl udc 
temporal semantics, and dcfinc two temporal 
operators to achieve a temporal relational 
algebra with a close correspondence to temporal 
logic using since and until. We then dcmonstratc 
how this temporal relational algebra may IO ;I 
limited extent be encoded in standard rclaticlnal 
algebra, and in turn show how an extcntlcd 
temporal SQL may be encoded in standard SQL. 

Keywords: Historical Databases, Relational 
Algebra, Temporal Logic, Relational Databases, 
SQL. 

Introduction 

In (Bubenko, 1977) a model for storing historical 
information in a relational manner was proposed, smcc 
which various alternative approaches to hismricd 
databases have been advanced, a small selection of which 
are (Clifford & Tansel, 1985; Tansel, 1987; Snodgrass, 
1987; Navathe & Ahmcd, 1988: Gadia, 19X8). Thcsc all 
propose some temporal relational model, and then cithcr a 
relational algebra or query language over the model. Only 
recently (Tuzhilin & Clifford, 1990) have thcrc been 
some moves towards unifying the various models 
proposed by extending the relational model in a gcncral 
manner to provide a lemporai structure, and to enhance 
the relational calculus and elgcbrn to provide a small set 
of temporal operators which provltlc fully csprcrsivc 
qucrics over the tcmporel struc’illrt?. akin IO 1111‘ 1‘it.c 
primitive relational algcbrn opcralors over il slantlard 
relational structure. 

Independently of this work, rcscarch into various 
lemporal logic programming languages (a few examples 
being (Abadi & Manna, 1987; Barringer el al, 1990; 
Gabbay, 1989)) has been conducted, invariably assuming 
a fully deductive temporal rlatahasc is availahlc in Hshich 
information may be stored, with an associated Prolog-llkc 
query language. It has been shown that l/S Ingic is full) 
expressive for a historical data moticl in the same scnsc‘ 
that first-order logic is for a non-temporal data model 
(Gabbay, 1989). US logic is comprised of first-ortlcr 
classical logic with the addition of the motial operators 
wztii and since. Assuming a model of time whcrc WC hnvc 
a start time 0 and end time n (thcrc 8rc VXiilllts 01‘ llic 
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logic for different models of time) we may loosely define 
since and wuil by the following table: 

Opernlor 
A unrrl B 

A .sincc B 

Scmanlics 
A must hold at all times until the 
time B holds. At time n the result is 
false. 
A must have held at all times since 
R held. At time 0 the result is false., 

Whilst apparently possessing rather impoverished 
temporal semantics, these two operators allow for the 
definition of a wide range of other temporal operators. 
For instance we may derive the following modal 
operators: 

Operaror Semantics 
+A A held at sometime in the past. 
an A held at the previous moment, 
WA A held at all times in the past. 
OA A holds at sometime in the future. 
OA A holds at the next moment. 
@A A holds at all times in the future. 

where the equivalence using until and since of each of 
thcsc operators will bc given later when we give a more 
formal definition of US logic. 

An as yet under dcvelopcd thcmc for joining work in 
historical databases and temporal logic is to restrict the 
functionality of US logic languages to include only those 
operators and constructs which arc equivalent to those in 
SOIIIC temporal cxtcnsion of the rclntional model anti 
algchr;~. in a manner similar to Datalog for the standard 
rclatlonul ~natlct [ Ullman, 198X}. WC would then bc able 
10 I’ormulatc and m;uiipulatc qucrics on a historical 
database in a logic programming language based on US 
logic. Towards this aim, this paper sets out to make a link 
between relational databases and temporal logic, 
considering both thcorctical and practical aspects. Our 
two thcmcs will bc: 

0 To introduce :I new remporal relational algeh 
(TRA), comprising of the five operators of the 
rclillional algebra, namely select 6, project n, 
Cartesian product x, set difference - and union u, 
togcthcr with the temporal operators since-producr 
Xld unlil-prodrrcl. 

l To dcl‘inc a Temporal-SQL which imptcments the new 
0lWtIlOrS of the rClationi\l iilgCtX2, ilrld demonstrate an 
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encoding of the extended language in standard SQL. 
We limit our work at present to consider only the 
query part of the language. SQL updates will be 
considered as part of future work. 

The provision of a TRA will allow for work in 
formalizing a temporal Datalog language to bc 
pcrformcd. By showing the relationship bctwccn the TRA 
and the rciational algebra, WC make apparent the chnngcs 
that are needed in current database technology to fully 
implcmcnt the TRA. This provides the dual bcncfits of 
making the results of work in the field of exccutablc 
temporal logic available to the commercial user in the 
weH established style ol” a relational database 
management systems (RDMS), and of allowing existing 
commcrclal RDMS to bc atlaptcd to the new paradigm 
with the minimum of alteration. 

1 Temporal Structure 

In order to describe a temporal algebra in a manner 
independent of the actual rcprcscntation of temporal darn 
used, WC use the temporal s~rI~~:~I~rc introtiuccd in 
(Tuzhilin & Clifford, 199(I), which dcscribcs an) 
discrete linear bounded temporal model. A historical 
database Dr is considered as a series of relational 
datiibases II E ( D, I O<Gn ) whcrc the subscript I dcnotcs 
the time associated with the a particular database. Each II, 
has the same schema as II,,, a restriction natural in the 
context of databases since in practice WC would hope to 
cncodc the various instances of’ tl relation R, into i\ single 
relation R’. By restricting I IO \;omc finite suhsct of’ ~hr, 
natural numbers 0 . . n WC achicvc a bounded mo~lcl, ant1 
using the usual ordering on the natural numbers achlcvc :I 

linear model. As a shorthand, WC wili term each instance 
of I as a rick. 

We extend the structure to always include in D, a relation 
lime, the single attribute of which rcprcscnts the value of I 
in any particular II,. This allows us IO rcprcscnt the 
explicit naming and comparison of time values found in 
such languages as TQucl (Snodgrass, 1987) or TSQL 
(Navathe & Ahmed, 1988). 

Example I .I 

For the rest of the paper WC shall use the I‘oll~~w~n~ 
temporal structure as ill1 cxnmplc. 11.1. conr;~%l\ 01‘ lhc 
relations lime(dh lime), cinp/o~c,c(nr~rrlc,.~nitrr~~) arid 
worksfor(name,r&agcr). The table below chows 
tuples of the relations at the first few values of I 

dalahase rime employee worksfor 

DO (0) (Peter,1 00) (Peter,Ed) 
(Richard,(X)) (RichardEd) 

l-4 (1) (Peter,1 10) (PeterEd) 
(Richard,90) (Richard,Dov) 

4 (2) (Petcr,l IO) (Pctcr,Dov) 
(Richard,ldO) (Richard.Dov) 
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I'3 (3) (Peter,l40) (Peter,Dov) 
(Richard,l40) (Richard,Dov) 

1.1 Schema Evolution 

The temporal structure allows for schema evolution in a 
simple manner. WC regard I).,. as including all relations 
over lhc lifespan of the historical database. Thus if the 
schema of cxamplc I. I wcrc changed at time 4 LO include 
the cmployce’s age, WC say that Dr includes both 
employee(name,sc~l~fry) and employee(name,.s~~lary,uXe) 
(in a similar manner to Prolog, the number of attributes to 
the relation must be regarded as part of its name for this 
to be correct). When the change of relationship is made at 
time 4, it is a matter of system administration as to 
whether we copy all records from the old format 01 
employee to the new, or lcave the two types of relations 
in the database and query them separately. 

I.2 US Logic 

A US logic may bc dcl‘incd for a variety of models 01 
time, a dctailcd cxamplc being (Gabbay, 1989). So as to 
make the link bctwccn the TRA and US logic clear, WC 
dcfinc in Table I. 1 a US logic working over the tcmporai 
structure. In Table I .I A and B arc formulae of the logic 
possibly including other since and unfil operators. A 
query Q is made rclativc to some tick (7 (and hence II,), 
writing the query as NI (I : @. In a similar manner to 
Datalog, predicates arc assumed to correspond either lo 
relations in the datahasc D, or to be defined by logical 
rules. 

Oprralor __ ._-.\‘c,trrtlrflli:.\ 
La-ET-E B-mKTiYD,y ancmmor, 

whcrc .s<(<y 
A unril B B holds for I), and A holds for all D, 

where q<rS.s 
AA6 
AvB 

A holds for D9and B holds for D, 
A holds for D 

-A 
or B holds for D, 

A does not ho d 9 for D, 
7’hlr 1. I : D@nition of US Logic 

Clearly, at tick 0 thcrc arc no previous D,, and therefore 
since never holds for tick 0. Similarly, at tick n there are 
no further I), and so unhl will never hold at tick n. There 
IS a certain arbitrariness in thcsc definitions, for if WC take 
.-\ .S~IKCJ B as an cxamplc, whcthcr A can bc in the same 
tfiltitbasc as fI or not (.&I or .s</) can be left as a matter 01‘ 
convcnicncc and LXSIC, since the two alternatives can bc 
dct‘ined in terms of each other. 

Operaror Equivalent Semanlics 
+A (rue since A A holds for some D, where tcq 
.A A since [rue A holds for D, where l=q-1 
IA A .since -Ofrue A holds for alI I), where I<q 
OA (rue rrnlil A A holds for some D, where l>q 
OA A until true A holds for D, where I=q+l 
CA A until -0lruc A holds for all D, where l>q 

7’0ble I .2 : Derived Modal Operarors of US Logic 

Whilst apparently possessing rather impoverished 
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temporal semantics, these two operators allow for the 
definition of a wide range of other temporal operators. A 
set of operators commonly found in the literature is given 
in Table 1.2, along with the equivalent using just since 
and until. 

The inclusion of the rime relation in the temporal 
structure allows for the time at which a query holds to bc 
found; without such a relation a higher-order function 
would be required. The time relation will always conl;lin 
lhe tick of the database in scope of a temporal operator, 
for example the following are always true: 

l al I : time(x) holds for x=1. 
l al I : +hme(xi holds for x E (1-1,1-2,...,0), 
l al I : l limcfx) holds for x=1-1 iff MI. 

We may then find the interval [s,el over which A holds by 
the query: 

at n : *(lime(e) A -A) .since (A since (lime(s) A 7A)) 

Since WC may obtain the interval over which any gcncraI 
term of the logic holds, WC may obtain all of the interval 
operators in (Allen, 19X3 / by comparison 01‘ the star1 wci 
end ticks of the intervals related to the terms involved 111 
the operator. 

2 Temporal Relational Algebra 
The evaluation of a query in the temporal relational 
algebra (TRA) will always bc made at a given dauibase 
time I, and will be proccsscd using the information of I),. 
In this situation it stems natural to consider the five 
operators of the relational algebra to cjucry only the tuplcs 
of a particular D,, and to introduce new temporal 
operators to project the tuples from ‘other’ databases I),. 
(where I’ f 1) into the ‘present’ database. The temporal 
operators since and unlil arc first-order complete for a 
discrete historical database (G~~hbay, 19801, and their 
conciscncss make them the natural choice for pro\,iding 
the extension of the relational algebra to handle rime. 

To make the relational algebra as cxprcssivc as US logic 
(in the same sense as the relational algebra is to classical 
logic), we must extend it with operators at least as 
cxpressivc as since and until. in (Tuzhilin Rr Clifford. 
1990) two linctlr rccur,vivc opcrolnr,v wcrc introduced, 
the definition of which is :IS follows: 

Pasl linear recursive opercrtor L,,(A.B) 

1=0 : L,(A .B) = 0 
r>O : L,,(A.B) = (A,-, n L,,-,(A.B) ) u B,-, 

Furure linear recursive operator L,:(A,B) 

!=n :L,,(A,B)= 63 
t<n : L,,(A,B)= (A,,, A L,++,(A.B))u B,,, 

From the definitions it can be seen that A and B musl bc 
union compatible, and that L,, is thus a restricted version 
of the since operator, and L, is a restricted version of the 
unlil operator, where the two relations must share the 
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same attributes, and WC may only search for pairings 
between identical tuplcs, (i.e. WC may only ask A(x) since 
B(x) and Afx) unlil B(x) ). Thus Lp(A$) finds the tuples 
which exist in A at all times before the present, but after 
the same tuple was in B. 

To show that these operators are fully expressive, it was 
demonstrated in (Tuzhilin & Clifford, 1990) how to 
dcrivc the general since and unfil operators, where there 
IS no restrictions linking the tuples. For example, to 
derive since, we must make A and B union compatible by 
in following manner (where E is the universal set): 

+B = L,(E,B) OA = L,(!E,A) 
A’=Ax+B B’=OAxB 
Since(A,B) = LP(A’,B’) 

2.1 Temporal Product 

As an alternative to the definitions of (Tuzhilin & 
Clifford, 1990), we propose to define the since and unlil 
operators of US logic slightly more directly as the 
products .cince-producl and unlil-producl given below. 
This has the ndvnntagc that the primitive operators of 
temporal logic (since and until) arc dcfincd directly as 
new operators of the temporal algebra. We justify the 
introduction of these new operators by demonstrating 
how they may be efficiently implemented in sections 3 
and 5. 

Since-Product S, 

.&,(A 8) = .&,(A 8,‘E) 
1=0 : S,,(A$,C) = 0 
I>() : S,,(A,B.C) = (C x B,-,) u S,,-,(A,B,(A,-, n C)) 

Unril-Producr U, 

U,,(A,B) = U,,(A,B,E) 
~=n : U,,(A,B,C) = 0 
l<n : LJ,,(A,B.C) =(C x B,,,) u U,,+,(A,B,(A,+, n Cl) 

The addition of ‘L: to Ibrm 21 triple allows us to consider 
the operator as holding for all A, and then recursc 
backward/forward over time intersecting with the tuplcs 
which actually hold at the various times. Note that in 
these definitions, we consider 2: x B to returned tuples 
only of the same arity as A x B. In essence, these 
operators provide the equivalents in the relational algebra 
of the temporal operators .since and unu’l (as defined in 
Table 1 .I), with no shared variables between the two 
operands. The formula A(x) S, B(y) finds all pairings of x 
and y such that x was a member A at all times before the 
current time, since and including the time when y was a 
member of B. 

Example 2.1 gives the resulting tuples from a since- 
product made on the temporal structure given in Example 
I, I, showing for each database D, the result of posing the 
query employee S, worksfur relative to time of tick 1. As 
for the standard product operator, the tuples returned 
contain all attributes of the two relations involved in the 
operation. 
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Example 2. I 

at I : employee S, worksfur 

database employee S, works for 

A 4join(C) B = ~,,c,dA U, B) 

The values taken for the since-join on the employee and 
worksfor relations of our example schema and database 
would be as follows: 

Ql 0 

Peter, 1 OO,Peter,Ed 
Peter,lOO,Richard,Ed 
Richard,90,Peter,Ed 
Richard,gO,Richard,Ed 

D3 Peter, 1 1 O,Pctcr,Dov 
Peter,1 lO,Richard,Dov 
Richard,l4O,Peter,Ed 
Richard,l4O,Richard,Dov 
Peter,1 1 O,Pctcr,Ed 

Peter, 11 O,Peter,Ed 
Peter,1 lO,Richard,Dov 
Richard,gO,Peter,Ed 
Richard,90,Richard,Dov 
Richard,90,Richard,Ed 

Pcter,l 10,Ed 

2.2 Temporal Model Operators 

In a similar manner to the definitions for US logic 
(Gabbay, 1989), we may define the usual temporal 
modal operators for our relational calculus according to 
Table 2.1. We also give the equivalents allowing the 
additional use of the time relation, since this gives a more 
cfficienl encoding in practice. Nolc Illill (‘.X S, ‘L:) will 
equal ‘z: at all times bar tick zero when it will bc 0. and 
111~1s (‘L - (!E S, 2)) gives the empty SCI al all timca. bar 
tick zero when it gives ‘L, The time lhc query is to bc 
cvaluatcd with rcspcct to is tick t, and n is the maximum 
tick in our bounded model. All the formulae are enclosed 
in a n,, operator, indicating that only the attrihutcs of 
rclarion A should be returned. 

Temporal 
Opertltor 

.A 
OA 
HA 
ZA 
*A 
!>A 

database 

h 

4 

employee Sioin(nMne) works for 

0 

Peter, 100,Ed 
Richard90,Ed 

Dz Peter, 110,Ed 
Richard,gO,Dov 
Richard,gO,Ed 

D3 Petcr,l 10,Dov 
Richard,l4O,Dov 

Eauivalent Eauivctlent 
Ubng S, & Il U.&g S,, U, & Time - -y 
rc,,(A S, ‘9 rr,,(A S, timc(t-1 j) 
rc,,(A U, ‘0 x,(A U, timc(t+ 1)) 
n,(A S, (!5 - (‘L S, %I))) n,(A S, time(O)) 
rt,,(A U, (2: - (Z U, ‘L:))) n,(A U, timc(nj) 
n,,(x S, A) 
n,,(!E U, A) 

7‘ahle 2.1 : Derived TRA Modal Operators 

2.3 Temporal Join 

When variables are shared bctwccn the operands, WC have 
a situation similar to the non-temporal join, whcrc ccrlilin 
att.ributcs arc used to pair the opcrnnds. WC 111~s mighl 
tlcfinc a temporal S,oin and IJ,,.,;,, as follows: 

Nutural since;join on nttrihutc C. 

A Sjoin(C) B = o,,c=,,,& S, B) 

Natural until-,join on attrihtc C 
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2.4 Explicit Ref’erences to ‘rime 

By including a query on relation r in a product with time, 
we find the times at which r holds, in a similar manner to 
US logic. For example, on the structure from Example 1. I 
the query 

at 3 : ~Mme=,p,e,A(employee S, time) 

will result in all tuples of the employee relation in the past 
rclativc to tick 3, appended with the tick with which they 
are associated: 

(Pctcr, 1 OOO) 
(Pctcr,l 10,l) 
(Pctcr, 1 10.2) 

3 Encoding TRA in the Relational Algebra 
In this section we outline a possible mapping of the TRA 
defined in Section 2.1 to the relational algebra extended 
with arithmetic capability in select and project operations, 
WC will use this mapping in Section 5 to demonstrate 
how qucrics in a 7*emporal-SQL (defined in Section 4) 
may bc translated to queries in standard SQL (Date, 
1989), and thus executed on current RDMS. 

3.1 Mapping the Temporal Structure to Relations 

A naive approach might be to add to each relation an 
additional attribute stating the time that tuple holds al. 
However this would lead to a large amount of redundancy 
in the database, with a tuple holding over f ticks being 
represented by I instances of the tuple with different 
values in the time attribute. Such series are efficiently 
encoded using intervals, where we add to each relation 
R(x) a start time and ena’ time attribute, to give an 
cncodcd n&ion R’(x,sturi time,end time). Such an 
approach has bc advocated in-(Navathe-& Ahmcd, 1988), 
which in addition describes the data being in a tempor~rl 
rrormal form il‘ all such intervals arc maximal, i.c. for 
every relation R there are no pairs of tuples R’fx,st,e,) and 
R’(x,szqez) where .sz-ISe, and s,<e2+l. 
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TRA 

WR ut S> 
top@ -1 S) 
tv(ot c RI 
tw(q c R) 
w(R) 
e(AJ 
e@, c RI 
e(x, c R) 
e(R -l S> 
c(R x, S) 
e(R u, 9 

e(R s,, 9 
e(R 4, 9 

Relarional Algebra 

CT stan_tlmc5tScnd_time top(R) U (J,urt_time~t~;end_timc top(S) 
d start-time%<end-time top(R) - ostart-timc<tSend-time top(S) 

0~ CTs~,,t_timcSt<end_time top(R) 

%Z %wt-rlme<L<cnd-t,mc l”pcR) 

bstart_timc<t<end_tim~ e(R) 

A’ 

0~ e@) 

xc e(R) 

noI encodable 

* H,S,msx(R.starr~time,S.s~~rt~t~rncj,m~n(l~.~nd~timc,S.cnd~timc) ( o overlap(R,S) ( e(R) x e(S> ) ) 

not encodable 

n r<,s ,max(R.s~rt~timc+l,S.sts~~time+l).R.end~time+l ( 0 ovmlap(R,S) ( e(R) x e(S) > ) 

Tc R.S.R.stRrt_time-l,min(R.cnd_ume-l,S.end_time-l) ( 0 overlap(R,S) ( e(R) x e(S) ) ) 

Table 3.1: Encoding [he TRA in the Relalional Algebra 

The temporal structure (example 1.1) will I-C encoded as 
the relations: 

lime(rick,.clarl_rime,end_lime). 
emp~oyee(name,salnry,.~t~~rt_~i,7Ic,cnd_[imL’I. 
worksfor(name,manager,.vtarl-fime.end-time). 

The values of the relations arc given in the table below. In 
practice we riced not store the time relation since by 
definition the value of lime for any time I would be (I,~.~). 

lime 

(O,O,O) 
(1,1,1) 
W,2) 
(3x3) 

employee 

(Peter, 1 (X),0,0) 
(Peter, 110, I ,2) 
(Petcr,140,3,3) 
(Richard,90,(),1) 
(Richard,l40,2,3) 

work.rfor 

(Pctcr,Ed,O,l) 
(Peter,Dov,2,3) 
(Richard,Ed,O,O) 
(Richard,Dov. 1.3) 

3.2 Mapping the TRA to Relational Algebra 

Given the encoding of the times at which temporal 
relations hold as interval ranges in non-temporal 
relations, the TRA operators may be mapped to 
expressions in the relational algebra extended with 
arithmetic. The query is made with rcspcct to some 
evaluation time 1. Table 3. I shows the encoding process 
necessary, by supplying rules for a function fo/~, which 
converts the TRA expression to relational algebra. The 
process is broken down to a two tier system, whcrc union 
and diffcrcncc arc only pcrmittcd at the ‘top-lcvcl’. i.c. 
not inside the scope of a product, since-product or unlil- 
product TRA operator. All TRA operators arc subscripted 
by f to diffcrcntiate them from the rclnrional algebra 
operators. 

In Table 1.1 the predicate overlop(A,B) holds when 
A..vtari-LmclB.end rime A B.storr rimeSA xnd lime 
holds, the arjthmcticfunction mc&A.B)%urns the higher 
of’ A and B, and min(A,B) returns the lower of A and B. 
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To demonstrate the difficulty in obtaining a general TRA 
union operator using the relational algebra union. 
consider the situation illustrated in Figure 3.1 whcrc WC 
want the union of a relation P which holds at all odd 
ticks, and Q which holds at all even ticks for the same 
tuples. Using a relational algebra union between P and Q 
can only merge two intervals, merging the intervals 01‘ 
P u, Q requires us to iteratively take the union P and Q 
to form intervals of length two ticks, then take the union 
of the union to make intervals of four ticks, and so on, 
requiring n-l unions for an n tick temporal structure. For 
example, the union P u, Q in an eight tick structure 
would require seven unions, and be obtained by the 
formula ((P u Q) u (P u Q)) u ((I’ u Q) u (P u Q)) 
omitting details of the interval intersections. 

m--- BP 

v--- Q 

PUQ 
Figure 3.1 

Similarly for a general TRA difference operator, consider 
the situation illusuatcd in Figure 3.2, where we want the 
union of a relation P which holds at all ticks, and Q which 
holds at all cvcn ticks for the same tuplcs. Again, the 
rclationnl algebra P - Q may only subtract one interval 01 
Q from P, and thus WC must subtract Q from /’ n/2 times 
to cnsurc the operation is complctc. For example, P --! Q 
in an eight tick structure would require four subtractions, 
and be obtained by the formula (((P - Q) - Q) - Q) - Q 
again omitting details of the interval intersections. 

P 

--w- -Q 
---- P-Q 

Figure 3.2 

Barcelona, September, 1991 
4LI 



Whilst we can for any n tick structure give a general first- 
order encoding of a temporal union or diffcrcncc in the 
rclationai algebra, it can not bc rcgardcd as a practical 
solution to the problem, and thus WC may view thcsc two 
operations as being the fundamental extensions to a 
system based on the relational algebra necessary to fully 
implement the TRA. 

4 Temporal-SQL, 

yields: 

NAME- SALARY MANAGER 
P&or 110 Dov 
Richard 140 Dov 
Peter 110 Ed 

4.2 Derived Modal Operators 

Modul Operalor ‘l’emportrl-SQL Keyword 

Of particular importance when designing new relational 
operators is to consider the impact on SQL, and the 
enhancements necessary to model the new operators. We 
aim to provide operators which are in the same style as 
the present operators, both for reasons of acceptability to 
current users of SQL, and for practicability of the 
modification of current RDMS. 

The since-product and until-product have obvious 
similarity with the relational elgcbra product operator, 
and thus it is natural to cx~cncl ihc FROM clause of SQL, 
where WC at present have .iust the comma operator to 
indicate the product, to also allow the keywords SINCE 
and UNTIL to be used, indicating the corresponding 
ccmporal product. In acidilion. WC must prefix any SQL 
query with an AT clause to indicate which time (i.e. which 
I),) should be used to evaluate the query against. Example 
4. I shows the equivalent of the TRA formula 
employee(cr,b) S, worksfor in such a modified SQL 
(as we would expect the result is identical to that given 
for D, in Example 2. I). 

Example 4.1 

AT 3 
SEIECT * 
FROM EMPLOYEE SINCE WORKS-FOR 

yields: 

NAME SALARY NAME MANAGER __I_-_-.. 
Peter 110 peter Dov 
Peter 110 Richard Dov 
Richard 140 Peter Ed 
Richard 140 Richard Dov 
Peter 110 peter Ed 

0 PREVIOUS 
0 NEXT 
n ALWAYS-HAS 
0 ALWAYS-WILL 
+ PAST 
0 FUTURE 
7’0th 4.1 : Temporal-SQL Derived Model Opcrarors 

Since the dcrivcd modal operators of Table 1.2 arc 
shorthands for I’ormulac involving the since- and until- 
products, WC may introclucc them as modifications to Ihcs 
FROM clause according to Table 4.1. For example, WC mu) 
USC the PAST operator to recall all the munngers that 
fcrer has worked I’or by the following query: 

Exclmplc 4.3 

AT 3 
SELECT MANAGER 
FROM PAST WORKS-FOR 
WHERE Nm='Peter' 

yields: 

MANAGER --_I_ 
Dov 
Ed 

To select the munugcrs that Peler has worked for, but no 
longer does, we need simply check that the managers 
being selected do not hold for the current (query) time: 

L%mple 4.4 

AT 3 
SELECT MANAGER 
FROM PAST WORKS-FOR 
WHERE NAME='Peter' 

4.1 Temporal Natural Join 

With this extension, WC implcmcnl [hc rcnlporal I~~IIIII;I~- 
join in a similar manner lo lhc rclilliOni\l join. l‘tiils I0 
compute cmploycefa,b) S ,I,,,,0 ll,nl, work.~fiJr~c/,c) (I.C. to 
join on the name auributc I ,- WC simply add a WHERE clause 
to ensure the attribute is common to the two relations: 

Example 4.2 

AND MANAGER NOT IN 
(SELECT MANAGER 
FROM WORKS FOR 
WHERE NAME=‘Peter ’ ) 

yields: 

MANAGER 
Ed 

AT 3 

SELECT EMPLOYTZE.NA.ME,SALARY,MANAGER 
FROM EMPLOYEE SINCE WORKS-FOR 
WHERE EMPLOYEE.NAME=WORKS-FOR.NAME 
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5 Encoding Temporal-SQL in Standard SQL 

The Temporal-SQL may be encoded in standard SQL 
(Date, 1989) using the obvious mapping of the encoding 
scheme used for translating the TRA to the relational 
algebra. The temporal structure is rcprcscntcd by using 
additional attributes (say START and END) on relations to 
describe the interval over which tuples hold, and we may 
hide this information by always naming the non-interval 
atuibutcs in the SELECT clause. The SINCE and UNTIL 
operators are replaced by products (the SQL comma 
operator), and additional terms added to the WHERE 
clause to perform the interval intersections ncccssary in 
the encoding. The AT t clause is used to supply the value 
of time. Note that the restriction on encoding the 
temporal union operator fits well with SQL, which dots 
not allow a UNION inside a SELECT clause. 

The relational operators must then be translated to test 
these intervals. Thus we can write an equivalent query to 
in Example 4.1 (in terms of the tuplcs sclcctcd) as 
follows: 

Example 5.1 
SELECT EMPLOYEE.NAME,EMPLOYEE.SALARY, 

WORKS FOR.NAME,WORXS FOR.MANAGER 
FROM EMPLOYEE,WORKS-FOR - 
WHERE EMPLOYEE.NAME=WORXS-FOR.NAME 

AND time 
BETWEEN MAX(EM!?LOYEE.START+l. 

WORKS-FOR.STARTtl) 
AND EMPLOY-EE.END+l 

AND EMPLOYEE.START 
BETWEEN WORKS-FOR.START 
AND WORKS-FOR-END 

The naming of attribulcs in the SELECT clause is 
ncccssary to avoid the listing 01. the ‘hidden extra 
attributes WC added as part of our encoding. Although 
SQL dots not have such a MAX function as WC have used 
above, we can achieve the same function by checking that 
time is grcatcr than both the function’s arguments. 

The temporal natural-join is achicvcti simply by adding 
the additional condition to Ihc WHERE clause Lo cheek lhc 
NAME attribute of the relations arc identical. 

For the modal operators, WC must define ‘L in SQL as 
holding from 0 to n (the range of the bounded model 
introduced in section l), ml assume is has no attributes. 
Thus we obtain the query in Example 5.2 to rcprcscnt the 
Temporal-SQL, query in Example 4.3 , Note that WC do 
not need to cheek the ~vcrll//~ function of the cncotling. 
since everything will overlap ‘L:. 

Example 5.2 
SELECT MANAGER 
FROM WORKS-FOR 

Proceedings of the 17th International 
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WHERE WORKS-FOR.NAME='PETER' 
AND time 

BETWEEN MAX(l,WORKS-FOR.STARTtl) 
AND ntl 

Adding the constraint of Example 4.4 that the manager 
sclcctcd must not belong to worksfor at the current time 
gives Example 5.3. 

Example 5.3 
SELECT 
FROM 
WHERE 

AND 

AND 

MANAGER 
WORKS-FOR 
WORKS FOR.NAME='PETER' 
time BETWEEN 

MAX(l,WORKS-FOR.STARTtl) AND ntl 
MANAGER NOT IN 

(SELECT MANAGER 
FROM WORKS-FOR 
WHERE time 

BETWEEN WORKS-FOR.START 
AND WORKS-FOR.END) 

Discussion & Conclusions 

WC have described a temporal relational algebra (‘IRA) 
which provides for the representation of US logic 
formulae in an historical database environment. By 
describing a possible encoding of this TRA in the 
relational algebra (cxicntlcd with arithmetic), WC find that 
only cxtcnsions to the non-temporal union and diffcrcncc 
relational operators would bc required to obtain a fully 
first-order expressive historical database query language. 

The results are used in the design of a query only 
Temporal-SQL language, and in turn its encoding in 
standard SQL. Limitations on the use of the union 
operator in SQL result in only the implementation of the 
temporal difference operator being a problem in practice. 

The TRA may bc used as a standard by which the 
cxprcssivc power of various languages proposed for for 
the querying of historical databases may be gauged. If a 
language can implement the since-product and unlil- 
producl operators it can be said to be first-order 
cxprcssivc over the historical data model in the sense that 
the rclutional algcbro is over the relational model. 

An arca yet to be investigated is the subject of efficiency 
of the operators, and the possibility of query optimization 
of TRA queries. As with the case of the relational model, 
a prime objective of such optimization would be 
reduction of products and joins present in a particular 
tlucry. 

Future work will invcstigatc cxtcnding the Tcmporal- 
SQL langungc to include updates, so that the entire query/ 
update semantics of executable temporal logic rules may 
be represented in the TRA. This would represent a 
considerable advance on the relational algebra, since we 
would have a algebraic description of updates as well as 
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queries to the database. 
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