Temporal Logic & Historical Databases
Dov Gabbay & Peter M¢Brien

Imperial College
Dept. of Computing
180 Queen’s Gate
London SW7 2BZ

email: pjm@doc.ic.ac.uk

Abstract

We review attempts at defining a general
extension to the rclational algebra to include
lcmporal semantics, and define two temporal
operators to achieve a lemporal relational
algebra with a close correspondence to temporal
logic using since and until, We then demonstrate
how this temporal relational algebra may to a
limited extent be encoded in standard relational
algebra, and in tum show how an extended
temporal SQL may be encoded in standard SQL.

Keywords: Historical Databases, Rclational
Algebra, Temporal Logic, Relational Databases,
SQL.

Introduction

In {Bubenko, 1977} a model for storing historical
information in a relational manner was proposed, sin¢e
which various alternative approaches (o historical
databases have been advanced, a small selection of which
are {Clifford & Tansel, 1985; Tansel, 1987, Snodgrass,
1987; Navathe & Ahmed, 1988: Gadia, 1988}, These all
propose some temporal relational model, and then cither a
relational algebra or query language over the model, Only
recently {Tuzhilin & Clifford, 1990} have there been
some moves towards unifying the various models
proposed by extending the relational model in a general
manner 1o provide a temporal structure, and 10 cnhance
the relational calculus and algebra to provide a small sct
of temporal operators which provide fully cxpressive
queries over the temporal structure, akin o the five
primitive rclational algebra operators over a siandard
relational structure.

Independently of this work, rescarch into various
temporal logic programming languages (a few examples
being {Abadi & Manna, 1987, Barringer et al, 1990;
Gabbay, 19891]) has been conducted, invariably assuming
a fully deductive temporal databasc is available in which
information may be stored, with an associated Prolog-like
query language. It has been shown that US logic is fully
expressive for a historical data model in the same sense
that first-order logic is for a non-tcmporal data model
(Gabbay, 1989). US logic is comprised of first-order
classical logic with the addition of the modal operators
until and since. Assuming a mode] ol time where we have
a start time 0 and end time » (there are variants of the

Proceedings of the 17th International
Conference on Very Large Data Bases

423

logic for different models of time) we may loosely define
since and until by the lollowing table:

Operator Semantics
Aunil B A must hold at all times untl the
time B holds. At time n the result is
false,
A since B A must have held at all times since
B held. Attime 0 the result is false,
Whilst apparcntly posscssing rather impoverished

temporal semantics, these two operators allow for the
definition of a wide range of other temporal operators.
For instance we may derive the following modal
operaltors:

Operator Semantics

*A A held at sometime in the past.
@A A held at the previous moment,
BA A held at all times in the past.

DA A holds aL somctime in the future.
OA A holds at the next moment.

DA A holds at all times in the future.

where the equivalence using until and since of each of
these operators will be given later when we give a more
formal definition of US logic.

An as yet under developed theme for joining work in
historical databases and temporal logic is to restrict the
functionality of US logic languages to include only those
operators and constructs which arc equivalent to those in
some temporal cextension of the relational model and
algebra, in a manner simifar 10 Datalog for the standard
relational maodel {Ullman, 1988}, We would then be able
10 lormulaic and manipulatc querics on a historical
database in a logic programming language based on US
fogic. Towards this aim, this paper sets out to make a link
between relational databases and temporal logic,
considering both theoretical and practical aspects. Our
two themes will be:

« To introduce a new temporal relational algebra
(TRA), comprising of the five operators of the
rclational algebra, namely select @, project T,
Carlesian product x, set difference = and union u,
together with the temporal operalors since-product
and until-product.

+ Todeline a Temporal-SQL which implements the new
operators ol the relational algebra, and demonstrate an

Barcelona, September, 1991

encoding of the extended language in standard SQL.
We limit our work at present to consider only the
query part of the language. SQL updates will be
considered as part of future work.

The provision of a TRA will allow for work in
formalizing a temporal Datalog language to bhe
performed. By showing the relationship between the TRA
and the relational algebra, we make apparent the changes
that are needed in current databasc technology to fully
implement the TRA. This provides the dual bencfits of
making the results of work in the field of cxecutable
temporal logic available to the commercial user in the

well ectahliched etyle nf o
AMAA R o

relatianal
WAL LISV G n)‘-] LA \Y4}

IR RN AV IRI4N Y
management systems (RDMS), and of allowing cxisting
commercial RDMS 1o be adapted to the new paradigm
with the minimum of alteration,

dAatahacp
uawauase

1 Temporal Structure

In order 10 describe a icmporal algebra in a manner
independent of the actual representation of temporal data
used, wec use the temporal structwre introduced in
{Tuzhilin & Clifford, 1990}, which describes any
discrete lincar bounded temporal model. A historical
dalabase D is considercd as a serics of relational
databases D e { D, 1 0<i<n } where the subscript ¢ denotes
the time associated with the a particular database. Each D,
has the same schema as Dy, a restriction natural in the
context of databases since in practice we would hope o
encode the various instances of a relation R, into a single
relation R'. By restricting ¢ to some finite subsct of the
natural numbers 0 ... n we achicve a bounded maodel, and
using the usual ordering on the natural numbers achieve a
linear model. As a shorthand, we will tcrm cach instance
of rasatck.

We extend the structure to always include in Dy a relation
time, the single attribute of which represents the value of ¢
in any particular D, This allows us to rcpresent the
cxplicit naming and comparison of time values found in
such languages as TQuel {Snodgrass, 1987} or TSQL
{Navathe & Ahmed, 1988},

Example 1.1

For the rest of the paper we shall use the following
temporal structure as an cxample, Dy consists of the
relations tme(db_time), employee(name.salary) and
works_for(name manager). The table below shows
tuples of the relations at the first few values of ¢

D, 3) (Peter,140) (Peter,Dov)

(Richard,140) (Richard,Dov)
1.1 Schema Evolution

The temporal structure allows for schema evolution in a
simple manncr. We regard Dy oas including all relations
over the lifespan of the historical database. Thus if the
schema of example 1.1 were changed at time 4 1o include
the cmployce’s age, we say that D includes both
employee(name salary) and employee(name salary age)
(in a similar manner 1o Prolog, the number of attributes o
Lhe relation musl be rcgarded as part of its name for this
lU UD bﬁ“ccl) VVIIDII Ulb bll‘lllsb Uf lClduUllblllp lb lllad\/ aL
time 4, it is a mater of system administration as to
whether we copy all records from the old format of
employee 10 the new, or Icave the two Lypes of relations
in the database and query them scparately.

1.2 US Logic

A US logic may be defined for a variety of models of
time, a detailed example being {Gabbay, 1989}, So as 0
make the link between the TRA and US logic clear, we
definc in Table 1.1 a US logic working over the iemporal
structure. In Table 1.1 A and B are formulae of the logic
possibly including other since and until opcrators. A
query ¢ is made rclative to some Lick g (and hence D)
writing the query as at ¢ @ ¢. In a similar manner l()
Datalog, predicates arc assumed to correspond either to
relations in the dalabase D, or w be defined by logical
rules.

Operator Semantics

Axince’ BT B holds Tor D and A holds Torall D,
where s€i<g

A uniil B B holds for D, and A holds for all D,
where g<I<s

AAB A holds for D, and B holds for D,

AvB A holds for D or B holds for D,

-A A docs not hon for D,
Table 1.1 : Definition of US Logic

Clcarly, at tick 0 there arc no previous Dy, and therelore
since never holds for tick 0. Similarly, at tick n there are
no further D, and so unul will never hold at tick n. There
is a certain arbitrariness in these definitions, for if we take
A since B as an example, whether A can be in the same
databasc as B or not (s<1 or s<t) can be left as a matter of
convenience and taste, since the two alternatives can be
defined in terms of cach other.

database time employee works for Operator Equivalent Semantics
Pox S *A true since A~ A holds for some D, where t<q
Dy) (Peter,100) (Peter,Ed) Lz A since true A holds for D, where =¢-1
(Richard.90) (Richard.Ed) WA A since ~@true A holds for all D, where 1<q
OA true until A A holds for some D, where 1>g
D 1 Peter,110 eter,.E : . !
! () gR?::?\;rd 9)0) E}zicirardd%)ov) OA A until true A holds for D, where =g+
' ! DA A until =Otrue A holds for all D, wherc >¢
D, (2) (Peter,110) (Pcter,Dov) Table 1.2 : Derived Modal Operators ofU§ Logic
(Richard, 140) (Richard,Dov) . . .
Whilst apparently posscssing rather impoverished
Proceedings of the 17th International 424 Barcelona, September, 1991

Conference on Very Large Data Bases

temporal semantics, these two operators allow for the
definition of a wide range of other temporal operators, A
sct of operators commonly found in the literature is given
in Table 1.2, along with the equivalent using just since
and until.

The inclusion of the «ime relation in the temporal
structure allows for the time at which a query holds 1o be
found; without such a rclation a higher-order function
would be required, The time relation will always contain
the tick of the database in scope of a temporal operator,
for example the following are always true:

s att: time(x) holds for x=1,
s att: ®ume(x)holdsforx e {1-71,~2,...0),
o att: @ume(x) holds for x=1~1 iff £>0.

We may then find the interval [s.e] over which A holds by
the query:

atn: ®(time(e) A -A) since (A since (time(s) A mA))

Since we may obtain the interval over which any general
term of the logic holds, we may obtain all of the interval
operators in {Allen, 1983} by comparison ol the start and
end ticks of the intervals related to the werms involved in
the operator.

2 Temporal Relational Algebra

The evaluation of a query in the temporal relational
algebra (TRA) will always be made at a given database
time ¢, and will be processed using the information of 1D,
In this sitwation it scems natural to consider the five
operators of the relational algebra to query only the wples
of a particular D, and to inuroduce new temporal
operators o project the wples from ‘other’ databases D,
(where 1" # 1) into the ‘present’ database. The temporal
operators since and until arc first-order complete for a
discrete histarical database {Gabbay, 19891}, and their
conciscness make them the nateral choice for providing
the extension of the relational algebra to handle time.

To make the relational algebra as expressive as US logic
(in the same sense as the relational algebra is to classical
logic), we must extend it with operators at least as
cxpressive as since and until. In {Tuzhilin & Clifford,
1990} two linear recursive operators were introduced,
the definition of which is as follows:

Past linear recursive operator Ly(A B)
1=0:Lp(AB)=0
l>0 . LPI(A'B) = (Al~/ N L])l—l(A'B)) () Bl—/
Future linear recursive operator Lp(A,B)
t=n:Lp(AB) =0
i<n: LFL(A'B) = (A/#/ m L[:H_‘(A.B)) (> B[+/

From the definitions it can be secn that A and B must be
union compatible, and that L, is thus a restricted version
of the since operator, and L is a restricted version of the
until operator, where the two relations must share the

Proceedings of the 17th International
Conference on Very Large Data Bases

425

same attributes, and wc may only search for pairings
between identical tuples, (i.c. we may only ask A(x) since
B(x) and A(x) until B(x)). Thus Lp(A B) finds the tuples
which exist in A at all times before the present, but aller
the same tuple was in B.

To show that these operators are fully expressive, it was
demonstrated in {Tuzhilin & Clifford, 1990} how to
derive the general since and until operators, where there
is no restrictions linking the tuples. For example, to
derive since, we must make A and B union compatible by
in following manner (where E is the universal set):

®B = L(%,B) OA =LKLA)
A'=AxX®B B’'=CAXxB
Since(A,B) = Lp(A",B)

2.1 Temporal Product

As an alternative 1o the definitions of {Tuzhilin &
Clifford, 1990}, we propose (o define the since and until
operators of US logic slightly more directly as the
products since-product and uniil-product given below.
This has the advantage that the primitive operators of
temporal logic (since and until) are delined directly as
new operators of the emporal algebra. We justily the
introduction of these new operators by demonstrating
how they may be efficiently impiemented in sections 3
and 5.

Since-Product S,

S (AB) =S, (ABT)
1=0:S,(ABLC)=Q
(>0 1S (AB.C)=(CxB,_) LS, (ABA,_ A C)

Until-Product U,

U (AB)=U,, (AB,E)
1=n: U (AB.C)=D
1< U(AB.C)=(C x B,)) U Uy, (ABAA,,, N C))

The addition of & o form a triplc allows us o consider
the operator as holding for all A, and then recurse
backward/forward over time intersecting with the tuples
which actually hold at the various times. Note that in
these definitions, we consider £ x B 1o returned tuples
only of the samc arity as A x B. In essence, thesc
operatars provide the cquivalents in the relational algebra
of the cmporal operators since and until (as deflined in
Table 1.1), with no shared variables between the two
operands. The formula A(x) S, B(y) finds all pairings of x
and y such that x was a member A at all times before the
current time, since and including the time when y was a
member of B.

Example 2.1 gives the resulting tuples from a since-
product made on the temporal structure given in Example
1.1, showing for cach database D, the result of posing the
query employee S, works_for relative to time of tick ¢. As
for the standard product operator, the tuples returned
contain all attributes of the two relations involved in the
operation,

Barcelona, September, 1991

Example 2.1
at t : employee S, works_for

database employee S, works_for

Dy %)

Dy Peter,100,Peter,Ed
Peter,100,Richard,Ed
Richard,90,Peter Ed
Richard,90,Richard Ed

D, Peter,110,Peter,Ed
Peter,110,Richard,Dov
Richard,90,Peter Ed
Richard,90,Richard,Dov
Richard,90,Richard ,Ed

D, Peter,110,Peter,Dov
Peter, 1 10,Richard,Dov
Richard,140,Peter,Ed
Richard,140,Richard,Dov
Peter,110,Pcter Ed

2.2 Temporal Model Operators

In a similar manner to the definitions for US logic
{Gabbay, 1989}, we may dcfine the usual temporal
modal operators for our rclational calculus according to
Table 2.1. We also givc thc equivalents allowing the
additional use of the time relation, since this gives a more
cfficient encoding wn practice. Notw that (ES, E) will
cqual € at all times bar tick zero when it will be @, and
thus (Z - (2 S, E)) gives the empty sct at all times, bar
tick zero when it gives ‘£ The time the query is Lo be
cvaluated with respect to is tick ¢, and n is the maximum
tick in our boundcd model. All the formulae are enclosed

in a m, operator, indicating that only the attributes of

relation A should be returncd.

Temporal Equivalent
Operator Using S, & Uy,

Equivalent
Using S, U, & Time

0A TA(A S E) TA(A Sy lime(l-1))
CA nAlA Uy, B) maAlA Uy time(t+1))
A TA(A S (E - (£ S, E)) maA(A S, Lime(0))
ZA TAA Uy (- (B Uy B ma(A Uy time(n))
oA TACE Sy A)
OA TA(E Uy A)

Table 2.1 : Derived TRA Maodal Operators
2.3 Temporal Join

When variables are shared between the operands, we have
a situation similar to the non-temporal join, where certain
attributes are used to pair the operands. We thus might
define a temporal S, and U, as follows:

Natural since-join on auribute C
A Sjgincy B = O c=n.c(A S« B)

Natural until-join on attribute C

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

426

AW ginc) B = Opcan.clA Uy B)

The values taken for the since-join on the employee and
works_for relations of our example schema and database
would be as follows:

database employee S name) WOTkS_for

Dy %]

D, Peter,100,Ed
Richard,90,Ed

D, Peter,110,Ed
Richard,20,Dov
Richard,90,Ed

Dy Peter,110,Dov
Richard,140,Dov
Peter,110,Ed

2.4 Explicit References to Time

By including a query on relation 7 in a product with time,
we find the mes at which r holds, in a similar manner to
US logic. For example, on the structure from Example 1.1
the query

al 3 1 O pame=perer®lemployee S, time)

will result in all wples of the employee relation in the past
relative to tick 3, appended with the tick with which thcy
are associated:

(Peter, 100,0)
(Pcier,110,1)
(Peler,110,2)

3 Encoding TRA in the Relational Algebra

In this section we outline a possible mapping of the TRA
defincd in Section 2.1 to the relational algebra extended
with arithmetic capability in select and project operations.
We will use this mapping in Section § to demonstrate
how querics in a Temporal-SQL (defined in Section 4)
may be translated to queries in standard SQL {Date,
19891}, and thus exccuted on current RDMS.

3.1 Mapping the Temporal Structure to Relations

A naive approach might be to add to each relation an
additional auribute stating the time that tuple holds at.
However this would lead to a large amount of redundancy
in the database, with a tuple holding over ¢ ticks being
represented by ¢ instances of the tuple with different
values in the time attribute, Such series are efficiently
encoded using intervals, where we add to each relation
R(x) a start_time and end_time attribute, to give an
encoded relation R'(x.start_time.end_time). Such an
approach has be advocated in {Navathe & Ahmed, 19881,
which in addition describes the data being in a temporal
normal form il all such inlervals arc maximal, i.c. for
every relation R there are no pairs of wples R'(x.s,.¢;) and
R'(x.55.e5) where s,~1<e; and 5,5ey+1.

Barcelona, September, 1991

TRA Relational Algebra

top(R U, S)

lOp(R 1 S)

top(c, ¢ R) O¢ Tguar_timest<end_time LOP(R)
top(m, ¢ R) TC Ogian_time<t<end_time top(R)
lOp(R) c"smrl_limcSlScnd_xin‘u: C(R)
e(A) A

e(c,cR) oceR)

e(m, ¢ R) nc e(R)

eR—- S) not encodable

¢(R %, S)

e(Ru,S) not encodable

e(RS,S)

eRU,S)

Gslan_limcSlScnd_limc lOP(R) o o'suarl_limcSlScnd_lim:: tOD(S)
Gslan_limcSlScnd_limc lOp(R) - osmr_timcSLScnd_time tOp(S)

n R,S,max(R.slarl_limc,S.slart__limc).mm(R.cndJimc,S.cnd_Limc)(c overlap(R,S) (C(R) X C(S)))

T RS max(R.stant_time+ 1,8 start_time+1),R end_time+1 { O overtap(r,sy (€(R) X €(8)))
n R,S,R,slan_limc—l,min(R.cnd_Limc—l.S.cnd_limc—l)(c overlap(R,S) (C(R) X C(S)))

Table 3.1: Encoding the TRA in the Relational Algebra

The temporal structure (example 1.1) will be encoded as
the relations:

time(lick.start_time.end_time),
employee(name salary.start_time,end_time),
works_for{name manager start_time.end_time).

The values of the relations are given in the table below. In
practice we¢ nced not store the time relation since by
definition the value of time for any time ¢ would be (1.1.1).

time employee works_for
(0,0,0) (Peter,100,0,0) (Peter,Ed0,1)
(1,,hH (Peter,110,1,2) (Peter,Dov,2,3)
2,2,2) (Peter,140,3,3) (Richard,Ed,0,0)

3.3.3 (Richard,90,0,1)

(Richard,140,2.3)
3.2 Mapping the TRA to Relational Algebra

(Richard,Dov.1.3)

Given the encoding of the times at which temporal
relations hold as interval ranges in non-temporal
rclations, the TRA operators may be mapped to
expressions in the rclational algebra extended with
arithmetic. The query is made with respect to some
cvaluation time 1. Table 3.1 shows the encoding process
necessary, by supplying rules for a function top, which
converts the TRA expression to relational algebra, The
process is broken down o a twa tier system, where union
and difference are only permiticd at the “top-level’, ic.
not inside the scope of a product, since-product or until-
product TRA opcrator. All TRA operators arc subscripted
by ¢ to diffcrentiate them [rom the relational algebra
operators,

In Tablc 1.1 the predicatc overlap(A,B) holds when
A.start_timesB.end time A Bustart_timeSA.end_time
holds, the arithmetic function max(A B} rcturns the higher
of A and B, and min(A.B) rcturns the lower of A and 8.

To demonstrate the difficulty in obtaining a general TRA
union operator using the relational algebra union,
consider the situation illustrated in Figure 3.1 where we
want the union of a rclation P which holds at all odd
ticks, and Q which holds at all even ticks for the samc
tuples. Using a relational algebra union between P and 0
can only merge two intervals, merging the intervals of
P U, Q requires us to iteratively take the union P and
to form intervals of length two ticks, then take the union
of the union to makce intervals of four ticks, and so on,
requiring n—7 unions for an a tick lemporal structurce, For
example, the union P U, Q in an eight tick structurc
would require seven unions, and be obtained by the
formula (PuUuQuUPuHu(Pud)uPud)
omitting details of the interval intcrsections,

P

Q
FoQ

Figure 3.1

Similarly for a general TRA difference operator, consider
the situation illustraicd in Figure 3.2, where we want the
union of a relation P which holds at all ticks, and @ which
holds at all even ticks for the same tuples. Again, the
rclational algebra P - Q may only subtract one interval of
Q from P, and thus we must subtract Q from P n/2 times
10 cnsure the operation is complete. For example, P -, Q
in an eight tick structure would require four subtractions,
and be obtained by the formula (P - Q) - Q) - Q) - ¢
again omiiting delails of the intcrval intersections,

IJ

0
P-Q

Figure 3.2

Proceedings of the 17th Intemational 427 Barcelona, September, 1991

Conference on Very Large Data Bases

Whilst we can for any n tick structure give a general first-
order encoding of a temporal union or differcnce in the
rclational algebra, it can not be regarded as a practical
solution to the problem, and thus we may view these two
operations as being the {undamental extensions to a
system based on the relational algebra necessary to fully
implement the TRA.

4 Temporal-SQL

Of particular importance when designing new relational
operators 1s to consider the impact on SQL., and the
enhancements necessary (o model the new operators. We
aim to provide operators which are in the same style as
the present operators, both for reasons of acceptability (o
current users of SQL, and for practicability of the
modification of current RDMS. '

The since-product and until-product have ohvious
similarity with the relational algebra product operator,
and thus it is natural to cxtend the FROM clause of SQL,
where we at present have just the comma operator 0
indicate the product, to also allow the keywords SINCE
and ONTIL to be used, indicating the corresponding
temporal product. In addition, we must prefix any SQL
query with an AT clause Lo indicate which ime (i.e. which
D)) should be used 10 evaluatc the query against, Example
4.1 shows the equivalent of the TRA formula
employee(ab) S, works_for(c.d) in such a modified SQL
(as we would expect the result is identical to that given
for Dz in Example 2.1).

Example 4.1

AT 3
SELECT *
FROM EMPLOYEE SINCE WORKS_FOR

yields:

NAME SALARY NAME MANAGER
Pater 110 Peter Dov
Petar 110 Richard Dov
Richard 140 Peter Ed
Richard 140 Richard Dov
Peter 110 Peter Ed

4.1 Temporal Natural Join

With this extension, we implement the temporal natural-
join in g similar manner 1o the relational join. Thus to
compute employee(a.b) S, . opame, WOrks _fortac) (e o
join on the name auribulcﬁ we simply add a WHERE clause

to ensure the attribute is common (o the two relations:

Example 4.2

AT 3

SELECT EMPLOYEE.NAME, SALARY, MANAGER
FROM EMPLOYEE SINCE WORKS_FOR

WHERE EMPLOYEE .NAME=WORKS_ FOR.NAME

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

428

yields:

NAME SALARY MANAGER
Pater 110 Dov
Richard 140 Dov
Pater 110 Ed

4.2 Derived Modal Qperators

Modal Operator Temporal-SQL Keyword

L J PREVIOUS

O NEXT

[| ALWAYS HAS

0 ALWAYS_WILL

* PAST

o] FUTURE

Table 4.1 : Temporal-SQL Derived Model Operators

Since the derived modal operators of Table 1.2 arc
shorthands for formulac involving the since- and until-
products, we may introduce them as modifications to (he
FROM clause according to Tablc 4.1. For example, we may
use the PAST opcrator 0 recall all the managers thal
Peter has worked for by the following query:

Example 4.3

AT 3

SELECT MANAGER

FROM PAST WORKS_FOR
WHERE NAME='Peter'

yiclds:

MANAGER
Dov
Ed

To select the managers (hat Peter has worked for, but no
longer does, we need simply check that the managers
being selected do not hold for the current (query) time:

Lxample 4.4

AT 3

SELECT MANAGER

FROM PAST WORKS_FOR

WHERE NAME='Peter'

AND MANAGER NOT IN

{SELECT MANAGER
FROM WORKS_FOR
WHERE NAME='Peter')

yields:

MANAGER
Ed

Barcelona, September, 1991

§ Encoding Temporal-SQL in Standard SQL

The Temporal-SQL may be encoded in standard SQL
{Date, 1989]) using the obvious mapping of the encoding
scheme used for translating the TRA to the rclational
algebra. The temporal structure is rcpresenied by using
additional attributes (say START and END) on relations to
describe the interval over which tuples hold, and we may
hide this information by always naming the non-inicrval
attributes in the SELECT clause. The SINCE and UNTIL
operators are replaced by products (the SQL comma
operator), and additional tcrms added to thc WHERE
clause to perform the interval intersections nccessary in
the encoding. The AT t clausce is used to supply the value
of time. Notc that the restriction on cncoding the
temporal union operator fits well with SQL, which docs
not allow a UNION inside a SELECT clause.

The relational operators must then be translated to test
these intervals. Thus we can wrile an equivalent query to
in Example 4.1 (in terms of the tuples sclected) as
follows:

Example 5.1

SELECT EMPLOYEE.NAME, EMPLOYEE.SALARY,
WORKS_FOR.NAME, WORKS_FOR.MANAGER
FROM EMPLOYEE, WORKS_FOR
WHERE EMPLOYEE.NAME=WORKS_ FOR.NAME
AND time
BETWEEN MAX (EMPLOYEE.START+1,
WORKS FOR.START+1)
AND EMPLOYEE.END+1
AND EMPLOYEE.START
BETWEEN WORKS FOR.START
AND WORKS FOR.END

The naming of attributes in the SELECT clausc is
necessary 1o avoid the listing of the ‘hidden’ cxtra
attributes we added as part of our encoding. Although
SQL does not have such a MAX function as we have used
above, we can achieve the same function by checking that
time is greater than both the function's arguments.

The temporal natural-join is achicved simply by adding
the additional condition to the WHERE c¢lause to check the
NAME attribute of the relations arc identical.

For the modal operators, we must define £ in SQL as
holding from O to n (the range of the bounded model
introduced in section 1), and assume is has no attributes,
Thus we obtain the query in Example 5.2 (o represent the
Temporal-SQL. query in Example 4.3 . Note that we do
not need to check the overtup function of the encoding.
since everything will overlap 2.

WHERE WORKS_FOR.NAME='PETER'
AND time

BETWEEN MAX (1, WORKS_FOR.START+1)
AND n+1l

Adding the constraint of Example 4.4 that the manager
sciected must not belong to works_for at the current lime
gives Example 5.3.

Example 5.3

SELECT MANAGER
FROM WORKS FOR
WHERE WORKS FOR.NAME='PETER'
AND time BETWEEN
MAX (1, WORKS_FOR.START+1}) AND n+l
AND MANAGER NOT IN
(SELECT MANAGER
FROM WORKS_FOR
WHERE time
BETWEEN WORKS_FOR.START
AND WORKS_ FOR.END)

Discussion & Conclusions

We have described a temporal relational algebra (TRA)
which provides for the representation of US logic
formulac in an historical database environment. By
describing a possible encoding of this TRA in the
rclational algebra (exiended with arithmetic), we find that
only extensions to the non-temporal union and diffcrence
relational operators would be required 10 obtain a fully
first-order expressive historical database query language.

The results are used in the design of a query only
Temporal-SQL language, and in turn its encoding in
standard SQL. Limitations on the use of the union
operator in SQL resull in only the implementation of the
temporal difference operator being a problem in practice.

The TRA may be used as a standard by which the
expressive power of various languages proposed for for
the querying of historical databases may be gauged. If a
language can implement the since-product and uniil-
product. operalors it can be said to be first-order
expressive over the historical data model in the sense that
the relational algebra is over the relational model.

An area yet to be investigated is the subject of efficiency
of the operalors, and the possibility of query optimization
of TRA queries. As with the case of the relational model,
a prime objective of such optimization would be
reduction of products and joins present in a particular
query.

Future work will investigate cxtending the Temporal-
SQL language 0 include updaies, so that the entire query/

Example 5.2 update scmamics‘ of executable len_1poral logic rules may

be represenied in the TRA. This would represent a

SELECT MANAGER considerable advance on the relational algebra, since we

FROM WORKS_FOR would have a algebraic description of updates as well as
Proceedings of the 17th Interational 429 Barcelona, September, 1991

Conference on Very Large Data Bases

queries to the database. J.D.Ullman, Principles of Database and Knowledge-Base

Acknowledgements Systems, Computer Science Press, 1988,

The work reported in this paper was partly funded by the
EC under Esprit project number 2469. The authors would
like to thank all members of the project for their helpful
involvement in numerous meetings, and in particular the
contributions of A.Conti, M.Niézette, F.Schumacker and
P.Walper of the University of Lizge. We would also like
to thank Richard Owens of Imperial College for much
work in proof reading and correcting numcrous crrors
present in draft versions of this paper, and the confcrence
referees for helpful suggestions for improvements (o the
final version of the paper.

References

M.Abadi & Z.Manna, Temporal Logic Programming,
IEEE Symposium on Logic Programming, 1987.

I.LE.Allen, Maintaining Knowledge about Temporal
Intervals, CACM Vol. 26, No. 11 pp 832-843, 1983.

H.Barringer, M.Fisher, D.Gabbay, G.Gough & R.Owens,
MetateM: A Framework for Programming in Temporal
Logic, Stepwise Refinement of Distributed Systems:
Models, Formalisms, Corrcciness, Ld. J.W.de Bakker,
W.P.de Rocver & G.Rozenberg, LNCS 430 pp 94-129,
Springer-Verlag, 1990,

J.A.Bubenko, The Temporal Dimension in Information
Modelling, Architecture and Models in Data Basc
Management Systems, North-Holland, 1977,

J.Clifford & A.U.Tansel, On An Algebra for Historical
Relational Databases: Two Views, Proc. ACM SIGMOD
Conference 1985.

C.J.Date, A Guide 10 the SQL Standard, Addison-Wesley,
1989.

D.Gabbay, The Declarative Past and Imperative Future,
Temporal Logic in Specification: Altrincham Workshop
1987, LNCS 398 pp 409-448, Springer-Verlag, 1989.

S.K.Gadia, A Homogeneous Relational Model and Query
Languages for Temporal Databases, ACM TODS, Vol.
13, No. 4 pp 418-448, 1988.

S.B.Navathe & R.Ahmed, TSQL - A Language Interface
for History Databases, Temporal Aspects of Information
Systems, pp 109-122, Ed. C.Rolland, F.Bodart &
M.Leonard, North-Holland, 1988.

R.Snodgrass, The Temporal Query Language TQuel,
ACM TODS Vol. 12, No. 2 pp 247-298, 1987.

AU, Tansel, Adding Time Dimension to Relational Model
und Extending Relational Algebra, Information Sysiems
Vol 11, No. 4, pp 343-355, 1986.

A.Tuzhilin & J.Clifford, A Temporal Relational Algebra
as a Basis for Temporal Relational Completeness,
Proceedings of the 16th International Conference on Very
Large Dalabases, Brisbanc, 1990.

Proceedings of the 17th Intemational 430 Barcelona, September, 1991
Conference on Very Large Data Bases

