
Optimizing Random Retrievals from 
CLV format Optical Disks 

Daniel Alexander Ford Stavros Christodoulakist 

Department of Computer Science 
University of Waterloo, 

Waterloo, Ontario, N2L 3Gl 

ABSTRACT 

One technique often employed 
to improve retrieval performance 
from storage devices is to red;cee 
seek costs by to clusterin 
quently accessed data toget er ‘ii R 
locations on the storage device that 
are ph sically close. For magnetic 
disks etermlning the best position B 
on the disk to place frequently 
accessed data is strai 
optical disks with 

htforwarcl, for 
t eir fi many dif- 

ferent recording formats the solu- 
tion is much more difficult. We 
develop a detailed model for the 

E 
lacement of data on Constant 
inear Velocity (CLV) format opti- 

cal disks that includes distribution 
of stora e ca acity across the disks 
surface whit is variable for CLV “t R 
format optical disks), the seek er- 
formance of the disk drive, de avs r 
dye ,to yotational latency, and t& 
&&lbs;;on of ac$esses ovet 

We derive closed form 
expressio;s which determine the 
position of frequently accessed data 
that will minimize the expected cost 
of random accesses to the data set. 

1. Introduction 
An important goa. of physical database design is t.o 
obtain excellent, retrieval performance from the 
storage system or device on which a database 
resides. An accurate measure of retrieval perfor- 
mance is the expected time de1a.y required t,o arr~ss 
t#he records qua.lifying for a query. For both nla,g- 
netic and opt.ical disks t,his delay is dnminat~ed 1)~ thcl 
t*ime needed t,o reposition the device’s disk phys~call~~ 
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head during the retrieval process. A typical seek 
time for a magnetic disk is 30 milliseconds (or 
better), but for optical disks, the value tends to be 
approximately 400 milliseconds. And for some opti- 
cal disks, such as Compact Dick Read Only Memory 

t 
CD ROM), seek times can be as much as one second 
Laub 861. For good retrieval performance from opt 
ical disks, it is obviously of critical importance to 
minimize the expected delays that result from their 
slow seek performance. 

A technique often employed to improve retrieval 
performance by reducing seek costs is to cluster fre- 
quently accessed data together in locations on the 
storage device that are physically close, such as in 
the same or adjacent tracks on a disk. The ISAM 
file organiza.tion uses this technique as does the 
UNTX fast file system wckusick 84). This physical 
grouping reduces both the expected number of seeks 
that the disk head will be required to execute as well 
as the distance it will travel. 

We can extend the idea of positioning da.ta to 
improve retrieval performance to encompass the 
entire arrangement of sectors on a disk, the goal of 
the placement procedure would then be to find a 
global arrangement of all of the disk sectors that will 
minimize the expected cost of a single disk access. 

This optimal sector placement problem is an 
important one for optical disks. Their large storage 
capacities and low cost make them ideal for large 
database systems, but their slow seek performance is 
a drawback. Any technique that can mitigate the 
impact on retrieval costs of the slow seek perfor- 
mance of optical disks will be of great benefit. 

This is particularly true for optical disks which 
employ the ConRtan,t Linear Velocity (CLV) record- 
ing format. First, CLV format optical disks typically 
have the slowest access times of all optical disks; 
extra delay is incurred because of the need to adjust 
t,he rotation rate of the disk to match the position of 
r.he disk head. And second, data on CD ROM’s and 
C%V format Write Once Read Many (WORM) opti- 
cal disks are never modified or moved from position 
to position (unlike magnetic disks where the place- 
ment of data is modified frequently and is usually 
transparent to users). An example application would 
be determination the positions on the disk of fre- 
quently accessed indices, or of files that receive 
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particularly heavy amounts of retrieval t,rnffic. 
The optimal sector arrangement problem ha.9 been 

investigated before for magnetic disks, but t.he 
results of those investigat,ions, have very limited 
application to optical disks. The differences in t,he 
physical characteristics of magnetic and optical disks 
are significant enough to invalidate many importa.nt 
underlying assumptions used in determining place- 
ment solutions for magnetic disks. For instance, all 
previous investigations for magnetic disks (Grossman 
731 fYue and Wong 731 [Wang SO] IWong 831, impli- 
citly assumed that the distribution of storage capa- 
city over the disk surface was uniform (CAV for- 
mat). For instance, with the CLV format, the dist,ri- 
bution of storage space varies across the disk SUP- 
face; the tracks nearest the centre of the disk have 
fewer sectors than those nearest the outer edge. 

A skewed storage distribution produces variat,ions 
in both the amount of clustering possible and in the 
rotational delay encountered during accesses from 
different positions on the disk. These variations can 
be exploited to improve access performance. The 
cost expression and solution that we derive reflects 
the impact of these variations and finds the optimal 
position on a CLV format disk. 

It is interesting to note that a uniform storage 
capacity distribution, such as t,hat produced by the 
CAV format, eliminates the possibility of tra.ding-off 
positional performance improvements entirely. All 
tracks on such disks have the same capa.cit#y and 
rotational delay. This uniformity makes the dista.nce 
between disk sectors the only factor in determining 
the expected retrieval cost and simplifies the prob- 
lem considerably. The Organ-Pipe permutat.ion 
[Hardy 341, which minimizes this dist,ance in order of 
the frequency of sector accesses. is the resulting 
optimal solution, 

In the next section, we develop a model for our 
analysis that encompasses virtually all aspects of the 
placement problem. In section 3, we develop proofs 
restricting the form of the optimal solution. In sec- 
tion 4, we analyze the positional performance trade- 
off and develop a closed form expression for the 
optimal solution. Using this expression in section 5, 
we examine t,he roles played by the model pa~mr- 
ters in determining an optimal sect.or placement. In 
section 6, we extend our a,nalysis to include a slightly 
more genera1 seek model. In section 7, we show how 
to extend our model to allow for general sector 
access probability distributions. In section 8, we 
validate our model and a.nalysis by comparing the 
solutions they predict with measurements made from 
a CLV format disk drive. In t,he fina. sect,ion, we 
summarize our results. 
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2. The Placement Model 
To avoid some of the inherent complications of 
employing a discrete model of a disk with a smoothly 
varying storage capacit,y, we develop a continuous 
model for our analysis. In moving from the discrete 
to the continuous domain the problem changes from 
one of placing sectors on a discrete disk to one of 
positioning probability masses on a continuous disk. 
The immense capacities of optical disks allow this 
approach; a typical disk can easily be organized into 
more than 40000 tracks and more than 1 million 
sepa.rate sectors, and often many more. 

Storage Capacity Distribution 
As mentioned above, we develop a continuous model 
for our analysis. This model matches the smoothly 
varying storage capacity found on a CLV format 
optical disk and eliminates many of the problems 
that arise from a discrete model. 

We adopt a representation that models CLV for- 
mat disks and their storage capacity distributions in 
relative terms, and then develop our analysis for this 
relative representation. This approach allows any 
disk to be described by just two parameters, the 
capacit,y of the innermost position/track of the disk 
relative to the capacity of the middle position/track, 
and the slope of the change of storage capacit.y 
across the disk, also relative to the capacity of the 
middle- position/track. The relative capacity of the 
middle position in the continuous model is by defini- 
tion one unit. 

A position/track on the disk in our relative model 
is represented by a number between 0 and 1. Posi- 
tion 0 corresponds to the innermost track on the 
disk and position 1 corresponds to the outermost 
track. The middle track on the disk is represented 
by position 0.5. A relative model for a disk is illus- 
trated in Figure 1. 

C(x) Relative Capacity 

T 
j i 

1. i + 

0 
I- -. 

x Position on Disk 

Figure 1: Model of Distribution of Storage Capacity 
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Letting k be the relative slope of the change in 
the storage capacity across the disk and j be the 
relative capacity of the innermost track, we define 
the relative capacity of the position z to be: 

C(+ks+j, O<_zsl, O<_j<l, O<_k<2 

Since the capacity of the innermost track can never 
be less than zero, the value for j also cannot be less 
than zero. 

Random Accese Probability Distribution 
Our probability model assumes that sector access 
requests are independent of each other. This is con- 
sistent with the models used previously for CAV for- 
mat magnetic disks [Grossman 731 [k’ue and 
Wong 731 [Wong 801 (Wong831. In addition, to sim- 
plify our analysis, we restrict the access probabilities 
of the point masses to one of two relative values, p, 
and Pz (P, > ??J. 

The proportion of point masses with relative 
access probability f, is r; the proportion with value 
Pz, is l-r. Figure 2 illustrates a two value probabil- 
ity distribution, 

I 4 
O- I f 

p2 
f 

0 r I 

Proportion of total number of disk sectors 

Figure 2: Two Value Rel. Access Prob. Distribution 

The absolute a.ccess proba.bilit(y value of a. proba- 
bility mass which is composed of points having rela- 
tive probability density value s is 

and for Pz is 

pz 1 -, where ~1 is the number of proba- 
Plr + &(1-r) p 
bility points (proportional to t,he area, occupird by 
these points). This number tends t,o infinit’y in t.hca 
cont,inuous model. We define I?’ = P, r + f’z( 1-r’). 
the normalizing factor. 
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Seek Cost Function 
The cost in time units of seeking to a position t on a 
disk as: 

I 

at+6 if t>& 
SC(t) = 

dt +c otherwiee 

We do not model proximal window accesses, which 
have a more complex seek cost function [Ford 911. 
A proximal window access is an access performed by 
tilting the objective lens in the optics of the disk 
hea.d. This type of access is usually faster than seek 
accesses which require the disk head to move before 
data retrieval begins. The amount of data that is 
present in a window is very much smaller than the 
capacity of a optical disk. Typically, a proximal 
window will allow access to at most 0.1% of the disk 
capacity; as such, it is reasonable to assume that 
successive random access will not fall within the 
same proximal window, and that the cost function 
we described above provides an accurate measure of 
the expected seek cost. 

Note that in the studies of optimal placement for 
magnetic disks, the cost model used was only 
CO8t = a at (i.e., cost was proportional only to the 
distance, b = 0, & = 0). 

Rotational Delay Function 
Rotational delay on CLV format disks varies as a 
function of the capacity of a position on the disk; 
the more sectors in a track, the longer it takes to 
read them. Since in our model storage capacities are 
expressed relative to the capacity of the middle 
track, we must also specify our rotational delay 
parameter in relative terms. 

We define h to be the time required for the entire 
middle position of the disk to be read. From this, 
the expected rotational delay (latency) of accesses 
from a position y is: 

%y) = H h C(Y) 

The Expected Random Access Retrieval Cost 
The objective of our analysis of the optimal place- 
ment problem will be to determine an arrangement 
of probability masses that minimizes the expected 
random access retrieval cost (seek and rotational 
delay). The overall expected retrieval cost is com- 
puted by summing the cost in time units of succes- 
sive accesses to each possible pair of initial and desti- 
nat,ion positions on the disk. The cost of moving 
from one position to another is the sum of the value 
of t.he seek cost function for moving the disk head 
t.he dist’ance between the two positions, a.nd the 
value of the rotational delay function at the destina- 
tion position. For each pair of positions, the cost 
must be computed in both directions since the rota- 
tional delay cost will vary with the destination. We 
assume successive accesses are independent, so each 
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term in this sum will be weighted by the product of 
the probability of accessing the initial position and 
the probability of accessing the destination position. 
Our approach below is to first develop a discrete 
expression for the expected random access retrieval 
cost and then extend it to the continuous domain. 

The discrete cost function in our model is: 

cost = (1) 

5 ,&wi)~(j)(sc( I(~-d/TI)+Jwd) 
i-l j-l 

Where i is an initial position (track) on the disk, j 
is a destination position (track), and Pm(i) is the 
probability mass assigned to position i 
Sc( [(i-j)/rI) is th e seek cost between the positions 
i and j, and Rd(j) is the expected rotational delay 
at position j. 

We can separate out the seek and rotational delay 
cost components: 

Cod = 2 $I An(i)Rn(j)Sc(I(i-j)/TI) (2) 

+ $, $I p”(i)fi(dRW 

We expand the function Sc( I(i-j)pI) (and change 
the limits-on the summations). In the discrete case, 
we use & to represent the number of tracks, to the 
left or right of the current track, which are in the 
current knee span: o and b are the slope and inter- 
cept of long seeks on the disk, respectively, and d 
and c are the slope and intercept of short seeks on 
the disk, respectively. 

coet =‘$-’ 5 
ial j-i+g+l 

pm(i)P,,l(j)($j-i)+ b)(3) 

-4 
i --I 
E 

i-5+2 j-1 

Ptn(i)An(j)($i-j)+ b) 

+ Tj$-’ yy-Pm(i)Fln(j)($(j-i)+c) 

-+I i 
+ f:c 

i-l j-l 

P,n(i)h(j)(+-j)+c) 
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After some simple but tedious manipulations, we 
have: 

Cod = 5 5 Pm(i)pm(j)~(j-i) (4) 
i-l j-i 

+ ,$, :I fi(i)finW +(i-i) 

+ b + 5 Fh(i)An(i)b 
i-1 

- ‘f$‘F Pm(i)Fh(j)(~(j-i)+(b -c)) 
i=l j-i 

- if: 5 Prn(i)An(j)(++j-i)+(b -c)) 
i-T-e’ j-i 

- 5 2 Pm(i)Pm(j)(~(i-j)+(b-c)) 
i -4+2 j-i -ZZ 

- 9’ 6 Fh(i)Pm(j)(~(i-j)+(b -c)) 
i-l j-1 

Expected Cost for Small Knee Span Siees 
We develop our expression for the expected cost by 
assuming that the knee span size is small in com- 
parison to the number of tracks on the disk. This is 
the case for conventional disk drives; the typical 
number of tracks on an optical disk platter will 
range from 20000 to 40000, or more, depending on 
the diameter of the disk. A typical value for the 
knee span would be from 40 to 100 tracks. 

Our expression for the expected (discrete) random 
access retrieval cost simplifies to the following: 

coat = $, $ An(i)fi(j)$j-i) (5) 

+ b + 5 Pm(i)An(i)b + 5 An(j)Rd(j) 
i-1 j-l 

For T+cu, the first two terms of the discrete cost 
expression become: 

$&-II fj ,fj An(i)Pm(j)$(j-i) (0) 
i-1 j-i 

1 1 

= J J P”wwYMY4dYda: 
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)fi(Y)Q (x-Y)dY c&r 
t-oy-0 

When we move to the continuous domain the clus- 
tering term vanishes because the probabilit,y of suc- 
cessive accesses to the same position becomes smaller 
as the number of positions increases. 

Expressed mathematically: 

lim $j Pm(i)An(i)b 
T-00 i-1 

And, the rotational delay term becomes: 

Jii 5 Pr7z(j)Rd(j) = j An(r)Rd(z)dz (9) 
j-1 210 

Thus, for T-+oo, % -+O, t)he cost expression 

becomes: 

Coet = i ) Pm(r)Pm(y)a(y--2)dydr (10) 
z-a y-2 

+ 6 + J Pnt(r)Rd(r)dz 
t-cl 

3. Proof of Conaecutivity and Unimodality 
We now prove some results about t)he form an 
optimal sectsor placement will take. Specifica.lly, we 
show that a position on the cont’inuous disk must 
contain only probability masses of one of the two 
subsets, either PI and PT. And, we show that the 
form of any solution must be unimodal, meaning 
that in an optimal placement, the probability masses 
from the P, group must be pla.ced as close toget.hel 
as possible. 

Theorem 1 {Consecutivity}: Jn an opt,imnl 
arrangement, there cannot, exist, t,wo different 
positions z and y on the disk, such that there 
are two probability elements CY~ and o3 at 
position r and two elements (Y? and a4 a.t posi- 
tion y, such tha.t ol < a2 < No. 

Proof: Assume tjhat, there a.re t#wo such po’i- 
tions. Consider the change in the rspcrtecl 
retrieval cost if we exchange t,he ff2 mass at, 
positzion y with t,he a3 mass at position X. If 
the expect,ed retrieval cost, increases. any 
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increase in probability at y with equivalent 
decrease in probability at z would also 
increase the expected retrieval cost. Thus, 
decreasing the probability at y and 
correspondingly increasing that at z will 
decrease the cost. Thus, the opposite opera- 
tion of exchanging the c-z1 mass element at 
position 2 with the (r2 mass element at posi- 
tion y would decrease the expected retrieval 
*cost.. This would violate our assumption that 
the initial arrangement was optimal. 

The implication of Theorem 1 {Consecu- 
tivity} is that the sectors or (probability 
masses) that are assigned to a particular 
position/track on the disk must have a partic- 
ular relationship. Namely, that their proba- 
bility values (their probabilities of being 
accessed) must form a consecutive subse- 
quence of all of the probability values are 
sorted in order. So, for instance, the track 
that contains the sector with the highest pro- 
bability of being accessed should also contain 
the sector with the second highest probability 
of being accessed, etc. This result is essen- 
tially the same result as obtained in [Wong 80 
.[Wong 831 (called the greedy partition scheme i 
for CAV (magnetic) format disks. This proof 
however is much simpler. 

We will show that the optimal placement is 
unimodal. This means that given two posi- 
tions with probability elements of value 5, 
there cannot exist a position between them 
with probability elements of value P2. 

Theorem 2 {Unimodality}: The optimal 
arrangement of two probability masses is uni- 
modal. 
Proof: Found in [Ford 911. 

4. Analysis 
We showed in the previous section that our optimal 
arrangqment of probability masses must be unimodal 
( i.e., all the f, probability mass elements will be as 
close to ea.ch other BS is possible). Thus, the form of 
an optimal solution in our model will be a specifica- 
tion of the position of the F’, probability mass on the 
disk. We shall specify this position as the location 
on t,he disk of the mid-point between the left and 
right boundaries of the PI group. We denote this 

point as m (m = x’ i xr ). The relevant vari- 

ables are illustrated in Figure 3. The goal of our 
analysis is then to develop an expression for m 
which can be computed from the parameters of the 
model. 

Hefore t,ackling the main problem, we first’ derive 
some preliminary expressions. To compute ,YI and 
,Yr from m we need to know the “width” in rela.tive 
disk units of the high probability group. We know 
t.hat the proportion of the area occupied by the high 
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k+ ’ 

t 
k 

Figure 3: Optimal Placement Parameters 

probability group must be equal to r. 
If w is the width of the group, then from the for- 

mula for the area of a trapezoid, we have: 

Areaof 
r = Total Area = 

C(y)w _ (km ; j)w (II) 

Therefore: 

f 
W=km+j (12) 

From this we derive the simple expressions for Xl 
and Xr. 

Xl(r,m) = m-H - 
44 

Xr(r,m) = m-l-!4 - 
CTm, 

(13) 

Given these bounds, we can specify our probnbil- 
ity assignment function: 

I p2 

PI r+P2(1-r) C(x), otherwiPe 

From the model, our expected retrieva.1 cost 
(Equation 10) is: 

1 1 

CO8t = b + 2 $ J Pm(s)An(y)a (y-r)dy d.r 
z-0 u-t 

+ i Pm(x)Rd(x)dx 
r-0 

Where b is the intercept of t,he long seek cost,. 
I%(r) is the prohability of acressing lornthn r 011 
the disk, n is the slope of t,he long seek cost func- 
t,ion? and &I(z) is the rotational delay cost at’ lorn- 
tion r. 
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Recdl that W = (P,r+P,(l-r)), the seek com- 
ponent after substitution is: 

2p,2 ~(~m)~(r,m) 
=b+- )+! 1 I ww(Y)4Y4dY dx(15) 

u-2 
x(r,m) Xr(r,m) 

+ y J J C(x)C(y)a (y-x)dydx 
r-0 v-Xl(r,m) 

2 p; Xl(r,m) 1 

+ Mfz J s C(x)C(Y)a(Y-x)dYdx 
r-0 u-Xr(t,m) 

2~; xr(r,m) Xr(r.m) 

+ 3 J J C(+(Yb(Y4dY dx 
z-Xl(r.m) y-r 

2 PI p2 
Xr(r,m) 

+ w 
s i C(x)C(y)a (Y-X)dY dx 

r-.Yl(r,m) u=Xr(r,m) 

Where P, and P2 are the weights of the two proba- 
bility masses, r is the proportion which are P,, m is 
the location of the centre of the PI mass, ,Yr(r,m) 
and Xl(r,m) are the right and left most extents of 
the PI mass, and C(z) is the capacity of position 2. 
Where h is the time to read the middle position of 
the disk, the rotational delay component is: 

!4h ) Pm(x)C(x)dx (10) 
r-0 

The expression for the expected random access 
retrieval cost has been evaluated using the Maple 
symbolic mathematics package [Char 851 and is 
given in [Ford 911. For brevity, we show only a part 
of the resulting expression below: 

Co8t(k,j,a ,b ,hPz,r,h ,m) = 
(60P2j7h + * * * -3OOP~~‘khmr) 

lZO(km+ j)6(PIr+P2(1-r))2 

(17) 

To derive the optimal value for m we take the 
derivative of the cost expression with respect to rn’, 
again using the Maple symbolic mathematics pack- 
age. The complete derivative is in [Ford 911. 

aCosf(k, j,a,b,P,,Pg,h ,m) 
= 

am (18) 
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r (48a@j7 + . + 48kamejnP~) 

Because f, and F’? are relative values, we select 
Pg - 1 to simplify the derivative. Using Maple 
again, we determine the roots of the derivative and 
finally arrive at the desired expression for the 
optimal location of m (shown in its entirety): 

m0ptimd E - (19) 

(tiC,+~48~‘a2+C2k+C,lc2+C,ks+C,lc’ )% 
+ 

2+i3’~kY&- 

Cl = a (4f+2k2+4jk)+hk2(-P,r+r-1) 

C, = 96j3a2 

Cs = 32PIr2a2-24f?P,arh+24J2arh 

-24j’ah+96j’a2-48r2a2 

c4 ==-24 jah-24 jaPIrh+24 jarh+48 ja2 

C, - 12a2+3f,%2h2-6P,r2h2+OPIt.h2 

-lBaf,rh-12ah+3h2+12arh 

+3r2h2-6rh2 

6. Impact of Model Parameters on Optimal 
Data Placement 

An expression for the optimal position of the group 
of the most frequently accessed sert)ors was derived 
in the previous section. In the discussion below, we 
examine and explain the variation in t,he optimal 
solution aa the values of the parameters of t)he place- 
ment problem are changed. 

Impact of Rotational Delay 
The graph in Figure 4 plots t,he optimal posit,ioh of 
m as a function of the rot,a.tional delay. The solid 
line in the graph plots m while the top and bottom 
lines plot the positions of the boundaries of the f’, 
group, Xr and ,Yl I The graph shows that the rota- 
tional delay plays a significant, role in determining 
the optimal position. As t,he retrieval dela.ys due t,o 
rotational delay become more significant, in relation 
to other sources of delay, the optimal posit.inn shifrs 
towards the lower capncit,y tracks which have a 
lower rotational lat,ency (ancl t.he spread between SI 
and Xr increases). 

The graph in Figure 5 plots the optimal position as a 
function of the seek cost parameter a (slope of seek 
cost), It shows that as the value of the seek cost 
function becomes more dependent upon distance 
(greater value for the slope a), the optimal position 
moves away from the inner edge of the disk. A simi- 
lar behaviour would be observed, if for a constant 
slope a, the rotational delay would decrease (so that 
the seek cost would become more important). The 
limiting position &s a increases depends upon the 
exact dist,ribution of storage across the disk, and is 
essentially the location of the centre of gravity of 
the “probability mass”. 

The Impact of the Storage Distribution 
The next parameters we examine are those which 
determine the distribution of storage capacity on the 
disk. For t.wo different values of the rotational 
delay parameter h, the graph in Figure 6 plots the 
optimal position as a function of k, the relative slope 
of the ca.pacity distribution function. 

To determine a typical value for PI, the rrlntivc When the rotational delay is significant with 
a.ccess frequency of the most frequently accessed disk respect to the slope of the seek cost function, the 
sectors, we use the well known rule-of-t,humb that opt.ima.l posit.ion shifts towards the inner edge of the 
sta.tes t,hat 80% of all disk accesses will br directrd disk as t,he distIribution becomes more skewed to 
to ?O?$ of t.he disk scct,ors. This means that OIII fake ndvantnge of t,he reduced rotational delay at 
v&e for r is O.?O pnd t.hat the area in t.he p, group that. position. When the rotational delay is insignifi- 
in the distribution must be 80?0 of the total dist.ribu- cant wit,h respect t#o the seek cost slope (e.g., h = 10 
tion area. milliseconds), the optimal position shifts towards the 
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Opt. Position 88 func. of rot. delay 
k = 1, J = l/2, Pl/P2 = 10 

r = 2/10, a = 333ma, b = 680me 

0.0 - 

0.6 - 

0.4 - 

0.8 - 
0.2 - 

0.1 - 
. 

0.0 . 
I I 1 I I I 4 

0 60 loo lso 2co a60 am 850 

h (rotational latency) (milliseconds) 

Figure 4: Optimal Position as function of rot. delay 

r *PI 

raPI + (1 - r)*P2 
= 0.8 (20) 

With r = 0.2 and P2 = 1, we find P, = 16. 

Impact of Seek Cost 

Barcelona, September, 1991 



Opt. Position as func. of seek slope 
k- l,j= l/2, Pl/P2 = 18 

r = 2/10, b = 580ms, h = 040/3ms 
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Figure 5: Optimal Position as function of seek slope 

outer edge of the disk. 
Note that for k = 0 (uniform distribution) the 

optimal position for both values of h are at the cen- 
tre of the disk (m = 0.5) as we would expect since 
that is the optimal position for CAV format disks 
which have a uniform distribution of storane capa- 
city [Grossman 73) vue and Wong 731 [Wang 801 
[Wang 831. 

Opt. Position as func. of cap. slope 
Pl/P2 = 16, c J 2/10 
a = 333ms, b = 58Oms 
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Figure 6: Optimal PositSion as func. of capacit,y slope: 
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The Impact of the Data Access Probabilities 

The access probability distribution also plays a role 
in determining the optimal solution. As the distribu- 
t,ion becomes more skewed (f/P, increases, keeping 
r constant) the impact of the rotational delay com- 
ponent for the high probability masses (P,) becomes 
the more significant component of the cost. Aa a 
result, the optimal location of the high probability 
maas moves towards the inner tracks to take advan- 
tage of the reduced rotational delay. The plot in 
Figure 7 shows how the optimal solution moves 
towards the lower capacity tracks as the PI/P, ratio 
increases. The proportion r, will also affect the 
optimal position of the I’, group. For brevity we 
omit a discussion of its impact here. 

Opt. Position se func. of Pl/P2 
k = 1, j = l/2, r = 2/10 

a = 333me, b = S80ma, h = 640/3mr 
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0.1 
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Figure 7: Optimal Position as func. of Pl/P2 

6, Sector Placement and Extensiona to more 
general distributions 

Having developed an optimal solution for our con- 
tinuous two probability value model, we now 
describe its application to the discrete sector place- 
ment problem for general access probabilities. 

Given a CLV format optical disk and a set of disk 
sectors with access probabilities not limited to just 
two values, our problem is to determine the track to 
which each sector should be assigned so that the 
total expected random access retrieval cost will be 
minimized. To determine this track assignment 
using our solution for the continuous model we 
approximate the general sector access probability 
tlist.ribution and the discrete disk using an equivalent 
two value probability mass model and a continuous 
disk, This approximation will divide the set of 
discrete sectors into two subsets, one corresponding 
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to the P1 probability mass and one to the P2 mass. 
The dividing point (the value of r, the proportion of 
sectors which are represented by the P, mass) 
between the two subsets is chosen as described below 
to obtain a good placement. The values used for F1 
and fz will be the average access probability for the 
sectors in their corresponding subsets. 

The optimal positions of the p, and Pz probability 
masses in the continuous model will determine the 
approximately optimal placements of their 
corresponding discrete sector subsets. This place- 
ment can be refined by recursively applying the 
approximation again to the p, sector subset, treating 
the portion of the disk it occupies as a complete (but 
smaller) disk. This process of recursive subdivision 
can continue until the placement problem becomes 
trivial, such as when all sectors have the same access 
probability, or when the number of tracks on the 
disk is very small. An example of three levels of this 
recursive subdivison process are illustrated in Figure 
8. 

4 s fi 

I 

r--n--l P2’ 5’ pz’ 

I 

cm 

q” fl’ P’ 2 

Figure 8: Recursive Subdivision 

At the end of the subdivision process, t)he ent,ire 
set of disk sectors will be divided into a series of sub- 
sets, each of which will be associated with a. set of 
disk tracks. If the result of the subdivision is such 
that each sector subset corresponds to exactly one 
track, the placement problem is cornplet,e. It, i* more 
likely, however, that each sect,or subset, will br asso- 
ciated with several tracks, which are a.lso likflly t,o I)(\ 
divided into two different, grorlpa, corresponding LO 
the two P2 masses produced at each level of the 
recursion. The problem then is to det#ermine t,he 
exact assignment of each sector subset to its 
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corresponding group of tracks on the disk. We 
employ heuristics to aid us in this task. 

From theorems 1 {Consecutivity} and 2 {Unimo- 
dality}, it is known that an optimal sector arrange- 
ment must be unimodal, and that the set of sectors 
in each track must have access probabilities which 
are consecutive in the total distribution (i.e., if a 
track has three sectors with access probabilities 0.1, 
0.2, and 0.4, then there cannot be another sector in 
a different track with access probability 0.3). 

If there is only one group of adjacent tracks for a 
sector subset, these constraints are sufficient to 
determine a unique placement for the subset. If 
there are two groups of tracks, we use a heuristic 
that alternates the assignment of sectors from one 
group to the other. For the sectors corresponding to 
the 9 mass at the lowest level of the recursion, the 
sectors are placed in alternate tracks from the out 
side into the centre of the group. For a disk with a 
uniform distribution of storage capacity these heuris- 
tics produce the Organ-Pipe permutation which 
alternates the assignment from one side of the mid- 
dle track to the other, and is optimal. 

We can use these heuristics at each level of the 
subdivision process to produce a placement. The 
expected access cost for the placement at each level 
will allow us to monitor the progress of the algo- 
rithm and can be used as a stopping criterion, for 
instance, stopping if the co& begins to increase. The 
exact details of the subdivision algorithm, which are 
not complicated, are given in [Ford 911, we omit 
them here for brevity. 

7. Validation 

We validate our model and analysis by comparing 
the predicted value for the optimal position of the 
frequently accessed data, with actual measurements 
from a CD ROM optical disk. We measured the 
average time for accesses on a Hitachi CD-1503s 
CD ROM drive from a file of 160000 disk sectors 
t”h”,” ;n;abytes) placed at the innermost position of 

. Of the 160000 sectors, 38000 (24%) 
belonged to the group of frequently accessed sectors 
(Pl).’ The relative access probability of the fre- 
quently accessed group was 16:l. Each measurement 
was obtained by first placing the group of frequently 
accessed sectors at a position on the disk and then 
measuring the time needed to complete each of 2500 
accesses, the average of those times was then com- 
puted. 

The sectors chosen for access were selected at ran- 
dom according to the relative access probabilities of 
t,he two sector groups. The graph in Figure 9 plots 
the average access t#ime as a function of the position 
of t,he centre of the group of frequently accessed sec- 
tors. 

We compute the optimal position of m, the centre 
of t#he group of frequently accessed sectors, using the 
equation derived previously in our analysis and the 
performance parameters of the disk drive. The 
optima.1 position of m is computed to be at relative 
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Figure 9: Measured cost for position of PI group 

position m = 0.62; this is indicated by the dashed 
line on the graph in Figure 9. 

As we can see that m, the computed optimal posi- 
tion of the centre of the frequently access sector 
group, corresponds to the position of the group 
which had the lowest average random retrieval cost. 

8. Summary 
We have presented a model for studying the problem 
of optimal placement of data with known access pro- 
babilities on the recording surface of CLV optical 
disks. The model takes into account the non- 
uniform distribution of storage capacity on the disk 
and the dependency of the rotational delay on the 
track location, as well as a parameterized seek cost 
function. We have shown that the optimal place- 
ment satisfies a unimodality property for the place- 
ment of high probabilities, and we have derived an 
analytic solution to the optimal data placement 
problem. We have shown that the optimal data 
placement may be drastically different than the 
optimal data placement on magnetic disks. 

The data access probabilities were described by a 
parametrized, two valued, probability distribution. 
This problem formulation allowed us to derive 
optimal locations for the high probability data items. 
Since in many real environments, precise knowledge 
about the access probabilities of data items may not 
be known, this problem formulation will be adequate 
for these environments. As a special case, indices 
are often considered to be frequentsly accessed items 
(in comparison to data values). In this cont,ext$ our 
results suggest an 0ptima.l position for indices given 
the device characteristics. 

In environments where more detailed knowledge of 
the access frequencies of the data items may be 
available, our method can be extended using a 

recursive approximation of the access probabilities. 
We have outlined such an. algorithm. 

We have also validated our model and anilysis 
against measurements made from CLV format opti- 
cal disks and showed that the positions that they 
predicted as being the optimal locations for fre- 
quently accessed data, corresponded to the positions 
with the lowest measured average random retrieval 
cost. 
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