
A Framework for Automating Physical Database Design

Steve Rozen*t
steve@soi,com

*Software Options, Inc.,
22 Hilliard Street, Cambridge MA 02138, USA

Abstract
We propose a two-pha.se algorithm for physical
database design. In phase one the algorithm,
for each logical query, loses rules to determine
characteristics of a physical design (such as in-
dexes) that would be beneficial to the query,
and selects a physical design that yields a low
cost estimate for that query. In phase two we
use a notion of compromase between physical
database designs. St,arting from the physical
designs selected in phase one, the algorit,hm
looks for a compromise physical design that.
minimizes the queries’ aggregate frequency-
weighted cost. This method is envisioned as a
cornerstone in the efficient implementation of
a Turing-complete, very-high-level progra.m-
ming language for dat,abase applica.tions, but
it is also suitable for more conventional rela-
tional and -1NF database management. sys-
tems.

1 Introduction
Optimal solutions to sub-prohlcms of physical
data.base design are NP-complet.e, e.g. secondary in-
dex selection [4]. Nevertheless, based on the prag-
matic success of query (approxima.tte) “opt,imizat,ioii”
a.nd (approximate) “optimizat,ions” in progra.mming
languages that are also intracbable, we believe that
physical database design can be automa.ted in the va.st.
majority of cases that arise in pract,ice.

The problem we propose to solve is this: Given a
logical database schema together with a set of queries
on the schema and their frequencies, find a good phys-
ical database design, i.e. one a9 good as one that a
competent human database designer with the same in-
formatsion would produce. This problem is especially
import,ant t.o those ma.ny dat,ahases where most. of t.he
queries are executed from “ca.nnecl” applicat.iou pro-
grams, We also accommodate a.d hoc queries; csecu-
tion pla.ns for these can be comput,ed relative t.o a fised
physical design as in current practice.

We see this problem as a key task in a project to im-
plement BULK, a very-high-level language for proto-

Proceedings of the 17th International
Conference on Very Large Data Bases

Dennis Shashat
shashaOcs.nyu.edu

‘Courant Institute of Mathematical Sciences
New York University

251 Mercer Street, New York NY 10012, USA

typing and implementing database applicati+ns. The
full language is behaviorally object-oriented [7] and
treats all type constructors, including sets, uniformly
(see [2] pg. 7). H owever, from a query-processing per-
spective we can think of BULK computations involv-
ing persistent data as queries in an extended non-first-
normal-form (11NF) data model, i.e. a data model
providing sets and sequences of tuples wherein tu-
pie element,s may themselves be sets or sequences
(cf. (20, 14, 131); this will be our perspective here. In-
deed, our approach could be incorporated into a rela-
tional or -1NF database management system (DBMS)
and with modification could be provided as a stand-
alone tool for existing DBMSs.

Our approach relies on two key intuitions:

1. For a single query, da.tabase designers c.an often
rely on rules of thumb to quickly produce a small
set of candidate representations that might be
advantageous. E.g. if a query involves only at-
tributes a and b, both in equality selections, then
only indexes on a or b or both need be considered.
Furthermore, a query plan to go with the repre-
sentat,ions is also available by rule of thumb. Of
course rules of thumb must sometimes be backed
up by cost, est,imat,ion and search, as in a multi-
way join. For such cases one can generate po-
tentially useful data organizations and plans (in
a way analogous to rule-based generation of can-
didate query plans a.s in [S, 11, 151) and then fall
back on cost e&mates.

2. To find a good physical organization for several
queries one can often narrow the sea.rch to a space
that is in some sense intermediate between good
organizations for the individual queries. E.g. sup-
pose one query can be computed efficiently on a
relation indexed by attribute a and another can
hc computed eflciently if the relation is indexed
by attribute b, and tha.t neither query can be
computed using an index on attribute c. Then
when searching for an organization good for both
queries one must consider indexes on a, b, or both,
but one need not consider an index on c.

401 Barcelona, September, 1991

We next formalize these two intuitions enough to pro-
vide the basis of a practical syst,em.

Once we have described this approach in more de-
tail, the penultimate section of t,his paper discusses
related work, and the last section discusses the advan-
tages and disadvantages of our approach.

2 Describing the Problem and Possible
Solutions

We describe the physical database design problem
more precisely as follows. The input is a logical de-
scription of the database values and a workload, a set
of pairs (Qi, A), where Qi is a query involving t.he
da.tabase values and & is the frequency, relative to
the other queries in t,he workload, wit,h which Q; is
computed (di > 0). The output, is a physical de-
sign for which the frequency-weighted aggregat,e cost
of the queries is low. For exposition we restrict OUI
cost measure to disk random accesses (DRAS), and ig-
tiore CPU and storage costs. The specific objective
function for the optimization does not heavily influ-
ence the methodology.

We describe database va.lues and express queries
in BULK, an Algol-like language augmented wit.h
rela.tional-calculus-like espressions, somewhat in t.he
spirit of Pascal/R [21] or Adaplex [18). The language
admits sets and sequences of dynamically varying size
as primitive type const,ruct’ors, a.nd t,hese t#ype con-
struct,ors can be non-recursively composed. Furt,hcr-
more, va.lues of arbit,rary type may br shared anlong

programs and persist between program execut,ions, i.e.
ma.y be part of a. database. For exposit.ion we assume
each query constitutes a transaction, and that the sets
and sequences referenced in the query are persistent.’

Figures 1 and 2 are running examples of two
databases and their respect*ive workloa.dx. Dat~ah~.sc
values a.re described by nnnolnfed sch~tnns (srhrntr~s
for short), i.e. mappings from names to vnllr~ dr-
scriplions. A value descript,ion is much like a data
type, except that it is annotated wit,h statist,ical in-
forma.tion about a value. E.g. everything aft,er t,he
first (non-bracketed) colon in Figure l(a) is a value de-
scription. Syntactically it resembles a type constructor
with value parameters, but semant,ically the va.lue pa-
ra.meters may be expected average values rat,her than
constraints. Expected values may be gathered by t,he
system a.s statistics or supplied by the programmer.

Thus in Figure l(a) S is a set. of records, each record
consisting of four attributes, a, b, c, and d. S is esti-
mated to contain 100,000 records, with 50,000 different
values in the a at,tribute, 1,000 different values in the

‘We emphasize that these are not restrict.ions in the RIJLli
language, however; transact,ions may be demarked esplicit.ly,
and Dersistence and tvDe are indeaendent.

s :
set (

record(a : int,
b : string(201,
c : string(S),
d : string(40)),

100000)
Ca : 50000, b : 1000, c : IO, d : 1000))

(a) Schema. 1.

Id Query 4
vi <- read();

Q1.1 /
print (

I[x.a, x.bl I I 1

I : x in S st x.c = Vi)> I I
91~ print([x in S order by x.a, cl) 0.01
Q1.3 v2 <- read0 ; S <- S U Cv2) 0.05
Q1.4 v3 <- read(); S <- S - (~3) 0.05

(b) Workload for Schema 1.

Figure 1: Schema 1 and Queries Q1.1 through 91.4.

b and d at,tributes, and 10 different values in t,he c
attributes. There are no keys in S.

Figure l(b) shows the workload for Schema 1.

Q, 1 “Read a value, vi, a.nd print the set of pairs
Cx.a, x. b] E S such that x. c = vi.” The
notation used is quite similar to that of
SETL [22]. The square brackets (C, I) indicate
tha.t the t,he values of enclosed expressions are to
be combined in a tuple (sequence). The curly
braces (C, 1) enclose a set former, the clause x
in S indicates tha,t x ranges over the elements of
S. a.nd t,he clause after st (“such that”) is the
predicat,e. Assignment. is denoted by <-.

&I L, “Print a.11 elements of S ordered by their a values
in ascending order.”

Q1 3 “Read a value and insert it into S.”

Q 1 4 “R.ea.d a value and remove it from S.”
The second example, in Figure 2, is an abstraction of

the schema and workload of BondDB presented in [19].
Here there are two persistent values. G is a set of
around 100 pairs where the second element in the pair
is a sequence of, on average, 50 unique integers in the
range [0, lOOOOO]. The attribute g-id is a key. G can
be thought. of as a set of portfolios, and the elements
of g-mems are t.he bonds in the portfolio. B is a set of
a.round 10000 records that represent bonds and their
recent auot.e (i.e. orice) historv. The attribute b-id

Proceedings of the 17th International
Conference on Very Large Data Bases

402
Barcelona, September, 1991

G :
set(

record(
g-id : int(0,200)
g-mems :

seq(int(0, IOOOOO), 50, unique)),
100)
(g-id : 100, g-mems : 1001, (<g-id)))

B :
set(

record(
b-id : int(0, 100000),
b-head : string(l001,
b-hist :

set(
record(

date : int(0, SSSOOO),
points : string(40))

1000, {date : 1000, points : 10003,
C<date))) > ,

10000)
{b-id : 10000,
b-head : 10000,
b-hist : 100003,

((b-id)) 1

Id

Qz.1

Q2.2

Q23

(a.) Schema 2.

Query

id <- read(); d <- read0;
print (

{[x.b-id, x.b-head,
[y in b.b-hist

st y.date > d
order by y.date,>I 1

: x in B st x.b-id = id31

p-id C- read0;
print (

C [i, B(i).head, xl
: i in G(p-id),

x in B(i).b-hist
st x.date

=
maxtdomain B(i).b-hist)

3 1

id <- read0 ; date <- read0;
quote <- reado;
B(id).b-hist(date) C- quote

(b) Workload for Schema 2.

/4&

0.5

1.0

0.01

Figure 2: Schema 2 and Queries Q2.r through Q2.s.

Proceedings of the 17th International
Conference on Very Large Data Bases

is a user-visible unique identifier for the bond, and is
a key; b-head contains on average about 100 bytes of
additional information that in a real system would be
broken up into a number of attributes. The attribute
b-hist contains on average 1000 points in a time se-
ries of quotes i.e. a date, date, and some quotes, here
abstracted as points. The attribute date is a key
within each value of b-hist, and b-id is a key for B.

The queries on Schema 2 are as follows:

Q2.r “Rea,d an id and a date; print the id, the header
information for the bond with that id, and all
quotes more recent than the date, in descending
order of date.” The final > in the order-by clause
indicates descending order.

Qa.2 “Read the id of a portfolio; print each bond in
the portfolio and its most recent quote, all in the
order the bonds appear in the portfolio.” Here
we use a convenient notation, called map-nolalion
for retrieving records from a set by a key. Since
b-id is the only key for B we view B as a function
from b-id to (b-head, b-hist), and we may write
B (XC) to denote the unique (b-head, b-hirt) value
associa.ted in B with b-id t. The operator domain
applied t(o a set with a single key yields the set of
all key values in the set.

Q2.3 “Read a bond id, a date, and a quote; let
the quote be the quote for that bond on that
da.te.” This query relies heavily on ma.p notation;
B(id). b-hist is the time series for the bond with
id id, and

B(id).b-hist(date) -c- quote

updates the points attribute for that quote at
date, if there is one, and otherwise inserts a new
record in B(id) .b-hist.

2.1 Physical Schemas and Features

From such annotated schemas and workloads the phys-
ical design method must produce both physical data
structures and physical query execution plans (QEPs).
A physical schema involves the layout of files. The ba-
sic (physics/) schema of a set or sequence is simply a
file of records. In general, though, a physical schema
is a set of optional features adjoined to a basic physical
schema. Figure 3 shows the basic schema for Schema 1.

The kinds of features needed for the examples
are: v-partition (vertical partition), cluster (store
records of a single file with the same value for some
at.tributes close together), order (store records in a
file in a particular order), =index (include an index to
support equality predicates, e.g. a hash index), >index

403
Barcelona, September, 1991

S : file(
record(a : int,

b : string(20),
c : string(S),
d : string(40))

100000, unique,
Ca : 50000, b : 1000,

c : IO, d : 10003)

Figure 3: Basic Schema for Schema 1.

(include a.n index to support. range queries on a single
attribute, e.g. a B+-tree). This is not int.ended as an
exhaustive list of kinds of fea.t.ures, and could be aug-
mented with others, e.g. co-location of records from
two files baaed on the values of certain attributes or
query maintenance.

Clearly not every set of features represents a physi-
cal schema. For example, a file with a.tt.ributes n and
h cannot be ordered both by (a,h) and by (b,u).

To accommodate this fact we refine our notion of
feature set as follows.

Definition 2.1 A feature sef that represenis a physi-
cal schema is a realizable feature set.

Definition 2.2 A set of features, F, is comprrssible
if for all realizable F’ C F, F” E F’ implaes lhnl F”
is realizable.

Henceforth in this paper we assume that all feature
sets are compressible.2 One advant,age of this is t,llat,
it simplifies determinat.ion of whether a feat.ure set is
realizable; in pra.ctice a notion of conflict, among sets
of features seems a.dequate. E.g. orderings on the same
file conflict unless one is a prefix of the other.

We now frame the physical databa.se design prob-
lem as follows. Let Cost,(Q, F) clenot,e t,he cost.
of computing query Q on a physical schema. repre-
sented by feature set F. For a workload, W =
{ (QI, dl), . . . (Q,,, d,,)} we wish t#o minimize

COst(W, F) dsf C diCost(Qi, F). (1)
(Qs ,h)EW

Definition 2.3 A bed feature se/ for worklond I,\,’ 1.s

any realrzable feature set, F, srrcb ihai JOI, ervry wnl-

7zable feature set F’, Cost,(W, F) 5 Cost,(IY, F’).

2Given a non-compressible set of features, it is possible to
define a, different, compressible set that can express the same
physical schemaa.

Proceedings of the 17th International
Conference on Very Large Data Bases

3 Phase One
In phase one each query is initially represented as a
basic plan, a simple query execution plan (QEP) on
the basic schema. A set of rules then inspects each
individual query and basic plan in the workload to
yield a set of potentially useful features and associated
QEPs. From these a good QEP and physical schema
are selected for the query, baaed on cost estimates.

A detailed description of these rules is beyond the
scope of this paper, but roughly speaking they are con-
cerned primarily with generating a set of “things to
try.” For example, if the output of a query ia,required
to be in a. particular order, a potentially useful feature
would be to store the data in that order. Similarly, if a
preclicat,e of the form x.11 = 20 appears in a set former,
an index on t.u is potentially useful.

To be more specific about what it means for a fea-
ture to be useful to a query, we introduce the following
definitions.

Definition 3.1 A feature f is existentially useful to
a query, Q, if there exists a realizable feature set, F
such thai

1. F U {f} is realizable, and

2. Cost(Q, F) > Cost(Q, F u {f}).

Definition 3.2 The set of all existentially useful fea-
Inres for a query, Q, is term.ed 2h.e complete feature set
of that query, denoted cfs(Q).

(Recall that a work1oa.d is a set of queries associated
with their frequencies.)

Definition 3.3 The complete feature set of a work-
land, W = {(Ql, 41), . (Q,,, &)}, denoted cfs(W), is
de,fincd a.s

IJ cfs(Qi).

(Q,,~J,)EW

Lemma 3.1 Given a ,workload, W, there must be
some best feature set, F, for W such that F c cfs(W).

Proof. To show a contradiction, suppose not. Consider
a. minimal best feature set, F’. Let U = F’ - cfs(W).
By our assumption, U # 8, so take any f E U, and
let F” = F’ - {f}. Now Cost(W, F”) +Cost(W, F’)
(otherwise f would be existentially useful.) Further-
more F” is a strict subset of F’, showing that F’ is
not. minimal. Cont,radiction. 0
This lemma t.ells us then, that, in searching for a best
feature set for W we can confine our attention to sub-
sets of cfs(W).

Theorem 3.1
Given a workload, W = {(&I, &jr.. . (Q,,, 4”)) there

404 Barcelona, September, 1991

exists, for each (Qi, &i) E W a realizable feature set,
Si G cfs(Qi), such that there exists a besi schema, F.
with Ihe properly Iha

FC U Si.
l<iS?I

Proof. Consider a best feature set, F, that is also a f2
subset of cfs(W). Such an F must exist, by Lemma 3.1. f3
We can find Si’s satisfying t#he theorem as follows. f4
Clearly f5

F = F ncfs(W) = F n U cfs(Qi)
l<isn

= U (Fncfs(Qi)).
l<i<n --

By the assumption that all feature sets are com-
pressible, each F n cfs(Qi) is realizable, and therefore
F n cfs(Qi) is an Si satisfying the theorem. 0

Depending on the characteristics of each query> Qi,
in phase one Qi may be recognized by rulrs t,hat. go-
erate a subset of cfs(Qi). Phase one then searches t,his
subset, for a realizable fea.ture set. t.hat minimizes t.hr
cost of Qi. This cost is the ldenl cost of Qi, a.ncl t.he
associated feature set is an ideal feature set for Qi,
representing an ideal physical schema.

collect-set would require some paging even if im-
plemented in virtua.1 memory, estimate that the cost
for collect-set(z), is bytes(z)/P. In this case we
est,imat,e t,be selectivity of tbe filter predicate to be
0. I, so the output of filter has 10000 elements, each
mapped to a 24-byte tuple. This gives 240,000 bytes
for the output and a cost of 143 for collect-set. The
cost of 6he basic plan is then 4117 + 143 = 4260.

3.1 Examples

For query Q1.1 the basic p1a11 could he represented
internally as:

print (
collect-set (

map(
f ilter(

scan(S),
(lambda (x) x.c = VI),

(lambda (x)
enumerated-sequence(x.a, x.b)))))

The notation for QEPs recalls that of [lo]. Here
collect-set has the job of removing duplicates: its
precise implementation depends 011 the eventual 11st’
ma.de of the results.

The cost of this plan is estimated based on the st,atis-
tics in the value description. Space prohibits a discus-
sion of the estimation procedures, but they are similar
to those presented in [23]. Because we restrict, our
attention to disk random access (DRA) as a cost, mea-
sure, only scan a.nd collect-set have non-zero cost..
The cost for scan(S) is byt,es(S)/P = 4117. where
/3 = lG76 is the number of usable byt,es per page, and
for a physical value, V, bytes(v) is the number of byt.es
required to store v. Based on the assumption that

Procdings of the 17th International
Conference ti Very Large Data Bases

Tnble 1: Ideal Feature Sets and Costs for &I, 1 through
Q1.4.

feature descriotion

fl
Vertical partition of S with a, b, and c in
one file, and d in the other.
Cluster s by c.
Index S by c.
Order S by a.
Index S by a, b.

auerv ideal feature set ideal C&

One pattern of interest in the basic plan is map com-
posed with filter partially applied to a predicate that
is a11 oqua1ir.y t,est with an unknown value composed
with a record select.ion, all composed with a scan.
This suggests indexing and clustering by attribute c,
and using an index scan of S. A second rule recognizes
that Q1.1 never uses the d attribute from elements of
S. These rules yield the ideal feature set in Table 1
and t.he ideal schema in Figure 4. The cost of a QEP
ilsing all index on the c attribute of file Si is then 198,
and the total cost for Q1.1 is 341. Table 1 also shows
the ideal feature sets for Ql.2, Q1.3, and 91.4.

For query Ql.2 we would have the following basic
plan.

print (
collect-tuple(

sort (
scan(S),
(lambda (x, y) x.a < y.a>>))

One rule would take this to:

print(collect-tuple(scan(S)))

while t.a.king the feature set to that shown in Table 1.
A second rule, observing t,hat nothing needs to be done
to S to regard it as sequence, would take the plan to
simply:

405 Barcelona. September, 1991

Sl : filr(
record(a : int,

b : string(201,
C : string(S),
S2-tid : tid(S2)),

100000, unique,
<a : 50000,

b : 1000,
C : 10,
SZ-tid : IOOOOO),

0, clustered(c));

S-index : =index(Sl,Cc));

s2 : file(
record(d : string(401,

Sl-tid : tid(Sl)),
100000, unique,
Cd : 1000, Sl-tid : IOOOOO~,
CCSl-tid)),
ordered(Sl-tid))

Figure 4: Ideal Physical Schema for Q1.1.

print(S)

Depending on the actual implementat8ion of print the
actual plan would be something like

map(scan(S), print)

with DRA cost 4117.
Finally, for queries &I 3 and Q, 4 t,he basic plans a.rr

insert(S,v2)

and

delete(S,v3)

ea.ch with cost 2 + .875bytes(S)//3 z 3604.
The applicable rule is to use an index t,o support,

membership testing; the index is on a subset of a.t.-
tributes, here {a, b}, providing adequate selectivity.
The feature set is as in Table 1 and the plans are

indexed-insert(S,S-index,v2)

and

indexed-delete(S,S-index,v3)

each with cost 5 DRA.~

The rules that lead to the ideal feature <sets for
Schema 2 are:

3We estimate 3 DRA to confirm that the value is not already
in the set (resp. to find the value to delele), 2 to update t.he
index and 2 to update the file, and assume that, l/4 of innert.s
(deletes, resp.) will be of elements already in (not in, resp.) the
set.

Procaedings of the 17th International
c0nfemnc.e on Vety Large Data Bases

The b-hiat attributes of elements of B are
ordered by date in this query; therefore or-
der them that way in the physical schem’a
(feature 91).

A single element of B is retrieved by its b-id
value, and b-id is a key. Therefore place an
=index on b-id (92). (It is not necessary to
cluster B by b-id because it is a key.)

A single element of G is retrieved by its g-id
value; same rule as for b-id in Q2.l suggests
an =index on g-id (9s).

Same rule as for 92.1 (92).

The element of b-hist with maximum date
is retrieved, therefore place an >index on the
date attribute (94).

Same rule ns for Qa.1 (g2).

An =index on date for elements of the
. b-hist attribute of B (gs).

4 Phase Two

Given a workload, W, phase two conceptually involves
a sea.& through a.ll the feasible subsets of cfs(W).
Since the search space is large, a heuristic approach is
necessary. No matter what the heuristic used, there
are two optimizations that should be employed.

When computing Cost(W, F) for a particular fea-
ture set, F, according to formula (l), there is
clea.rly no need to continue once the partial sum
plus the sum of the ideal costs for the unsummed
queries exceeds the minimumvalue of Cost(W, F’)
for some F’ already considered. I.e. let W’ C W
and let Fi denote the ideal feature set of Qi. There
is no need to continue once

Cd,iCost(Qi, F) + C Q)iCost(Qiy Fi) >
(Qs,b,)EW’ (Q,,b)E(W-W’)

Cost(Iv, F’).

This is important if computing Cost involves es-
t,imating the cost of many QEPs.

Given a query, Q, a fea.ture set, F, and a feature,
f , in ma,ny cases any QEP for Q on F is also a
query plan for Q on FU{f} with the same cost, as
when e.g. f is an index and Q involves no updates.
It is not necessary to estimate the cost of the same
QEP for both F and F U {f}.

The following definitions and lemma show us some
ca.ses where t,he second optimization is possible:

406 Barcelona. September, 1991

Definition 4.1 We say f 1.5 ‘QFP n~onoto~~~c" for
n query, Q, if for every renlzznble feature set, I’, the
folloluing holds: F U {f} as realizable implaes ihnt any

query plan for Q on F is nlso a query plnn for Q on

Fu {f>.

For example, indexes, orderings, clusterings and main-
tained queries are QEP monotonic for read-only
queries, but vertical partitions are not..

Definition 4.2 We say f is "cost ai,ti-i~~oi~otoi~ic"

(“cost nonolonic”, resp.) for Q if for every fensible
feature sel, F, the following holds: F U {f} is feasible
implies Cost(Q, F u {f}) 5 Cost(Q, F) (Cost(Q, F) 5
Cost(Q, F U {f)), rev.)

Lemma 4.1 Let F be n renlizable feature sei, let $ be
a feature, and let Q be a query. If (i) the cost of any

operation in any QEP for Q is no greater on F u {f}
than on F, and (ii) f is QEP monotonic for Q, then

f is cost anti-monotonic for Q.

Proof, Let, X be a QEP for Q on F wit,11 minimum cost,.
By definition of QEP monot.onic, S is a.lso a. QEP for
F U {f}. By assumption, X is no more expensive on
F U {f} than on F, and therefore Cost(Q, F U {f}) 5
Cost(Q, F). 0

By Lemma 4.1, given the usual set of QEP opera-
tions, indexes, orderings, clust,erings, and maint.ained
queries are cost, anti-monot,onic on read-only queries.

4.1 Binary Compromise

We now propose a specific heuristic, binary compro-
mise, for the search.

Let W = {(Ql, $I), . , (Q,>, &)} be a workload for
some logical schema, and for every Qi in t,he workload
let Fi be its ideal feature set. Let, F’ be the set. of
a.11 ideal feature sets for W. (Severa. queries may have
the same Fi.) For ideal feature set F let Q(F) denote
the set of queries for which F is the ideal feature set.

1. Begin by finding an Fk E F’ that minimizes
Cost(W, Fb), i.e. such t,ha.t for all Fj E F’
Cost(W, Fk) < Cost(W, F,). This fea.ture set, is
the best overa. a.mong t,he set, of ideal featmum sets.
Call this Feurrent. Let 7 be F* - { FCU,.rCnt}.

‘2. Find the Fk E 7 such tl1a.t the queries for which
Fk is the ideal feature set must. do a lot of estra
work if they use Fe,,.,.,,,,,. I.e. let the sln~d-ol~l
cosl! of a feat#ure set., S, on K:,,,.,.,,, be

SO(S, Fewrent) dgf

C di(Cost(Qi~ Fewrent) - Cost(Qi, S)).
QiE&S)

Proceedings of the 17th International
Conference on Very Large Data Bases

Then find an FB E 7 maximizingSO(Fk, Fcurrent),
i.e. SUCK that for all Fj E 7, SO(Fj, Fcurrent) 5

so(Fk, Fcurrent). We call this a target (denoted
F target). As the algorithm proceeds 7 will con-
tinue to be the set of possible targets. A tar-
get is, intuitively, an ideal feature set for a query
such that the query contributes the largest “un-
necessary” expense to the aggregate cost when the
feature set is Fcurrent. The algorithm terminates
when 7 is empty, or, alternatively, when the sum
of stand-out-costs over all feature sets in 7 is less
than a user-definable fraction of Cost(W, F,,,,,c).

3. Compute Cost(W, F) for some or all of the
feature sets, F, 111 Feurrent@&rget, where
A@B denotes {F E ZAuE s.t. F is realizable}.
Let C be a heuristica.lly determined subset of
Fcurrent@Ftarget. Let F’ be a feature set in C min-
imizing Cost(W, F’). Let 7 be 7 - {Ftarget}, let
F CU,.Pe,,t be F’, and go to step 2.

The binary compromise a.lgorithm calculates Cost for
O(p * 29) feat.ure sets, where q is the cardinality of the
largest, pairmise union among the initial feature sets
and p is the number of distinct ideal feature sets. A
complete search would require us to calculate Cost for
0(2”) feature sets, where n is the cardinality of the
union of ah the ideal feature sets. For most realis-
tic problems we expect Q to remain small (e.g. < lo),
t,hough if necessary, it, is always possible to discard
some features.

The main point, however, is not just a particular
search algorithm, but the uniform framework that can
accommodate various kinds of physical design strate-
gies as features.

4.2 Examples

The compromise phase works on the ideal feature sets
of Logical Schema 1 as follows. Using the ideal feature
sets in Table 1, starting with { fi, f2, fs}, the algorithm
begins by finding the initial Fcurrent.

\Ye already know the cost of computing Qr.1 on this
schema (341 DRA). Suppose the best plan for Qr.2 on
t.bis featcure set is

sort (
tid-merge-join(scan(S2),scan(Sl),Si-tid),
(lambda (x, y> (x.a < x.b)))

with associat.ed cost,

407

(log,c)cbyt,es(elem(S))/P +

[bytes(Sl) + bytes(S2)] /P

e (8.3 x lo5 x 69 + 77 x 105)/1676 % 38785

Barcelona, September, 1991

where c = 100000.4 The query plan for Query WI 3 on
{flvfiyf3) is:

if not(
exists(
f ilter(

tid4merge-join(
f ilter(

scan(S2), (lambda(f2) f2.d = v2.d)),
filter(

=index-scan(Si,S-index,v2.c),
(lambda (fl) fl.tid))),

Sl-tid)))
then

let tid be
indexed-insert(
Si, S-index,
make-record(

record(a:integer, b:string, c:sting),
v2.a, v2.b, v2.c, null-tid));

let tid2 be
insert-in-order(
s2,
make-record(

record(d : string, Sl-tid : tid(Si)),
v2.d, tid));

tid-update(
S1,
tid,
(lambda (x) (x.S2-tid <- tid2)))

A rough estimate of the cost of this plan is

.875(.lbytes(SI))/P + 1 +

.875bytes(S2)//3 + .75(4 + 4)

= 288750/1676 + 1 + 3850000/1676+ li

a 2476

Query Q1.4 is similar.
Given the frequencies ($1 = 1, 42 = .Ol,

43 = 4.1 = .05), and with 14’ denoting the workload of
the first, example,

C4W {fl, f2, h))

= 341 + .Ol x 38785 + .l x 2476 2 976.

This is the initial Fcurrent; the algorithm would also
have to calculate Cost(I/V, {fd}) and Cost(W, {fb)).

Initially Ftalget is {fs}, and the algorit,hm searches
{f~,f2,f3}~{f5} = 2{/r,J2~~“,~‘5), Once more, in the
interest of brevity, we only work out the alt.ernat.iv~.
{.fl,f2,f3>.hj~ th t,’ a IS selected. This reprPsent.s a ver-
tically pa.rtitioned physical schema with an index on

‘!Ve assume that the second file of the partition is o~dewd
by tid of the first file, and that lecovcls of the first file that OTCIIY
in the same block have tids wilh idenbical prefixes.

Proceediigs of the 17th International
Conference on Very Large Data Bases

each of {c} and {a,b} and clustered by c. Only the
costs of queries 91.3 and Ql.4 change, to approxi-
mately 8 DRA, and the aggregate cost is

341+ .Ol x 38785+ .l x 8 M 729.

The feature set finally selected for Schema 2 is
{!71~92~93~94).

5 Related Work
There have been few attempts to build complete
practical systems for the physical database problem.
1nstea.d much work has focused on more intellec-
tually managea.ble sub-problems. E.g. recently (31
provides an algorithm for secondary index selection
(in databases using tid-intersection) for queries on
single relations, and [5] provides an integer linear-
progra.mming algorithm for vertical partitioning.

We consider theoretical research on relatively con-
strained sub-problems as complementary to the prag-
matic problem of automating physical database de-
sign. This a.ppears simi1a.r to the history of query plan-
ning, where, as [12] notes, initial work focused on sub-
problems. General-purpose methods for solving the
pract-ical problem were developed later, and eventu-
ally incorporated knowledge about special cases stud-
ied previously. Thus we believe that, despite the ap-
parent, unmanageability of the full physical database
design problem from theoretical perspectives, it can
and should be solved pragmatically.

Both [6] (with earlier, related efforts reported in
[17, IS]) and [8] add ress the problem of pragmatic
physical database design. We concur with these au-
thors that uncert.ainties about the expected workload,
dat,a st,a.tist,ics, and estimating procedures mean that
the reasonable goa.l is a. good, MJ~ optimal solution to
the physical design problem.

The approach discussed in [6] starts from a re-
stricted entity-relationship schema and a workload;
the queries are specified navigationally at present,
though accommodat,ion of query optimization is a fu-
ture resea.rch objective. The first stage of processing
uses a knowledge-ba.sed component to apply some 400
rules t,o the schema and workload, yielding a number
of different first-approximations to the physical design
in the form of hierarchical record descriptions. Subse-
quent sta.ges subject these to separate algorithms that
(i) further vert,ically partition the records and (ii) se-
Iccl. access pat.hs (orderings and indexes). These algo-
rithms operat~e on a single file at a time.

Although t,he input, t.o this system is quite differ-
ent from what we propose, we note with interest the
rough similarity in the use of a rule-based initial stage
followed by more algorithmic processing. However, the
simila.rit,y is only approsima.te. For example in [6] the

408 Barcelona, September, 1991

initial rule-based processing performs some of the func-
tions our phase two by mediating between conflict,ing
requirements of different queries. Also, by represent,-
ing physical schemas as feature set,s ollr approach con-

siders both access paths and vertica.1 partitions in 1.1~~
same search rather than as quasi-separable problems.

Another exception to the focus on sub-problems is
DBDSGN (commercialized by IBM as Relational De-
sign Tool), an implemented physical design tool for
System R [l] described in [8].

In DBDSGN, as in our met,hod. physical design
decisions are based on QEP cost est.imat,es. How-
ever, DBDSGN cannot take advant.age of cost. ant,i-
monotone features while estimating query cost,s, since
the query planner is part of an independent DBMS
and computes QEPs de nova for each candidate phys-
ical design.5

DBDSGN’s search strategy is also coupled t,o spe-
cific characteristics of System R st,orage structures and
QEPs (e.g. join order rest,rict#ions). By r.omparison,
the feature set compromise method can accommodat~e
a wider variety of physical design strategies, including
vertical partitions and (not elaborat#ed in this paper)
co-location of several relations, maintenance of aggre-
gate queries and queries involving compile-t,imc con-
stants, and various kinds of da.ta duplicat,ion.

6 A Final Example
As a final example consider the schema and workload
of Figures 5 and 6, part of an example used in [S].

In this example we use as relative frequencies t,he
“weights” of [8], and a. larger page size. Select.ivities.
not. presented in [8], are supplied by t,he currenl au-
thors. As before, we restrict out attention to DRA

costs.

We might expect phase one to generate 14 poten-
tially useful indexes, 12 potentia.lly useful orderings,
and 3 potentially useful vertical partitions. From
these, cost estimat.ion would yield t,he following idpal
organizations and ideal costs:

query ideal feature set ideal cost
Q3.1 VI) 6
Q3.2 {I2,01} 25
Q3.3 {~3r0z,V&,03) 431
Q3.4 {Is,O~,V~,I~,OG~ kI4,03} 127

where the fea.tures are as follows:

l Vertical Partitions

- VI is a partition of Quotes with suppno,
partno, and price in one file, a.nd the re-
maining attributes in the other.

5Naturally, any attempt to use our met.hod with an indepen-
dent. query plwmer would likewise have t,o rely on QEPr wlrrtrd
by the planner.

Proceedings of the 17th International
Conference on Very Large Data Bases

Parts : set(
record(

partno : int,
qonhand : int,
descrip : str(iQ8),

I,
8000,
(partno : 8000,

qonhand : 4000,
p-inf 0 : 80003,

C(partno33);

Orders : set(
record(

orderno : string(b),
partno : int,
suppno : string(31,
date : date,
GY : int,
o-inf 0 : string(74)),

24000,
Corderno : 24000,
partno : 8000,
suppno : 100,
date : 400,
GY : 12000,
o-inf 0 : 24000),

(Corderno, partno, suppno33);

Quotes :
set (record(

suppno : string(31,
partno : int,
minqty : int ,
maxqty : int ,
price : int,
q-info : string(l26)

1,
72000,
Csuppno : 100,
partno : 8000,
minqty : 4000,
maxqty : 4000,
price : 320003,

CCsuppno, partno, minqty, maxqty33)

409

Figure 5: Schelna 3.

Barcelona, September, 1991

Id Query 4.

Q3 1
vC-reado;
orders <- orders union v

20

Q32
s <- read();
orders <- {x in orders st x.suppno != s) 20

s<-read();

Q3.3
print (

<[x.partno, x.descrip, y.price) 10

: x in parts, y in quotes st x.partno = y.partno and y.suppno = s))

p<-reado; dc-read();
print (

Q3.4 CCy.suppno, y.orderno, x.partno, x.descrip] 2
: x in parts, y in orders, z in quotes
st x.parnto=y.partno and y.suppno=z.suppno and z.price < p and y-date = d))

Figure 6: Queries Q3.1 through Q3 4 for Schema. 3.

- Vz is a partition of Orders with orderno,
suppno, date, and partno in one file, and
the remaining at,tributes in the other.

- V3 is a pa.rtition of Quotes with suppno and
price in one file, and the remaining at,-
tributes in the other.

l Indexes

set attributes

Table 2: Costs for Workload of Schema 3.

cost on cost on
initial second cost on

query Fcurrent Fcurrent solution
Q3.1 8.5 7.2 7.2 _~
93.2 2014 25 25
Q3.3 439 439 431
Q3.4 129 262 262

workload 45098 5558 5478

11 Orders orderno
I2 Orders suppno
I3 quotes suppno
I4 Parts partno
15 Orders date
IS quotes suppno, price

l Orderings

set attribut,es
01 Orders suppno
02 Quotes suppno, partno
03 Parts partno
04 Orders date
05 Quotes suppno, price

The first Fcurrent is {I5,04,h, I~,05,V3, 14,03}, with
costs as shown in Table 2; the initial Ftarget is { 1~~ 01).
In the compromise of these two organizationwe arrive
at (12, 01, VZ, 16, 0~~ V3, 14? OS}, as the second Fcll~tscl)t.

This is compromised with (13,03, \;‘I, I,), 03) t.o yield
the solution, {I,, 01, VZ, IC, 05, VI, 14,03}.

Proceedings of the 17th International
Conference on Very Large Data Bases

7 Summary and Future Research

We have presented an extensible method for physical
database design. In its first phase, the method relies on
rules to generate sets of useful features for each query
in t,he workload. In its second phase, the method relies
on a more general notion of feature-set compromise in
a search for a design with low aggregate cost. We give
conditions under which a best feature set is a subset of
t,he union of useful featlures for the individual queries.
We also specify conditions to avoid redundant estima-
tion of QEP costs for similar feature sets.

We then propose a specific heuristic, binary compro-
mise, for t,he second phase. In addition, by framing the
physical database design problem as a search among
subsets of t,he complete feature set of workload, we
hope to ha.ve eased the effort of framing other heuris-
tics.

To illustlrate our approach we presented three ex-
amples, including one that involves a join in a -1NF
schema, and another exa.mple that involves two up-

Barcelona, September, 1991
410

dates, a two-way join, and a three-way join.
Future research will evaluate prot,otype data strut-

ture selection software against. more complex schemas

and larger workloads. In the longer term, we plan
to extend the application of feature-set compromise
to data structure selection for distributed data bases,

recursive queries, and for main memory data, and in-
clude them in a compiled implement~ation of BULK.

7.0.1 Acknowledgments

This work was supported with funds provided by ONR

grants N00014-90-J-1110 and NOOO14-91-J-1472, by
NSF grant IRI-89-01699, and by DARPA under con-

tract N00014-85-C-0710 with ONR. Thanks t’o the
staff of Software Options whose challenging qucst.ions
helped clarify this material, and t.o Wa1t.w G. IcloGs

and the referees for carefully reading earlier versions of
this report and providing much thoughtful crit,icism.

7.0.2 References

111

PI

[31

141

PI

PI

VI

PI

PI

M. M. Astrahan el nl. System R: R,elational al)-
preach to database management,. n L’/\! TOlIS,
l(2), June 1976.

F. Bancilhon. Object-oriented database systems.
Technical Report 16-88, GIP Alta’ir, Jan. 1988.

E. Barcucci, R. Pinzani. and R. Sprugnoli. Opti-

mal selection of secondary indeses. IEEE 7’0,q!?:‘.
16(1):32-38, Ja.n. 1990.

D. Comer. The difficulty of optimum index selec-
tion. ACM TODS, 3(4):440-445, Dec. 1978.

D. W. Cornell and P. S. Yu. An effective approach
to vertical partitioning for physical design of rc-
lational da.tabases. IEEE l’OSE, lG(2):248--258,
Feb. 1990.

C. E. Dabrowski, D. I<. Jefferson, J. V. Ca.rlis,
and S. T. Ma.rch. Int,egrat,ing a knowledge-based
component into a physical dat,abase design sys-
tem. Info. & Mnnnge?,real, pages 71-86, 1989.

I<. R. Dittrich. Object,-orient,ed dat,a.ba.se systems:
The notion and the issues. In Proc. In!‘1 l+‘r~rk-
shop on Object-Oraenied Dukbuse Systems, pages
2-4, Sept. 1986.

S. Finkelstein, M. Schkolnick, and P. Tiberio.
Physical dat,abase design for rel;tt,ional clat.a.hnscs.
ACAB TODS, 13(1):91-128, Mar. 1988.

J. C. Freyt.ag. A rule-ba.sed view of query opt.i-
mization. In SIGMOD, pages 173-180, Ma.y 1987.

Prowdings of the 17th International
Conference on Very Large Data Bases

PO1

PII

1121

1131

[14

P51

[16]

1171

k31

[In]

w-4

PI

[22]

[23]

411

J. C. Freytag and N. Goodman. On the transla-
tion of relational queries into iterative programs.
ACM TODS, 14(1):1-27, Mar. 1989.

G. Graefe and D. J. Dewitt. The EXODUS op-
timizer generator. In SIGMOD, pages 160-172,
1987.

M. Jarke and J. Koch. Query optimization in
database systems. Computing Surveys, 16(2):111-
153, June 1984.

A. Kernper, P. C. Lockemann, and M. Wallrath.
An object-oriented database system for .engineer-
ing applica.tions. In SIGMOD, pages 299-310,
May 1987.

V. Linnemann el nl. Design and implementa-
tion of an extensible database management sys-
t,c-‘m supporting user defined data types and func-
tions. In VLDB, pages 294-304, 1988.

G. M. Lohman. Grammar-like functional rules for
representing query optimization alternatives. In
SIGMOD, pages 18-27, 1988.

S. T. Ma.rch and J. V. Carlis. Physical database
design: Techniques for improved database perfor-
mance. In W. Kim, D. S. Reiner, and D. S. Ba-
tory, editors, Query Processing in Database Sys-
ferns, pages 276-296. Springer Verlag, 1985.

S. T. March, G. W. Dickson, and J. V. Carlis.
Physical database design: a DSS approach. Info.
63 A4anngement, G:21 l-224, 1983.

J. A. Orenstein, S. I<. Sarin, and U. Dayal. Man-
aging persistent objects in Ada: Final technical
report. Technical Report CCA-86-03, Computer
Corporation of America, May 1986.

S. R.ozen and D. Shasha. Using a relational system
on Wall Street: The good, the bad, the ugly, and
the ideal. CACM, 32(8):988-994, Aug. 1989.

H.-J. Schek and M. H. Scholl. The relational
model wit,h relation-valued attributes. Informa-
tion Syslenls, 11(2):137-147, 1986.

J. W. Schmidt.. Some high level la.nguage con-
structs for data of type relation. ACM TODS,
2(3):247-261(Sept. 1977.

J. T: Schwa.rtz, R. B. I<. Dewar, E. Dubinsky, and

EI Scbonberg. Programming With Sets. Springer-
Verlag, 198G.

I-‘. Selinger, 14. M. Astrahan, D. D. Chamberlin,
R. i\. Lorie, and T. G. Price. Access path selection
in a rela.tional database management system. In
SIGMOD, pages 23-34, 1979.

Barcelona, September, 1991

