
An Iterative Method for Distributed Database Design

Rex Blankinship
Alan R. Hevner

S. Bing Yao
Information Systems

College of Business and Management
University of Maryland

College Park, MD 20742

Abstract
The development of a distributed database
system requires effective solutions to many
complex and interrelated design problems.
The cost dependencies between query opti-
mization and data allocation on distrihuled
systems are well recognized but little under-
stood. We investigate these dependencies by
proposing and analyzing an iterative heuristic
which provides an integrated solution lo the
query optimization and data allocation prob-
lems, The optimization heuristic itcrates
between finding minimum cost query slrate-
gies and minimum cost data allocations until
a local minimum for the combined problem is
found. A search from convergence efficiently
scans the optimization search space for lower
cost solutions. Parametric studies within a
simple query environment demonstrate near-
optimal performance for the iterative method
when minimizing lolal time and response cost
of queries. The iterative method provides
clear improvements over alternative solution
methods. The paper concludes with the
practical implications of this research and its
future directions.

1. Design Optimization in Distributed Data-
base Systems

Increasingly, organizations are interconnecting com-
puters for cooperative processing, and utilizing dis-
tributed database systems to control access to their
decentralized information resources. The development
of a distributed database system requires effective
solutions to many complex and interrelated design
issues, including network topology, hardware alloca-
tion, data partitioning, data allocation, query optimiza-
tion, data replication, concurrency control, reliability,
and recovery [Ozsu and Valduriez 19911. In order to
most effectively utilize distributed database systems,
organizations need practical design methods which can
integrate multiple design issues IO achieve efficient
overall system performance.

While much research has been conducted on individ-
ual distributed design problems, little progress has
been made toward integrating these problems. Most

Proceedings of the 17th International
Conference on Very Large Data Bases

of the individual design problems are NP-hard, so re-
searchers have usually studied them in isolation to
control complexity and tractability. While this ap-
proach has led to effective solutions to parts of the
overall system design, the interdependencies between
individual problems are still not well understood.

Query optimization and data allocation are two
important distributed systems design problems that are
closely interrelated. Distributed query optimization
depends on how the data are allocated, since process-
ing schedules often include operations on different
sites and data transmissions between them. On the
other hand, the optimal method of allocating data
depends on the processing strategies used for solving
queries. Typically, researchers studying data allocation
assume a fixed query optimization method to generate
processing schedules; while researchers on query
optimization assume a fixed data allocation. By
assuming a solution to one problem and solving the
other, researchers control the complexity of these two
problems, but fail to integrate their solutions.

Comprehensive surveys of state-of-the-art research
on distributed query optimization (e.g., [Yu and Chang
1984, Hevner and Yao 19871) and distributed data
allocation (e.g., [Dowdy and Foster 1982, Hevner and
Rao 19881) exist. The majority of research in one area
has assumed a given solution for the other. Only a
few researchers have investigated the inherent depen-
dencies of the two design problems. Early research by
Loomis and Popek [Loomis and Popek 19761 provides
guidelines for data replication and allocation based on
optimizing query strategies. They point out that multi-
ple copies of data should be placed on a network to
maximize parallel processing within queries. In [Wah
and Lien 19851, the authors analyze the interdependen-
ties among data partitioning, data allocation, query
optimization, concurrency control, and network design
in local multi-access distributed systems. A broadcast
protocol is proposed to promote sharing of informa-
tion to support the integrated solution of these control
problems. No specific integrated solution methods are
detailed, however.

Apers develops a distributed data allocation algo-
rithm that utilizes actual query processing schedules
[Apers 1982, Apers 19881. A virtual network is
defined with each database relation assigned lo a
different virtual site with no relations al query sites.

389
Barcelona, September, 1991

Distributed query optimization is performed to gen-
erate processing schedules. An optimal data allocation
is found by merging virtual data sites into actual
network sites to minimize intermediate, relation-to-
relation transmission costs and final, result-to-query
site transmission costs. Thus, Apers’ method intc-
grates the two problems during design by sequentially
optimizing query strategies and then data allocation.
During execution of the distributed system, query
optimization will be performed based upon the deter-
mined data allocation. Apers proposes an extended
‘dynamic heuristic’ to achieve greater integration of the
two problems during system design. Hnwcver, the ap-
proach becomes quickly intractable as problem size
increases.

Sacca and Wiederhold extend Apers’ approach for
data allocation in systems of tightly clustered proces-
sors [Sacca and Wiederhold 19851. Their allocation
model recognizes implicit dependencies from partitions
of a data entity as well as dependencies based upon
user access patterns. Storage constraints of sites are
also considered, The allocation process iterates
between query optimization and data allocation based
on a pairwise combination of data partitions at single
processors in the cluster. This approach is shown to
be effective on tightly-coupled processors with small
communications delay. An extension of the approach
to general networks is not demonstrated.

A methodology for distributed database design pro-
posed by Mukkamala includes an iterative integration
of complex design problems [Mukkamala et al. 19881.
The methodology consists of a sequential application
of algorithms to optimize relation partitioning, data
allocation, query optimiir!tion, and load balancing.
Design evaluation, guided by an expert system, indi-
cates when further iterations are needed to meet
design goals. An internal repeating loop is shown
between the data allocation and query optimization
algorithms. However, no specific details on the
implementation of this iterative process are provided.

In this paper, we present an iterative method for
integrating realistic query optimization and data
allocation methods in distributed database design. In
section 2, we describe an iterative heuristic method
and discuss its flexibility and power. State-of-the-art
query optimization and data allocation algorithms can
be ‘plugged’ directly into the heuristic. In section 3,
we demonstrate the use of the iterative heuristic in a
‘simple query’ environment. Cost models are devel-
oped to demonstrate the application of the heuristic to
minimize query total times and to minimize query
response times. A simple example demonstrates how
an ‘optimal’ data allocation solution can be significant-
ly improved by integration with the query optimiTation
problem. We have implemented selected query
optimization and data allocation algorithms to perform
experimental studies, as presented in section 4. Test
results show the iterative method always outperforms
alternative methods on total time and response time

Proceedings of the 17th International
Conference on Very Large Data Bases

problems, yielding results that are very close to opti-
mal. Finally, in section 5, we present conclusions and
our future research directions.

2. An Iterative Heuristic Method for Distrib-
uted Database Design

The combined distributed query optimization/data
allocation problem has an immense search space for
optimal solution. Both optimization problems indi-
vidually have been proven NP-hard. Eswaran proves
that simple models of distributed data allocation are
NP-hard [Eswaran 19741, and distributed query opti-
mi7Ation has been shown NP-hard even in restricted
query environments [Gavish and Segev 19861. Thus,
the combined problem is NP-hard since a non-NP
solution for the combined problem would imply a non-
NP solution for each of the subproblems. A more
complete analysis of the search space for the combined
problem is found in [Blankinship 19911.

Inputs: NeWott Sites and Topology
bat&w Relatlon8
Querlat and Query Frewendsr

I

I ROnaPas8
OptlmizaWn AlgcMhm

-yNo
,&

OuQnJt:

Distributed Database Allocation

Figure 1: An Iterative Method for Distributed Data-
base Design

Our objective is to develop a tractable heuristic that
integrates query optimization directly to determine a
close-to-optimal distributed database design. This
research extends the work of Apers, Sacca and
Wiederhold, and Mukkamala by elaborating the design

390 Barcelona, September, 1991

and implementation of an effective iterative heuristic
for general distributed system environments, In this
section, we present the design of the heuristic algo-
rithm and discuss its power and flexibility. In Section
3, this algorithm is implemented in a simple query
environment with appropriate cost models for query
optimization and data allocation.

Figure 1 presents the overall heuristic algorithm.
The input information consists of network sites
(including local processing costs, storage costs, etc.),
network topology (including transmission costs, etc.),
database units of allocation (e.g., relations), and
database queries (including query frequencies). (The
optimization problems of data partitioning and data
redundancy are not considered in this paper, but are
proposed research extensions. Three distinct
subalgorithms can be identified. An initial data
allocation is determined via a ‘one-pass’ algorithm.
This starting data allocation is input to an iterative
heuristic algorithm that generates a local optimal dara
allocation solution. Then a thorough ‘search from
convergence’ algorithm explores the problem search
space to discover lower cost local minimums. The
iterative heuristic is also embedded as part of the
search from convergence algorithm.

2.1 One-Pass Optimization Algorithm

An initial data allocation is developed in order to
‘prime the pump’ for the remainder of the iterative
design method. The purpose of the one-pass algo-
rithm is to produce, in an efficient manner, a good
quality starting data allocation. As described in the
next section, a straightfonvard Most Frequently Ac-
cessed (MFA) algorithm or the Apers’ one-pass
algorithm [Apers 19881 can be used.

2.2 Iterative Heuristic Optimization Algorithm

This algorithm accepts the one-pass solution as a given
data allocation+ The heuristic then alternates between
distributed query optimization and distributed data
allocation optimization until a local optimum is
reached. A local optimum occurs when: 1) given the
existing query schedules, the data allocation algorithm
cannot find a lower cost solution, and 2) given the
existing data allocation, the query optimization algo-
rithm cannot find lower cost query schedules. (Since
the iterative heuristic is greedy in nature, a global
optimal solution cannot be assured.) Figure 2 shows
the steps of the algorithm.

The iterative approach controls the overall com-
plexity of the combined problem. Each iteralion
contains a well-defined sequence of query optimization
followed by data allocation optimization. The number
of iterations required to find a local optimal solution
is easily seen to be bounded in the worst case [Blank-
inship 19911. For any reasonable distributed system
cost model, a given data allocation would produce a
finite cost of query processing. Since the iterative

Proceedings of the 17th International
Conference on Very Large Data Bases

OnbPau Data Alloahl

Figure 2: Iterative Heuristic Optimization Algorithm

heuristic continues only while reduced-cost data
allocations are found, the number of iterations must be
finite. In our experimentation with the heuristic, only
in very rare cases is a local optimum not found within
2 to 4 iterations.

This iterative approach allows great flexibility in use
of distributed system cost models, optimization ob-
jectives, and optimization algorithms. However, it is
important that the optimization objectives be com-
hined into a single cost equation, so that different data
allocations can be unambiguously compared. Both the
data allocation and query optimization algorithms
should work toward minimizing this cost equation.
Integrated cost models may consider query total time,
query response time, local processing costs, storage
constraints, load balancing over sites, etc. With
sufficient insight into the specific distributed system re-
quirements, a database designer should be able to
adapt a wide range of potential query optimization and
data allocation algorithms into the iterative heuristic.

2.3 Search from Convergence Optimization Algorithm

Experimentation has shown that the first local optimal
data allocation may not provide a solution that is close
to the global optimal data allocation. The Search
from Convergence heuristic, shown in Figure 3, allows

391 Barcelona, September, 1991

Perform Top Relation Move
on Looal Optimal DA

Dw)ve New Data Ubmllon I I
A-- I

Output New Data Ulooation Soiutkm (If found)

igure 3: Search from Convergence Algorithm

the search for the global optimum to continue by
discovering a new data allocation with a lower cost. A
list of candidate single relation moves is defined and
ordered, based on potential benefit. The method of
ordering these moves for our experiments is specified
in the next section. Again, the designer has the
flexibility to develop a customized ordering.

For each single relation move, in order of potential
benefit, a new data allocation is derived. The Iterative
Heuristic algorithm is called to find a new local
minimum design solution. If the new local minimum
has lower cost, then we restart the Search from Con-
vergence from that solution. If no lower cost solution
is found, then the overall process is complete and the
current data allocation solution becomes the final dis-
tributed database design. The efficie.ncy of each
execution of the Search from Convcrgcnce algorithm
depends on the number of relations, r, and network
sites, s, in the system. In worst case, r*(s-1) single
relation moves would need to be tested. However, the
designer can improve efficiency by limiting the search
to only the n top relation moves in the list.

Proceedings of the 17th International
Conference on Very Large Data Bases

3. Design of the Iterative Optimization
Method in the Simple Query Environ-
ment

We select the simple query environment upon which
to implement, experiment, and analyze the iterative
database design method. The simple query environ-
ment, as defined in [Hevner and Yao 19791, assumes
a fully connected, geographically distributed network.
Transmission cost equations are identical between any
two sites, and costs are based on the amount of data
transmitted. Local processing costs are negligible and
there are no storage constraints at sites.

The relational data model is used to describe the
data and query processing on the data. Only simple
queries are processed. In a simple relational query,
after local processing (i.e., selections, projections, and
joins between relations located at a site), each query
site has a single relation containing a single, common
join attribute. Query optimization derives a strategy
for transmitting and joining these relations in order to
minimize query total time or query response time.
(We note that other researchers have termed such
queries ‘set queries’ [Gavish and Segev 19861.)

The simple query environment is chosen because it
has a manageable complexity while remaining realistic
and interesting. Optimization algorithms from the
simple query environment have been extended to
general query environments as the bases for effective
heuristics (e.g., (Hevner and Yao 19791). The parame-
ters describing the simple query environment are:

Si: Network sites, i = 1, 2 ,..,, s.
For each relation Rj, j = 1, 2 ,..., r;

n.: J number of tuples,
a,: J number of attributes,
S,: size (e.g., in bytes).

Fo: each attribute djk, k = 1, 2,..., aj of relation Rj;
Pjk: attribute density, i.e., the number of different

values in the current state of the attribute
divided by the number of possible attribute
values. During join operations the density is
used as a selectivity coefficient.

“jk: size (e.g., in bytes) of the data item in attrib-
ute djk,

For each query Q,, n = 1, 2 ,..., q;
freq,t: frequency of query Q, entered at result site

Si during a given time unit,
rclqj,: relation Rj is in query Q,, zero-one variable.

In the remainder of this section, we design an imple-
mentation for each algorithm in the iterative optimi-
zation method.

3,l One-Pass Algorithm
This algorithm produces a good initial data allocation
to prime the iterative heuristic. We have implemented
two one-pass allocation algorithms; the MFA algo-
rithm and Apers’ static algorithm.

392
Barcelona, September, 1991

3.1.1 Most Frequently Accessed (MFA) Allocation - If co-locating the relations is advantageous, the pair
Algorithm

Most existing research on data allocation assumes
relations are accessed independently. Although many
diverse design issues have been considered (e.g.,
storage capacity constraints, local processing costs,
multiple copy update costs), the intermediate transmis-
sions between relations (i.e., joins and semi-joins)
which are often part of optimized query schedules, are
usually ignored. To represent this approach, we
implement a straightforward algorithm that assigns a
relation to the site from which it is most requested; no
intermediate data transmissions are considered. Thus,
relation Rj is allocated to site Si where:

is merged. For the remainder of this algorithm, the
merged pair is treated as a single relation and all
transmission volumes are recalculated to reflect the
merge.

When no further beneficial pairings exist, the algo-
rithm outputs the final data allocation.

3.2 Iterative lleuristic Algorithm

The Iterative Heuristic algorithm requires the imple-
mentation of compatible algorithms for query opti-
millation and data allocation optimization. In the
simple query environment, we have previously devel-
oped optimal query optimization algorithms for total
time (Algorithm Serial) and response time (Algorithm
Parallel) optimization (Hevner and Yao 19791. Here
we define compatible data allocation cost models for
total time and response time optimization. In
[Blankinship 19911, these cost models are shown to
produce optimal data allocations via exhaustive search.

MtX 2 relqi, freq,
It*1

3,1.2 Apers’ Data Allocation Algorithm
The Apers’ static data allocation algorithm optimizes
queries by assuming that each relation is located al a
separate, virtual site with no relations allocated lo
query sites. Then the query processing algorithm is
applied to obtain a strategy of transmissions for each
query. The transmissions from each query strategy are
multiplied by the frequency of that query.
Transmissions between each pair of rclatinns and
transmissions between relations and sites arc aggre-
gated. We use the notation:
RSji = Sum of transmissions bctwcen relation Rj and

RRjk

site Si, for all queries.
= Sum of transmissions between relation Rj
and relation R,, for all queries.

The allocation process begins by allocating each
relation to the site where it has highest traffic. Rela-
tion Rj is allocated to site Si where MAX Rsj,.

i
While there are more relation pairs to consider, the
following processing is performed:
* Select the relation pair, (Rjl Rk) with MAX mjk

Y
- Calculate the net result from co-locating the relation

pair:
1) Remove the relations from the sites to

they are assigned. This increases total
missions by MAX RS,, + max RS&,

I i
2) Unite the two relations and assign them

which
trans-

to the
site where the pair has highest transmissions.
This decreases the total transmissions by

The cost savings of the co-location is the difference
of these two amounts.

3.2.1 Total Time Optimization Algorithms

Algorithm Serial produces an optimal query strategy
by moving the relation with the smallest selectivity
(i.e., attribute density) to the relation with the next
smallest selectivity, and so on, until all relations are
linked in a serial transmission pattern. When a query
relation resides at the query site, two cases are tested:
the regular serial pattern, and a pattern that leaves the
relation at the query site out. The lower cost case is
selected as optimal.

We define a data allocation cost model which incor-
porates the intermediate data transmissions from
relation-to-relation and the final relation-to-query-site
transmission. Relations are allocated to minimize the
total time of these transmissions.

Minim& 5 f;(l +)&?,, + 5 i(l-yIL)m,&
i=l j=l j=l k-1

where:
‘ij = 1 if relation Rj is allocated to site S, otherwise

0.
‘jk = 1 if relation R. and relation R, are allocated to

the same site, otherwise 0.

For all Rj’ 5X, = 1. (Allocate 1 copy of each
I=1 relation.)

To illustrate the iterative heuristic for total time
minimization, consider the following example in a
simple query environment. Assume a network with
three sites (1, 2, 3) and three relations (A, B, C) with
the following selectivities and sizes:
Relation

A
Selectivity

1.00
ziia
1000

E ::
990
980

Proceedings of the 17th International
Conference on Very Large Data Bases

393
Barcelona, September, 1991

There are five queries with result sites and frequencies
as follows:

auerv
Join A, B, and C

Que; I$equency C2uer Site

Select * from A 2 2:00
Select + from B 1.97
Select * from B : 1.98
Select * from C 2 2.00

Initially, we assume all relations are at virtual sites,
with no two relations at the same site, and apply the
query optimization algorithm to obtain initial process-
ing strategies. For the first query, joining relation A,
B, and C, Algorithm Serial first orders the relations by
increasing selectivity (i.e. C, B, A), and then performs
transmissions and joins in this order. Relation C: has
size 980 and is transmitted to B (RR,, = 980). C is
joined with B, with the result relation having size 990
x .98 = 970, and selectivity .99 x .98 = .97. This result
relation is transmitted to relation A (RR,, = 970),
and is joined with A, to produce the final result, which
has size 1000 x .97 = 970, and selectivity 1.00 x .97 =
.97. The final transmission delivers this result to the
query site (RS,, = 970).

Transmissions for the single relation queries are:
R%2 = 1000 (size of A) x 2.00 (frequency) = 2000;
RS,, = 990 (size of B) x 1.97 (frequency) = 1950;
RSB, =
RS; =

990 (size of B) x 1.98 (frequency) = 1960;
980 (size of C) x 2.00 (frequency) = 1960.

Using these query transmissions, the data allocation
algorithm can now find an initial solution. For this
small example, we use exhaustive search to find an
optimal data allocation. There are 3’ = 27 ways to
allocate the 3 relations on 3 sites. The lowest cost
allocation is A at 2, B at 3, C at 2, with total rransmis-
sion time of 4870.

Figure 4 represents this data allocation, and the
initial query processing strategies. The numbers in
boxes are volumes for local queries, where the alloca-
tion has made transmissions unnecessary. The solid
arrow represents the query on relation B from site 1,
while the open arrows represent the processing for the
query on all three relations. This data allocation
result could be produced by a one-pass optimization
algorithm (e.g. Apers) and is optimal, given the
existing query strategies.

We continue with another iteration of query opti-
mization and data allocation to see if a better solution
can be found. Since relations C and A are at the same
site, Algorithm Serial initially joins these two relations,
The result is then sent to B’s site; the final result is
sent to the query site. This solution is shown in
Figure 5. The data transmissions for this new strategy
are RR

9
=I 980, RR, = 980, RS.,, = 970. Trans-

missions or the single relation queries are unchanged.
Thus, the total transmission time of this combined

Proceedings of the 17th International
Conference on Very Large Data Bases

TT-4070

I
Figure 4: Example - Optimal data allocation

l-i-~3900

Figure 5: Example - Re-optimized queries

Figure 6: Example - Final combined solution

solution is 980+970+1950 = 3900. These query
strategies are optimal, given the existing data alloca-
tion.

The data allocation is re-optimized by moving rela-
tion B from site 3 to site 1. The total time for this

394
Barcelona, September, 1991

combined solution is 1960 f 980 = 2940 (see Figure
6). Applying another iteration to this data allocation
results in no change to the query strategies. Thus, the
iterative heuristic has converged. This simple example
demonstrates how an gptimal one-pass solution can be
significantly improved (40% cost reduction) by apply-
ing the iterative design approach.

Performing exhaustive search based on the above
cost model is tractable only for small problems. For
larger problems in our experiments, we implement
Algorithm Serial and the Apers’ static algorithm in the
iteration to minimize total time costs.

3.2.2 Response Time Optimization Algorithms
Algorithm Parallel finds an optimal query strategy to
minimize response time by emphasizing parallel data
transmissions on the network. (The details of this
algorithm are found in [Hevner and Yao 19791 and are
not repeated here.) An original distributed cost model
is derived to be compatible with Algorithm Parallel.
The response time data allocation cost model is
defined as follows:
S” = Site where query Q, originates.
*” = Number of (parallel) transmissions into S,

for query Q,.
QRSj, = Transmission volume for the query Q,

strategy, per unit time, between relation Rj
and S,.

mnj = Number of (parallel) transmissions query

QkRnkj

Q, has into relation Rj.
= Transmission volume for the query Q,
strategy, per unit time, from relation R, to
relation Rj.

The problem of allocating relations on the network to
minimize response time is to minimize:

i 2X I(1 -Xls)QRS,,, + Rllmc,]
n-1 i-1

Minimize the response time total over all queries. The
response time of query q is the MAX response time of
the parallel transmissions into the query site, S,. The
response time of a transmission is the sum of:
1) the transmission time for the relation, Rj, to the

query site, S, (this is zero if Rj is allocated at S,);
2) the response time of the schedule coming into

relation Rj’
where:

Rlbne, = h?X [(l -Y,JQJZRti t Rllme,]
k=l

The response time of the transmission schedule into
relation Rj is the MAX response time of the individual

Proceedings of the 17th International
Conference on Very Large Data Bases

parallel transmissions into Rj. The response time of
an individual transmission of relation R, into relation
Rj is the sum of:

1) the transmission time of the relation R, into Rj’
which is zero if Rj and R, are allocated at the
same site;

2) the response time of the transmission schedule
into R,, where:

31
,I = 1 if relation Rj is allocated to Si, otherwise 0.

jk = 1 if relations Rj and R, are allocated to the
same site, otherwise 0.

For each relation Rjl CX, = 1.
i=l

(Allocate 1 copy of each relation.)
To better understand the objective function of this

cost model, consider Figure 7, which displays an
arbitrary general query schedule, showing the schedule
of transmissions and joins into the query site. For this
query, the data allocation objective function is to
minimize:

The objective function and the query have similar
form. The objective function shows recursion; the
response time of relation B into the query site includes
the response time of relation C into relation B, which
includes the maximum of D into C and E into C.
Each relation-site transmission is eliminated if the
referenced relation is allocated to the referenced site;
each relation-relation transmission is eliminated if
both relations are allocated to the same site.

I

Figure 7: Response time example

395
Barcelona, September, 1991

Again, small problems can be solved iteratively using
Algorithm Parallel and an exhaustive search for
optimal data allocations using the derived cost model
above. However, for larger problems, a tractable
heuristic data allocation algorithm that minimizes
response time cost is needed in the iteration. We have
found no published algorithm to do this, so in our
experiments we have modified the Apers’ static algo-
rithm for this purpose.

3.3 Search from Convergence Algorithm
When a local optimum is reached, finding a lower cost
solution requires changing both the data allocation and
the query processing schedules. To select and order
single-relation changes to the data allocation, we
analyze the “possible” query transmission patterns,
instead of considering only the existing query sched-
ules. This approach recognizes the interdependencies
between the data allocation and query optimization
problems, and the characteristics of local optimum
solutions.

For each relation in a query, we record one possible
transmission between the relation and the site of every
other relation in the query, and an additional transmis-
sion to the query site. For example, if we have a query
at site 1 which accesses relations A at site 2, B at site
3, and C at site 4, possible transmissions are: A to 3;
A to 4; A to 1; B to 2; B to 4; B to 1; C to 2; C to 3;
C to 1. For a query Q, on r, relations, there arc r”*
possihle transmissions. Since the number of relations
in a realistic query is limited, this number is manage-
able. Each possible transmission is assigned the
frequency of it’s query. We aggregate over all queries,
defining PRSji asthe sum of possible transmissions be-
tween relation R, and site Si.

For each relation Rj, currently allocated to site S,,
we calculate the ratio:

Mix PRS)
I+r

PRT1,

Relations are ordered by descending value of this ratio.
The sites for each relation are ordered by descending
possible transmission volume. The Search from
Convergence algorithm tests the first two site moves
for each relation. Thus, the maximum number of
iterations is 2r.

4. Experimental Results
A major benefit of testing within the simple query
environment is that optimal response time and total
time query schedules can be found in polynomial time
[Hevner and Yao 19791. Testing with optimal solu-
tions within this simplified environment allows the
development and understanding of concepts that can
be extended to the general query environment. Given
a data allocation, it is possible to find an optimal set

Proceedings of the 17th International
Conference on Very Large Data Bases

of query strategies by applying either Algorithm Serial
(to minimize total time) or Algorithm Parallel (to
minimize response time). Given a set of query strate-
gies, it is possible to find an optimal data allocation by
performing exhaustive search using the data allocation
cost models of Section 3. By solving for optimal query
strategies on each possible data allocation, an optimal
solution to the combined query optimization and data
allocation problem can be found. We use exhaustive
search to provide benchmark optimum solutions for
evaluating performance of the iterative method.

A common approach to characterize query behavior
is to generate experimental queries by randomly
selecting relations from a problem set. However,
random selection of relations is not an accurate model
of the access patterns occurring in real-world database
systems. As the number of queries increases, random
selection tends to create roughly equal joint-access
probabilities between all relation pairs; usage patterns
of this type create little incentive to allocate relations
in separate clusters. In realistic systems, a-s pat-
terns are not random -- some relations and relation
sets have higher joint-access probabilities than others.
These differences in access patterns create incentives
to form clusters of relations, allocated at different
sites.

To create more realistic data access patterns, our
experimental design includes the concept of applica-
tion data sets. Each experimental setup assumes a
specified number of applications. Each application
processes queries against a defined set of relations.
Each query randomly selects relations from the
application’s set of relations, rather than from all
available relations in the system. We assume each
application is executed from a single site. If no
overlap exists between application data sets, distributed
allocation simply requires placing each relation at the
site of the application. However, most often overlap
exists between the data sets of different applications.
This overlap in usage creates interesting distributed
data design problems.

We model the overlap between the data sets used by
different applications by a distribution function based
on Zipfs Law [Knuth 19731. Zipfs Law can be stated
as:

PI = c/l, p2 = cl2. pN = clN,
where c = l/H,, and H, is the Nth harmonic
number.

We use an approximation to Zipfs law provided in
[Knuth 1973 (page 398, equation 13):

PI = cd- B , p* = d2’-e, .*., pN = c/N’“, where c =
IlH,(‘“), and If,(‘) is the Nth harmonic number of
order s (i.e., I-’ $ 2-’ + ,.. + NS).

Where pi represents the probability that a given
relation appears in i applications. (The procedure for
assigning relations to applications is detailed in
[Blankinship 19911.) When 8 = 0, this distribution

396 Barcelona. September, 1991

matches Zipfs Law. As 8 increases, overlap between
application data sets increases until all applications
share the same set of relations; as 0 decreases, overlap
decreases until each application has a distinct data set
with no relations shared between applications.

We present experimental results for the iterative
design method we have proposed. Identical problem
sets are used under the minimization of total time and
the minimiiration of response time. The algorithms
found in Section 3 are used for parametric studies.
The dependent variable in the following experiments
is the system cost of the required queries on the
derived data allocation. We compare five levels of
design optimization:
1. MFA - System cost of the Most Frequent Access

data allocation used as a one-pass solution.
2. Apers - System cost of Apers’ static data alloca-

tion used as a one-pass solution,
3 . . 1st Local Opt. - System cost of the first local

optimal data allocation from the iterative Heuris-
tic algorithm.

4. Conv. Search - System cost of the final data
allocation solution from the Search from Convcr-
gence algorithm.

5. Optimum - System cost of the global optimal data
allocation obtained by exhaustive search. (Be-
cause of the complexity of the combined query
optimiirationldata allocation problem, WC find
optimal solutions for only small problems.)

Because of the wide range of system costs found in the
randomly generated experiments, we use the Apers
method as a baseline for total time experiments, and
the simple MFA method as a baseline for response
time experiments. Each graph shows the baseline
method fiied at 100% and records other cost lines as
a percentage of the baseline method. In all graphs,
each data point represents the average system cost for
100 randomly generated problems.

We study the effect of the following parameters as
independent variables:
- Number of applications/sites in the problem.
- Number of relations per application.
- Relations per query, specified as the mean of a

normal distribution with standard deviation I.
- The amount of overlap between application data

sets, 8.
- Number of queries, uniformly distributed over all

applications/sites.

4.1 Total Time Experiments

This section evaluates the performance of the iterative
design method to minimize total transmission time in
the simple query environment.

Effect of Relations per Query

Figures 8 and 9 show performance of the iterative
method and Apers method, as the number of relations
per query is varied. Fixed parameter values arc at the

Proceedings of the 17th International
Conference on Very Large Data Bases

top of each graph. Figure 9 is for small problems
which are tractable for exhaustive search. Optimum
solutions are shown as benchmarks for performance of
the iterative method.

The iterative method demonstrates increasing
optimiiration benefits over the MFA method as the
mean number of relations per query increases. The
MFA method ignores transmissions between the
relations in a query, which become increasingly impor-
tant as the number of relations per query increases.
The performance improvements of the iterative
me.thod over Apers method are largest in the middle
ranges of the graphs; with a very small number of
relations, little optimkration potential exists; a similar
situation occurs with a large number of relations in a
simple query because all relations tend to cluster at a
single site.

*ppwcraonr-2 Quti-10
~~arb~puapp~oatlon -6 Ovu!appv~vlw-4.6(modry)

110.

ioo-

B m. - MFA
E 60. --. m

70. -*- colw. aovc4l
60. ,__- -----___ --- Op6mum

i5 6Q ,&. “\

; 46. I:“’
.:\.* \

- ‘\\ H 30. d .c5_m
‘\ ’

w-
‘-:.

-Z:=- --3

IO-
0’

1 2 MmReh6cnupw~6 3 4 6

Figure 9: F,ffCCt of RlalionS per qUety On n CO%

Summary of Total Time Experiments

In addition to varying the number of relations per
query, we generated problems while varying the
number of applications, number of relations per
application, and application overlap parameter. A

397 Barcelona, September. 1991

total of 4,400 problems were solved; 1,100 problems
weresmall enough to he tractable by exhaustive search,
while 3,300 were larger, more realistic prnhlcms:
- The iterative method always found solutions having

equal or lower cost than Apers’ met hod.
- The iterative method averaged within 2% of optimal

on the 1,100 smaller problems solved for optimal
solutions by exhaustive search.

- On the 3,300 larger problems, total transmission
time was reduced compared to Apers’ method on
1,374 (42%) of the problems; these reductions
averaged 12% and ranged up to 96%.

4.2 Response Time Experiments

We perform a similar set of experiments minimizing
response time in the simple query environment. While
the change in cost objective is irrelevant to the MFA
data allocation solution, Apers’ static algorithm is
predicated on total time minimization. Therefore, we
use the lower cost data allocation from MFA or Apers’
algorithms as the starting one-pass solution. Since we
know of no data allocation algorithms designed
specifically for response time minimization, system
designers currently must use total time algorithms.
Thus, to evaluate this approach, we include Apcrs
algorithm in our response time graphs. Our cxpcri-
mental data show that the iterative design method
consistently finds data allocation solutions with lower
system response time cost than any known method.

Effect of Number of Applications

Figure 10 demonstrates a consistent improvement of
data allocation cost, with the final iterative method
solution yielding 60% cost reductions over the MFA
solution. The number of applications has little cffcct
on the range of cost improvement.

- MFA

-- Apen

* lstLLx?alOpt

-* oonv.search

2 3 4 5 6 I6 @
Number of AppllcaUons

I
Figure 10: Effect of number of applications on RT cost

P.roceedings of the 17th International
Conference on Very Large Data Bases

Effect of Number of Relations per Application

Figure 11 also shows relatively consistent response
time improvements by the iterative method as the
numhcr of relations per applicalion is varied; average
response time improvement over MFA is 60% to 70%.

Appneam-6 MaanrdatbMParqwfy-4

E
110

--so owdnpparuMter--l.5(~Ia)

cl00 ---

1

60

60

70

/

/**
/** '._

,_-- '. - MFA
,/,' --. Apn

/
c'

H

60. /
‘.... lat w opt
-*‘. cmv. searah

50. ,,,,..,..... ..,.._a

g 40.
,_.’

,,a. ”
~~~~~.-‘--,: 

__ )_____ *_----------- 
~ w, 

-.~. --5~ ---.. a‘ -... ___-~ 
7 a 6 

Relations per Appllcatlon 

Figure 11: Effect of relations per application on RT cosl 

Effect of Relations per Query 

When minimizing total time, we observed increasing 
optimization benefits over the MFA method as the 
mean number of relalions per query increased. Figure 
12 demonstrates the same effect when minimizing 
response time of queries. Apers method shows erratic 
response time performance when the mean number of 
relations per query is high. 

A~wllcaaan-6 ouerbs-30 
Rahllon~~~ra~cJLcllt -6 O~wlappammetw 

IEQT 
140. A 
130. /' 
120. / '\\ 

110. /' '1 
\ 

loo. -- // \ 

w- ____---- 
/A-- -._. 

.4' \ \ 
w- 

\ . * 

70. *-----*., ,, 

60. 
-. 

..\ . 
w- ~, ' 

ii- 

k . . . b..-- . . 
--._ 

20. 
-___" 

w 
lo- 

- .l .6 (modorate) 

- MFA 
--. m 

“a” lot Lad opt 

-*.. conv. search 

- 
o’ 

1 2 
URR&per& 

6 

Fiaure 12: Effect of relations per query on RT cost 

Effect of Application Overlap 

Figure 13 shows a stable relationship between the 
optimiiration methods as we vary the application 
overlap parameter, theta. The iterative method 
reduces response time about 60% compared to MFA 
and about 50% compared to Apers method. 

398 
Barcelona, September, 1991 



Applhxtlons-6 Quer!a - 30 
RelaUonspwnppknllon -6 MeanmMonsperquery-4 

c 1101 100. t----Cb -. -- .-_. _--. 

II 

w- - WA 

wo- A /^\ \ 70. ,%,’ \“/’ 1, 
--. m 

,I-- --. 4 \ -~'I8tLomlopt 

iI 

00. /' -*. conv.saud. __-_-- 
so- 

* L 40. . . . . . .* ..,.. .1. . ._ ..' p-- *. 

u w- 
.,.;* c_-_ *,* .*- ~.y~~-. 7,:. ,;: 

.' 

H 

w- 
IO. 
o-7,. . 1 1 '1 

0 -. 6 -1.0 -1.6 -2.0 -2.6 3.0 
The18 

Figure 13: Effect of application overlap on RT cost 

Comparison with Optimum Solutions Found hy Ex- 
haustive Search 

As in the total time tests, we compare performance of 
the iterative method to optimal data allocation solu- 
tions found by exhaustive search. The graphs below 
show tests on small problems. which arc tractable for 
exhaustive search, Figure 14 test rhc same indcpcn- 
dent variable (relations per application) as Figure 11 I 
while Figure 15 displays results for the same variahlc 
(relations per query) as Figure 12. 

i’ ~\\ 
: \ -_. MFA 

-- Apan 

: -*. Cow. Senroh 
I 

I --. Optimum 

Figure 14: Effect of relations per application on RT cost 

Summary of Response Time Experiments 

On small test cases where optimal solutions are found 
by exhaustive search, solutions from the itcrarive 
method average 3% from optimum. An improved re- 
sponse time data allocation algorithm within the 
iterative framework, instead of the modified Apcrs’ 
total time algorithm, would probably improve final 
solutions. Overall performance of the iterative method 
on these response time problems is significantly bcttc,r 
than known alternatives. 

Proceedings of the 17th International 
Conference on Vety Large Data Bases 

- YFA 
--. m 

-*- cw. SMreh 

-. Optimum 

a- 

1 2 MRRe4&founry0 

Figure 15: Effect of relations per query on RT cost 

4.3 Algorithm Efficiency 

The table below demonstrates that the overall iterative 
design method is reasonably efficient. The number of 
calls to re-optimize all queries and actual run times for 
the heuristic are shown. Exhaustive search for the 
combined data allocation and query optimization 
problem can bc performed by re-optimizing queries for 
each possible data allocation (i.e., s’ calls). Each line 
in the table represents an average for 5 problems. 
Run times were measured on an IBM PSR Mode1 80, 
with a 16Mhz 80386 processor, 80387 math co-proces- 
sor, and 6MB of memory, running OSt2 1.2, with 
algorithms written in Microsoft C 6.00. Test problems 
were generated with 6 relations per application and 
application overlap parameter = -1.5. These 
benchmarks are for minimizing total transmission time. 

Table 1: Algorithm Efficiency 

Number of Iterative Method Exhaustive Search 
$& I&& Qgg-& Iterations Run Time Search Snag pun Timr 

210 8 12 0.4 set 1,024 9sec 
3 15 12 19 1.4 see 14,.3,907 l 

4 18 16 37 3.8 set 6.8 x 101’ l 

5 25 20 39 7.0 set 3.0x 101’ l 

6 29 24 68 21.6 set 3.7 x 1022 l 

134 28 51 21.8 set 5.4 x 10D * 
8 36 32 58 30.4 set 3.2 x lo32 * 
9 43 -36 80 59.6 set 1.1 x lo41 * 

10 52 40 96 111.Osec 10 x IO”2 * 
* - Runs not executed. 

Since the iterative method for database design i?, 
applied at system design time and can be run off-line, 
performance efficiency is not a major concern. 

5. Conclusions and Future Research Direc- 
tions 

This research is an important contribution to the 
understanding of the design tradeoffs between query 

399 
Barcelona, September, 1991 



optimization and data allocation for distributed 
database design. We have developed and tested an 
iterative solution method as an cfficicnt heuristic for 
simultaneously solving these two NP-hard prohlems. 
The experimental studies dcmonstratc that intcgratcd 
solutions for the combined prohlcm arc oilcn signifi- 
cantly below costs for one-pass methods. For both 
total time and response time cost objectives in the 
simple query environment, solutions are within 9% of 
optimum. Existing research is also extended by the 
development of a new rcsponsc time cast model for 
the combined data allocation and query oprirni7alion 
problem. The iterative mclhod is not only cffcctivc, 
but is also very flexible. It can accommodate most 
current query optimization and data allocation algo- 
rithms developed for distributed systems. 

Planned extensions of this research include the ap- 
plication of our simple query environment insights on 
the iterative method to a gcncral query cnvirnnmcn1. 
This research will include Ihc dcvclopmcnt of a new 
response time data allocation algorirhm for USC wilhin 
the iterative method. Finally, we plan to inrcgrare the 
design problem of data redundancy into the iterative 
design method [Muro et al. 19851. The numhcr, 
placement, and effective use of data copies is an 
important design prohlem that is clearly intcrdcpcn- 
dent with query optimization and data allocation. 

References 

[Apers 19821 Apers, P., “Query Processing and Dara 
Allocation in Distrihutcd Datahasc Systems,” Ph.D. 
Thesis, Vrije Universitit te Amsterdam, 1982. 

[Apers 19881 Apers, P., “Data Allocation in Dislrih- 
utcd Database Systems,” ACM Transactions on 
Datahase Systems, Vol. 13, No. 3, Scplcmhcr 1%X8, 
pp. 263-304. 

[Blankinship 19911 Blankinship, R., “Query Optimi- 
zation and Data Allocation on Distributed Data- 
base Systems: An Integrated Solution Approach,” 
Ph.D. Thesis (in progress), 1991. 

[Dowdy and Foster 19821 Dowdy, L. and D. Foster 
“Comparative Models of the File Assignment 
Problem,” ACM Computing Surveys, Vol. 13, No. 
2, June 1982, pp. 287-313. 

[Eswaran 19741 Eswaran, K., ‘Placement of Records in 
a File and File Allocation in a Computer Net- 
work,” Proceedings of the 1974 IFIPS Conference, 
1974, pp. 304-307. 

[Gavish and Segev 19861 Gavish, B. and A. Scgcv, %I 
Query Optimization in Distributed Dalahase 
Systems,” ACM Transactions on 1)atshaae Systems, 
Vol. II, No. 3, Sept. 1986, pp. 265-293. 

[Hevner and Yao 19793 Hcvner, A. and S. Yao, “Query 
Processing in Distributed Datahase Systems”, IEEE 
Trnnsactions on Software Engineering, Vol. SE-5, 
May 1979, pp. 177-187. 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

[Hevner and Rao 19881 Hevner, A. and A. Rao, 
“Distributed Data Allocation Strategies,” Chapter 
3 in Advnnces in Computers, Vol. 27, Academic 
Press, Tnc., pp, 121-155. 

[Hcvner and Yao 19871 Hevner, k and S. Yao, “Que- 
rying Distributed Databases on Local Area Net- 
works,” Proceedings of the IEEE, Vol. 75, No. 5, 
May 1987, pp. 563-572. 

[Knuth 19731 Knuth, D., The Art of Computer Pro- 
gramming, Volume 3, Sorting and Searching, 
Addison-Wesley, Inc., 1973. 

[I.oomis and Popek 19761 Loomis, M. and G. Popek, 
“A Model for Data Base Distribution”, in “Trends 
and Applications: Computer Networks”, IEEE 
Computer Society, pp. 162-169. 

[Mukkamala et al. 19881 Mukkamala, R., S. Bruell, 
and R. Shultz, “Design of Partially Replicated 
Distributed Database Systems: An Integrated 
Mcthodologv”. Proceedings of the 1988 ACM 
Sl(;hlF;TRIi‘S Conference, Santa Fe, 1988, pp. 
187-196. 

[Muro et al. 19851 Muro, S., T. Ibaraki, M. Hidehiro, 
and T. Hasegawa, “Evaluation of the File Redun- 
dancy in Distributed Database Systems,” IEEE 
Transactions on Sofhvare Engineering, Vol. SE-l& 
No. 2, Feb. 1985. pp. 199-204, 

[Ozsu and Valduricz 19911 07.~1, M. and P. Valduriez, 
Principles of Distributed Database Systems, 
Prentice-Hall, Inc., 1991. 

[Sacca and Wiederhold 19851 Sacca, D. and G. 
Wiederhold, “Database Partitioning in a Cluster of 
Processors,” ACM Transactions on Database 
Systems, Vol. 10, No. 1, 1985, pp. 29-56. 

[Wah and Lien 1985) Wah, B. and Y. Lien, “Design of 
Distributed Darabascs on Local Computer Systems 
with .a Multiacccss Network,” IEEE Transactions 
on Sofhvare Engineering, Vol. SE-11, No. 7, July 
1985, pp. 606-619. 

[Yu and Chang 19841 Yu, C. and C. Chang, “Distrib- 
uted Query Processing,” ACM Computing Surveys, 
Vol. 16, No. 4. December 1984, pp. 399-433. 

400 
Barcelona, September, 1991 


