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Abstract 
The development of a distributed database 
system requires effective solutions to many 
complex and interrelated design problems. 
The cost dependencies between query opti- 
mization and data allocation on distrihuled 
systems are well recognized but little under- 
stood. We investigate these dependencies by 
proposing and analyzing an iterative heuristic 
which provides an integrated solution lo the 
query optimization and data allocation prob- 
lems, The optimization heuristic itcrates 
between finding minimum cost query slrate- 
gies and minimum cost data allocations until 
a local minimum for the combined problem is 
found. A search from convergence efficiently 
scans the optimization search space for lower 
cost solutions. Parametric studies within a 
simple query environment demonstrate near- 
optimal performance for the iterative method 
when minimizing lolal time and response cost 
of queries. The iterative method provides 
clear improvements over alternative solution 
methods. The paper concludes with the 
practical implications of this research and its 
future directions. 

1. Design Optimization in Distributed Data- 
base Systems 

Increasingly, organizations are interconnecting com- 
puters for cooperative processing, and utilizing dis- 
tributed database systems to control access to their 
decentralized information resources. The development 
of a distributed database system requires effective 
solutions to many complex and interrelated design 
issues, including network topology, hardware alloca- 
tion, data partitioning, data allocation, query optimiza- 
tion, data replication, concurrency control, reliability, 
and recovery [Ozsu and Valduriez 19911. In order to 
most effectively utilize distributed database systems, 
organizations need practical design methods which can 
integrate multiple design issues IO achieve efficient 
overall system performance. 

While much research has been conducted on individ- 
ual distributed design problems, little progress has 
been made toward integrating these problems. Most 
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of the individual design problems are NP-hard, so re- 
searchers have usually studied them in isolation to 
control complexity and tractability. While this ap- 
proach has led to effective solutions to parts of the 
overall system design, the interdependencies between 
individual problems are still not well understood. 

Query optimization and data allocation are two 
important distributed systems design problems that are 
closely interrelated. Distributed query optimization 
depends on how the data are allocated, since process- 
ing schedules often include operations on different 
sites and data transmissions between them. On the 
other hand, the optimal method of allocating data 
depends on the processing strategies used for solving 
queries. Typically, researchers studying data allocation 
assume a fixed query optimization method to generate 
processing schedules; while researchers on query 
optimization assume a fixed data allocation. By 
assuming a solution to one problem and solving the 
other, researchers control the complexity of these two 
problems, but fail to integrate their solutions. 

Comprehensive surveys of state-of-the-art research 
on distributed query optimization (e.g., [Yu and Chang 
1984, Hevner and Yao 19871) and distributed data 
allocation (e.g., [Dowdy and Foster 1982, Hevner and 
Rao 19881) exist. The majority of research in one area 
has assumed a given solution for the other. Only a 
few researchers have investigated the inherent depen- 
dencies of the two design problems. Early research by 
Loomis and Popek [Loomis and Popek 19761 provides 
guidelines for data replication and allocation based on 
optimizing query strategies. They point out that multi- 
ple copies of data should be placed on a network to 
maximize parallel processing within queries. In [Wah 
and Lien 19851, the authors analyze the interdependen- 
ties among data partitioning, data allocation, query 
optimization, concurrency control, and network design 
in local multi-access distributed systems. A broadcast 
protocol is proposed to promote sharing of informa- 
tion to support the integrated solution of these control 
problems. No specific integrated solution methods are 
detailed, however. 

Apers develops a distributed data allocation algo- 
rithm that utilizes actual query processing schedules 
[Apers 1982, Apers 19881. A virtual network is 
defined with each database relation assigned lo a 
different virtual site with no relations al query sites. 
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Distributed query optimization is performed to gen- 
erate processing schedules. An optimal data allocation 
is found by merging virtual data sites into actual 
network sites to minimize intermediate, relation-to- 
relation transmission costs and final, result-to-query 
site transmission costs. Thus, Apers’ method intc- 
grates the two problems during design by sequentially 
optimizing query strategies and then data allocation. 
During execution of the distributed system, query 
optimization will be performed based upon the deter- 
mined data allocation. Apers proposes an extended 
‘dynamic heuristic’ to achieve greater integration of the 
two problems during system design. Hnwcver, the ap- 
proach becomes quickly intractable as problem size 
increases. 

Sacca and Wiederhold extend Apers’ approach for 
data allocation in systems of tightly clustered proces- 
sors [Sacca and Wiederhold 19851. Their allocation 
model recognizes implicit dependencies from partitions 
of a data entity as well as dependencies based upon 
user access patterns. Storage constraints of sites are 
also considered, The allocation process iterates 
between query optimization and data allocation based 
on a pairwise combination of data partitions at single 
processors in the cluster. This approach is shown to 
be effective on tightly-coupled processors with small 
communications delay. An extension of the approach 
to general networks is not demonstrated. 

A methodology for distributed database design pro- 
posed by Mukkamala includes an iterative integration 
of complex design problems [Mukkamala et al. 19881. 
The methodology consists of a sequential application 
of algorithms to optimize relation partitioning, data 
allocation, query optimiir!tion, and load balancing. 
Design evaluation, guided by an expert system, indi- 
cates when further iterations are needed to meet 
design goals. An internal repeating loop is shown 
between the data allocation and query optimization 
algorithms. However, no specific details on the 
implementation of this iterative process are provided. 

In this paper, we present an iterative method for 
integrating realistic query optimization and data 
allocation methods in distributed database design. In 
section 2, we describe an iterative heuristic method 
and discuss its flexibility and power. State-of-the-art 
query optimization and data allocation algorithms can 
be ‘plugged’ directly into the heuristic. In section 3, 
we demonstrate the use of the iterative heuristic in a 
‘simple query’ environment. Cost models are devel- 
oped to demonstrate the application of the heuristic to 
minimize query total times and to minimize query 
response times. A simple example demonstrates how 
an ‘optimal’ data allocation solution can be significant- 
ly improved by integration with the query optimiTation 
problem. We have implemented selected query 
optimization and data allocation algorithms to perform 
experimental studies, as presented in section 4. Test 
results show the iterative method always outperforms 
alternative methods on total time and response time 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

problems, yielding results that are very close to opti- 
mal. Finally, in section 5, we present conclusions and 
our future research directions. 

2. An Iterative Heuristic Method for Distrib- 
uted Database Design 

The combined distributed query optimization/data 
allocation problem has an immense search space for 
optimal solution. Both optimization problems indi- 
vidually have been proven NP-hard. Eswaran proves 
that simple models of distributed data allocation are 
NP-hard [Eswaran 19741, and distributed query opti- 
mi7Ation has been shown NP-hard even in restricted 
query environments [Gavish and Segev 19861. Thus, 
the combined problem is NP-hard since a non-NP 
solution for the combined problem would imply a non- 
NP solution for each of the subproblems. A more 
complete analysis of the search space for the combined 
problem is found in [Blankinship 19911. 
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Figure 1: An Iterative Method for Distributed Data- 
base Design 

Our objective is to develop a tractable heuristic that 
integrates query optimization directly to determine a 
close-to-optimal distributed database design. This 
research extends the work of Apers, Sacca and 
Wiederhold, and Mukkamala by elaborating the design 
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and implementation of an effective iterative heuristic 
for general distributed system environments, In this 
section, we present the design of the heuristic algo- 
rithm and discuss its power and flexibility. In Section 
3, this algorithm is implemented in a simple query 
environment with appropriate cost models for query 
optimization and data allocation. 

Figure 1 presents the overall heuristic algorithm. 
The input information consists of network sites 
(including local processing costs, storage costs, etc.), 
network topology (including transmission costs, etc.), 
database units of allocation (e.g., relations), and 
database queries (including query frequencies). (The 
optimization problems of data partitioning and data 
redundancy are not considered in this paper, but are 
proposed research extensions. Three distinct 
subalgorithms can be identified. An initial data 
allocation is determined via a ‘one-pass’ algorithm. 
This starting data allocation is input to an iterative 
heuristic algorithm that generates a local optimal dara 
allocation solution. Then a thorough ‘search from 
convergence’ algorithm explores the problem search 
space to discover lower cost local minimums. The 
iterative heuristic is also embedded as part of the 
search from convergence algorithm. 

2.1 One-Pass Optimization Algorithm 

An initial data allocation is developed in order to 
‘prime the pump’ for the remainder of the iterative 
design method. The purpose of the one-pass algo- 
rithm is to produce, in an efficient manner, a good 
quality starting data allocation. As described in the 
next section, a straightfonvard Most Frequently Ac- 
cessed (MFA) algorithm or the Apers’ one-pass 
algorithm [Apers 19881 can be used. 

2.2 Iterative Heuristic Optimization Algorithm 

This algorithm accepts the one-pass solution as a given 
data allocation+ The heuristic then alternates between 
distributed query optimization and distributed data 
allocation optimization until a local optimum is 
reached. A local optimum occurs when: 1) given the 
existing query schedules, the data allocation algorithm 
cannot find a lower cost solution, and 2) given the 
existing data allocation, the query optimization algo- 
rithm cannot find lower cost query schedules. (Since 
the iterative heuristic is greedy in nature, a global 
optimal solution cannot be assured.) Figure 2 shows 
the steps of the algorithm. 

The iterative approach controls the overall com- 
plexity of the combined problem. Each iteralion 
contains a well-defined sequence of query optimization 
followed by data allocation optimization. The number 
of iterations required to find a local optimal solution 
is easily seen to be bounded in the worst case [Blank- 
inship 19911. For any reasonable distributed system 
cost model, a given data allocation would produce a 
finite cost of query processing. Since the iterative 
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Figure 2: Iterative Heuristic Optimization Algorithm 

heuristic continues only while reduced-cost data 
allocations are found, the number of iterations must be 
finite. In our experimentation with the heuristic, only 
in very rare cases is a local optimum not found within 
2 to 4 iterations. 

This iterative approach allows great flexibility in use 
of distributed system cost models, optimization ob- 
jectives, and optimization algorithms. However, it is 
important that the optimization objectives be com- 
hined into a single cost equation, so that different data 
allocations can be unambiguously compared. Both the 
data allocation and query optimization algorithms 
should work toward minimizing this cost equation. 
Integrated cost models may consider query total time, 
query response time, local processing costs, storage 
constraints, load balancing over sites, etc. With 
sufficient insight into the specific distributed system re- 
quirements, a database designer should be able to 
adapt a wide range of potential query optimization and 
data allocation algorithms into the iterative heuristic. 

2.3 Search from Convergence Optimization Algorithm 

Experimentation has shown that the first local optimal 
data allocation may not provide a solution that is close 
to the global optimal data allocation. The Search 
from Convergence heuristic, shown in Figure 3, allows 
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igure 3: Search from Convergence Algorithm 

the search for the global optimum to continue by 
discovering a new data allocation with a lower cost. A 
list of candidate single relation moves is defined and 
ordered, based on potential benefit. The method of 
ordering these moves for our experiments is specified 
in the next section. Again, the designer has the 
flexibility to develop a customized ordering. 

For each single relation move, in order of potential 
benefit, a new data allocation is derived. The Iterative 
Heuristic algorithm is called to find a new local 
minimum design solution. If the new local minimum 
has lower cost, then we restart the Search from Con- 
vergence from that solution. If no lower cost solution 
is found, then the overall process is complete and the 
current data allocation solution becomes the final dis- 
tributed database design. The efficie.ncy of each 
execution of the Search from Convcrgcnce algorithm 
depends on the number of relations, r, and network 
sites, s, in the system. In worst case, r*(s-1) single 
relation moves would need to be tested. However, the 
designer can improve efficiency by limiting the search 
to only the n top relation moves in the list. 
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3. Design of the Iterative Optimization 
Method in the Simple Query Environ- 
ment 

We select the simple query environment upon which 
to implement, experiment, and analyze the iterative 
database design method. The simple query environ- 
ment, as defined in [Hevner and Yao 19791, assumes 
a fully connected, geographically distributed network. 
Transmission cost equations are identical between any 
two sites, and costs are based on the amount of data 
transmitted. Local processing costs are negligible and 
there are no storage constraints at sites. 

The relational data model is used to describe the 
data and query processing on the data. Only simple 
queries are processed. In a simple relational query, 
after local processing (i.e., selections, projections, and 
joins between relations located at a site), each query 
site has a single relation containing a single, common 
join attribute. Query optimization derives a strategy 
for transmitting and joining these relations in order to 
minimize query total time or query response time. 
(We note that other researchers have termed such 
queries ‘set queries’ [Gavish and Segev 19861.) 

The simple query environment is chosen because it 
has a manageable complexity while remaining realistic 
and interesting. Optimization algorithms from the 
simple query environment have been extended to 
general query environments as the bases for effective 
heuristics (e.g., (Hevner and Yao 19791). The parame- 
ters describing the simple query environment are: 

Si: Network sites, i = 1, 2 ,..,, s. 
For each relation Rj, j = 1, 2 ,..., r; 

n.: J number of tuples, 
a,: J number of attributes, 
S,: size (e.g., in bytes). 

Fo: each attribute djk, k = 1, 2,..., aj of relation Rj; 
Pjk: attribute density, i.e., the number of different 

values in the current state of the attribute 
divided by the number of possible attribute 
values. During join operations the density is 
used as a selectivity coefficient. 

“jk: size (e.g., in bytes) of the data item in attrib- 
ute djk, 

For each query Q,, n = 1, 2 ,..., q; 
freq,t: frequency of query Q, entered at result site 

Si during a given time unit, 
rclqj,: relation Rj is in query Q,, zero-one variable. 

In the remainder of this section, we design an imple- 
mentation for each algorithm in the iterative optimi- 
zation method. 

3,l One-Pass Algorithm 
This algorithm produces a good initial data allocation 
to prime the iterative heuristic. We have implemented 
two one-pass allocation algorithms; the MFA algo- 
rithm and Apers’ static algorithm. 
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3.1.1 Most Frequently Accessed (MFA) Allocation - If co-locating the relations is advantageous, the pair 
Algorithm 

Most existing research on data allocation assumes 
relations are accessed independently. Although many 
diverse design issues have been considered (e.g., 
storage capacity constraints, local processing costs, 
multiple copy update costs), the intermediate transmis- 
sions between relations (i.e., joins and semi-joins) 
which are often part of optimized query schedules, are 
usually ignored. To represent this approach, we 
implement a straightforward algorithm that assigns a 
relation to the site from which it is most requested; no 
intermediate data transmissions are considered. Thus, 
relation Rj is allocated to site Si where: 

is merged. For the remainder of this algorithm, the 
merged pair is treated as a single relation and all 
transmission volumes are recalculated to reflect the 
merge. 

When no further beneficial pairings exist, the algo- 
rithm outputs the final data allocation. 

3.2 Iterative lleuristic Algorithm 

The Iterative Heuristic algorithm requires the imple- 
mentation of compatible algorithms for query opti- 
millation and data allocation optimization. In the 
simple query environment, we have previously devel- 
oped optimal query optimization algorithms for total 
time (Algorithm Serial) and response time (Algorithm 
Parallel) optimization (Hevner and Yao 19791. Here 
we define compatible data allocation cost models for 
total time and response time optimization. In 
[Blankinship 19911, these cost models are shown to 
produce optimal data allocations via exhaustive search. 

MtX 2 relqi, freq, 
It*1 

3,1.2 Apers’ Data Allocation Algorithm 
The Apers’ static data allocation algorithm optimizes 
queries by assuming that each relation is located al a 
separate, virtual site with no relations allocated lo 
query sites. Then the query processing algorithm is 
applied to obtain a strategy of transmissions for each 
query. The transmissions from each query strategy are 
multiplied by the frequency of that query. 
Transmissions between each pair of rclatinns and 
transmissions between relations and sites arc aggre- 
gated. We use the notation: 
RSji = Sum of transmissions bctwcen relation Rj and 

RRjk 

site Si, for all queries. 
= Sum of transmissions between relation Rj 
and relation R,, for all queries. 

The allocation process begins by allocating each 
relation to the site where it has highest traffic. Rela- 
tion Rj is allocated to site Si where MAX Rsj,. 

i 
While there are more relation pairs to consider, the 
following processing is performed: 
* Select the relation pair, (Rjl Rk) with MAX mjk 

Y 
- Calculate the net result from co-locating the relation 

pair: 
1) Remove the relations from the sites to 

they are assigned. This increases total 
missions by MAX RS,, + max RS&, 

I i 
2) Unite the two relations and assign them 

which 
trans- 

to the 
site where the pair has highest transmissions. 
This decreases the total transmissions by 

The cost savings of the co-location is the difference 
of these two amounts. 

3.2.1 Total Time Optimization Algorithms 

Algorithm Serial produces an optimal query strategy 
by moving the relation with the smallest selectivity 
(i.e., attribute density) to the relation with the next 
smallest selectivity, and so on, until all relations are 
linked in a serial transmission pattern. When a query 
relation resides at the query site, two cases are tested: 
the regular serial pattern, and a pattern that leaves the 
relation at the query site out. The lower cost case is 
selected as optimal. 

We define a data allocation cost model which incor- 
porates the intermediate data transmissions from 
relation-to-relation and the final relation-to-query-site 
transmission. Relations are allocated to minimize the 
total time of these transmissions. 

Minim& 5 f;(l +)&?,, + 5 i(l-yIL)m,& 
i=l j=l j=l k-1 

where: 
‘ij = 1 if relation Rj is allocated to site S, otherwise 

0. 
‘jk = 1 if relation R. and relation R, are allocated to 

the same site, otherwise 0. 

For all Rj’ 5X, = 1. (Allocate 1 copy of each 
I=1 relation.) 

To illustrate the iterative heuristic for total time 
minimization, consider the following example in a 
simple query environment. Assume a network with 
three sites (1, 2, 3) and three relations (A, B, C) with 
the following selectivities and sizes: 
Relation 

A 
Selectivity 

1.00 
ziia 
1000 

E :: 
990 
980 
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There are five queries with result sites and frequencies 
as follows: 

auerv 
Join A, B, and C 

Que; I$equency C2uer Site 

Select * from A 2 2:00 
Select + from B 1.97 
Select * from B : 1.98 
Select * from C 2 2.00 

Initially, we assume all relations are at virtual sites, 
with no two relations at the same site, and apply the 
query optimization algorithm to obtain initial process- 
ing strategies. For the first query, joining relation A, 
B, and C, Algorithm Serial first orders the relations by 
increasing selectivity (i.e. C, B, A), and then performs 
transmissions and joins in this order. Relation C: has 
size 980 and is transmitted to B (RR,, = 980). C is 
joined with B, with the result relation having size 990 
x .98 = 970, and selectivity .99 x .98 = .97. This result 
relation is transmitted to relation A (RR,, = 970), 
and is joined with A, to produce the final result, which 
has size 1000 x .97 = 970, and selectivity 1.00 x .97 = 
.97. The final transmission delivers this result to the 
query site (RS,, = 970). 

Transmissions for the single relation queries are: 
R%2 = 1000 (size of A) x 2.00 (frequency) = 2000; 
RS,, = 990 (size of B) x 1.97 (frequency) = 1950; 
RSB, = 
RS; = 

990 (size of B) x 1.98 (frequency) = 1960; 
980 (size of C) x 2.00 (frequency) = 1960. 

Using these query transmissions, the data allocation 
algorithm can now find an initial solution. For this 
small example, we use exhaustive search to find an 
optimal data allocation. There are 3’ = 27 ways to 
allocate the 3 relations on 3 sites. The lowest cost 
allocation is A at 2, B at 3, C at 2, with total rransmis- 
sion time of 4870. 

Figure 4 represents this data allocation, and the 
initial query processing strategies. The numbers in 
boxes are volumes for local queries, where the alloca- 
tion has made transmissions unnecessary. The solid 
arrow represents the query on relation B from site 1, 
while the open arrows represent the processing for the 
query on all three relations. This data allocation 
result could be produced by a one-pass optimization 
algorithm (e.g. Apers) and is optimal, given the 
existing query strategies. 

We continue with another iteration of query opti- 
mization and data allocation to see if a better solution 
can be found. Since relations C and A are at the same 
site, Algorithm Serial initially joins these two relations, 
The result is then sent to B’s site; the final result is 
sent to the query site. This solution is shown in 
Figure 5. The data transmissions for this new strategy 
are RR 

9 
=I 980, RR, = 980, RS.,, = 970. Trans- 

missions or the single relation queries are unchanged. 
Thus, the total transmission time of this combined 
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TT-4070 

I 
Figure 4: Example - Optimal data allocation 

l-i-~3900 

Figure 5: Example - Re-optimized queries 

Figure 6: Example - Final combined solution 

solution is 980+970+1950 = 3900. These query 
strategies are optimal, given the existing data alloca- 
tion. 

The data allocation is re-optimized by moving rela- 
tion B from site 3 to site 1. The total time for this 
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combined solution is 1960 f 980 = 2940 (see Figure 
6). Applying another iteration to this data allocation 
results in no change to the query strategies. Thus, the 
iterative heuristic has converged. This simple example 
demonstrates how an gptimal one-pass solution can be 
significantly improved (40% cost reduction) by apply- 
ing the iterative design approach. 

Performing exhaustive search based on the above 
cost model is tractable only for small problems. For 
larger problems in our experiments, we implement 
Algorithm Serial and the Apers’ static algorithm in the 
iteration to minimize total time costs. 

3.2.2 Response Time Optimization Algorithms 
Algorithm Parallel finds an optimal query strategy to 
minimize response time by emphasizing parallel data 
transmissions on the network. (The details of this 
algorithm are found in [Hevner and Yao 19791 and are 
not repeated here.) An original distributed cost model 
is derived to be compatible with Algorithm Parallel. 
The response time data allocation cost model is 
defined as follows: 
S” = Site where query Q, originates. 
*” = Number of (parallel) transmissions into S, 

for query Q,. 
QRSj, = Transmission volume for the query Q, 

strategy, per unit time, between relation Rj 
and S,. 

mnj = Number of (parallel) transmissions query 

QkRnkj 

Q, has into relation Rj. 
= Transmission volume for the query Q, 
strategy, per unit time, from relation R, to 
relation Rj. 

The problem of allocating relations on the network to 
minimize response time is to minimize: 

i 2X I(1 -Xls)QRS,,, + Rllmc,] 
n-1 i-1 

Minimize the response time total over all queries. The 
response time of query q is the MAX response time of 
the parallel transmissions into the query site, S,. The 
response time of a transmission is the sum of: 
1) the transmission time for the relation, Rj, to the 

query site, S, (this is zero if Rj is allocated at S,); 
2) the response time of the schedule coming into 

relation Rj’ 
where: 

Rlbne, = h?X [(l -Y,JQJZRti t Rllme, ] 
k=l 

The response time of the transmission schedule into 
relation Rj is the MAX response time of the individual 
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parallel transmissions into Rj. The response time of 
an individual transmission of relation R, into relation 
Rj is the sum of: 

1) the transmission time of the relation R, into Rj’ 
which is zero if Rj and R, are allocated at the 
same site; 

2) the response time of the transmission schedule 
into R,, where: 

31 
,I = 1 if relation Rj is allocated to Si, otherwise 0. 

jk = 1 if relations Rj and R, are allocated to the 
same site, otherwise 0. 

For each relation Rjl CX, = 1. 
i=l 

(Allocate 1 copy of each relation.) 
To better understand the objective function of this 

cost model, consider Figure 7, which displays an 
arbitrary general query schedule, showing the schedule 
of transmissions and joins into the query site. For this 
query, the data allocation objective function is to 
minimize: 

The objective function and the query have similar 
form. The objective function shows recursion; the 
response time of relation B into the query site includes 
the response time of relation C into relation B, which 
includes the maximum of D into C and E into C. 
Each relation-site transmission is eliminated if the 
referenced relation is allocated to the referenced site; 
each relation-relation transmission is eliminated if 
both relations are allocated to the same site. 

I 

Figure 7: Response time example 
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Again, small problems can be solved iteratively using 
Algorithm Parallel and an exhaustive search for 
optimal data allocations using the derived cost model 
above. However, for larger problems, a tractable 
heuristic data allocation algorithm that minimizes 
response time cost is needed in the iteration. We have 
found no published algorithm to do this, so in our 
experiments we have modified the Apers’ static algo- 
rithm for this purpose. 

3.3 Search from Convergence Algorithm 
When a local optimum is reached, finding a lower cost 
solution requires changing both the data allocation and 
the query processing schedules. To select and order 
single-relation changes to the data allocation, we 
analyze the “possible” query transmission patterns, 
instead of considering only the existing query sched- 
ules. This approach recognizes the interdependencies 
between the data allocation and query optimization 
problems, and the characteristics of local optimum 
solutions. 

For each relation in a query, we record one possible 
transmission between the relation and the site of every 
other relation in the query, and an additional transmis- 
sion to the query site. For example, if we have a query 
at site 1 which accesses relations A at site 2, B at site 
3, and C at site 4, possible transmissions are: A to 3; 
A to 4; A to 1; B to 2; B to 4; B to 1; C to 2; C to 3; 
C to 1. For a query Q, on r, relations, there arc r”* 
possihle transmissions. Since the number of relations 
in a realistic query is limited, this number is manage- 
able. Each possible transmission is assigned the 
frequency of it’s query. We aggregate over all queries, 
defining PRSji asthe sum of possible transmissions be- 
tween relation R, and site Si. 

For each relation Rj, currently allocated to site S,, 
we calculate the ratio: 

Mix PRS) 
I+r 

PRT1, 

Relations are ordered by descending value of this ratio. 
The sites for each relation are ordered by descending 
possible transmission volume. The Search from 
Convergence algorithm tests the first two site moves 
for each relation. Thus, the maximum number of 
iterations is 2r. 

4. Experimental Results 
A major benefit of testing within the simple query 
environment is that optimal response time and total 
time query schedules can be found in polynomial time 
[Hevner and Yao 19791. Testing with optimal solu- 
tions within this simplified environment allows the 
development and understanding of concepts that can 
be extended to the general query environment. Given 
a data allocation, it is possible to find an optimal set 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

of query strategies by applying either Algorithm Serial 
(to minimize total time) or Algorithm Parallel (to 
minimize response time). Given a set of query strate- 
gies, it is possible to find an optimal data allocation by 
performing exhaustive search using the data allocation 
cost models of Section 3. By solving for optimal query 
strategies on each possible data allocation, an optimal 
solution to the combined query optimization and data 
allocation problem can be found. We use exhaustive 
search to provide benchmark optimum solutions for 
evaluating performance of the iterative method. 

A common approach to characterize query behavior 
is to generate experimental queries by randomly 
selecting relations from a problem set. However, 
random selection of relations is not an accurate model 
of the access patterns occurring in real-world database 
systems. As the number of queries increases, random 
selection tends to create roughly equal joint-access 
probabilities between all relation pairs; usage patterns 
of this type create little incentive to allocate relations 
in separate clusters. In realistic systems, a-s pat- 
terns are not random -- some relations and relation 
sets have higher joint-access probabilities than others. 
These differences in access patterns create incentives 
to form clusters of relations, allocated at different 
sites. 

To create more realistic data access patterns, our 
experimental design includes the concept of applica- 
tion data sets. Each experimental setup assumes a 
specified number of applications. Each application 
processes queries against a defined set of relations. 
Each query randomly selects relations from the 
application’s set of relations, rather than from all 
available relations in the system. We assume each 
application is executed from a single site. If no 
overlap exists between application data sets, distributed 
allocation simply requires placing each relation at the 
site of the application. However, most often overlap 
exists between the data sets of different applications. 
This overlap in usage creates interesting distributed 
data design problems. 

We model the overlap between the data sets used by 
different applications by a distribution function based 
on Zipfs Law [Knuth 19731. Zipfs Law can be stated 
as: 

PI = c/l, p2 = cl2. . . . . pN = clN, 
where c = l/H,, and H, is the Nth harmonic 
number. 

We use an approximation to Zipfs law provided in 
[Knuth 1973 (page 398, equation 13): 

PI = cd- B , p* = d2’-e, .*., pN = c/N’“, where c = 
IlH,(‘“), and If,(‘) is the Nth harmonic number of 
order s (i.e., I-’ $ 2-’ + ,.. + NS). 

Where pi represents the probability that a given 
relation appears in i applications. (The procedure for 
assigning relations to applications is detailed in 
[Blankinship 19911.) When 8 = 0, this distribution 
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matches Zipfs Law. As 8 increases, overlap between 
application data sets increases until all applications 
share the same set of relations; as 0 decreases, overlap 
decreases until each application has a distinct data set 
with no relations shared between applications. 

We present experimental results for the iterative 
design method we have proposed. Identical problem 
sets are used under the minimization of total time and 
the minimiiration of response time. The algorithms 
found in Section 3 are used for parametric studies. 
The dependent variable in the following experiments 
is the system cost of the required queries on the 
derived data allocation. We compare five levels of 
design optimization: 
1. MFA - System cost of the Most Frequent Access 

data allocation used as a one-pass solution. 
2. Apers - System cost of Apers’ static data alloca- 

tion used as a one-pass solution, 
3 . . 1st Local Opt. - System cost of the first local 

optimal data allocation from the iterative Heuris- 
tic algorithm. 

4. Conv. Search - System cost of the final data 
allocation solution from the Search from Convcr- 
gence algorithm. 

5. Optimum - System cost of the global optimal data 
allocation obtained by exhaustive search. (Be- 
cause of the complexity of the combined query 
optimiirationldata allocation problem, WC find 
optimal solutions for only small problems.) 

Because of the wide range of system costs found in the 
randomly generated experiments, we use the Apers 
method as a baseline for total time experiments, and 
the simple MFA method as a baseline for response 
time experiments. Each graph shows the baseline 
method fiied at 100% and records other cost lines as 
a percentage of the baseline method. In all graphs, 
each data point represents the average system cost for 
100 randomly generated problems. 

We study the effect of the following parameters as 
independent variables: 
- Number of applications/sites in the problem. 
- Number of relations per application. 
- Relations per query, specified as the mean of a 

normal distribution with standard deviation I. 
- The amount of overlap between application data 

sets, 8. 
- Number of queries, uniformly distributed over all 

applications/sites. 

4.1 Total Time Experiments 

This section evaluates the performance of the iterative 
design method to minimize total transmission time in 
the simple query environment. 

Effect of Relations per Query 

Figures 8 and 9 show performance of the iterative 
method and Apers method, as the number of relations 
per query is varied. Fixed parameter values arc at the 
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top of each graph. Figure 9 is for small problems 
which are tractable for exhaustive search. Optimum 
solutions are shown as benchmarks for performance of 
the iterative method. 

The iterative method demonstrates increasing 
optimiiration benefits over the MFA method as the 
mean number of relations per query increases. The 
MFA method ignores transmissions between the 
relations in a query, which become increasingly impor- 
tant as the number of relations per query increases. 
The performance improvements of the iterative 
me.thod over Apers method are largest in the middle 
ranges of the graphs; with a very small number of 
relations, little optimkration potential exists; a similar 
situation occurs with a large number of relations in a 
simple query because all relations tend to cluster at a 
single site. 
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Summary of Total Time Experiments 

In addition to varying the number of relations per 
query, we generated problems while varying the 
number of applications, number of relations per 
application, and application overlap parameter. A 
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total of 4,400 problems were solved; 1,100 problems 
weresmall enough to he tractable by exhaustive search, 
while 3,300 were larger, more realistic prnhlcms: 
- The iterative method always found solutions having 

equal or lower cost than Apers’ met hod. 
- The iterative method averaged within 2% of optimal 

on the 1,100 smaller problems solved for optimal 
solutions by exhaustive search. 

- On the 3,300 larger problems, total transmission 
time was reduced compared to Apers’ method on 
1,374 (42%) of the problems; these reductions 
averaged 12% and ranged up to 96%. 

4.2 Response Time Experiments 

We perform a similar set of experiments minimizing 
response time in the simple query environment. While 
the change in cost objective is irrelevant to the MFA 
data allocation solution, Apers’ static algorithm is 
predicated on total time minimization. Therefore, we 
use the lower cost data allocation from MFA or Apers’ 
algorithms as the starting one-pass solution. Since we 
know of no data allocation algorithms designed 
specifically for response time minimization, system 
designers currently must use total time algorithms. 
Thus, to evaluate this approach, we include Apcrs 
algorithm in our response time graphs. Our cxpcri- 
mental data show that the iterative design method 
consistently finds data allocation solutions with lower 
system response time cost than any known method. 

Effect of Number of Applications 

Figure 10 demonstrates a consistent improvement of 
data allocation cost, with the final iterative method 
solution yielding 60% cost reductions over the MFA 
solution. The number of applications has little cffcct 
on the range of cost improvement. 
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Effect of Number of Relations per Application 

Figure 11 also shows relatively consistent response 
time improvements by the iterative method as the 
numhcr of relations per applicalion is varied; average 
response time improvement over MFA is 60% to 70%. 
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Effect of Relations per Query 

When minimizing total time, we observed increasing 
optimization benefits over the MFA method as the 
mean number of relalions per query increased. Figure 
12 demonstrates the same effect when minimizing 
response time of queries. Apers method shows erratic 
response time performance when the mean number of 
relations per query is high. 
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Effect of Application Overlap 

Figure 13 shows a stable relationship between the 
optimiiration methods as we vary the application 
overlap parameter, theta. The iterative method 
reduces response time about 60% compared to MFA 
and about 50% compared to Apers method. 
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Comparison with Optimum Solutions Found hy Ex- 
haustive Search 

As in the total time tests, we compare performance of 
the iterative method to optimal data allocation solu- 
tions found by exhaustive search. The graphs below 
show tests on small problems. which arc tractable for 
exhaustive search, Figure 14 test rhc same indcpcn- 
dent variable (relations per application) as Figure 11 I 
while Figure 15 displays results for the same variahlc 
(relations per query) as Figure 12. 
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Summary of Response Time Experiments 

On small test cases where optimal solutions are found 
by exhaustive search, solutions from the itcrarive 
method average 3% from optimum. An improved re- 
sponse time data allocation algorithm within the 
iterative framework, instead of the modified Apcrs’ 
total time algorithm, would probably improve final 
solutions. Overall performance of the iterative method 
on these response time problems is significantly bcttc,r 
than known alternatives. 
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4.3 Algorithm Efficiency 

The table below demonstrates that the overall iterative 
design method is reasonably efficient. The number of 
calls to re-optimize all queries and actual run times for 
the heuristic are shown. Exhaustive search for the 
combined data allocation and query optimization 
problem can bc performed by re-optimizing queries for 
each possible data allocation (i.e., s’ calls). Each line 
in the table represents an average for 5 problems. 
Run times were measured on an IBM PSR Mode1 80, 
with a 16Mhz 80386 processor, 80387 math co-proces- 
sor, and 6MB of memory, running OSt2 1.2, with 
algorithms written in Microsoft C 6.00. Test problems 
were generated with 6 relations per application and 
application overlap parameter = -1.5. These 
benchmarks are for minimizing total transmission time. 

Table 1: Algorithm Efficiency 

Number of Iterative Method Exhaustive Search 
$& I&& Qgg-& Iterations Run Time Search Snag pun Timr 

210 8 12 0.4 set 1,024 9sec 
3 15 12 19 1.4 see 14,.3,907 l 

4 18 16 37 3.8 set 6.8 x 101’ l 

5 25 20 39 7.0 set 3.0x 101’ l 

6 29 24 68 21.6 set 3.7 x 1022 l 

134 28 51 21.8 set 5.4 x 10D * 
8 36 32 58 30.4 set 3.2 x lo32 * 
9 43 -36 80 59.6 set 1.1 x lo41 * 

10 52 40 96 111.Osec 10 x IO”2 * 
* - Runs not executed. 

Since the iterative method for database design i?, 
applied at system design time and can be run off-line, 
performance efficiency is not a major concern. 

5. Conclusions and Future Research Direc- 
tions 

This research is an important contribution to the 
understanding of the design tradeoffs between query 
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optimization and data allocation for distributed 
database design. We have developed and tested an 
iterative solution method as an cfficicnt heuristic for 
simultaneously solving these two NP-hard prohlems. 
The experimental studies dcmonstratc that intcgratcd 
solutions for the combined prohlcm arc oilcn signifi- 
cantly below costs for one-pass methods. For both 
total time and response time cost objectives in the 
simple query environment, solutions are within 9% of 
optimum. Existing research is also extended by the 
development of a new rcsponsc time cast model for 
the combined data allocation and query oprirni7alion 
problem. The iterative mclhod is not only cffcctivc, 
but is also very flexible. It can accommodate most 
current query optimization and data allocation algo- 
rithms developed for distributed systems. 

Planned extensions of this research include the ap- 
plication of our simple query environment insights on 
the iterative method to a gcncral query cnvirnnmcn1. 
This research will include Ihc dcvclopmcnt of a new 
response time data allocation algorirhm for USC wilhin 
the iterative method. Finally, we plan to inrcgrare the 
design problem of data redundancy into the iterative 
design method [Muro et al. 19851. The numhcr, 
placement, and effective use of data copies is an 
important design prohlem that is clearly intcrdcpcn- 
dent with query optimization and data allocation. 
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