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Abstract 
Within the last several years, there has been a 
growing interest in applying general multiproces- 
sor systems to relational database query process- 
ing. Efficient parallel algorithms have been 
designed for the join operation but usually have a 
failing in that their performance deteriorates 
greatly when the data is nonuniform. In this 
paper, we propose a new version of the hash- 
based join algorithm that balances the load 
between the processors, for any given bucket, in 
a shared everything environment. We develop an 
analytical model of the cost of the algorithm and 
implement the algorithm on a shared memory 
multiprocessor machine. We also perform a 
number of experiments comparing our model 
with our empirical results. 

1. Introduction 
Applying m u ltiprocessor m ach in es to data- 

base query processing has been an active area of 
research. The motivation for using a multipro- 
cessor machine stems from the fact that databases 
are getting larger and that an adequate level of 
performance, e.g. response time, is required. 
Most of the proposed multiprocessor database 
systems are based on a shared nothing 
[BF87,DGGHKM86,K090] architecture. That is, 
where each processor has its own local memory 
and processors communicate via message passing. 
In addition, a disk or set of disks is connected to 
each processor, allowing processors to read/ write 
to a disk in parallel. There have also been pro- 
posed systems that follow a shared everything 
[DKT90.MR89,OS90,QI88,SKPO88] paradigm, 
In these schemes memory and disks are shared 
by all processors, Once again, a disk (or set of 
disks) would have its own I/O controller so that a 
read/write to different disks can be done in paral- 
lel. 
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For relational database systems, there have 
been a number of algorithms developed for 
implementing the join operation in parallel 
[BF87,DG85,QI88]. They include the nested-loop 
method [BF87,SD89], the sort-merge method 
[QI88,SD89] and the hash-join method 
[QI88,SD89]. The performance of the algorithms 
is usually predicted by analytical modelling or 
simulation. In the performance analysis it is 
assumed that the data (relations) are uniformly 
distributed. However, as pointed out in 
[LY88,SD89], a non-uniform data distribution 
(also referred to as data skew) can have a severe 
affect on the performance of the join algorithm. 

In this paper we develop a hash-join algo- 
rithm that is robust in the face of data skew. It is 
specifically designed for a shared everything 
architecture, We present some of the previous 
work that has been done to devise a join algo- 
rithm that will be immune to data skew in the 
next .section. In section 3, we present our hash- 
join algorithm that balances the load when the 
data is skewed. In section 4, we present an 
analytical cost model for our algorithm and in 
section 5, we show the results of implementing 
our algorithm on a shared memory multiproces- 
sor math ine. 

2. Previous Work 
In [WDY90], the shared nothing model of 

parallelism is assumed and a parallel join algo- 
rithm based on the sort-merge method is 
presented to handle data skew. The algorithm is 
based on the divide-and-conquer approach, It 
adds an extra scheduling phase to the usual sort, 
transfer and join phases. During the scheduling 
phase, an optimization algorithm is used, which 
takes the output of the sort phase and determines 
how the join is to be divided into multiple tasks 
and how those tasks are to be assigned to proces- 
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sors so as to balance the load. They present an 
analytical model of their algorithm’s performance 
and show that it achieves a good load balancing 
for the join processing phase in a CPU-bound 
environment. 

In [K090], a robust hash-join based algo- 
rithm is devised for a specific parallel database 
computer architecture. This architecture is also 
based on a shared nothing model. Instead of their 
previous approach [KNHTPO] of allocating buck- 
ets to processors, they dynamically allocate buck- 
ets to processors so as to balance the load. They 
propose a bucket spreading strategy which parti- 
tions buckets into fragments and in a subsequent 
phase these fragments are assigned to processors. 
The bucket spreading strategy is similar to the 
idea of disk striping. They also use a specific net- 
work structure, i.e., an omega network, to assist 
in the bucket spreading strategy. They present a 
simulation model of their system and show that 
the performance of their algorithm is not affected 
very much by the presence of data skew. The cost 
of writing the result of the join to a file and to 
disk is not considered. 

In [SD89], the effect of limited data skew 
on four different join algorithms is examined. 
They conclude that the performance of the hash- 
based join algorithms degrade when the join 
values of the inner relation are highly skewed and 
that a non-hash-based algorithm should be used 
in those cases, e.g. sort-merge. However, the 
double skew case was not considered. 

Some work has appeared in the recent 
literature dealing with hash-join algorithms for a 
shared everything architecture [LTS90,QI88], In 
[QISS], they present a large set of parallel algo- 
rithms, including hash-join, for implementing a 
join operation on a shared memory database 
machine. An analytical model of the various 
algorithm’s performance is presented. However, 
the problem of data skew was not considered. 

In [LTS90], they examine only hash-based 
join algorithms for a general purpose shared 
memory multiprocessor. The amount of avail- 
able memory is assumed to be proportional to the 
number of processors. In this approach a global 
hash table is built for each bucket. They use a 
locking mechanism to provide exclusive access 
for a write to this hash table but they allow mul- 
tiple reads to occur simultaneously. They provide 
an analytical model of the total processing time 
for their join algorithms. As in the previously 
mentioned work in this section, data skew is not 
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considered. 

3, Hash Join Algorithms for a Shared 
Everything Architecture 

The basic architecture that we assume is 
that o’f a shared everything machine. Each proces- 
sor shares common memory with other proces- 
sors and each processor may have some local 
(nonshared) memory as well. Processors also 
share secondary storage devices. We assume that 
for secondary storage, we have the same number 
of disk drives as we do processors. We do not 
have to limit our approach to this but we had to 
make a decision regarding this feature and this 
seemed reasonable. The processors, disks and 
memory are linked by an interconnection net- 
work. We assume that disk reads/writes of 
different pages can be done concurrently as can 
memory accesses to distinct variables. Although 
main memory sizes are increasing rapidly, we 
assume that neither of the two relations to be 
joined will fit entirely in main memory. 

The hash-join algorithm that we consider 
for a shared memory multiprocessor is the 
GRACE hash-join method [KTM83]. This algo- 
rithm will also form the basis for our load balanc- 
ing hash-join algorithm. Since the number of 
processors will be relatively small in a shared 
memory multiprocessor, the number of buckets 
produced will be greater than the number of pro- 
cessors.. Hence, a single processor will handle 
multiple buckets. The GRACE hash-join algo- 
rithm can be summarized by the following phases 
for performing R Ir(l S. 

I. Read relation R, partition the tuples into 
buckets based on a given hash function 
applied to the joining attribute value and 
write those buckets to secondary storage; 

II, Read relation S, partition the tuples into 
buckets based on the same hash function 
as used in prior phase and write those 
buckets to secondary storage; 

III, For each bucket created in phase I, read 
the R bucket from secondary storage, 

. build an in memory hash table using 
some hash function applied to the joining 
attribute value, read the corresponding S 
bucket from secondary storage and for 
each tuple probe the hash table for an R 
tuple with the matching value for the 
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joining attribute. The join result is cost and implement the algorithm so that we can 
formed by the matching tuples. validate our model. 

One can see that if the data for each rela- 
tion is partitioned across all the disks, then each 
phase can be done in parallel. As seen in 
[LTS90], one has to be careful in phases I and II 
that multiple processors do not try to write to the 
same bucket at the same time, In [LTS90], they 
used locks to avoid the problem. However, when 
the data is highly skewed the lock conflict rate 
can be quite high for both phases. For our adap- 
tation of this algorithm, we avoid the use of 
locks. In phase I (or phase II) each processor 
determines the bucket that a tuple belongs in but 
does not write it to the bucket at that time. 
Instead that information is stored in a small array. 
The array is small since we are processing a page 
of a relation at a time on each processor, Hence, 
the number of entries in the array is equal to the 
number of tuples in a page. Each processor sorts 
its array in increasing order of bucket number 
and builds a small index on that information, i.e., 
linking a bucket number with the tuples that 
belong to that bucket, After that, the processors 
are assigned buckets. The tuples for each given 
bucket will be placed in a buffer page by only one 
processor. To accomplish this, a given processor 
wilI access a distinct entry in the index of each of 
the processors. For example, if a processor is 
responsible for bucket 0, then that processor will 
access entry 0 in the index created by each of the 
processors. With this scheme only one buffer 
page per bucket is needed and there is no conten- 
tion between processors. 

In contrast to the approach in [LTS90], one 
hash table is not built at a time and alI processors 
do not probe that hash table in parallel during 
phase III, As previously mentioned, if the data is 
highly skewed, then building and probing a single 
hash table in parallel can result in a high conflict 
rate that degrades performance, Instead, if there 
are n processors then hash tables for n buckets 
will be created in parallel and probed in parallel. 

For our load balancing hash-join approach, 
we need to modify the three phases and to add a 
scheduling phase prior to phase III. In phase I, 
we keep a count of the number of tuples that 
hash into each bucket for relation R. In addition, 
since one bucket may need to be processed by 
several processors in phase III, we must stripe the 
pages of a bucket across the disks. This will 
allow us to read in a portion of one bucket in 
parallel and to process each portion in parallel. 
We need to do the same for phase II but for rela- 
tion S. Having the size (in number of tuples) for 
each bucket we can decide on the number of pro- 
cessors to handle each bucket and the schedule of 
buckets to processors. For a given bucket, we 
use the maximum of the sizes of the correspond- 
ing R and S buckets for the following calculation. 
To determine the number of processors that are 
needed to handle a bucket, we calculate the size 
of a uniform bucket, u&e, i.e., as if the tuples 
were uniformly distributed to buckets. We then 
divide each actual bucket size by u&e and take 
the ceiling of that result, which yields the number 
of needed processors per bucket, 
processorsger-bucket . The scheduling phase, 
which precedes phase III, sorts the 
processorsger,bucket in form ation in increasing 
order. Next a schedule is produced by using a 
first-fit decreasing heuristic to allocate buckets to 
individual steps in the schedule so that the 
number of steps is minimized. In the first-fit 
decreasing heuristic, buckets are allocated to a 
step in non-increasing order of the number of 
processors needed. If the required number of pro- 
cessors for the bucket to be scheduled is not 
available in the current set of steps in the 
schedule, then a new step is added to the 
schedule and the bucket is allocated to the pro- 
cessors in that new step. 

Our load balancing hash-join approach is 
similar to the approach in [K090] but with the 
following notable differences: our method is 
designed for a shared everything system as 
opposed to a shared nothing system, we make use 
of no special hardware and we assign a bucket to 
one or more processors based on a first-fit 
decreasing heuristic, similar to that used for the 
bin-packing problem [HS78]. In addition, we 
develop an analytical model of our algorithm’s 

Once the scheduling phase is complete, 
which is done by a single processor, phase III 
may begin using the schedule as a driver. The 
schedule is a global array and as such is accessi- 
ble by all processors. Using the schedule infor- 
mation, each processor involved with a given 
bucket can read a disjoint subset of the pages of 
that bucket since the pages are striped across the 
disks and can build an in-memory hash table of 
the tuples on those pages. Now, since there does 
not exist just a single hash table for a given 
bucket but, let say n hash tables where n is the 
number of processors needed to process the 
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bucket, the tuples in the corresponding S bucket 
must be processed against each of those n hash 
tables, Once again, since the pages of the S 
bucket have been striped across the disks, a dis- 
joint subset of those pages can be processed by 
each of the n processors. At this point the pro- 
cess resembles the nested-loop join method since 
a page read (by processor i) and processed 
against hash table I has to be processed against 
the remaining n- 1 hash tables. This is accom- 
plished in a circular fashion, i.e., processor i 
processes a data page with hash tables 
i,i+ l,..., n ,O,..,, i- 1 in that order. The circular 
approach is also used for reading pages from the 
disks so that contention is minimized due to mul- 
tuple processors trying to read distinct pages from 
the same disk at the same time, 

Table I. Model Parameters 

Parameter 
IRI 

ISI 

(RI 
61 
JvR 

tR 

‘S 

P 
B 
D 
IO 

Comp 

Assign 

C 
F 
Hash 

Move 

Rskew 

Sskew 

Description/ Value 
size of relation R = 1000 
(in pages) 
size of relation S = 1000 
(in pages) 
number of R tuples 3: 10000 
number of S tuples = 10000 
number of unique join 
values in relation R = 1000 
number of tuples per 
page of relation R = 10 
number of tuples per 
page of relation S = 10 
number of processors = 2 thru 9 
number of buckets = 25 
number of disks = 2 thru 9 
time to perform an 
I/O operation = 24 ms 
time to compare 
two attributes = 0.007 ms 
time to assign a 
value to a variable = 0.007 ms 
sorting constant = 2 
scheduling constant = 2 
time to compute hash 
value of an attribute = 0.015 ms 
time to move a tuple 
in memory = 0.040 ms 
fraction of R tuples 
with skew data value = 0.1 to 0.4 
fraction of S tuples 
with skew data value = 0.1 to 0.4 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

4, Analytical Models for Hash Join 
Algorithms 

In this section we present the analytical 
models for both hashing schemes. To make the 
modelling more tractable we make a few assump- 
tions. We should note that these assumptions are 
not restrictions on the algorithms. The main 
assumption regards the data skew. We assume 
that only one bucket contains a disproportionate 
number of tuples, which is a percentage of the 
total number of tuples in the relation. The other 
tuples are uniformly distributed across the 
remaining buckets. To accomplish this we have a 
single data skew value for the joining attribute 
and we generate a specified fraction of the tuples 
with that value. The remaining tuples will actually 
be distributed across all of the buckets, including 
the skew bucket. In addition, when we consider 
the double skew case, the corresponding buckets 
in the other relation have the same structure. 
This is in agreement with the assumptions made 
in other work [LY88]. We also assume that there 
is enough main memory to process any given 
bucket, since we are primarily interested in how 
data skew affects load balancing and not how data 
skew may cause overflow in a hash bucket. Table 
I describes the different parameters and their 
values used with the analytical models. They are 
similar to the values found in 
[LTS90,QI88,Sha86]. 

We will first present the model for the basic 
hash-join approach and then for the load balanc- 
ing approach. Since the processors are working in 
parallel, the one processor that takes the longest 
time to finish in each step will dictate the overall 
cost of the algorithm. That processor is the one 
that is assigned the skew bucket. As already 
mentioned, that processor will also handle an 
equal share of the other buckets. Hence, the cost 
formulas will be derived for just that processor. 
In phase I, we have the following steps: 

(a) Read pages of R relation: 

l-1 ‘“p’ *IO 

(b) Find bucket address of tuple: 

‘tR *Hash 
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(cl Store address of tuple and bucket address in 
an array: 

2; IRI 

l-1 P 
* tR *A ssign 

(d) Sort array by bucket number: 

(d 

c. ‘R’ 
l-1 P ‘1R log2 tR *(Compare + Assign) 

Build index on bucket number: 

‘( fR SCompare + 2-B -Assign) 

Move tuples to their associated buckets: Note, 
based on our assumptions, one proce 

handle the skew bucket as well as 

other buckets since the bucket to processor 
assignment is static and since all processors 
will handle approximately the same number 
of buckets. So the skew value contributes 
[Rskew*(R 11 tuples to the skew bucket. 

Since the other tuples are uniformly distri- 
buted cross all B bucke s, each bucket will 

have f 1 - Rskew)uF\tuples. So the total 

number of tuples in any nonskew bucket can 
be delined as 

hukewbuckcr = (1 - Rskew),? 
1 

and the total number of tuples in the skew 
bucket can be defined as 

t akevbuckrt = k skew ’ (R ) 1 + hamhdmckrr 

So we have the following cost for this step: 

- 1) ‘hwnrkewbuckcckcr +fove 
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(g) Write pages of buckets to disk: 

Phase II has the same cost formulas as phase I 
except that the R relation is replaced by the S 
relation, Rskew replaced by Sskew and tR 
replaced by tS. 
Phase III consists of the following steps: 

(a) Read R pages for skew bucket and 

other buckets: 

This is the same cost as in Phase I, step (g). 

(b) 

(cl 

(d) 

379 

Build an in-memory hash table for each 
bucket: 

I skrwbwkrr Ofash + Move) + ( 
B 

l-1 P - 1) 

‘t,hWbWkr,*(Hash + Move) 

B Read S pages for skew bucket and p - 1 
F-1 

other buckets: 

This is the same cost as in Phase II, step (g). 

Probe the hash table and form the join: 

The cost for the non skew buckets is 

_ 1),( (1 - Sskew)s(S 1) 
B 

*(Hash + (Comp + Move) 
, (1 - Rskew)*(R ) ) 

flR - 1 

The cost for the skew bucket is 

(1 - Fskew)s(Sskew.(S) + (’ - S\W)“S l) 

:(Hash f (Comp + Move) 

Jl - Rskew)*(R 1) 
flR - 1 
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+ Fskew$Sskew-(S] + (’ - skgeW)“sJ) 

*(Hash + (Comp + Move)mRskewe(R )) 

where Fskew is the fraction of tuples in rela- 
tion S that match the skew value in relation 
R, i.e., 

Sskew * (S ) 

Sskew*(S) + (1 - Sskew)$J 

We now present the analytical cost model 
for our load balancing hash-join algorithm. 
Phase I has the same cost formulas as phase I for 
the hash-join model. 
Phase II has the same cost formulas as phase II 
for the hash-join model. 
Scheduling phase: 

F~B’*Assign 

where F is a scheduling constant. 
Phase III consists of the following steps: 

(a) Read R pages for skew bucket and other 
buckets: 

,O,l[B-(P;N+l) 1, [(L-Rsky)*lR I \+ 

Rskews I R I + l(l-R$ke/)l R I] 

I 

N ’ I 

where N is the number of processors needed 
to handle the skew bucket. N is defined as 

Max ( Rskew*(R ) + (1-Rskew)*(R JIB 
(R l/B 

, 

Sskew*(S ) + (1- Sskew)’ (S JIB 
(S l/B 

1 

The first term gives the number of other 
buckets that will be handled by the processor 
that handles the skew bucket times the 
number of pages for non skew buckets. The 
second term gives the number of pages per 
processor for the skew bucket, i.e., number 
of pages of skew data plus number of pages 
for non skew data in skew bucket divided by 

(b) Build an in-memory hash table for each 
bucket: 

the number of processors that will process the 
skew data bucket. 

IB-(P;N+I) 1, [(1-Rsy)dR i 

‘tR *(Hash + Move) 

RskewmlR I + 

+ 
N 

‘tR *(Hash + Move) 

(c) Read S pages for skew bucket and other buck- 
ets: 

fO*[ 
I 

B-(P-N+1 p ) ].rl-S~k~)*lSl] 

Sskew*I S I -t 
+ 

/(l-S~k~).lSl j 3 

N 

(d) Probe the hash table and form the join: 

*(Hash + (Camp + Move)*j’ -FRkyy’” ‘; 

+ N*[ (1 - Fskew)*(Sskew*[S) + (’ - Skew)*‘S)) 
B 

-(Hash + (Comp + Move)*(l -~Rk~~cR )) 

+ Fskew*(Sskew*(S) + 1 1 - Skew)*(S) 
B > 

.(Hash + (Comp + Move), 
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5. Comparison of Analytical and 
Experimental Results 

In this section we present the results of 
some of our experiments as well as the results of 
our analytical models. The hash-join algorithms 
were executed on a 10 node Sequent Symmetry 
multiprocessor, in a single user environment. 
Since the multiprocessor we used does not have a 
parallel I/O capability, that part of the algorithm 
had to be simulated. When a page I/O was 
required, a procedure was called that did a busy 
wait for the required amount of time, e.g., 24 ms. 
We ran experiments with a uniform data distribu- 
tion, single skew in the inner relation, single 
skew in the outer relation and skew in both rela- 
tion, i.e., double skew. For the single skew 
cases, the join selectivity was the same, i.e., 
0.0001. For the double skew case, the join selec- 
tivity was 0.0406, the result was considerably 
larger than in the single skew cases, Also, in the 
double skew case, the CPU processing became 
the dominating factor in the response time of the 
algorithms. We also ran experiments that 
included the cost of writing the resultant relation 
to secondary storage. We should note that our 
analytic models were adjusted to accomodate the 
extra I/O cost, although for brevity we did not 
show the changes of the cost formulas in the 
paper. We should note that the data used for the 
graphs are an average of several runs of the algo- 
rithms on the multiprocessor. We should also 
point out that in our experiments we assumed 
that enough memory exists to permit an in 
memory hash table to be built for the maximum 
bucket size. So for the basic hash-join method, 
we would not incur bucket overflow. Hence, our 
experiments deal solely with the load balancing 
aspect of the hash-join approach in a shared 
memory multiprocessor. 

In figure 1, we show the effect of data skew 
on the basic hash-join algorithm. An interesting 
observation concerning the 6 processor case, is 
that the decrease in response time over the 5 pro- 
cessor case is small. The reason for this, is that 
for both the 5 and 6 processor cases, a maximum 
of 5 buckets will be processed during phase III by 
at least one processor, i.e., the processor that dic- 
tates the overall performance. A similar situation 
occurs for the 8 processor case. 

As one would imagine, the response time 
increases as the data skew increases, as shown in 
figure 1. For the 2 processor run, the difference 
between the time taken by the algorithm for a 
uniform data distribution versus a data skew of 

0.4 was only 13.76%. When we used 4 processors 
the difference increased to about 55.79% and 
when we used 9 processors the difference reached 
97.62%. 

In figure 2, we show the effect of data skew 
on the load balancing hash-join algorithm. Again, 
as the data skew increases, so does the response 
time, but not as much as for the basic method. 
For the 2 processor case, there is a difference of 
8.37%. for the 5 processor case there is a 
difference of 31.85% and for the 9 processor case 
there is a difference of 52.17%. If we examine 
the case with skew equal to 0.4, we see that the 
difference in response time for the basic method 
and the load balancing method for 2, 5 and 9 pro- 
cessors is 3.93%, 16.96% and 28.75%, respec- 
tively. So, we see a reasonable decrease in 
response time with the load balancing hash-join 
method. 

In figure 3, we compare the basic hash-join 
method with the load balancing hash-join method 
for a uniform data distribution. We see that 
there is little difference between the two. The 
maximum difference is approximately 1.09%. 
Hence, the scheduling overhead for the load 
balancing algorithm is insignificant compared to 
the entire cost. In addition, we show the results 
of the models for each of the two algorithms. The 
maximum difference between the basic method 
and its model is about 6.97%. The maximum 
difference between the load balancing method 
and its model is about 5.43%. 

In figure 4, we again compare the basic 
hash-join algorithm with the load balancing hash- 
join algorithm but for the case where there is sin- 
gle skew in the inner relation. The skew value of 
0.2 indicates that 20% of the tuples in the R rela- 
tion have the same value. The total percentage of 
tuples hashing into the skew bucket is 23.2%. For 
the 8 processor case, the load balancing hash-join 
algorithm reduces the response time by about 
13.83%. The average improvement for 6 to 9 pro- 
cessors is about 10.4%. The results of the models 
are also shown in figure 4. For the basic algo- 
rithm, the maximum difference between the 
actual run and the model is 3.15%. In the case of 
the load balancing algorithm and model, the max- 
imum difference is only 8.46%. 

For the next set of experiments, we wanted 
to see the effect of having to write the join result 
to disk. Writing the resulting relation back to disk 
dominated the overall cost of the join as can be 
seen by comparing figure 5 with figure 4. We can 
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Processors 

Figure 1: Basic Hash-Join Method 
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Figure 4: Basic and Load Balancing Hash-Join (R 
skew = 0.2) 
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also see in figure 5 that the difference between 
the two algorithms is even more pronounced. 
This is due to the fact that in the basic method, 
one processor writes out the join result from the 
skewed bucket whereas in the load balancing 
method multiple processors write out the join 
result in parallel. In the 2 processor case, the 
load balancing method shows a decrease of about 
15.4% as compared with the basic method. In the 
8 processor case, the difference between the two 
algorithms increases to 51.19%. The average 
difference for the 2 to 9 processor cases is 33.1%. 
In addition, the model for both algorithms is 
quite good. The maximum difference between the 
observed time and the calculated time for the 
load balancing case is only 11.83%, while for the 
basic hash-join case it is less than 1%. 

In addition to the response time graph in 
figure 5, we also include the companion graph, 
figure 7, of the speedup for the basic hash-join 
method and the load balancing method. As can 
be seen in figure 7, the speedup for the basic 
method is dismal. This can be attributed to the 
fact that a single processor is responsible for han- 
dling the skewed bucket, The small increase in 
speedup as proccessors are added is probably due 
to the distribution of some of the I/O costs across 
the additional disks. As a reminder, the number 
of disks is set equal to the number of processors. 
For the load balancing method, the speedup is 
close to linear, especially up to the 6 processor 
case. As calculated by the load balancing algo- 
rithm, the number of processors needed to han- 
dle the skewed bucket, so as to distribute the load 
evenly, is 6. Hence, the improvement as shown 
in figure 7. For the 7 processor case, the number 
of steps needed by the algorithm is the same as 
for the 6 processor case. A similar situation 
occurs for the 9 processor and 8 processor cases. 

For the final set of experiments to be 
reported in this paper, we examined the situation 
of double skew. The results are shown in figure 
6. Both the inner and outer relations had a skew 
value of 0.2. That is, as mentioned previously, 
23.2% of the tuples of each relation hashed into 
one bucket, which was the same bucket, i.e., 
bucket 0, for each relation. This produced a join 
selectivity of 0.0406. For the case of double 
skew as with the case of writing the result to disk, 
the difference between the performance of the 
two methods is considerable. The maximum 
difference occurs for the 9 processor case, i.e., 
the load balancing algorithm shows a reduction in 
response time of approximately 59.28%. The 
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average reduction in response time, considering 
the 2 to 9 processor cases, is 40.7%, with the 2 
processor case having the least reduction, i.e., 
8.5%. It can also be seen from figure 6 that the 
cost model is again a good reflection of the 
algorithm’s cost. 

In addition to the response time graph in 
figure 6, we also include the companion graph, 
figure 8, of the speedup for the basic hash-join 
method and the load balancing method. As can 
be seen in figure 8, the speedup for the basic 
method is virtually nonexistent. This is due to 
the fact that a single processor is responsible for 
handling the skewed R and S buckets. The 
amount of work done by this processor oversha- 
dows the total work done by all the other proces- 
sors. For the load balancing method, we see a 
reasonable speedup, although not as good as in 
figure 7. This can be attributed to the fact that 
the load balancing algorithm calculates the 
number of needed processors based on the max- 
imum size of the R bucket and S bucket. For the 
double skew case, the decision should be made 
based on the combined sizes, Hence, more than 
6 processors should be allocated to the skewed 
bucket. 

6. Conclusion 
In this paper, we have adapted the Grace 

hash-join method for a shared everything 
environment and have designed and implemented 
a modified version that trys to balance the load 
on the processors when the data is skewed. We 
also developed cost models for our algorithms 
and showed that they accurately reflect the per- 
formance of the algorithms, under our assump- 
tions. The algorithms were run on a 10 node 
Sequent multiprocessor machine with the parallel 
I/O capability simulated. From our experiments, 
we saw that even single skew affects the perfor- 
mance. of the basic hash-join approach for a 
shared-everything system. The performance 
degrades greatly when the result of the join is 
written to disk or when there is double skew. Our 
load balancing algorithm has also been shown to 
have a much better performance when compared 
with the basic method in all of those cases. 
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