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ABSTRACT 
The Ode object-oriented database provides facilities for 
associating conslraims and [riggers with ohjecls. Conslrainls 
and triggers are associated with class (ohjea type) definitions 
which makes hem easy 10 read, LO implerncnl, and IO blend 
with object inheritance. In this paper, we stale our declgn 
goals in providing trigger and conslraint facilities for an 
object-oriented dalahase. describe Ihe conslraim and trigger 
facilities in Ode, their implementation, and illuslrale their use. 
Although triggers and constraints can be implemented by 
similar mechanisms, we poinl OUI Ihe significant conceptual 
differences. We also discuss related issues such as inlra- 
object versus inter-object constraints and Lriggers. coupling 
modes, order and environment of invocalion. 

1. INTRODUCTION 

Ode [l, 21 is a database system and environment based on 
the object paradigm. The database is defined, queried, 
and manipulated using the database programming 
language O++, which is an upward-compatible extension 
of the object-oriented programming language C++ 1201. 
0++ extends C++ by providing facilities suitable for 
database applications, such as facilities for creating 
persistent and versioned objects, defining and 
manipulating sets, organizing pcrsistcnt objects into 
clusters, iterating over clusters of persistent objects, and 
associating constraints and triggers with objects. 

The constraint and trigger facilities in Ode make Ode an 
active database. Providing integrity constraint facilities in 
a database is not a new issue since all major commercial 
databases today provide some level of integrity 
maintenance. The novel aspect of our work is in 
providing facilities for object-oriented databases that can 
be used to specify complex and higher-level integrity 
constraints. Ode also supports three kinds of triggers: 
once-only, perpetual, and timed triggers. Triggers, like 
constraints, are associated with objects. Howcvcr, they 
are parametcrized, and can have multiple invocations 
active at the same time. 

In this paper, after a quick introduction to O++ in Section 
2, we state cur design goals. We then describe the 
constraint and trigger facilities in Ode and illustrate their 
use in Sections 4 through 6. We also discuss issues 
related to constraints and triggers such as inua-object 
versus inter-object constraints and triggers. In Section 7 
we present a sketch of the implementation of Ode triggers 
and constraints. Finally, in Section 8, we discuss 
constraint and trigger facilities in other systems. 

2. OKJECTS IN 0++: A BRIEF REVIEW 

The 0++ object facility is based on the C++ object 
facility and is called the cluss. Class declarations consist 
of two parts: a specification (type) and a body. The class 
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specification can have a private part holding information 
that can only be used by its implementor, and a public 
part which is the class user interface. The body consists 
of the bodies of the member functions (methods) declared 
in the class specification but whose bodies were not given 
there. For example, here is a specification of the class 
item: 

class item ( 
Name nm; 
double wt; //in kg 

public: 
item(Name xname, double xwt); 
Name name 0 const; 
double weight-lbs (1 const; 
double weight-kg 0 const; 

); 

C++ supports inheritance, including multiple inheritance 
[21], which is used for object specialization. The 
specialized object types inherit the properties of the base 
object type, i.e., the data members and member functions, 
of the base object type. As an example, consider class 
stockitem that is derived from class item: 

class stockitem: public item ( 
int consumption; //qty consumed per year 
int leadtime; //lead time in days 

public: 
int qty; 
double price; 
stockitem(Name iname,double lwt,int xqty, 
Int xconsumption, double xprice, 
int xleadtime, Name sname, Addr saddr); 
int eoq() const://economic order quantity 

1; 

stockitem is the same as item except that it contains 
other information such as the quantity in stock, its 
consumption per year, its price and the lead time 
necessary to restock the item. 

0++ extends C++ by providing facilities to create 
persistent objects. 0++ visualizes memory as consisting 
of two parts: volatile and persistent. Volatile objects are 
allocated in volatile memory and are the same as those 
created in ordinary programs. Persistent objects are 
allocated in persistent store and they continue to exist 
after the program creating them has terminated. Each 
persistent object is identified by a unique identifier, called 
the object identity [ 131. The object identity is referred to 
a~ a pointer to a persistent object. 

Persistent objects are allocated and deallocated in a 
manner similar to heap objects. Persistent storage 
operators pnew and pdelete are used instead of the 
heap operators new and delete. Here is an example: 
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persistent stockitem *psip; 
. . 
psip = pnew stockitem(inilio/-values) : 

pnew allocates the stockitem object in pcrsislcnt store 
and returns its id in ps ip. NOR that ps ip is a pointer to 
a persistent stockitem object, and not a persistent 
pointer to a stockitemobject. 

Persistent objects can be copied to volatile objects and 
vice versa using simple assignments: 
*sip = ‘psip; /+copy the object polnt.ed to by psip*/ 

/‘to the object. poinred to sip ‘/ 
l psip = ‘sip; /*and vice versa ‘/ 

Components of persistent objects are referenced like the 
components of volatile objects, e.g., 
w = psip->weiqht-kg () ; 

All stockitem objects in the database (Le., in persistent 
store) can be examined using the following for 
statement: 
for (psip in stockitem) ( 

Transactions in 0++ have the form 
trans ( 

Transactions are aborted using the tabort stalement. 

3. DESIGNGOALS 

When designing the trigger and constraint facilities in 
Ode, we kept the following design goals in perspective: 

Trigger and constraints should be specified 
declaratively. 
Triggers and constraints should be associated with 
class definitions to reflect object orientation (just as 
member functions are associated with class 
definitions). 
Constraints and triggers should work with the 
inheritance mechanism (including multiple 
inheritance). 
Trigger and constraint predicate (condition) checking 
should be minimized. It is clearly infeasible to check 
every trigger and constraint before a transaction 
commit. In an object-oriented environment where the 
operations can be user defined, the system cannot 
determine automatically which operations will affect 
the trigger and constraint predicates. Conscqucnlly, it 
must be possible to narrow suflicicntly the points at 
which the predicates have to be chcckcd (51. 
Constraint violations should bc able to abort a 
transaction, raise an exception, or take any other 
specitied recovery action. 
In the Event-Condition-Action terminology of 1141, 
immediate, deferred and sep‘arate excculion modes 
should all be supported. 

The mechanisms for triggers and constraints arc rclatcd 
because one can think of and implement a constraint as a 
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trigger whose action is executed when the negation of the 
constraint predicate become true. However, we have 
provided separate facilities for triggers and for constraints 
since the two are logically different. For example: 

Constraints ensure consistency of the object (and 
database) state. If this consistency cannot be 
maintained (on an object update basis or on a 
transaction basis), then the transaction is aborted. 
Triggers are not concerned about object 
consistency. They are fired whenever the specified 
conditions become true. 
Actions associated with a constraint violation are 
executed as part of the transaction violating the 
object constraints. On the other hand, trigger 
actions are initiated as separate transactions. The 
reason for this is that the transaction violating a 
constraint must be aborted if the violation cannot be 
fixed, while the triggering transaction (such as one 
recording the approach of an enemy aircraft) should 
be allowed to commit even if the triggered 
transaction (such as one to fire a missile at the 
enemy aircraft) aborts for some reason. 
Constraints apply to an object from the moment it is 
created to the moment it is deleted. Triggers must 
explicitly be activated after the object has been 
created. 
All objects of a given tyPe have the same 
constraints. But this is not true for triggers: 
different triggers may be activated for different 
objects even though the objects maybe of the same 
type. For example, an object representing stock A 
may have an active trigger to sell the stock if its 
price follows below a certain amount. But the 
object representing stock B may not have any active 
triggers. 

It should be noted that the distinction between constraints 
and triggers has been made with a view to providing a 
“natural” expressive mechanism for commonly required 
constructs. However, the user always has the full power 
of the C++ programming language available, should it be 
desired, for example, to have some triggered action 
execute as part of the triggering transaction, or to 
associate parameters with a constraint. 

4. CONSTRAINTS 

Constraints are used to maintain a notion of consistency 
beyond what is typically expressible using the type 
system [ 151. Updates that violate the specified constraints 
should not bc permitted. Interpretations of consistency 
arc usually application specific and may be arbitrarily 
complex. Constraints, which are Boolean conditions, are 
associated with class definitions. All objects of a class 
must satisfy all constraints associated with the class. 

Violation of a constraint, if not rectified, will abort the 
transaction causing the violation. Depending upon the 
mechanism used, the constraint violation may have to be 
rectified immediately after the violation is reported or 
may have to be rectified but before the completion of the 
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transaction. 

Constraints in Ode consist of two parts: a predicate and an 
action (or handler). This action is executed when the 
predicate is niV satisfied. Constraint checking can be 
performed after accessing the object or at some later point 
in time. For example, in design applications, it is 
sometimes appropriate to defer constraint checking to just 
before the transaction commit instead of performing it 
right after accessing the object. This allows for temporary 
violations of constraints (which is likely to happen when 
the consb’aints of two objects depend upon each other’s 
values and one of the objects is updated) that are rectified 
in actions following the object update before the 
transaction attempts top commit. Consequently, to 
support these two modes of constraint checking we 
support two kinds of constraints: hard and soft. 

4.1 Hard Constraints 

Hard constraints are specilied in the constraint section of a 
class definition as follows: 

constraint: 
conslrainl, : handier, 
conslrainl, : handler, 
. . . 
conslrainl, : handltr, 

CotWrainri is a Boolean expression that refers to 
components of the specified class and handleri is a 
statement that is executed when a constraint is violated. 
Constraints are checked only at the end of constructor and 
member (friend) function calls (but not at the end of 
destructor calls). Although we do not prohibit accessing 
the public data components of an object directly, it is the 
programmer’s responsibility to ensure that such accesses 
do not violate any constraints because no constraint 
checking is performed for such accesses. 

If any constraint associated with an object is not satisfied 
and there is no handler associated with it, then the 
transaction of which this access is a part is ahortcd (and 
rolled back). If there is a handler associated with the 
constraint, then this handler is executed and the constraint 
is re-evaluated. If the constraint is still not satisfied, then 
the transaction is aborted. 

The granularity of hard constraint checking is at the 
member function level. This has two important 
advantages: objects are always in a consistent state 
(except possibly during an update operation) and the 
implementation of constraint checking is simplified. The 
notion is that each public member function must lcave the 
object in a consistent state. 

Here is an example of a hard constraint: 

class supplier ( 
Name state; 

constraint: 
state == Name("NY") II state =-~ Namef""): 

printf (“Invalid Supplier Stat.e\n”): 
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After a supplier object has been created or accessed, 
the constraint is checked. The constraint is violated if the 
supplier’s location is specified and it is not in New York 
(NY). The statement associated with the constraint will 
be executed and the constraint checked once again. If the 
constraint is still not satisfied, as it will not be in this 
particular example, then the transaction is aborted. 

As another example, the following code fragment 
specifies that an employee’s salary must always be less 
than the manager’s salary: 

class manager; 
class employee ( 

persistent manager *mgr; 
float sal; 

public: 

float salary 0 const; 
constraint: 

sal < mgr-asalary () ; 
1; 
class manager : public employee ( 

persistent employee *empGlAX>; 
int sal~greater~than~all_employeesO; 
. . 

public: 

constraint: 
sal~greater~than~all_employeesO; 

1; 
int manager: : sal~greater~than~all_emplayeesO 

persistent employee *e; 
for (e in emp) 

if (e->salaryO > salary()) 
return 0: 

return 1; 

Where there are multiple constraints associated with an 
object, the placement of constraints does not specify the 
order in which the constraints will be checked. We 
bclicvc that it is in spirit of declarative semantics not to 
specify any ordering even though many programming 
languages such as Prolog do not follow this principle. 
Users should write the action parts of the constraints 
without making assumptions about the order of execution. 
However, we do guarantee that the condition checking 
and action parts of each constraint execute atomically 
(with respect to the other constraints). 

Hard constraints are only checked at the boundaries of 
public member functions that update objects To promote 
code sharing, any number of private member functions 
can be defined, and these can execute in environments in 
which the constraints are not satisfied. 

4.2 Soft Constraints 

Hard constraints ensure that objects are internally 
consistent at all times. Thus we can ensure that a bank 
balance is not be negative even momentarily (outside of a 
public member function) in the middle of a transaction. 
In traditional database systems, a transaction is the 
smallest unit across which integrity must be maintained. 
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Checking integrity constraints at a granularity finer than 
that of a transaction can lead to problems. For example, 
in the above salary example if both employee and 
manager are to be given raises in a single transaction, our 
implementation choice forces us to give the manager the 
raise first and then the employee. Giving a raise first to 
the employee could momentarily cause his/her salary to 
become greater than the manager’s, This will result in a 
constraint violation and will cause the transaction to abort 
- in spite of the fact that no constraint would have be-en 
violated at the end of the transaction had it been allowed 
to complete. Forcing the order of events within a 
transaction is not desirable. 
Even worse, consider the following example: 

class person 

. . . 
persistent person *spouse; 

public: 

constraint: 
(spouse == NULL) I I (this == spouse->spousel ; 

1; 

person pl, p2: 

The above constraint specifics that if a person has a 
spouse, then the spouse’s spouse must be the person 
himself/herself. Initially, let us suppose that person 
objects pl and p2 were not married. Now consider a 
transaction to record the fact that pl and p2 have married 
each other. The moment p2 is made the spouse of pl, 
the above constraint will be violated because the spouse 
field of p2 has not been updated. The rcversc problem 
occurs if pl is first made the spouse of p2. In cithcr case, 
the transaction will be aborted. In fact, the same problem 
occurs whenever a pair of complementary relationships 
has to be maintained between two objects, 

To handle such cases, we need a deferred or lransarlion- 
level constraint checking mechanism. Transaction level 
constraint checking is supported with sof constraints in 
Ode. Soft constraints are spccificd like hard constraints 
except that the keyword soft precedes the keyword 
constraint, e.g., 
class person 

persistent person *spouse; 
public: 

soft constraint: 
(spouse == NULL) I I (this == spouse->spouse): 

i; 

In general, soft constraints are used when other objects 
are involved in the constraint. Hard constraints are likely 
to be used when the constraint condition does not involve 
other objects. 

4.3 Comments on Constraints 
Constraint handlers are specified in the class definition 
and they are the same for all transactions. An allcrnativc 
approach could be to allow each transaction to specify its 
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own constraint handlers. Not only would this approach be 
inefficient and notationally inelegant, it would also be 
inconsistent with our object-oriented approach in which 
the constraint handlers are specified in the object itself. 
Transaction dependence can be incorporated in constraint 
handlers by making their actions depend on the value of 
an object component that is set by the transaction. 

The choice of having immediate (hard) or deferred (soft) 
constraint checking is made at class definition time and 
not at run time (during the transaction). Soft constraint 
checking is delayed until just before the end of the 
transaction. All soft constraints that need to be checked 
(i.e., those associated with objects ;hat have been updated) 
are then checked, in some unspecified order. As in the 
case of hard constraints, the order in which the constraints 
have been stated in the class definition is immaterial. 
Furthermore, the order of occurrence of the updates that 
require these constraints to be checked is also immaterial. 
The reason for this is that there could be multiple events 
in the course of a transaction that cause the same 
constraint to be evaluated. It is wasteful, and potentially 
incorrect, to check such a soft constraint several times. 
On the other hand, there is no clear semantic justification 
to order it according to say, the first event that requires its 
checking. Another reason is that in an implementation 
that permits intra-transaction parallelism (for example, 
through the use of nested transactions), the order of these 
events may not be deterministic, and we would not want 
the results of the program execution to depend on this 
order. 

A dcrivcd class inherits the constraints of its parent class 
and new constraints can be added. Consequently, 
constraints can be used to specialize classes. Such 
constraint-based specializations are useful in many 
applications, e.g., in frame-based knowledge 
representation systems [6]. 

4.4 The Domino Effect 
In CAD applications, constraints often involve other 
objects such as neighbors. As an example, consider a row 
of adjacent cells on a chip that are placed next to each 
other. Except for the end cells, each cell has two 
neighbors. 

I I 1 I 
co Cl c2 c3 c4 .*. 

A ccl1 must always satisfy the following conditions: 

1. It must be on the chip. 
2. It should be adjacent to but must not overlap its left 

neighbor (if any). 
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3. It should be adjacent to but must not overlap its 
right neighbor (if any). 

These conditions must be satisfied when a cell is created 
and when a cell is moved. They are specified in the 
constraint section of class cell: 

class cell ( 
persistent cell ‘left, ‘right: 

public: 
int x, y; //Coordinates of the center point 
int w, h; //width height 
celllint xl,int yl,int width,int height); 
void neighbors(persistent cell *leftl, 

persistent cell *rightl); 
void shift (int dx); 

constraint: 
x-w/2 >= XMIN SL x+w/? C XMAX; 

(right==NULL) ; Ix+ (wtriqk: ->w) /7--rlqht->r: 

right->shift ((w+right->w)/2-(riqht->x-x)) 

(left==NULL) 1 Ix-(wcleft->w) /?.==left->x: 
left->shift((x-left->x)-(wtleft->w)/2); 

); 

The three constraints ensure that the three conditions for 
row cells listed above are satisfied when a cell is crcatcd 
or when is moved. A constraint violation causes the 
transaction to abort. Before the abortion occurs, the 
statements associated with the constraint arc executed in 
an attempt to rectify the violation. In particular, the 
constraint actions in the second and third constraints 
attempt to fix the constraints by shifting the neighbors. 
The constraint violation domino cffcct occurs from the 
fact that moving a cell violates its constraint. To ensure 
that its constraint is satisfied, the cell must move its 
appropriate neighbor, which in turn will violate the 
neighbor’s constraint. And so on. Notice that if any cell 
is moved outside the chip (x-coordinate of left-end is less 
than XMIN or x-coordinate of right-end is greater than 
XMAX), then the resulting constraint violation cannot bc 
repaired. 

Here is the code for the member functions of class cell: 
cell* .:cell(int xl,int yl.int width,int height) 

x = xl; y = yl; w = width; h = height; 
left = NULL; right = NULL: 

void cell::reighbors(persist.er~t ce:l ‘left], 
persisce-! ce; ‘: *riqht:) 

left = leftl; right = riqht?: 

void cell:: shift(int dx) 

x += dx: 

Note the simplicity and the declarative nature of the 
specification, and compare it to the fairly complex 
procedural description (not shown here) that would have 
been required, had the constraint mechanism not been 
available. 
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The domino effect can be used not only to maintain 
integrity of the database in the way that regular 
constraints can be used, but also for maintaining 
materialiied views, updating derived data that has been 
cached, and where data values are defined relatively rather 
than in absolute terms. Another examples where the 
domino effect can occur is in spreadsheets where 
changing an element may causes several totals and tallies 
to be altered. 

5. TRIGGERS 

Triggers, like integrity constraints, monitor the database 
for some conditions, except that these conditions do not 
represent consistency violations [15]. A trigger, like a 
constraint, is specified in the class definition and it 
consists of two parts: a condition and an action. Triggers 
apply only to the specific objects with respect to which 
they are activated. Triggers are parameterized, and can be 
activated multiple times with different parameter values. 

If a trigger is active, then when its condition becomes 
true, the action associated with the trigger is executed. 
Unlike a constraint handler, which is executed as part of 
the transaction violating the constraint, a trigger action is 
executed as a separate transaction, A constraint action 
must maintain database integrity prior to the transaction 
commit: trigger actions have not such concerns. In 
typical applications such as process control, an early 
warning system, or a stockbroker’s trading program, 
events that cause trigger firing, e.g., events such as 
excessive boiler pressure, enemy aircraft detection, or 
stock price changes, can be independent of any 
consequent actions. Thus trigger actions need not be part 
of the transaction firing the trigger. Also, aborting a 
trigger action should not result in the abortion of the 
transaction firing the trigger. For example, if a 
stockbroker is unable to fill a customer’s buy order 
because of insufficient margin requirements, we would 
certainly not want to abort the transaction recording the 
change in the stock price in the broker’s database. Thus, 
there are semantic requirements for the triggered action to 
execute as a separate transaction. Another reason in favor 
of making trigger actions to be separate transactions is 
that this results in smaller transactions which improves 
concurrent access and minimizes cascaded aborts, and 
hence enhances database performance. 

Triggers that fire will be recorded and their actions 
executed (as separate transactions) only if the transaction 
causing them to be fired commits successfully. 
Otherwise, the trigger actions will not be executed. On 
the contrary, a constraint action is executed whether or 
not the transaction violating the constraint finally 
commits. Since a constraint action is part of the firing 
transaction, if the transaction eventually aborts, any 
updates caused by the constraint action will be rolled 
back. Thus the trigger action transactions are executed 
after (but not necessarily immediately after) the triggering 
transaction, i.e., there is “weak coupling” [9] between 
the triggering transaction and the trigger action. 
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Since the action part of a trigger is executed as a separate 
transaction, it is possible that the condition causing the 
trigger to fire is no longer true at the time the triggered 
action is actually executed. For example, the stock price 
after falling to a level at which a customer’s buy order is 
triggered, could rise above the trigger threshold price 
before the buy transaction can complete. To prevent 
purchase of the stock at this now changed (higher) price, 
the trigger action must check that the stock price is at or 
below the threshold; otherwise, it should deal with it 
appropriately. See Sec. 6.3 for a discussion of possible 
coupling mechanisms. 
5.1 The Mechanism 

Ode supports two kinds of triggers: once-only (default) 
and perpelual (specified using the keyword 
perpetual). A once-only trigger is automatically 
deactivated after the trigger has “fired”, and it must then 
explicitly be activated again, if desired. On the other 
hand, once a perpetual trigger has been activated, it is 
reactivated automatically after each tiring. 
Triggers are specified within class definitions: 
trigger: 

[perpetual ] T, (prrromefer-&cl,) : IriggerJJody, 
[perpetual ] T2 (parameler-dec12) : triggersbody 
. . 

[perpetual ] T, (parumerer-decl.) : /rigger-body, 

Ti are the trigger names. Trigger parameters can be used 
in trigger bodies, which have the form 
trigger-condilion => Irigger.action 
within expression ? /rigger-condition = > lriggeraclion 

[: limeoul4chm ] 

The second form is used for specifying rimed triggers, 
Once activated, the timed trigger must fire within the 
specified period (floating-point value specifying the time 
in seconds): otherwise, the timeout action, if any, is 
executed. 
Triggers are associated with objects; they are activated 
explicitly after an object has been created. A trigger Ti 
associated with an object whose id is object-id is activated 
by the call 
object-id->T, (arguments) 

The trigger activation returns a trigger id (value of the 
predetined class TriggerId) if successful; otherwise it 
returns null trigger. The object id can be omitted 
when activati;g a trigger from within the body of a 
member function. 
An active trigger “fires” when its condition becomes true 
(as a result of updates by a transaction). Firing means that 
the action associated with the trigger is “scheduled” for 
action as a separate transaction, Only active triggers can 
fire. No performance penalty is incurred for triggers that 
have not been activated. 
Trigger activation must be done explicitly for each 
individual object. However, the class designer can 
automate trigger activation by putting the trigger 
activation code in constructors. Since a constructor 
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function is called at object creation time to initialize the 
object, the trigger automatically gets activated when an 
object is created. Because triggers are activated explicitly 
(by the programmer or by the class designer), different 
objects of the same type may have different sets of 
triggers active at any given time. 
Triggers can be deactivated explicitly before they have 
fired using the deactivate function: 

deactivate (trigger-id 

The trigger with identifier trigger-id is deactivated. If 
successful, deactivate returns one; otherwise, it 
returns zero. 
Multiple activations of the same trigger associated with an 
object (possibly with different arguments) are allowed. 
For example, there can be multiple activations of the buy 
trigger associated with a stock object with each buy 
trigger being activated with different price and quantity 
arguments. 
An active trigger can be fired no more than once by a 
given transaction, even if the transaction causes several 
updates to the relevant object, any one of which could by 
itself have satisfied the trigger condition and caused it to 
fire. However, there is no limit on the number of 
activations of the same trigger that could be fired by a 
single transaction. Trigger conditions may overlap. 
Consequently, updating an object may result in the firing 
of one or more active triggers. 
5.2 Examples 
Consider the following class invent item, derived from 
class stockitem that was shown earlier: 

class inventitem: public stockitem 1 
public: 

inventitem (Name iname,double iwt,int xqty, 
int xconsumption, double xprice, 
int xleadtime, Name sname, Addr saddr); 

void deposit tint n) ; 
void withdraw (int n); 
..I 

trigger: 
order 0 : qty < reorder-level 0 ==> 

place-order (this, eoq 0 ) ; 
//*@this” refers to the object itself 

Trigger order is activated in the constructor function 
inventitem and in the member function deposit. 
The action associated with the trigger order will be 
executed after its condition becomes true (as a result of 
executing the withdraw operation). 
Here are the bodies of some of the member functions of 
class inventitem: 
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inventitem::inventitem(Name iname. double iwt. 
int xqty, int xconsumption, double xprice) 
int xleadtime, Name sname, Addr saddr): 
stockitem(iname, iwt, xqty, xconsumption, 

xprice, xleadtime, sname, saddr) 
1 

ordero; //triqqer activat.ion 
J 
void inventitem::deposit(int n) 
( 

qty += n; 
order(); //trigger activation 

1 
void inventitem::withdraw(int n) 
( 

qty -= n: //might fire trigger 
J 

Now suppose that we wish to write a complaint if the 
supplier does not fill our order within the promised lead 
time. We could achieve this result by using a timed 
trigger as follows: 

class cinventitem: public stockitem i 
public: 

TriggerId checkarrival; 
int delivered; 
void deposit tint n) ; 

trigger: 
order () : qty c reorder-level 0 ==> 

( place-order (this, eoq()); 
delivered = 0; 
checkarrival = compiain(); 1 

complajn():within leadt.ime ? delivered ‘7,: 
: wr1te_complnint !otterO; 

J: 

void cinventitem::deposit(int n) 

;I 
6. DISCUSSION 
6.1 Intra-Object Versus Inter-Object Constraints & 

Triggers 
A constraint or trigger is said to be in~ra-object if: 

i. It is associated with a (single) specific object, and 
ii. the condition associated with it is evaluated only 

when this object is updated. 
Otherwise, a constraint or trigger is said to be inter- 
object. An intra-object constraint or trigger can refer to 
other objects both in evaluating the condition and in the 
subsequent action. However, updates to these refcrcnccd 
objects do not require the condition part of the constraint 
or trigger to be chcckcd. (See discussion below on what 
is an even& 
We opted for intra-object constraints and triggers for 
several reasons. First off, by associating constraints and 
triggers with class definitions, we have incorporated them 
in the framework of Ct+ without violating its objcct- 
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oriented philosophy. In case of inter-object constraints 
and triggers, which can refer to objects of different types, 
it is not clear where they should be specified. It is not 
appropriate to place such constraints and triggers in only 
one object type if they involve multiple object types. And 
we did not want to make constraints and triggers full 
fledged types which are associated with appropriate object 
types. Constraint and trigger types would add much 
semantic complexity to Ott. e.g., where can constraint 
type objects be used, can they passed as parameters, do 
they have constructors and desctructors associated with 
them, can pointers refer to them and so forth. One 
straightforward solution to implementing the functionality 
of inter-object constraints and triggers is to specify 
appropriate intra-object constraints and triggers in the 
definition of the object types involved. Indeed, most 
inter-object constraints and triggers can be implemented 
using one or more intra-object constraints or triggers. 
This was certainiy the case in all the examples that we 
worked out. See [12] for a systematic technique to obtain 
intra-object constraints and triggers from inter-object 
contraints and triggers. 
Secondly, in terms of the E-C-A (event-condition-action) 
model [ 141, in Ode the condition and action are explicitly 
specified for every constraint and trigger. The event is not 
explicitly specified. For an intm-object constraint or 
trigger, this event can be assumed to be the updating of 
the associated object, as discussed in Section 6.3. For an 
inter-object constraint or trigger, the event might be the 
update of any one of the objects involved in the constraint 
or trigger. Checking for these events make inter-object 
constraints and triggers significantly more expensive than 
intra-object constraints and triggers. 
Finally, physical locality makes intra-object constraints 
and triggers more efficient to implement than inter-object 
constraints and triggers. When an event occurs, the 
condition(s) involve only components of object being 
updated which means it is in memory. 
6.2 Events 
Constraints and triggers can be thought of as event- 
condition-action (E-C-A) triples. Our constraint and 
trigger facilities require explicit specification of the 
condition and the action. But events leading to the 
evaluation of the constlaint and trigger conditions are not 
specified explicitly. We consider object updates as events 
since only updates affect the constraint and trigger 
conditions. (Object updates are “natural” candidate 
events in O++.) 
There are many ways to update an object. To get a proper 
handle on updates and without incurring substantial 
ovcrhcad, we consider as events only object updates 
caused by public member functions. Specifically, direct 
updates to objects, such as those caused by changing 
values of public data members, arc not considered to be 
events. Updates caused by private member functions are 
not considered to be events since these functions can be 
called (directly or indirectly) only by public member 
functions. In such cases, the event is associated with the 
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public member function initiating the update. 

Sometimes it may not be clear or possible to determine 
whether or not a member function updales an object. In 
our current implementation, we consider each invocation 
of a non const public member function as causing a 
potential update and we therefore check the constraint and 
trigger conditions just prior to the termination of the 
function. Note that const member functions cannot 
update an object. 

The action part of a constraint associated with an object 
could cause updates that will affect constraints and 
triggers in the same object or in different objects (as 
happens in the VLSI cell placement example). In 
particular, this means that the action part of a constraint, 
in fixing the constraint violation, may violate some other 
constraint. If the update causing this violation is not done 
through a public member function, then there is no 
guarantee that this constraint violation will bc detected 
(immediately). 

C++ (and therefore 0++) allows expressions 10 have side 
effects. It is therefore possible for updates to be 
embedded in the condition evaluation. Such embedded 
updates are not treated as events unless they occur via 
public member functions. 

6.3 Coupling Modes 
In [14], three types of coupling between an event (E) and 
a condition (C) have been idenlified: the condition 
evaluation is immediate (when the object is changed), 
deferred (as part of the transaction but at the end), and 
separate (in a separate transaction). Similarly, any of 
these three types of coupling could exist bctwccn 
condition and action (A). In Ode, the condition is 
evaluated as part of the transaction updating the object 
(after the object has been updated). In other words, the 
E-C coupling is always immediate (for hard constraints 
and for triggers) or deferred (for soft constraints), but 
never separate. Conversely, the C-A coupling is either 
immediate (for constraints) or separate (for Lriggcrs), but 
never deferred. We do not provide the separate E-C 
coupling mode or the deferred C-A coupling mode 
because we believe that would be overkill. What seems to 
be of greatest consequence is the coupling between the 
event and the action (which is the “weaker” of E-C and 
C-A couplings). This is because only the evet and the 
action affect the state of the database. For constraints, the 
C-A coupling is the strongest possible (immediate), so the 
E-C coupling determines the strength of the E-A coupling 
(either immediate or deferred). For triggers, the C-A 
coupling is the weakest (separate), so the E-A coupling is 
also separate irrespective of the E-C coupling used, and 
we have chosen to use immediate since that is the most 
efficient. We thus support the full spectrum of E-A 
couplings. 

In our scheme, a weak E-A coupling is implemented by 
using a separate C-A coupling, i.e., a trigger. For 
example, consider the triggered purchase of stock when 
the stock price falls below a certain threshold. The event 
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is a change in the stock price. The condition is that the 
stock prices is below a threshold value. The action is its 
purchase. We want the purchase action to be a separate 
transaction from the change in price event, therefore we 
implement this task as a trigger. However, we would like 
to make sure that the stock price is still below the 
threshold when the purchase takes place, so we are forced 
to check the condition a second time as part of the action. 

7. IMPLEMENTATION 
Our implementation strategy is based on the premise that 
object updates are performed only by calling public 
member functions. Constraints and trigger conditions me 
not checked if objects are updated by directly changing 
the values of the data members. We encourage the 
definition of classes whose data members are private and 
accessed using public member functions. Where 
appropriate, member functions could be declared 
in 1 ine to reduce the execution overhead. 

When an object with soft constraints is updated, it is 
placed in a “to-be-checked” list. An alternative 
implementation, which we considered and decided 
against, is to check the soft constraints when an object is 
updated, and place it on the to-be-checked list only if its 
constraints are violated, The resulting to-be-checked list 
will then be smaller, and many objects need not be 
accessed an extra time (for constraint checking) 
immediately prior to the transaction commit. However, 
the constraints will now have to be checked twice (once at 
object update time, and once at transaction commit time). 
Another problem would be dealing with situations where 
one object access violates tie constraints but a succeeding 
second access fixes the violation. Finally, the semantics 
of the alternative implementation are a little more 
complex. 

Multiple updates to the same object in the course of a 
transaction will cause a hard constraint to be evaluated 
once on each update. A corresponding soft constraint will 
only be checked once al the end of the transaction, since 
any given soft constraint is permitted to appear no more 
Lhan once in the to-be-checked list. Note though, that 
updates using public member functions in the action part 
of one soft constraint can cause another soft constraint to 
be re-checked depending on the order of checking 
selected by the implementation. 

Hard constraints, soft constraints, and triggers are 
encapsulated into member functions 
hard-constraints, soft-constraints, and 
triggers, respecrively. These functions are called to 
check constraints and fire active triggers. In addition, 
each trigger 7-i is converted into a member function 7-i 
with the same parameters. This function will be called in 
response to a trigger activation request. 

8. RELATED WORK 
The idea of having triggers and constraints in a database 
is not new. Facilities for active databases appeared as 
early as in CODASYL, in the form of ON conditions. 
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System R provided triggers and constraints as a 
mechanism for enforcing integrity constraints [4, lo]. 
Simple triggers are now appearing in commercial 
systems. For example, Sybase [8] provides facilities to 
specify rules and wiggers. Rules are integrity constraints 
that go beyond those implied by a column’s data type, 
These are a special case of our constraint mechanism, 
with no actions associated. A trigger is a special kind of 
stored procedure that goes into effect when the sprx:ified 
table is updated. Among other things, it can bc used to 
disallow or roll back changes that violate a constraint, 
such as an employee’s salary being made greater than the 
manager’s, and to keep summary data, such as year-to- 
date sales. A trigger can be affected by changes to only 
one table. Each table can have at most three triggers: an 
update, an insert, and a delete trigger. One trigger cannot 
call another. If a trigger updates a table with which 
another trigger is associated, the second trigger will not 
fire. 

In contrast, observe that Ode allows triggers to be 
associated with objects, which are essentially tuplcs. 
Multiple triggers can be associated with any individual 
object, and these triggers can be paramctcrizcd. Also, any 
number of triggers (and constraint actions) can be fired 
recursively. 

In relational databases, a distinction is sometimes made 
between a trigger associated with an attribute and a trigger 
associated with a tuple (or between triggers associated 
with a column and those associated with the cntirc 
relation). This diffcrcnce appears to bc an artifact of the 
relational model and is not relevant in our context. A 
trigger is always associated with an ob.icct. The trigger 
condition could involve one or more attriburcs of the 
object - it makes no difference. 

Rules have been built into the POSTGRES third 
generation database system (191. WC bclievc that the 
facilities provided in POSTCRES are mechanistic and at a 
lower level than the facilities dcscribcd in this paper. 
There is no difference between constraints and triggers, 
all are implemented by the single rules mechanism. All 
rules always execute as part of the same aansaclion, 
potentially leading to very long transactions and hence 
inefficiency, and also potentially leading to an abort of a 
triggering update bccausc a semantically indcpcndcnl 
triggered update is unable to commit. Aricl [ 111 extends 
the POSTGRES query language, but continues to suffer 
from the limitations just discussed. 

HiPac [9] proposes the concept of Evcnt-Condition- 
Action (ECA) rules. These rules, unlike our triggers and 
constraints are first class objects. When an cvcnt occurs, 
the condition is evaluated and, if the condition, is 
satisfied, the action is executed. Integrity constrain&, 
access constraints, alerters, and other active DBMS 
facilities can be implemented using ECA rules. 

Production systems, such as OPS5, use production rules 
as the programming paradigm. All rules are active all the 
time. Whenever the conditions for a rule are satislicd, it 
fires, and executes its action part. Some good work has 
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been done towards designing large production systems in 
a database context [ 18,231. The difference between these 
systems and ours is that in these systems the rules become 
ends in themselves: the entire program is written in terms 
of rules. In O++, procedural descriptions may be used 
where they are appropriate, and rules where they are. 

A significant issue in building rule systems for databases 
is the ability to have operations execute set-at-a-time 
rather than tuple (or object) at-a-time. 0++ provides 
special constructs for iteration over sets, and these can be 
used by the compiler to implement the iterated code on a 
set-at-a-time basis. Any constraint actions that are 
generated as a part of the code may also be executed set- 
al-a-lime. 

A major difficulty with production systems is that they are 
very hard to debug when there are situations in which 
multiple rules can fire, since each has its conditions 
satisfied. Priority levels, whether explicitly stated as in 
[ 11,191, or determined by criteria such as specificity 
[ 18,231, we believe are a bad idea, since their use is 
against the declarative spirit of constraint specification 
and can decrease the potential for concurrent execution. 
Since we do not specify the order in which the rules will 
fire, the programmer is forced to make a conservative 
assumption, and we believe that this makes programming 
easier. 

In an object-oriented context, rules and constraints have 
been proposed in OOPS 1171. Constraints permit only an 
undo of the update. Rules are used to enforce integrity 
constraints and to trigger consequent actions. There is no 
concept of a transaction. 

Triggers have also be proposed for the Iris object-oriented 
database [16]. Any Iris query can be monitored by first 
defining it as a function and then defining a monitor for 
that function. Iris provides functions for defining 
monitors, activating them, deactivating them, and deleting 
them. In contrast, triggers in 0++ are specified 
declaratively and % part of the object definition. 

OZ+ [22] supports self-triggering rules which correspond 
to the perpetual triggers of O++. The self-triggering rules 
are parameterless and they execute whenever possible. 
Each such OZ+ rule consists of a condition and an action. 
The OZ+ object manager tests the conditions of the self- 
triggering rules in objects whenever object states change 
to see if the triggers can be executed. In Ode, trigger 
conditions are checked at the end of the execution of 
member functions. 

The issue of efficient implementation of triggers in 
relational databases has been investigated by several 
researchers, e.g., [7]. But more investigation and 
experience with trigger implementations is needed in the 
context of object-oriented databases. [5] discuss issues in 
the design of constraint and trigger facilities for 
programming languages. Two problems identified by 
them relate to minimization of trigger condition and 
constraint checking and the interaction between 
constraints and exception handling. In O++, it is 
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necessary to do trigger condition and constraint checking 
only at the end of each member function, Even this can 
be reduced by analyzing the member functions so that 
only the trigger conditions and constraints affcctcd by the 
member function are checked. 

In Vbase [3] triggers can be attached to attributes and to 
operations. Triggers have often been used to augment 
creation and deletion member functions. In O++, we do 
not find it necessary to use triggers to augment object 
creation and deletion because users can customize object 
creation and deletion by defining appropriate constructors 
and destructors. 

9. CONCLUDING REMARKS 

We have provided facilities for constraints and triggers in 
0++ that match the object-oriented programming style of 
Ct+. Specifically, we support two kinds of constraints: 
hard and soft. Hard constraints arc checked after each 
object access while soft constraints are checked just 
before a transaction commit. We support three kinds of 
triggers: once-only, timed, and perpetual. Triggers, 
unlike constraints, must be activated explicitly. 

Although constraints and triggers can be implemented 
using similar techniques, we have provided separate 
facilities for them since are conceptually and semantically 
different. The purpose of constraints is to ensure data 
consistency while that of triggers is to perform actions 
when some conditions are satisfied. Violation of a 
constraint leads to the abortion of a transaction, if the 
violation is not rectified, while the satisfaction of a trigger 
results in new transactions (assuming the transaction 
commits), Ode constraints do not have paramctcrs 
because they are intcndcd primarily to cnsurc object 
integrity. Triggers have parameters to allow for trigger 
firing to take place using user-specified values. 
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