
Ode as an Active Database: Constraints and Triggers

N. Gehani and H. V. Jagadish

AT&T Bell Laboratories
Murray Hill, NJ 07901

ABSTRACT
The Ode object-oriented database provides facilities for
associating conslraims and [riggers with ohjecls. Conslrainls
and triggers are associated with class (ohjea type) definitions
which makes hem easy 10 read, LO implerncnl, and IO blend
with object inheritance. In this paper, we stale our declgn
goals in providing trigger and conslraint facilities for an
object-oriented dalahase. describe Ihe conslraim and trigger
facilities in Ode, their implementation, and illuslrale their use.
Although triggers and constraints can be implemented by
similar mechanisms, we poinl OUI Ihe significant conceptual
differences. We also discuss related issues such as inlra-
object versus inter-object constraints and Lriggers. coupling
modes, order and environment of invocalion.

1. INTRODUCTION

Ode [l, 21 is a database system and environment based on
the object paradigm. The database is defined, queried,
and manipulated using the database programming
language O++, which is an upward-compatible extension
of the object-oriented programming language C++ 1201.
0++ extends C++ by providing facilities suitable for
database applications, such as facilities for creating
persistent and versioned objects, defining and
manipulating sets, organizing pcrsistcnt objects into
clusters, iterating over clusters of persistent objects, and
associating constraints and triggers with objects.

The constraint and trigger facilities in Ode make Ode an
active database. Providing integrity constraint facilities in
a database is not a new issue since all major commercial
databases today provide some level of integrity
maintenance. The novel aspect of our work is in
providing facilities for object-oriented databases that can
be used to specify complex and higher-level integrity
constraints. Ode also supports three kinds of triggers:
once-only, perpetual, and timed triggers. Triggers, like
constraints, are associated with objects. Howcvcr, they
are parametcrized, and can have multiple invocations
active at the same time.

In this paper, after a quick introduction to O++ in Section
2, we state cur design goals. We then describe the
constraint and trigger facilities in Ode and illustrate their
use in Sections 4 through 6. We also discuss issues
related to constraints and triggers such as inua-object
versus inter-object constraints and triggers. In Section 7
we present a sketch of the implementation of Ode triggers
and constraints. Finally, in Section 8, we discuss
constraint and trigger facilities in other systems.

2. OKJECTS IN 0++: A BRIEF REVIEW

The 0++ object facility is based on the C++ object
facility and is called the cluss. Class declarations consist
of two parts: a specification (type) and a body. The class

Pmceedings of the 17th International
Conference on Very Large Data Bases

specification can have a private part holding information
that can only be used by its implementor, and a public
part which is the class user interface. The body consists
of the bodies of the member functions (methods) declared
in the class specification but whose bodies were not given
there. For example, here is a specification of the class
item:

class item (
Name nm;
double wt; //in kg

public:
item(Name xname, double xwt);
Name name 0 const;
double weight-lbs (1 const;
double weight-kg 0 const;

);

C++ supports inheritance, including multiple inheritance
[21], which is used for object specialization. The
specialized object types inherit the properties of the base
object type, i.e., the data members and member functions,
of the base object type. As an example, consider class
stockitem that is derived from class item:

class stockitem: public item (
int consumption; //qty consumed per year
int leadtime; //lead time in days

public:
int qty;
double price;
stockitem(Name iname,double lwt,int xqty,
Int xconsumption, double xprice,
int xleadtime, Name sname, Addr saddr);
int eoq() const://economic order quantity

1;

stockitem is the same as item except that it contains
other information such as the quantity in stock, its
consumption per year, its price and the lead time
necessary to restock the item.

0++ extends C++ by providing facilities to create
persistent objects. 0++ visualizes memory as consisting
of two parts: volatile and persistent. Volatile objects are
allocated in volatile memory and are the same as those
created in ordinary programs. Persistent objects are
allocated in persistent store and they continue to exist
after the program creating them has terminated. Each
persistent object is identified by a unique identifier, called
the object identity [131. The object identity is referred to
a~ a pointer to a persistent object.

Persistent objects are allocated and deallocated in a
manner similar to heap objects. Persistent storage
operators pnew and pdelete are used instead of the
heap operators new and delete. Here is an example:

327
Barcelona. September, 1991

persistent stockitem *psip;
. .
psip = pnew stockitem(inilio/-values) :

pnew allocates the stockitem object in pcrsislcnt store
and returns its id in ps ip. NOR that ps ip is a pointer to
a persistent stockitem object, and not a persistent
pointer to a stockitemobject.

Persistent objects can be copied to volatile objects and
vice versa using simple assignments:
sip = ‘psip; /+copy the object polnt.ed to by psip/

/‘to the object. poinred to sip ‘/
l psip = ‘sip; /*and vice versa ‘/

Components of persistent objects are referenced like the
components of volatile objects, e.g.,
w = psip->weiqht-kg () ;

All stockitem objects in the database (Le., in persistent
store) can be examined using the following for
statement:
for (psip in stockitem) (

Transactions in 0++ have the form
trans (

Transactions are aborted using the tabort stalement.

3. DESIGNGOALS

When designing the trigger and constraint facilities in
Ode, we kept the following design goals in perspective:

Trigger and constraints should be specified
declaratively.
Triggers and constraints should be associated with
class definitions to reflect object orientation (just as
member functions are associated with class
definitions).
Constraints and triggers should work with the
inheritance mechanism (including multiple
inheritance).
Trigger and constraint predicate (condition) checking
should be minimized. It is clearly infeasible to check
every trigger and constraint before a transaction
commit. In an object-oriented environment where the
operations can be user defined, the system cannot
determine automatically which operations will affect
the trigger and constraint predicates. Conscqucnlly, it
must be possible to narrow suflicicntly the points at
which the predicates have to be chcckcd (51.
Constraint violations should bc able to abort a
transaction, raise an exception, or take any other
specitied recovery action.
In the Event-Condition-Action terminology of 1141,
immediate, deferred and sep‘arate excculion modes
should all be supported.

The mechanisms for triggers and constraints arc rclatcd
because one can think of and implement a constraint as a

Proceedings of the 17th International
Confexemx on Very Large Data Bases

trigger whose action is executed when the negation of the
constraint predicate become true. However, we have
provided separate facilities for triggers and for constraints
since the two are logically different. For example:

Constraints ensure consistency of the object (and
database) state. If this consistency cannot be
maintained (on an object update basis or on a
transaction basis), then the transaction is aborted.
Triggers are not concerned about object
consistency. They are fired whenever the specified
conditions become true.
Actions associated with a constraint violation are
executed as part of the transaction violating the
object constraints. On the other hand, trigger
actions are initiated as separate transactions. The
reason for this is that the transaction violating a
constraint must be aborted if the violation cannot be
fixed, while the triggering transaction (such as one
recording the approach of an enemy aircraft) should
be allowed to commit even if the triggered
transaction (such as one to fire a missile at the
enemy aircraft) aborts for some reason.
Constraints apply to an object from the moment it is
created to the moment it is deleted. Triggers must
explicitly be activated after the object has been
created.
All objects of a given tyPe have the same
constraints. But this is not true for triggers:
different triggers may be activated for different
objects even though the objects maybe of the same
type. For example, an object representing stock A
may have an active trigger to sell the stock if its
price follows below a certain amount. But the
object representing stock B may not have any active
triggers.

It should be noted that the distinction between constraints
and triggers has been made with a view to providing a
“natural” expressive mechanism for commonly required
constructs. However, the user always has the full power
of the C++ programming language available, should it be
desired, for example, to have some triggered action
execute as part of the triggering transaction, or to
associate parameters with a constraint.

4. CONSTRAINTS

Constraints are used to maintain a notion of consistency
beyond what is typically expressible using the type
system [151. Updates that violate the specified constraints
should not bc permitted. Interpretations of consistency
arc usually application specific and may be arbitrarily
complex. Constraints, which are Boolean conditions, are
associated with class definitions. All objects of a class
must satisfy all constraints associated with the class.

Violation of a constraint, if not rectified, will abort the
transaction causing the violation. Depending upon the
mechanism used, the constraint violation may have to be
rectified immediately after the violation is reported or
may have to be rectified but before the completion of the

328 Barcelona. September, 1991

transaction.

Constraints in Ode consist of two parts: a predicate and an
action (or handler). This action is executed when the
predicate is niV satisfied. Constraint checking can be
performed after accessing the object or at some later point
in time. For example, in design applications, it is
sometimes appropriate to defer constraint checking to just
before the transaction commit instead of performing it
right after accessing the object. This allows for temporary
violations of constraints (which is likely to happen when
the consb’aints of two objects depend upon each other’s
values and one of the objects is updated) that are rectified
in actions following the object update before the
transaction attempts top commit. Consequently, to
support these two modes of constraint checking we
support two kinds of constraints: hard and soft.

4.1 Hard Constraints

Hard constraints are specilied in the constraint section of a
class definition as follows:

constraint:
conslrainl, : handier,
conslrainl, : handler,
. . .
conslrainl, : handltr,

CotWrainri is a Boolean expression that refers to
components of the specified class and handleri is a
statement that is executed when a constraint is violated.
Constraints are checked only at the end of constructor and
member (friend) function calls (but not at the end of
destructor calls). Although we do not prohibit accessing
the public data components of an object directly, it is the
programmer’s responsibility to ensure that such accesses
do not violate any constraints because no constraint
checking is performed for such accesses.

If any constraint associated with an object is not satisfied
and there is no handler associated with it, then the
transaction of which this access is a part is ahortcd (and
rolled back). If there is a handler associated with the
constraint, then this handler is executed and the constraint
is re-evaluated. If the constraint is still not satisfied, then
the transaction is aborted.

The granularity of hard constraint checking is at the
member function level. This has two important
advantages: objects are always in a consistent state
(except possibly during an update operation) and the
implementation of constraint checking is simplified. The
notion is that each public member function must lcave the
object in a consistent state.

Here is an example of a hard constraint:

class supplier (
Name state;

constraint:
state == Name("NY") II state =-~ Namef""):

printf (“Invalid Supplier Stat.e\n”):

Proceedings of the 17th International
Conference on Very Large Data Bases

After a supplier object has been created or accessed,
the constraint is checked. The constraint is violated if the
supplier’s location is specified and it is not in New York
(NY). The statement associated with the constraint will
be executed and the constraint checked once again. If the
constraint is still not satisfied, as it will not be in this
particular example, then the transaction is aborted.

As another example, the following code fragment
specifies that an employee’s salary must always be less
than the manager’s salary:

class manager;
class employee (

persistent manager *mgr;
float sal;

public:

float salary 0 const;
constraint:

sal < mgr-asalary () ;
1;
class manager : public employee (

persistent employee *empGlAX>;
int sal~greater~than~all_employeesO;
. .

public:

constraint:
sal~greater~than~all_employeesO;

1;
int manager: : sal~greater~than~all_emplayeesO

persistent employee *e;
for (e in emp)

if (e->salaryO > salary())
return 0:

return 1;

Where there are multiple constraints associated with an
object, the placement of constraints does not specify the
order in which the constraints will be checked. We
bclicvc that it is in spirit of declarative semantics not to
specify any ordering even though many programming
languages such as Prolog do not follow this principle.
Users should write the action parts of the constraints
without making assumptions about the order of execution.
However, we do guarantee that the condition checking
and action parts of each constraint execute atomically
(with respect to the other constraints).

Hard constraints are only checked at the boundaries of
public member functions that update objects To promote
code sharing, any number of private member functions
can be defined, and these can execute in environments in
which the constraints are not satisfied.

4.2 Soft Constraints

Hard constraints ensure that objects are internally
consistent at all times. Thus we can ensure that a bank
balance is not be negative even momentarily (outside of a
public member function) in the middle of a transaction.
In traditional database systems, a transaction is the
smallest unit across which integrity must be maintained.

329 Barcelona, September, 1991

Checking integrity constraints at a granularity finer than
that of a transaction can lead to problems. For example,
in the above salary example if both employee and
manager are to be given raises in a single transaction, our
implementation choice forces us to give the manager the
raise first and then the employee. Giving a raise first to
the employee could momentarily cause his/her salary to
become greater than the manager’s, This will result in a
constraint violation and will cause the transaction to abort
- in spite of the fact that no constraint would have be-en
violated at the end of the transaction had it been allowed
to complete. Forcing the order of events within a
transaction is not desirable.
Even worse, consider the following example:

class person

. . .
persistent person *spouse;

public:

constraint:
(spouse == NULL) I I (this == spouse->spousel ;

1;

person pl, p2:

The above constraint specifics that if a person has a
spouse, then the spouse’s spouse must be the person
himself/herself. Initially, let us suppose that person
objects pl and p2 were not married. Now consider a
transaction to record the fact that pl and p2 have married
each other. The moment p2 is made the spouse of pl,
the above constraint will be violated because the spouse
field of p2 has not been updated. The rcversc problem
occurs if pl is first made the spouse of p2. In cithcr case,
the transaction will be aborted. In fact, the same problem
occurs whenever a pair of complementary relationships
has to be maintained between two objects,

To handle such cases, we need a deferred or lransarlion-
level constraint checking mechanism. Transaction level
constraint checking is supported with sof constraints in
Ode. Soft constraints are spccificd like hard constraints
except that the keyword soft precedes the keyword
constraint, e.g.,
class person

persistent person *spouse;
public:

soft constraint:
(spouse == NULL) I I (this == spouse->spouse):

i;

In general, soft constraints are used when other objects
are involved in the constraint. Hard constraints are likely
to be used when the constraint condition does not involve
other objects.

4.3 Comments on Constraints
Constraint handlers are specified in the class definition
and they are the same for all transactions. An allcrnativc
approach could be to allow each transaction to specify its

Proceedings of the 17th International
Conference on Very Large Data Bases

own constraint handlers. Not only would this approach be
inefficient and notationally inelegant, it would also be
inconsistent with our object-oriented approach in which
the constraint handlers are specified in the object itself.
Transaction dependence can be incorporated in constraint
handlers by making their actions depend on the value of
an object component that is set by the transaction.

The choice of having immediate (hard) or deferred (soft)
constraint checking is made at class definition time and
not at run time (during the transaction). Soft constraint
checking is delayed until just before the end of the
transaction. All soft constraints that need to be checked
(i.e., those associated with objects ;hat have been updated)
are then checked, in some unspecified order. As in the
case of hard constraints, the order in which the constraints
have been stated in the class definition is immaterial.
Furthermore, the order of occurrence of the updates that
require these constraints to be checked is also immaterial.
The reason for this is that there could be multiple events
in the course of a transaction that cause the same
constraint to be evaluated. It is wasteful, and potentially
incorrect, to check such a soft constraint several times.
On the other hand, there is no clear semantic justification
to order it according to say, the first event that requires its
checking. Another reason is that in an implementation
that permits intra-transaction parallelism (for example,
through the use of nested transactions), the order of these
events may not be deterministic, and we would not want
the results of the program execution to depend on this
order.

A dcrivcd class inherits the constraints of its parent class
and new constraints can be added. Consequently,
constraints can be used to specialize classes. Such
constraint-based specializations are useful in many
applications, e.g., in frame-based knowledge
representation systems [6].

4.4 The Domino Effect
In CAD applications, constraints often involve other
objects such as neighbors. As an example, consider a row
of adjacent cells on a chip that are placed next to each
other. Except for the end cells, each cell has two
neighbors.

I I 1 I
co Cl c2 c3 c4 .*.

A ccl1 must always satisfy the following conditions:

1. It must be on the chip.
2. It should be adjacent to but must not overlap its left

neighbor (if any).

330 Barcelona, September, 1991

3. It should be adjacent to but must not overlap its
right neighbor (if any).

These conditions must be satisfied when a cell is created
and when a cell is moved. They are specified in the
constraint section of class cell:

class cell (
persistent cell ‘left, ‘right:

public:
int x, y; //Coordinates of the center point
int w, h; //width height
celllint xl,int yl,int width,int height);
void neighbors(persistent cell *leftl,

persistent cell *rightl);
void shift (int dx);

constraint:
x-w/2 >= XMIN SL x+w/? C XMAX;

(right==NULL) ; Ix+ (wtriqk: ->w) /7--rlqht->r:

right->shift ((w+right->w)/2-(riqht->x-x))

(left==NULL) 1 Ix-(wcleft->w) /?.==left->x:
left->shift((x-left->x)-(wtleft->w)/2);

);

The three constraints ensure that the three conditions for
row cells listed above are satisfied when a cell is crcatcd
or when is moved. A constraint violation causes the
transaction to abort. Before the abortion occurs, the
statements associated with the constraint arc executed in
an attempt to rectify the violation. In particular, the
constraint actions in the second and third constraints
attempt to fix the constraints by shifting the neighbors.
The constraint violation domino cffcct occurs from the
fact that moving a cell violates its constraint. To ensure
that its constraint is satisfied, the cell must move its
appropriate neighbor, which in turn will violate the
neighbor’s constraint. And so on. Notice that if any cell
is moved outside the chip (x-coordinate of left-end is less
than XMIN or x-coordinate of right-end is greater than
XMAX), then the resulting constraint violation cannot bc
repaired.

Here is the code for the member functions of class cell:
cell* .:cell(int xl,int yl.int width,int height)

x = xl; y = yl; w = width; h = height;
left = NULL; right = NULL:

void cell::reighbors(persist.er~t ce:l ‘left],
persisce-! ce; ‘: *riqht:)

left = leftl; right = riqht?:

void cell:: shift(int dx)

x += dx:

Note the simplicity and the declarative nature of the
specification, and compare it to the fairly complex
procedural description (not shown here) that would have
been required, had the constraint mechanism not been
available.

Proceedings of the 17th International
Conference on Very Large Data Bases

The domino effect can be used not only to maintain
integrity of the database in the way that regular
constraints can be used, but also for maintaining
materialiied views, updating derived data that has been
cached, and where data values are defined relatively rather
than in absolute terms. Another examples where the
domino effect can occur is in spreadsheets where
changing an element may causes several totals and tallies
to be altered.

5. TRIGGERS

Triggers, like integrity constraints, monitor the database
for some conditions, except that these conditions do not
represent consistency violations [15]. A trigger, like a
constraint, is specified in the class definition and it
consists of two parts: a condition and an action. Triggers
apply only to the specific objects with respect to which
they are activated. Triggers are parameterized, and can be
activated multiple times with different parameter values.

If a trigger is active, then when its condition becomes
true, the action associated with the trigger is executed.
Unlike a constraint handler, which is executed as part of
the transaction violating the constraint, a trigger action is
executed as a separate transaction, A constraint action
must maintain database integrity prior to the transaction
commit: trigger actions have not such concerns. In
typical applications such as process control, an early
warning system, or a stockbroker’s trading program,
events that cause trigger firing, e.g., events such as
excessive boiler pressure, enemy aircraft detection, or
stock price changes, can be independent of any
consequent actions. Thus trigger actions need not be part
of the transaction firing the trigger. Also, aborting a
trigger action should not result in the abortion of the
transaction firing the trigger. For example, if a
stockbroker is unable to fill a customer’s buy order
because of insufficient margin requirements, we would
certainly not want to abort the transaction recording the
change in the stock price in the broker’s database. Thus,
there are semantic requirements for the triggered action to
execute as a separate transaction. Another reason in favor
of making trigger actions to be separate transactions is
that this results in smaller transactions which improves
concurrent access and minimizes cascaded aborts, and
hence enhances database performance.

Triggers that fire will be recorded and their actions
executed (as separate transactions) only if the transaction
causing them to be fired commits successfully.
Otherwise, the trigger actions will not be executed. On
the contrary, a constraint action is executed whether or
not the transaction violating the constraint finally
commits. Since a constraint action is part of the firing
transaction, if the transaction eventually aborts, any
updates caused by the constraint action will be rolled
back. Thus the trigger action transactions are executed
after (but not necessarily immediately after) the triggering
transaction, i.e., there is “weak coupling” [9] between
the triggering transaction and the trigger action.

331 Barcelona. September, 1991

Since the action part of a trigger is executed as a separate
transaction, it is possible that the condition causing the
trigger to fire is no longer true at the time the triggered
action is actually executed. For example, the stock price
after falling to a level at which a customer’s buy order is
triggered, could rise above the trigger threshold price
before the buy transaction can complete. To prevent
purchase of the stock at this now changed (higher) price,
the trigger action must check that the stock price is at or
below the threshold; otherwise, it should deal with it
appropriately. See Sec. 6.3 for a discussion of possible
coupling mechanisms.
5.1 The Mechanism

Ode supports two kinds of triggers: once-only (default)
and perpelual (specified using the keyword
perpetual). A once-only trigger is automatically
deactivated after the trigger has “fired”, and it must then
explicitly be activated again, if desired. On the other
hand, once a perpetual trigger has been activated, it is
reactivated automatically after each tiring.
Triggers are specified within class definitions:
trigger:

[perpetual] T, (prrromefer-&cl,) : IriggerJJody,
[perpetual] T2 (parameler-dec12) : triggersbody
. .

[perpetual] T, (parumerer-decl.) : /rigger-body,

Ti are the trigger names. Trigger parameters can be used
in trigger bodies, which have the form
trigger-condilion => Irigger.action
within expression ? /rigger-condition = > lriggeraclion

[: limeoul4chm]

The second form is used for specifying rimed triggers,
Once activated, the timed trigger must fire within the
specified period (floating-point value specifying the time
in seconds): otherwise, the timeout action, if any, is
executed.
Triggers are associated with objects; they are activated
explicitly after an object has been created. A trigger Ti
associated with an object whose id is object-id is activated
by the call
object-id->T, (arguments)

The trigger activation returns a trigger id (value of the
predetined class TriggerId) if successful; otherwise it
returns null trigger. The object id can be omitted
when activati;g a trigger from within the body of a
member function.
An active trigger “fires” when its condition becomes true
(as a result of updates by a transaction). Firing means that
the action associated with the trigger is “scheduled” for
action as a separate transaction, Only active triggers can
fire. No performance penalty is incurred for triggers that
have not been activated.
Trigger activation must be done explicitly for each
individual object. However, the class designer can
automate trigger activation by putting the trigger
activation code in constructors. Since a constructor

Proceedings of the 17th International
Confetuw on Very Large Data Bases

function is called at object creation time to initialize the
object, the trigger automatically gets activated when an
object is created. Because triggers are activated explicitly
(by the programmer or by the class designer), different
objects of the same type may have different sets of
triggers active at any given time.
Triggers can be deactivated explicitly before they have
fired using the deactivate function:

deactivate (trigger-id

The trigger with identifier trigger-id is deactivated. If
successful, deactivate returns one; otherwise, it
returns zero.
Multiple activations of the same trigger associated with an
object (possibly with different arguments) are allowed.
For example, there can be multiple activations of the buy
trigger associated with a stock object with each buy
trigger being activated with different price and quantity
arguments.
An active trigger can be fired no more than once by a
given transaction, even if the transaction causes several
updates to the relevant object, any one of which could by
itself have satisfied the trigger condition and caused it to
fire. However, there is no limit on the number of
activations of the same trigger that could be fired by a
single transaction. Trigger conditions may overlap.
Consequently, updating an object may result in the firing
of one or more active triggers.
5.2 Examples
Consider the following class invent item, derived from
class stockitem that was shown earlier:

class inventitem: public stockitem 1
public:

inventitem (Name iname,double iwt,int xqty,
int xconsumption, double xprice,
int xleadtime, Name sname, Addr saddr);

void deposit tint n) ;
void withdraw (int n);
..I

trigger:
order 0 : qty < reorder-level 0 ==>

place-order (this, eoq 0) ;
//*@this” refers to the object itself

Trigger order is activated in the constructor function
inventitem and in the member function deposit.
The action associated with the trigger order will be
executed after its condition becomes true (as a result of
executing the withdraw operation).
Here are the bodies of some of the member functions of
class inventitem:

332 Barcelona, September. 1991

inventitem::inventitem(Name iname. double iwt.
int xqty, int xconsumption, double xprice)
int xleadtime, Name sname, Addr saddr):
stockitem(iname, iwt, xqty, xconsumption,

xprice, xleadtime, sname, saddr)
1

ordero; //triqqer activat.ion
J
void inventitem::deposit(int n)
(

qty += n;
order(); //trigger activation

1
void inventitem::withdraw(int n)
(

qty -= n: //might fire trigger
J

Now suppose that we wish to write a complaint if the
supplier does not fill our order within the promised lead
time. We could achieve this result by using a timed
trigger as follows:

class cinventitem: public stockitem i
public:

TriggerId checkarrival;
int delivered;
void deposit tint n) ;

trigger:
order () : qty c reorder-level 0 ==>

(place-order (this, eoq());
delivered = 0;
checkarrival = compiain(); 1

complajn():within leadt.ime ? delivered ‘7,:
: wr1te_complnint !otterO;

J:

void cinventitem::deposit(int n)

;I
6. DISCUSSION
6.1 Intra-Object Versus Inter-Object Constraints &

Triggers
A constraint or trigger is said to be in~ra-object if:

i. It is associated with a (single) specific object, and
ii. the condition associated with it is evaluated only

when this object is updated.
Otherwise, a constraint or trigger is said to be inter-
object. An intra-object constraint or trigger can refer to
other objects both in evaluating the condition and in the
subsequent action. However, updates to these refcrcnccd
objects do not require the condition part of the constraint
or trigger to be chcckcd. (See discussion below on what
is an even&
We opted for intra-object constraints and triggers for
several reasons. First off, by associating constraints and
triggers with class definitions, we have incorporated them
in the framework of Ct+ without violating its objcct-

Proceedings of the 17th International
Conference on Very Large Data Bases

oriented philosophy. In case of inter-object constraints
and triggers, which can refer to objects of different types,
it is not clear where they should be specified. It is not
appropriate to place such constraints and triggers in only
one object type if they involve multiple object types. And
we did not want to make constraints and triggers full
fledged types which are associated with appropriate object
types. Constraint and trigger types would add much
semantic complexity to Ott. e.g., where can constraint
type objects be used, can they passed as parameters, do
they have constructors and desctructors associated with
them, can pointers refer to them and so forth. One
straightforward solution to implementing the functionality
of inter-object constraints and triggers is to specify
appropriate intra-object constraints and triggers in the
definition of the object types involved. Indeed, most
inter-object constraints and triggers can be implemented
using one or more intra-object constraints or triggers.
This was certainiy the case in all the examples that we
worked out. See [12] for a systematic technique to obtain
intra-object constraints and triggers from inter-object
contraints and triggers.
Secondly, in terms of the E-C-A (event-condition-action)
model [141, in Ode the condition and action are explicitly
specified for every constraint and trigger. The event is not
explicitly specified. For an intm-object constraint or
trigger, this event can be assumed to be the updating of
the associated object, as discussed in Section 6.3. For an
inter-object constraint or trigger, the event might be the
update of any one of the objects involved in the constraint
or trigger. Checking for these events make inter-object
constraints and triggers significantly more expensive than
intra-object constraints and triggers.
Finally, physical locality makes intra-object constraints
and triggers more efficient to implement than inter-object
constraints and triggers. When an event occurs, the
condition(s) involve only components of object being
updated which means it is in memory.
6.2 Events
Constraints and triggers can be thought of as event-
condition-action (E-C-A) triples. Our constraint and
trigger facilities require explicit specification of the
condition and the action. But events leading to the
evaluation of the constlaint and trigger conditions are not
specified explicitly. We consider object updates as events
since only updates affect the constraint and trigger
conditions. (Object updates are “natural” candidate
events in O++.)
There are many ways to update an object. To get a proper
handle on updates and without incurring substantial
ovcrhcad, we consider as events only object updates
caused by public member functions. Specifically, direct
updates to objects, such as those caused by changing
values of public data members, arc not considered to be
events. Updates caused by private member functions are
not considered to be events since these functions can be
called (directly or indirectly) only by public member
functions. In such cases, the event is associated with the

333 Barcelona, September, 1991

public member function initiating the update.

Sometimes it may not be clear or possible to determine
whether or not a member function updales an object. In
our current implementation, we consider each invocation
of a non const public member function as causing a
potential update and we therefore check the constraint and
trigger conditions just prior to the termination of the
function. Note that const member functions cannot
update an object.

The action part of a constraint associated with an object
could cause updates that will affect constraints and
triggers in the same object or in different objects (as
happens in the VLSI cell placement example). In
particular, this means that the action part of a constraint,
in fixing the constraint violation, may violate some other
constraint. If the update causing this violation is not done
through a public member function, then there is no
guarantee that this constraint violation will bc detected
(immediately).

C++ (and therefore 0++) allows expressions 10 have side
effects. It is therefore possible for updates to be
embedded in the condition evaluation. Such embedded
updates are not treated as events unless they occur via
public member functions.

6.3 Coupling Modes
In [14], three types of coupling between an event (E) and
a condition (C) have been idenlified: the condition
evaluation is immediate (when the object is changed),
deferred (as part of the transaction but at the end), and
separate (in a separate transaction). Similarly, any of
these three types of coupling could exist bctwccn
condition and action (A). In Ode, the condition is
evaluated as part of the transaction updating the object
(after the object has been updated). In other words, the
E-C coupling is always immediate (for hard constraints
and for triggers) or deferred (for soft constraints), but
never separate. Conversely, the C-A coupling is either
immediate (for constraints) or separate (for Lriggcrs), but
never deferred. We do not provide the separate E-C
coupling mode or the deferred C-A coupling mode
because we believe that would be overkill. What seems to
be of greatest consequence is the coupling between the
event and the action (which is the “weaker” of E-C and
C-A couplings). This is because only the evet and the
action affect the state of the database. For constraints, the
C-A coupling is the strongest possible (immediate), so the
E-C coupling determines the strength of the E-A coupling
(either immediate or deferred). For triggers, the C-A
coupling is the weakest (separate), so the E-A coupling is
also separate irrespective of the E-C coupling used, and
we have chosen to use immediate since that is the most
efficient. We thus support the full spectrum of E-A
couplings.

In our scheme, a weak E-A coupling is implemented by
using a separate C-A coupling, i.e., a trigger. For
example, consider the triggered purchase of stock when
the stock price falls below a certain threshold. The event

Proczedings of the 17th International
Copference on Very Large Data Bases

is a change in the stock price. The condition is that the
stock prices is below a threshold value. The action is its
purchase. We want the purchase action to be a separate
transaction from the change in price event, therefore we
implement this task as a trigger. However, we would like
to make sure that the stock price is still below the
threshold when the purchase takes place, so we are forced
to check the condition a second time as part of the action.

7. IMPLEMENTATION
Our implementation strategy is based on the premise that
object updates are performed only by calling public
member functions. Constraints and trigger conditions me
not checked if objects are updated by directly changing
the values of the data members. We encourage the
definition of classes whose data members are private and
accessed using public member functions. Where
appropriate, member functions could be declared
in 1 ine to reduce the execution overhead.

When an object with soft constraints is updated, it is
placed in a “to-be-checked” list. An alternative
implementation, which we considered and decided
against, is to check the soft constraints when an object is
updated, and place it on the to-be-checked list only if its
constraints are violated, The resulting to-be-checked list
will then be smaller, and many objects need not be
accessed an extra time (for constraint checking)
immediately prior to the transaction commit. However,
the constraints will now have to be checked twice (once at
object update time, and once at transaction commit time).
Another problem would be dealing with situations where
one object access violates tie constraints but a succeeding
second access fixes the violation. Finally, the semantics
of the alternative implementation are a little more
complex.

Multiple updates to the same object in the course of a
transaction will cause a hard constraint to be evaluated
once on each update. A corresponding soft constraint will
only be checked once al the end of the transaction, since
any given soft constraint is permitted to appear no more
Lhan once in the to-be-checked list. Note though, that
updates using public member functions in the action part
of one soft constraint can cause another soft constraint to
be re-checked depending on the order of checking
selected by the implementation.

Hard constraints, soft constraints, and triggers are
encapsulated into member functions
hard-constraints, soft-constraints, and
triggers, respecrively. These functions are called to
check constraints and fire active triggers. In addition,
each trigger 7-i is converted into a member function 7-i
with the same parameters. This function will be called in
response to a trigger activation request.

8. RELATED WORK
The idea of having triggers and constraints in a database
is not new. Facilities for active databases appeared as
early as in CODASYL, in the form of ON conditions.

334 Barcelona, September, 1991

System R provided triggers and constraints as a
mechanism for enforcing integrity constraints [4, lo].
Simple triggers are now appearing in commercial
systems. For example, Sybase [8] provides facilities to
specify rules and wiggers. Rules are integrity constraints
that go beyond those implied by a column’s data type,
These are a special case of our constraint mechanism,
with no actions associated. A trigger is a special kind of
stored procedure that goes into effect when the sprx:ified
table is updated. Among other things, it can bc used to
disallow or roll back changes that violate a constraint,
such as an employee’s salary being made greater than the
manager’s, and to keep summary data, such as year-to-
date sales. A trigger can be affected by changes to only
one table. Each table can have at most three triggers: an
update, an insert, and a delete trigger. One trigger cannot
call another. If a trigger updates a table with which
another trigger is associated, the second trigger will not
fire.

In contrast, observe that Ode allows triggers to be
associated with objects, which are essentially tuplcs.
Multiple triggers can be associated with any individual
object, and these triggers can be paramctcrizcd. Also, any
number of triggers (and constraint actions) can be fired
recursively.

In relational databases, a distinction is sometimes made
between a trigger associated with an attribute and a trigger
associated with a tuple (or between triggers associated
with a column and those associated with the cntirc
relation). This diffcrcnce appears to bc an artifact of the
relational model and is not relevant in our context. A
trigger is always associated with an ob.icct. The trigger
condition could involve one or more attriburcs of the
object - it makes no difference.

Rules have been built into the POSTGRES third
generation database system (191. WC bclievc that the
facilities provided in POSTCRES are mechanistic and at a
lower level than the facilities dcscribcd in this paper.
There is no difference between constraints and triggers,
all are implemented by the single rules mechanism. All
rules always execute as part of the same aansaclion,
potentially leading to very long transactions and hence
inefficiency, and also potentially leading to an abort of a
triggering update bccausc a semantically indcpcndcnl
triggered update is unable to commit. Aricl [111 extends
the POSTGRES query language, but continues to suffer
from the limitations just discussed.

HiPac [9] proposes the concept of Evcnt-Condition-
Action (ECA) rules. These rules, unlike our triggers and
constraints are first class objects. When an cvcnt occurs,
the condition is evaluated and, if the condition, is
satisfied, the action is executed. Integrity constrain&,
access constraints, alerters, and other active DBMS
facilities can be implemented using ECA rules.

Production systems, such as OPS5, use production rules
as the programming paradigm. All rules are active all the
time. Whenever the conditions for a rule are satislicd, it
fires, and executes its action part. Some good work has

Proceedings of the 17th International
Conference on Very Large Data Bases

been done towards designing large production systems in
a database context [18,231. The difference between these
systems and ours is that in these systems the rules become
ends in themselves: the entire program is written in terms
of rules. In O++, procedural descriptions may be used
where they are appropriate, and rules where they are.

A significant issue in building rule systems for databases
is the ability to have operations execute set-at-a-time
rather than tuple (or object) at-a-time. 0++ provides
special constructs for iteration over sets, and these can be
used by the compiler to implement the iterated code on a
set-at-a-time basis. Any constraint actions that are
generated as a part of the code may also be executed set-
al-a-lime.

A major difficulty with production systems is that they are
very hard to debug when there are situations in which
multiple rules can fire, since each has its conditions
satisfied. Priority levels, whether explicitly stated as in
[11,191, or determined by criteria such as specificity
[18,231, we believe are a bad idea, since their use is
against the declarative spirit of constraint specification
and can decrease the potential for concurrent execution.
Since we do not specify the order in which the rules will
fire, the programmer is forced to make a conservative
assumption, and we believe that this makes programming
easier.

In an object-oriented context, rules and constraints have
been proposed in OOPS 1171. Constraints permit only an
undo of the update. Rules are used to enforce integrity
constraints and to trigger consequent actions. There is no
concept of a transaction.

Triggers have also be proposed for the Iris object-oriented
database [16]. Any Iris query can be monitored by first
defining it as a function and then defining a monitor for
that function. Iris provides functions for defining
monitors, activating them, deactivating them, and deleting
them. In contrast, triggers in 0++ are specified
declaratively and % part of the object definition.

OZ+ [22] supports self-triggering rules which correspond
to the perpetual triggers of O++. The self-triggering rules
are parameterless and they execute whenever possible.
Each such OZ+ rule consists of a condition and an action.
The OZ+ object manager tests the conditions of the self-
triggering rules in objects whenever object states change
to see if the triggers can be executed. In Ode, trigger
conditions are checked at the end of the execution of
member functions.

The issue of efficient implementation of triggers in
relational databases has been investigated by several
researchers, e.g., [7]. But more investigation and
experience with trigger implementations is needed in the
context of object-oriented databases. [5] discuss issues in
the design of constraint and trigger facilities for
programming languages. Two problems identified by
them relate to minimization of trigger condition and
constraint checking and the interaction between
constraints and exception handling. In O++, it is

335 Barcelona, September, 1991

necessary to do trigger condition and constraint checking
only at the end of each member function, Even this can
be reduced by analyzing the member functions so that
only the trigger conditions and constraints affcctcd by the
member function are checked.

In Vbase [3] triggers can be attached to attributes and to
operations. Triggers have often been used to augment
creation and deletion member functions. In O++, we do
not find it necessary to use triggers to augment object
creation and deletion because users can customize object
creation and deletion by defining appropriate constructors
and destructors.

9. CONCLUDING REMARKS

We have provided facilities for constraints and triggers in
0++ that match the object-oriented programming style of
Ct+. Specifically, we support two kinds of constraints:
hard and soft. Hard constraints arc checked after each
object access while soft constraints are checked just
before a transaction commit. We support three kinds of
triggers: once-only, timed, and perpetual. Triggers,
unlike constraints, must be activated explicitly.

Although constraints and triggers can be implemented
using similar techniques, we have provided separate
facilities for them since are conceptually and semantically
different. The purpose of constraints is to ensure data
consistency while that of triggers is to perform actions
when some conditions are satisfied. Violation of a
constraint leads to the abortion of a transaction, if the
violation is not rectified, while the satisfaction of a trigger
results in new transactions (assuming the transaction
commits), Ode constraints do not have paramctcrs
because they are intcndcd primarily to cnsurc object
integrity. Triggers have parameters to allow for trigger
firing to take place using user-specified values.

ACKNOWLEDGMENTS

We are very grateful to S. Dar, R. Greer, X. Qian and the
referees for for their comments and suggestions.

REFERENCES

[I] R. Agrawal and N. H. Gehani, “ODE (Object Database and
Environment): The Language and the Data Model”, Proc. ACM-
SIGMOD 1989 IN’/ Conf. Mananermnt of Da/a. Portland,
Oregon, May-June 1989.36:45. .’ -

(21 R. Agrawal and N. I-1. Gehani. “Rationale for the Design of
Persistence and Query Processing Facilincs in the Database
Programming Language O++“, 2nd Inl’l Workshop on Darahase
Programming Lmguages, Portland, OR, June 1989.

[3] T. Andrews and C. Harris, “Combining Language and Database
Advances in an Object-Oriented development Environment”,
Proc. OOPSLA ‘87, Orlando, Florida, Oct. 1987,430-440.

[4] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.
Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie, P. R.
McJones. J. W. Mehl. G. F. I’u17du. I. I.. Trainer. B. W. Wade
and V. Watson, “System R: Relational Approach to Database
Management”, ACM Trans. Database Sysf. I, 2 (June 1976) 97.
137.

Proceedings of the 17th International
Conference on Very Large Data Bases

151 T. Bloom and S. B. Zdonik, “Issues in the Design of Object-
Oriented Database Programming Languages”, froc. OOPSLA,
Orlando, Florida, Oct. l987,44 I-451.

]6] R. J. Brachman and H. J. Levesque, (ed.), Rcudings in Knowledge
Representalion, Morgan Kaufmann, 1985.

[7] P. Buneman and E. Clemons, “Efficiently Monitoring Relational
Databases”, ACM ACM Trans. Dalabase System, 1979.

[S] M. Damovsky and G. Bowman, “TRANSACT-SQL USER’S
GUIDE”, Document 3231-2.1, Sybase, Inc., 1987.

191 U. Dayal, B. Blaustein, A. Buchmann, U. Chakravrtthy, M. Hsu,
R. Lcdin, D. McCarthy, A. Rosenthal, S. Sarin, M. J. Carey, M.
1.1vny and R. Jauhari, “The HiPAC Project: Combining Active
Databases and Timing Constraints”, ACM-SIGMOD Record 17, I
(March 1988), 51-70.

[IO] K. P. Eswaran, J. N. Gray, R. A. Lotie and I. L. Ttaiger, “The
Notions of Consistency and Predicate Locks in a Database
System”, Commun. ACM 19.11 (Nov. 1976). 624633.

]l I] E. N. Hanson, “An Initial Report on the Design of Ariel: A
DBMS with an Integrated Production Rule System”, ACM-
SIGMGD Record 18,3 (September 1989), 12-29.

[12] H. V. Jagadish and X. Qian, “Integrity Maintenance in an Object-
Oriented Database”, AT&T Bell Labs Technical Memorandum,
1991.

[13] S. N. Khoshafian, G. P. Copeland and 406-416, “Objed
Identity”, Proc. OOPSLA ‘86, Portland, Oregon, Sept. 1986.

(141 D. R. McCarthy and U. Dayal. “The Architecture of An Active
Database Management Svstm”. Proc. ACM.SIGMOD 1989 Int’l
Con/ Manager&l of tiara, Portland, Oregon, May-June 1989,
215.224.

]I S] R. S. Nikhil, “Functional Databases, Functional Languages”, in
Dala Types and Persislence, M.P. Atkinson, P. Buneman and R.
Morrison (ed.). Springer Verlag. 1988.51-67.

[161 T. Risch, “Monitoring Database Objects”, Pruc. JSfh In1’1 Conf.
Very Large Dafa Bases, Amsterdam, The Netherlands, Aug. 1989,
445.453.

1171 G. Schlagctcr, R. Unland. W. Wilkes, R. Zieschang, G. Maul, M.
Nag1 and il. Meyer, “OOPS - An Object Oriented Programming
System with Integrated Data Management Facility”, Proc. /E&E
4,h Iti’ Con,6 Data Engineering, Los Angeles, California, Feb.
1988, 118.125.

[181 T. Sellis, C. Lin and L. Raschid. “Implementing Large Production
Systems in a DBMS Environment: Concepts and Algorithms”.
Proc. of the ACM-SIGMOD Int’l Conj. on rhe Uanagemenl of
Dala,,Chicago. Illinois, 1988.

[I91 M. Stonebraker, E. N. Hanson and S. Potamianos, “The
POSTGRES Rule Manager”, IEEE Trans. Sofrware Eng. 14, 7
(July 1988), 897907.

[20] B. Strousttup, The Ctt Programming Language, Addison-
Wesley.. 1986.

1211 B. Stroustmp, “Multiple Inheritance for C++“, Proc. EUUG
conference, Helsinki, May 1987,189-208.

1221 S. P. Weiser and F. H. Lochovsky, “OZt: An Object-Oriented
Database System”, in Object.Orienled Concepts and Dalabases.
W. Kim and F.H. Lochovsky (ed.), Addison-Wesley, 1989, 251-
282.

(231 J. Widom and S. J. Finkelstein, “Set-Oriented Production Rules in
a Relational Database System”, Proc. oflhe ACM-SIGMOD Id1
Conf. on the Management of Data, Atlantic City, New Jersey,
1990,259-270.

336 Barcelona, September, 1991

