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Abstract 

Managing data in large rule systems is a 
critical issue, and DBMS systems are being 
extended for the support of rule-based, 
data-intensive decision making such as in 
expert system applications. We suggest to 
selectively materialize the rule-generated 
data in relations so that rule-based decisions 
can be made incrementally and automati- 
cally when the collected data are updated, 
An algorithm is developed to select derived 
relations for materialization so that the 
overall cost of processing the inference 
rules is minimized while satisfying require- 
ments on query response time. 

1. Introduction 
Expert Systems (ESs) are being applied to many 

business operations, including accounting (Shim & Rice, 
1988), finance (Srinivasan & Kim, 1988; Duchcssi, 
Shawky & Seagle, 1988 and Shaw & Gentry, 1988), 
human resource (Extejt & Lynn, 1988), and production 
(Rae & Lingarai, 1988). One of the problems ES 
developers are facing is that access to large amounts of 
business data is difficult because current ES technology 
lacks necessary data management functions found in 
database management systems (DBMSs). 

To support decision making while using large 
amounts of data, DBMS and ES technologies are being 
integrated into expert darabase syslems (EDSs), New 
DBMS systems are being designed with EDS features, 
that is, managing both rules and data in a unified sys- 
tem. Relational DBMSs are not designed to handle 
inference rules and their functions must bc extended lo 
address several important issues. 

Rules are symbolic data with special internal and 
external structure. They must be- managed in a special 
way so that they can be defined, stored, and accessed 
efficiently. This is the rule sforage issue. 
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When data are insened or modified by an transaction, 
certain rules may be called upon to act on the change of 
situation. Therefore, relevant rules must be identified 
quickly. This ‘is the rule awakening issue. 

When rules are awakened, data must be derived and 
stored efficiently. This process can be complex if the 
rule derived data affect other rules. For relevant rules 
that are conditional on join expressions, appropriate 
techniques must be us&l lo ensure efficient rule execu- 
tion. This is the rule execution issue, and is addressed 
in this paper. 

Current research and prototype systems deal with the 
above issues. Among those systems are POSTGRES 
(Stonebraker, Hason & Potarninos, 1988), Starburst 
(Haas et al,, 1990), Iris (Wilkinson, Lyngbek & Hasan, 
1990), LDL (Chimenti et al., 1990), RDLl (ICiernan, 
Maindreville & Simon, 1989), DIPS (Sellis, Lin & 
Raschid, 1989), and Ariel (Hanson, 1989). Currently, 
most rule systems in these prototypes focus on support- 
ing database services such as triggers, integrity con- 
straints, data se.curity and relational views (e-g,, Widom 
& Finkelstein, 1989 and Ceri 8: Widom, 1990). In this 
paper, we focus on processing inference rules that 
derive data based on existing data. Such data derivation 
rules and their interaction are likely to be complex in a 
large ES, Among the derived data, some may be 
materialized in order to reduce processing costs or 
query response times. 

Materialization of rule-derived data in an EDS is 
related to materialization of user-defined views in a con- 
ventional DBMS, which has been studied previously in 
(Blakeley, Larson & Tompa, 1986; Hanson, 1987 and 
Segev & Park, 1989). Our research is different from 
these previous studies in two major aspects. First, in an 
EDS, inference rules are usually chained to one another 
so that decisions on whether or not to materialize a 
derived relation must be made by considering the chain- 
ing effect among rules. Previous work on view materi- 
alization (and also work on materializing rule data, such 
as in (Sellis, Lin & Raschid, 1989 and Segev & Zhao, 
1991a,b) did not consider this chaining effect. Second, 
we introduce auxiliary data consrmcts that give rise to 
new opportunities in improving system performance. 
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The rest of the paper is ,organized as follows. Sec- The first set of rules (Bankruptcy rules) predicts 
tion 2 illustrates the relationship between inference rules financial performance based on the given data in the 
and relations through a hypothetical application. Sec- COMPANY relation, deriving the PERFORM relation. 
tion 3 analyzes the characteristics of data propagation The second set of rules (Approval rules) approves or 
through inference rules. Section 4 defines the optlmiza- disapproves the loan application of a company based on 
tion problem of materializing derived data, presents the its PERFORM data and the type of loan for which it 
rule materialization structures, and develops a applies. The resulting data of the rule is placed in 
decomposition-based algorithm. Section 5 gives an another derived relation, the APPROVAL relation. Fig- 
example of the algorithm and presents some computa- ure 2.2 illustrates the derivation of the data objects with 
tional results, and Section 6 concludes the paper with a the two sets of rules. The meaning of each rule is as 
summary and future research. follows. 

2. Inference Rules 
Much of the collected data can not be used directly 

as decision making variables. Therefore, these data 
must be preprocessed before they can be used in a deci- 
sion model. This preprocessing of data can be done by 
means of inference rules. An inference rule is an If- 
Then statement that applies constraints to some existing 
data and derives new data or nigger an action when the 
If-side is satisfied. The If-side of a rule is called rule 
antecedenf, or rule body, and the Then-side is called 
rule consequent, or rule head. In general, we distin- 
guish between data rules and action rules; the former 
are rules that directly affect existing data or derive new 
data and the latter are rules that activate DBMS com- 
mands or procedures such as ABORT a transaction or 
PRINT a report. 

0 : Derived Dsu 
D : Rule AmtovhL 

Figure 2.2. Data derivation through rules 
Bankruptcy Rules 

A hyporhetical EDS application is illustrated next 
through two sets of rules and four relations by extend- 
ing an example in (Turban, 1989). Suppose a commer- 
cial bank uses an expert database system to support 
decision making in the evaluation of financial perfor- 
mance and loan approval. The relevant relation sche- 
mas are shown in Figure 2,1, where COMPANY con- 
tains the financial statements of loan applicants, LOAN 
contains the information about the types of loans, and 
PERFORM and APPROVAL contain the data derived 
from COMPANY and LOAN through the inference 
rules described next. 

Rule 1: PERFORM(Name, BYear=“5”. Solvent=“n”, Type):- 
COMPANY(Name, CFTD>.1309, TDTb.6975, Type). 

Rule 1 says that if the ratio of cash flow to total debt 
is greater than .1309 and the ratio of total debt to total 
assets is greater than .6975, then the company could go 
bankrupt within 5 years. 
Rule 2: PERFORMName, _, Solvent=“y”, Type):- 

COMPANY(Name. CFTD>.1309, TDTIU.6975. Type). 
Rule 2 says that if the ratio of cash flow to total debt 

is greater than .1309 and the ratio of total debt to total 
assets is less than or equal to .6975, then the company 
is financially solvent. 
APPROVAL rules 
Rule 3: APPROVAL(Name. Type, BYear, Solvent, Appr=“y”):- 

LOAN(Type, Ten-&, Sizec50,000, J, 
PERFORhWame, BYear, Solvent=“y”, Type). 

If the company is solvent, the loan term is less than 
five years and the loan size is less than 50,000, then 
Rule 3 recommends to approve the loan. 
Rule 4: APPROVAL(Name, Type, BYear, Solvent, Appr=“?“):- 

LOAN(‘Type, TermcBYear, Size<20,000, -), 
PERFORM(Name, BYear>3, Solvent=%“, Type). 

If the company could be bankrupt within more than 3 
years, the loan term is less than the bankruptcy horizon, 
and the loan size is smaller than 20,000, then Rule 4 
makes uncertain recommendation. 

COMPANY(Name,CFTD,TDTA,Type) 
LOAN(Type,Term,Size,RiskFactor) 
PERFORM(Name,BYear,Solvent,Type) 
APPROVAL(Name,Type,BYear,Solvent,Appr) 

Am 
Byear 
CFTD 
Name 
RiskFactor 
Size 
Solvent 
Term 
Tvoe 

decision about loan approval 
projected number of @rs to bankruptcy 
the ratio of cash flow to total debt 
company name 
measure of risk level of a loan type 
loan amount 
predicted financial status 
loan period 
loan tvDe 

TijTA the ralb of total debt to total assets 

Figure 2.1. The relational schemas. 
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Rule 5: APPROVAL(Name, Type, BYear, Solvent, Appr=“n”):- 
LoAN(Type, TermlBYear, * -1, 
PERFORM(Name, BYear, Solvent=%“, Type). 

If the company could be bankrupt within less than 
the number of years that the loan spans, then Rule 5 
disapproves the loan. 
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The Bankruptcy and Approval rules derive data 
objects as consequent& and the derived relations PER- 
FORM and APPROVAL may be kept materialized as a 
way to support data propagation in the rule system. 
Notice that materializing rule data, such as PERFORM 
in Figure 2.2 serves two objectives. First, user queries 
to the rule data itself will realize better performance, 
and, second, subsequent rules on the chain (the Appro- 
val rules in this example) will be processed more 
efficiently. The chaining effect of such rules is a major 
focus of our work, and is elaborated in the next section. 

3. Characteristics of Data Propagation 
Next, we investigate the characteristics of data propa- 

gation in an EDS using the example in Figure 3.1. In 
the figure, double-lined boxes denote base relations, 
single-lined boxes illustrate derived relations, and trian- 
gles indicate rules that derive data from antecedent rela- 
tions into consequent relations. Also shown in the 
figure are the transactions to the base relations and user 
queries to some of the derived relations. We ignore 
user queries to base relations since their optimization is 
independent of the materialization decisions. The figure 
also illustrates the possibility of storing derived data 
explicitly with base data in the same relation (This 
scheme will be described in Section 4.2.1). 

@j$~~~, R4 r’ 

a-----* 

A+0 
D7 Q3 

m 
bsc data set (rclalion) i @: cxlcrnal query set i 

I: dcrivcd data set (relation) i [4 : rule se1 i 

c ! : same physical relation 0: extcmel lransaction scl i 

Figure 3.1. A hypothetical rule data graph 
The analysis in this paper is done by constructing a 

graph G (D R ,T* ,Q'), where 
denotes the graph. 
denotes the data sets. In Figure 3.1, D = (Dl, D2, 
D3, IX, D5, D6, D7, D8) where Di, i=l to 4 are 
base relations, while the others are derived relations. 
denotes the rule sets in the graph, namely, [Rl , R2, 
R3, R4). Of those rules, Rl and R3 are select- 
project-join rules, whereas the other rules are select- 
project rules. The rule sets define the edges that 
conneCt the data sets D. The direction of arrows of 
the rules define the propagation direction of transac- 
tions. 
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T' denotes the external transactions arriving at the base 
relations, (Tl, T2,T3, T4). Each transaction set Ti 
is defined by its arrival rate, its target relation, and 
the mean number of tuples it updatest. Notice that 
in Figure 3.1, only external transactions are shown. 
We use the superscript e to distinguish external tran- 
sactions from internal ones. Internal transactions 
result from the propagation of external transactions 
to update materialized derived data, e.g., if D7 in 
Figure 3.1 was materialized, internal transactions for 
its update would be generated for any of the external 
transactions shown. 

Qc denotes the external queries arriving at the derived 
relations, namely (Ql, Q2, 43). An external query 
set Qi is defined by its arrival rate, its target relation, 
and its query selectivity. As for the case of external 
transactions, external queries may generate internal 
queries. For example, if none of the derived rela- 
tions in Figure 3.1 is materialized, 43 will generate 
internal queries propagated all the way back to the 
base relations. Note that intemal queries may also 
be generated by update transactions. To illustrate 
this, suppose that D6 is the only materialized derived 
relation in Figure 3.1. In this case, transactions T4 
will propagate internal transactions to D6, but since 
R3 is a join rule, data from D5 is needed, thus pro- 
pagating internal queries back to Rl. 
As a result of propagation of transactions and 

queries, data are derived and rederived within the rule 
data system, and we call this process the propagafion of 
data, In principle, a derived relation should be materi- 
alized if the cost of maintaining and querying the 
materialization is less than the cost of recomputing the 
relation for all its queries. However, application of this 
principle to specific problems is complicated by what 
we call the chaining effect of materialization decisions. 

We show that the decision on materializing a derived 
relation is affected by decisions about its consequent 
relations. Consider the relation D5 in Figure 3.1. The 
total number of queries at DS include external queries 
Ql and internal queries generated by queries or by tran- 
sactions at the relation D6. The number of internal 
queries at D5 depends on whether D6 is materialized 
(the number of queries to D6, in turn, is dependent on 
D7). Internal queries at D5 will be generated by 
queries arriving at D6 if D6 is not materialized, on the 
other hand, internal queries at D5 will be generated by 
transactions at D6 if D6 is materialized, 

The decision on materializing a derived relation is 
also affected by decisions on its antecedent relations 
because the cost of maintaining and querying the given 
relation depends on whether its antecedent relations are 
materialized. For example, maintaining and querying 
D6 may require recomputing D5 if D5 is not material- 

t We use the generic term ‘updater’ to refer to insertions. 
deletions, and modifications. 
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ized; this recomputation is unnecessary if D5 is materi- 
alized. 

Due to this chaining effect, the characteristics of 
internal transactions and queries to a derived relation 
are not known before the problem is solved. This 
dependency of parameters on the solution increases the 
complexity of the optimization problem significantly. 

4. An Optimization Algorithm 
In this paper, we assume an immediate update pol- 

icy, That is, when a derived relation is materialized, 
the relation will be updated immediately after the com- 
pletion of transactions at the antecedent relations. For a 
discussion of other policies, see (Segev & Fang, 1990). 
When a derived relation is not materialized, the relation 
will be computed at query times, This section defines 
the problem and the procedure of selecting derived rela- 
tions for materialization. Our objective is to minimize 
the overall processing cost subject to query response 
time constraints. 

The optimization algorithm that will be presented in 
this section is based on the decomposition idea. It first 
identities points in the rule data graph, where local deci- 
sions are optimal, The result of those decisions is a set 
of derived relations whose materialization decisions has 
been made and a set of optimization problems 
corresponding to subgraphs of the original graph. In 
this paper, we assume that the decomposed components 
can be solved optimally by exhaustive search: if this is 
not the case, heuristic procedures can be applied to 
them. We separate the presentation of the optimization 
into two parts. The first part deals with high level cost 
expressions, and is intended to convey the overall logic 
of the optimization procedure. The details of particular 
cost expressions are dependent on numerous factors 
such as the materialization structure, update methods, 
data structures, join methods, etc. In the second part of 
the presentation, we will make specific assumptions 
about the details which are required for the computa- 
tional results, but it should be kept in mind that the 
objective of this paper is not to optimize every lower 
level decision (existing query optimizers, for example, 
can be used to evaluate the cost of different join alter- 
natives and choose the best). 

The notation summary below is for reference pur- 
pose; it is explained (if necessary) where introduced 
first. Notice that for the cost symbols below, lower-case 
c is used to indicate unit costs, while upper-case C fac- 
tors in the frequency of operations, 

Cb = cost per block access 
c,(x) = cost of screening a tuple of relation * 
c,(x) = cost of generating a Nple of relation x 
C,(x) = total cost due to queries at relation x 
Cr(x) = total cost due to transactions at relation x 
C,O(x=O) = total cost of generating relation x for internal and 
external queries to x, when the antecedent relations are avail- 
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able. and e(x) = 0 
C;(x*) = total cost of computing the antecedent relations of 
x for external and internal queries to x, when @(x) = 0 
C:(x=l) = total cost of computing the antecedent relations of 
x due to transactions at x, when U)(x) = 1 
C!(x=O) = total cost of reading relation x (after generatin 
to process external and internal queries at x, when @(x) = % 

it) 

C!(x=l) = total cost of reading relation x to process external 
and internal queries at x, when Wx) = 1 
C:(x=l) = total cost of updating relation x due to transactions 
at relation x , when Q(x ) = 1 
D = the set of base and derived relations in graph G 
IX = ratio of transactions that are non-null during propagation 
g, = rule selectivity factor to tuples of relation x 
G = the rule data graph 
N* = number of Nples in relation x 
v, = average number of triggers a tuple invokes 
P,’ = the set containing the ith generation of preceding rela- 
tions of relation x 
(lX = query selectivity factor at relation x 
Q’ = the set of external queries in graph G 
Q (x ) = the set of external and internal queries at relation x 
R P the set of rules in graph G 
Sj = the set containing the ith-level subsequent relations of 
relation x 
lc (x) = the time it takes to recompute relation x 
r,(x) I the response time constraint on recomputing relation x 
7’ = the set of external transactions in graph G 
T(x) = the set of transactions at relation x 
Y(a) = the Yao function to determine the number of block 
accesses 
0(x) = the decision variable for materialization, Q(x) = 1 if x 
is materialized, and 0 otherwise. 
h, = the arrival rate of transactions at relation x 
a, = the query rate at relation x including all external and 
internal queries. 
a: = the arrival rate of external queries at relation x 
aI (x,2 1 = the query rate from x to antecedent z initiated by 
transactions at relation x due to antecedents other than z . 
j3* = the mean number of tuples per transaction at relation x 
4 = the amplification factor, that is, the average number of 
new p patterns a Nple of relation x generates. 

4.1. A Decomposition-Based Algorithm 
Let 0(x) be 1 if relation x is materialized and 0 oth- 

erwise, C,(x) be the total cost incurred by processing 
transactions to relation x, and Cc(x) be the total cost of 
processing queries against relation x. The resulting 
optimization problem is given as follows. 

Problem P: 
Given a graph G (D .R ,T* ,Q* ) and 
the requirements on query response time 
select 0(x) for all x E D such that 
CC&x) + Ccc(x) is minimized 

we denote thdoptimal values of q(x) by m’(x). 
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The decomposition of the rule data graph is based on 
a set of lemmas and theorems. We first introduce the 
concepts of Response Time Decisions, Local Decisions, 
and Decision Boundary. 

Response rime decision: Let I, (x ) be the time to gen- 
erate a non-materialized relation x, and In be a con- 
straint on that time. It(x) is the query response time 
constraint less the time to answer the query if x is 
materialized. If fc(x) c 0, there is no feasible solution 
to Problem P, so we assume that all r,(x) 2 0. The 
optimization algorithm below makes decisions at several 
steps on whether or not derived relations must be 
materialized to satisfy response time constraints. 

Local decisions: These decisions are made on Q(X), 
assuming that 0(y) and a(t) are known, where y and z 
are subsequent and preceding relations of x respectively. 
The following notation is used. S: is the set of ith-level 
subsequent relations of x. In Figure 3.1, if x = D5, 
then SJJ = (D6) and SL?S = (D7). Pi is the set of ith- 
level preceding relations, e.g., PA6 = (DS, D8J and PJs 
= (Dl, D2, D3, D4). Given assumptions on the values 
of Wy), yeuf. and of 9(z), ZEUPI, the value of Q(x) 

I I 
can be determined by a cost benefit analysis, The 
resulting value of the local decision CD(x) may give use- 
ful insights leading to a decision on the value of 0’(x). 

The value of a(x) is determined by comparing the 
processing cost when 0(x) is 1 and the cost when 0(x) 
is 0. The processing cost when Q(x) = 1 includes the 
cost of computing the nonmaterialized antecedent rela- 
tions of x, the cost of updating relation x, and the cost 
of reading relation z for the queries reaching relation x. 

C,(x) = Ci(x=l) + CL(x=l) + cy(x=l) 

and the processing cost when Q(x) = 0 includes the cost 
of computing the nonmaterialized antecedent relations 
of x, the cost of computing relation x, and the cost of 
reading relation x for the queries reaching relation x. 

Co(x) = C,o(x=o) + cq(x=O) + C,s(x=o) 

The difference between C,(x) and Co(x) is 

AC(x) = C;(x=l) + C:(x=l) + C;(x=l) - 

C,o(x=o) - qx=Q - C!(x=O) 

Consequently, Q(x) = 1 if AC(x) 5 0 and 0(x) = 0 
otherwise, (The details of the above cost components 
are given in Section 4.2). 

Decision boundary: Given a rule data graph, those 
derived relations whose antecedent relations are base 
relations form the initial boundary of decisions 0(x) to 
be made, and therefore, we call such relations boundary 
relarions. x becomes a new boundary relation when 
0((z) is determined for all z E P,‘. 

Next, we present theorems and corollaries, leading to 
the decomposition-based algorithm. For lack of space 
we omit the proofs; they can be found in (Segev & 
Zhao, 1991c). 
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Let a, (x ,t ), 2 E P,’ be the query rate to 2 initiated at x 
by transactions propagated to x from zk P,‘, zkz . Note 
that this can occur only if the rule leading to x is a join 
rule, and thus a,(x,z) = 0 if ‘Pa11 = 1. Also let a, be the 
total query rate at x (both internal and external); Lem- 
mas 2 and 3 in the Appendix specify that ax = min(a.) 
when 0(y) =I, for all yes,‘, and a, = max(a,) when 
O(y) = 0 for all yeySl. Then we have: 

I 
Theorem 1. Assume that (a) CD(y) = 1, for all ye&‘, 
and (b) a(z) P 1, for all E E P! if a,(x,z) < min(a,) then 
Q(x) = 1 for all zeP!; else, if a, (x.2 ) 2 min(a,), then 
cp(z) = 0 for all 2 E UP:. If a local decision under these 

assumptions gives 4x) = 1 6’(x) must be 1. 
Corollary 1. When considering a derived relation at 
the decision boundary, a’(x) must be 1 if 6(x) = 1 
when assuming Wy ) = 1, for all y E S,‘, 
Theorem 2. Assume that (a) 0(y) = 0, for all ye& 

and (b) a(z) = i, for all zeP,’ if a,(x,z) L max(a,) then 
0(x) = 1 for all zePf; else, if a,(x,z) < max(a,), then 

i O(z) = 0 for all ZEUP,. If a local decision under these 

assumptions gives 4~) = 0 0*(x) must be 0. 
Corollary 2, When considering a derived relation at 
the decision boundary, CD’(x) must be 0 if @f(x) = 0, 
when assuming Wy ) = 0, y E US?. 

Theorem 3. Given a graph ~(D,R.T’Q) and @(x) = 1 
forxeX,X isasubsetofD. 

If removing some of the relations x, for any xeX 
will split the graph G into two graphs, G 1 and G 2, then 
graph G can be separated into Gi(Di,Ri,Ti’,Qi’) for i = 
1 to 2; where D l=(yP:)yX, D2=Xy(&), R = 

1 I 
RlyR2, Q* I= Ql*ua2’, and T’ = Tl’yT2* - T(X). 
Solving Gl and G2 separately is equivalent to solving 
G. 

A decomposition-based algorithm: 
0. 
1. 

2. 

3, 

Initialize a(x) = 0, for all XE D . 
Determine T(x) by propagating the external transac- 
tions T’ at the base relations, and comuute L = 

Y~P,l W,1 
Response time analysis (one-step): Do the following 
for all derived relations x E D , 
2.1 Compute I# (x) by assuming Q(y) - 1, y E P,‘. 
2.2.Set k(x) to 1 if r,(x) > I,(X) and 0 otherwise. 
2.3.Insert x into Su, the set of derived relations to be 

materialized. 
Partition the rule data graph into smaller segments if 
O’(x) = 1 for some x (by Theorem 3). 

4. For each graph segment, compute min(a,) and 
max(a,) for all XE D , that is, propagate the external 
queries and the internal queries initiated by transac- 
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tions in Step 1. 
5. Cost and benefit analysis 

5.1. Local decisions: 
5.1.1. For each boundary relation x E D , determine 

0(x) using Corallary 1. If CMx) =I, then set 
a’(x) to 1 and insertx into SM. 

5.1.2. For each nonboundary relation XE D , deter- 
mine a(x) using Theorem 1. If 0(x) =l, then 
set 0’ (x) to 1 and insert x into SM. 

5.1.3. Repartition the segmented graphs (by 
Theorem 3) and go to Step 4 for all new seg- 
ments if any. 

5.1,4. For each boundary relation XE D , determine 
0(x) using Corollary 2. If 0(x) =O, then set 
CD’(x) to 0 and insert x into SN, the set of 
derived relations not to be materialized. 

5.1.5. For each nonboundary relation xeD, deter- 
mine CD(x) using Theorem 2. If 0(x) =O, then 
set 0. (x) to 0 and insert x into SN. 

5.2. Exhaustive search: 
52.1. For each segment of Problem P, define 

Problem PS. using the results of Steps 2 and 5 
as constraints. 
PS: Given a graph G (DS ,RS ,TS’ ,QS’ ) 

s-t. Q(x) = 1, xeDSfly 
a(x) = 0, xeDSmN 
and r,(x) s r,(x) 

select 0(x) for all x E DS such that 
x&(x) + ~CQ (x) is minimized 

X2.2. ‘Test for ‘response time: For each set of 
values of @(x), XE DS, compute r,(x) for all x 

that @(p(x) = 0, and discard the set if t,(x) > 
r,(x) for any xeDS, 

5.2.3. compute the values of C,(x) and C,(X) for 
the sets passing the test of response time in 
step 5.2.2. 

5.2.4. A set of Q(x) values that minimize the 
value of 

1 
z&(x) + CC@(x) 
x z I 

is a solution to Problem PS. 
6. The union of the solutions to all segments PS is the 

solution to Problem P. 

effective in many cases, and they will be considered in 
this paper to assist processing of join rules. 

4.2. Cost Analysis 
In (Sellis, Lin & Raschid, 1989), a data construct, 

called condition relation, was devised to process join 
rules. That structure requires propagating matching pat- 
terns to multiple relations when the dimension of joins 
is larger than two. We have developed an alternative 
method based on auxiliary data constructs: condition 
pattern relations and join pattern relations (Segev & 
Zhao, 1991a). Performance evaluation in that study 
showed that those auxiliary data constructs are very 
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4.2.1. Materialization Structures 
In the following subsections, we develop cost func- 

tions for analyses of response time and cost and benefit, 
We classify rules into select-project rules (SP-rules) and 
select-project-join rules (SPJ-rules). In the case of 
SPJ-rules, the condition pattern relations Q-relations) 
and the join pattern relation (JP-relation) will be utilized 
to assist deriving the rule-defined data. In order to do 
this in a homogeneous way, we logically decompose a 
SPJ-rule into a set of SP-rules associated with the CP- 
relations and a join-rule (J-rule) associated with the 
derived data. As for the JP-relation, we assume that it 
is a fixture of materializing the derived data. That is, a 
JP-relation will be used whenever a relation derived by 
a J-rule is materialized. Figure 3.1 has been expanded 
as shown in Figure 4.1 to include explicitly the CP- 
relations, which can be viewed as any derived relation 
for materialization decisions. 

Figure 4.1. The extended rule data graph 
In deriving the cost functions in Section 4.2.2, we 

assume that memory size is large enough to allow com- 
puting joins of two relations by retrieving each relation 
only once. The derived relation will be written to disk 
at the end of each join computation. 

We assume that execution of subsequent transactions 
are initiated when their immediate preceding transac- 
tions are completed. In other words, we do not consider 
pipelined operation during propagation of transactions, 
when estimating cost of transactions and queries. We 
also assume that the characteristics of base relations, 
rules, external transactions and queries are given. 

Data derived by rules may be materialized in several 
structures according to the rule characteristics. We 
present three materialization structures as follows. 
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Case A: Rule consequent data should be materialized 
in the same relation as the rule antecedent data when 
the rule body is composed of a single predicate and the 
selectivity of the rule is large. 

Case B: Rule consequent data should be materialized 
in a separate relation when the rule body is composed 
of a single predicate and the selectivity of the rule is 
small. 

Case C: When the rule body is composed of more 
than one predicate, a join operation is usually needed in 
order to evaluate the rule constraints for a given set of 
data elements. 

We categorize the rule materialization structures into 
Structure A, B, and C as shown in Figure 4.2 
corresponding to Cases A, B, and C respectively. 

Svucrurc A Strocturc B 

cl : DU set i 

; :Rulera 

@ : Condition pattern i 

m : Join pawm 

Figure 4.2. Materialization Structures 

4.2.2. Derivation of Cost Expressions 
Given the materialization and auxiliary structures, we 

now elaborate on the cost expressions used by the 
optimization algorithm, 

Response Time Analysis 
The query response time r,(x) is defined iteratively 

next, where I:(X) is the time needed to recompute x 
when all antecedent relations are readily available for 
reading, which may be base relations, or materialized 
derived relations, or nonmaterialized recomputed rela- 
tions. 

In deriving the cost functions next, we assume that 
base relations and materialized derived relations are 
indexed on the constrained attributes using indirect 
hashing and therefore, the cost of reading indexed rela- 
tions is computed using the approximation of the Yao 
function (Bernstein, 1981). We also assume that rcad- 
ing a nonmaterialized relation requires a recomputation 
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followed by a complete scan of the computed relation. 
The cost of recomputing relation x is the sum of the 

cost of recomputing relation x from the antecedent rela- 
tions and the cost of recomputing the antecedent rela- 
tions if necessary, lI(x) = r,‘(x) + x $01). 

rar;.o(rb=+J 
The cost of recomputing relation x from its 

antecedent relations is separated into the cost of reading 
and screening the nonmaterialized relations, the cost of 
reading the materialized relations using indices on the 
constrained attributes, the cost of generating the tuples 
of relation x, and the cost of writing the results to disk 
t;(x) = c kdy + c,(YWy) 

W,‘.W=O 

Where Pi is the antecedent relations of x, 6, and N, are 
the number of blocks and tuples of the antecedent rela- 
tion of x. Notice that the cost of screening tuples and 
the cost of creating tuples of the derived relation are 
dependent on the particular relation due to the 
difference in the number of constrainted attributes, the 
tuple size and the join dimension. 

Cost and Benefit Analysis 
In estimating the costs of materializing derived data, 

we assume an immediate update policy, i.e., the derived 
data is maintained immediately after a transaction is 
done at the antecedent data. We assume also that join 
attributes on all materialized relations are indexed with 
an indirect hashing method so that a read requires two 
accesses and a write requires three. 
Local decisions 

Shown below are the cost functions for the local 
decisions as defined in Section 4.1. We assume the cost 
of recomputing a nonmaterialized relation for arriving 
queries is linear with the time of computing it and the 
frequency of the relevant queries and transactions. 

The cost of computing the antecedent relations of x 
for materializing x at the transaction times is equal to 
the sum of the cost of computing the nonmaterialized 
antecedent relations and the cost of propagating the 
transactions to the antecedent relations. 

tq(x=l) = c 
YrP,l,*J>Q 

[o”dJYwY) + w,ly)l 

Where, IL, = C fJh and fi is the fraction of non-null 
Y6P.l 

transactions-t out of all transactions arriving at relation 
y, after screening against the rule conditions. The cost 

t Since transactions are propagated and their tuples are 
screened, it is porsiblc that the tmnsaction becomes null at a 
node because none of its tuples passes the screening. 
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of propagating transactions to an antecedent relation y, 
C,(y), is defined iteratively as the cost of propagating 
transactions from the antecedent relations of y to y plus 
the cost of propagating transactions to the antecedent 
relationsofy,C,(y)=C,‘OI)+ I3 LCp(z). 

rcPJI,#rb-o 
The cost of propagating transactions from the 
antecedent relations of y to y consists of the cost of 
reading the nonmaterialized partner relations of the join 
and screening tuples read, the cost of reading material- 
ized partner relations, and the cost of generating the 
tuples for the transactions. 

qa> = c kb (5 -fs L lb, + c, (2 Ifi 71, B, 1 
I.P$W~~ 

The cost of computing the antecedent relations of x 
for external and internal queries at relation x is equal to 
the sum of the cost of computing the nonmaterialized 
antecedent relations, C,((x=O) = a= C r, 0, ). 

YRPx’M7M 
The cost of computing relation x for external and 

internal queries at relation x is the product of the query 
rate and the cost of computing relation x given the 
antecedent relations, C;(x=O) = a.r/(x), 

The cost of updating relation x at the transaction 
times is equal to the sum of the cost of reading the non- 
materialized antecedent relations and the cost of reading 
the materialized antecedent relations, the cost of main- 
taining the join pattern relation and relation x for J- 
rules, the cost of maintaining relation x for SP-rules, 
and the cost of generating the tuples of relation x. 
Ct(x=l) = C @is (L-f, 5 )by + c, (r 1% B, 1 

Yrp,1.w-J 

Where I(o) is an indicator function, and it is equal to 1 
if true and 0 otherwise. 

The cost of reading relation x after x is generated 
when @(x) = 0 is Cl(x=O) = cba, b,. 

The cost of reading relation x when 0((x) = 1 is We 
assume that materialized relations are indexed on their 
constrained attributes and that the query optimizer is 
smart enough to decide whether or not to used the 
index, C!(x=l) = cka. min[zY(b,.[N,q.]),b,]. 

Exhaustive Search Decisions 

For each derived relation x, the cost of processing 
the transactions and queries can be computed using the 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

formulas shown next. Notice that the query cost in the 
formulas involve only the cost of processing the exter- 
nal queries because the costs of internal queries are 
included in the costs of processing transactions and 
external queries. 

Case Q(x) = 1: 
In the case where a derived relation is materialized, 

the transaction cost is the sum of the cost of computing 
the antecedent relations of x and the cost of updating 
relation x, which have been defined above. 
C,(x) = Ci(x=l) + CL(x=1) 

The query cost is simply the cost of reading the 
materialized relation x. 

Case a(x) = 0: 
In the case where a derived relation is not material- 

ized, the transaction cost is zero because relation x will 
not be updated in this situation; G(x) = 0. 

The query cost is the sum of the cost of generating 
the antecedent relations of x, the cost of generating x 
given the antecedent relations, and the cost of reading 
x. We assume that nonmaterialized relations are not 
indexed and that querying a recomputed relation 
requires a complete scan of the relation. 
C,(x) = CJ(x=o) + CI((x=o) + C,r(x=o) 

crobx 1 
5. Example and Computational Results 

In this section, we use the rule data graph in Figure 
4.1 as an example to demonstrate the decomposition 
based algorithm developed in Section 4. We present 
also some preliminary computational results to illustrate 
our findings in this paper. 

The following parameter values will be used in the 
example and the computational results presented next 
unless stated otherwise. These parameters have been 
selected to cover a wide spectrum of cases; for exam- 
ple, the relational sizes have been selected to range 
from large to small. 

5.1. An Example 
Next, we demonstrate the decomposition based algo- 

rithm by working through the problem represented by 
Figure 4.1 using the parameter values in Table 5.1 
except letting as’ equal 10 (lhin). We go through the 
algorithm in the following steps. 
0. Initialize cp(x) = 0, for all XE (DS, D6, D7, D8, 

CPla, CPlb, CPlc, CP3a, CP3b). and 0(x) = 1, for 
all x E (Dl, D2, D3, D4). 
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r 8. Q. vx W# 
.s 1 

T 

1 1 
D2 .2s 1 1 1 
D3 .os 1 1 1 
D4 1 1 1 I 
DS s .9 1 I 
D6 .5 *l 

1 

1 1 
D7 - 1 1 1 
D8 s 1 1 1 

CPlr 1 1 s .5 
CPlb 1 1 2 10 
CPlc 1 1 1 7 
CP30 1 1 .5 .s 
CP3b 1 1 I 2 1.5 L 

10000 100 250 500 50 0 .8 
2cca 200 100 100 10 0 .9 

loo00 90 225 50 20 0 1 
55100 60 830 SO0 20 3 .7S 
23780 70 420 420 7 5 .8 
11900 20 60 340 3 2 1 
10000 35 90 50 20 0 .9 

lOOOO0 50 1250 10 50 0 1 
2500 40 25 400 12 0 1 

100 25 190 10 1 
27550 100 690 380 10 0 1 
moo 20 25 45 10 0 1 

The units for the parameters are: E, , bytes; b,, blocks; 
5, l/min; and a:, l/min. The following formulas are 
used to compute the parameters for derived relations: 
bx = N,B,IS, where S = 4000 bytes per block, 
L= c f,S* Px= 2 5f,P,s,vx&1 Nz= I= &gpvy. 

VP,1 @,I W.l 
Other parameters not shown in the table are: brpl = 

380 blocks and bJp, = 55 blocks. 

1. Propagate the external transactions T’ at the base 
relations, and the resulting values of X, and 8, are 
shown in the parameter table above, 

2. Compute the one-step response time TV in seconds, 
assuming all antecedent relations of x are material- 
ized. 

X 5 6 7 8 lr lb lc 3s 3b 

I&x) (SC) 254 74 39 26 207 18 4 98 11 

3. In order to concentrate on the cost benefit analysis, 
we assume le(x) > 300, and therefore, no partition is 
possible. 

4. For each graph segment, compute min(a,) and 
max(a=) for all non-base relations x E D , propagating 
the external and internal queries initiated by uansac- 
tions. 

3 

X 5 6 7 8 la lb lc 3a 3b 

min(a,) 3 5 2 0 490 100 410 370 45 

mu(a,) 380 7 2 52 870 480 790 377 52 

5. The boundary relations include CPla, CPlb, CPlc, 
and DS. By CoralIary 1, we assume the consequent 
relations of these boundary relations are materialized. 
Analyze CPla, CPlb, and CPlc using the cost func- 
tions in Section 4.2.3, and we get AC(x) < 0 for x E 
(CPla, CPlb, CPlc). Therefore, we have Q,‘(x) = 1 
for XE (CPla, CPlb, CPlc). Now, we have a new 
boundary relation D5. D5 and D8 are analyzed using 
Corollary 1 and we get AC(S) > 0 and AC(8) > 0; 
these results do not lead to the decisions on 6 (x) for 
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x = 5 and 8. The set of relations to be materialized 
so far is SM = (CPla, CPlb, CPlc). 
Using Theorem 1, the nonboundary relations CP3a 

and CP3b are analyzed. Since min(a,,,) is 370 which is 
equal to a,(3a,5), and min(ab) is 45 that is less than 
a,(36,8), we assume Q(S) = 1 and a(8) = 1 in the local 
analysis of CP3a and CP3b respectively. The results 
turn out to be @(Cf3a) = 1 and WCP3b) = 1. By 
Theorem 1, we know that Q’(Cf3a) = 1 and Q’(CP3b) 
= 1. Now SM includes (CPla, CPlb, CPlc, CP3a, 
CP3b). 

D6 becomes a boundary relation after CP3a and 
CP3b are materialized, we use Corollary 2 to confirm 
the hypothesis that D6 is not to be materialized. Using 
max(Q) = 7, we obtain X(6) > 0, and therefore, cp(6) - 
0 for the decomposed decision. Consequently, (b’(6) is 
set to 0. Similar analysis of D8 is done using a( - 0 
since CP3b is materialized, resulting in (P’(8) P 0. The 
set of relations not to be materialized is SN = (W, D8). 

The graph G of Figure 4.1 can now be partitioned 
into six smaller segments, Gl, G2, G3, G4, G5, and G6 
that contain relations (Dl, CPla), (D2, CPlb), [D3, 
CPlc), (CPla, CPlb, CPlc, D5, CP3a). (IX, D8, 
CP3b), and (CP3a, CP3b, IX, D7) respectively. 

Applying Corollary 2 to relation D5 and Theorem 2 
to relation D7 does not give useful insights. Therefore, 
we do an exhaustive search on graphs G4 and G6 using 
the cost functions derived in Section 4.3. The resulting 
decisions are 0’ (5) - 0 and 0’ (7) = 0. 
6. The final results for this particular example are to 

materialize relations CPla, CPlb, CPlc, CP3a. CP3b, 
and to leave others nonmaterialized. 

5.2. Computational Results 
In this section we present preliminary computational 

results using the cost model defined in Section 4 and 
the parameter values in Table 5.1. The basis for 
evaluating our algorithm are two straightforward stra- 
tegies. The first strategy (Sl) is no materialization at 
all. The second strategy (S2) is to materialize all 
derived data. S3 denotes the strategy of using the 
decomposition-based algorithm. The computational 
results demonstrate that by materializing derived data 
selectively, the cost reduction can be significant. 

0 SO too 00 zoo 250 300 310 400 450 600 

Xl 

Figure 5.1 
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Figure 5.1 illustrates how the cost ratios of Sl to S3 
and of S2 to S3 vary with the transaction arrival rate to 
relation Dl. By selecting some relations to materialize 
that minimizes the total processing cost, the system can 
achieve cost reduction compared to either no materiali- 
zation (Sl) or total materialization (S2). In the range of 
Al shown in, the figure, Strategy Sl is more expensive 
than S2 when the value of hi is lower while Sl is less 
costly than S2 when XI becomes higher, that is, materi- 
alization is more expensive. In this particular case, the 
materialized relations in Strategy S3 include CPla and 
CP3b, achieving the lowest cost among all three stra- 
tegies. 

0 10 100 150 200 260 300 350 400 450 500 

Bt 

Figure 5.2 
Figure 5.2 shows that when the mean number of 

tuples a transaction accesses at relation Dl, /3!, varies, 
the cost ratios of Sl/S3 and S2/S3 approach 1 towards 
the higher and lower values of g1 respectively. In this 
computation, the materialized relations are D5, CPla, 
CPlb, CPlc, CP3a, and CP3b When PI is at the lower 
end; these relations reduce to CPla and CP3b around 
the medium value of g,, and they further reduce to 
CP3b when gr reaches the higher end. 

6- 
6.5 

6, 
4.6 

4 ” 
=*I r6uo 3.6 ” 

3, 
2.6 a. 

0 * to 0 20 25 30 36 40 45 50 

Figuar6e 5.3 
The effect of q to the selection of materialized rela- 

tions is the opposite of the effects of 7c, and g1 as shown 
in Figure 5.3. The derived relations selected for materi- 
alization vary from (CPla, CP3b), to (CPla, CPlb, 
CPlc, CP3a, CP3b), and to (DS, D6, CPla, CPlb, 
CPlc, CP3a, CP3b) as ub changes from low to high, 

Selectivity of rules is another important factor when 
selecting derived relations for materialization. As 
shown in Figure 5.4, the rule selectivity (g,) affects the 
cost ratios greatly. When g1 goes up, the cost of Stra- 
tegy 2 rises while the cost of Strategy 1 decreases. Our 
computational result indicates that the relations selected 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.0 

Figu?? 5.4 
for materialization are (CPla, CP3b). 

In summary;Strategy 3 is always the best among the 
three strategies (Strategies 1 and 2 are, in some sense, 
extreme cases of Strategy 3). By selecting appropriate 
derived data for materialization, the overall processing 
cost can be reduced to a minimum. 

6. Conclusion 
To support decision making while using large 

amounts of data, DBMS and ES technologies are being 
integrated into expert database sysrems (EDSs) that 
manage both rules and data in a unified system. When 
rules are processed, data must be derived and stored 
efficiently. This process can be complex if the rule 
derived data affect other rules. In this paper, we have 
studied the optimization problem of deriving data 
through inference rules. Our main contributions include 
the followings. 

We studied the chaining effect when selecting 
derived data for materialization. The decision on 
whether or not to materialize a derived relation 
depends upon cost benefit analysis. Generally speak- 
ing, materialization decision about a derived relation 
which is linked by inference rules to some other rela- 
tions must be made in conjunction with decisions on 
all other related relations because of the interactive 
nature of the chained relations. 
The optimization algorithm presented in this paper is 
based on the decomposition idea. It first identifies 
points in the rule data graph, where local decisions 
are optimal. The result of those decisions is a set of 
derived relations whose materialization decisions has 
been made and a set of optimization problems 
corresponding to subgraphs of the original graph. 
We presented some preliminary computational results 
based on the decomposition-based algorithm. Results 
showed that an optimization algorithm is necessary 
when implementing inference rules in order to reduce 
the cost of data management for large rule systems. 
Moreover, selective materialization can reduce the 
processing costs significantly compared to “all- 
materialized” or “non-materialized” strategies. 

We are interested in exploring the following issues in 
future research. 
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To construct a more elaborate model that can be 
used to analyze issues such as the effect of buffer 
management and access methods on the materializa- 
tion decisions. 
To investigate the effectiveness of the 
decomposition-based algorithm in various graph 
topologies, arrival rates of transactions and queries, 
and other important paramenters. 
To study the sensitivity of materialization decisions 
to various parameter values. This is an important 
issue especially in more dynamic environments. 
To explore issues related to the implementation of 
the selective materialization strategy. For example, 
the proposal by Hanson (1989) to adopt the Rete net- 
work to a relational EDS can easily be applied to the 
case where all derived relations are materialized, but 
with selective materialization it needs to be aug 
mented by information about materialization status of 
specific nodes. 
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