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Abstract 

Existfen buffer allocat,ion ~nrt.lmrls IISC\ prc- 
ca.lculnt,ed para.met,ers t,o nlake I>ufT~r allo- 
cation decisions. The main idpa proposed 
here is to design an ndnp!nhlc hufi’er alloca.- 
lion algorithm that, will aut,onlatically opti- 
mize itself for t,he specifir query workload. 
To achievt- t,his adapt.nhili(,y. wf‘ propose IIS- 
ing rnn-l.ilnc? inforniiiLion, 511c.11 its 1 Iif> loved of 
t.hc syshn, in onr hllff(~r illlOCi\l ioli d~~cisioiis. 
In pa.rticlllar, hased on n simple‘ qut~ueing 
model, we use prcdiciors 1.0 ~st imat,t> whet,het 
a buffer a.llocat,ion will improve l,he perfor- 
mance of the syst,em. Sinullat.ion results show 
that the proposed met.hod consist,rnt,ly out,- 
performs existrent. a.lgorit,hmr;. 

1 Introduction 

Previous proposals on buffer allocat,ion a,re hased 
eit,har exclusively on t.hc availathilitsy of buffers at. 
rnnt8ime[4, 6, 9] or on the access 1)a.t trrns of qurrirs[ 1, 
81. In (7) WC propost’ a nnific‘r.1 appiw~~li for l~itff~r 
a.lIocat.iol~ in wliicli both (‘act015 arf\ I ali into c,ollwi(l- 
rral.ion. Siniulal.ion rc,slllt.s show I ha1 this atl(lt\c-I flc-s- 
ihility in hliff’cr allocat.ion arhi(‘vPs good prrforln;inrc. 

However, one weakness common t,o all the a.bove ap- 
proaches is t#ha.t t#hay are slnfic. That. is, I.hey ~lbi- 
lize para.m&ers, which are calculat,c~d ht~fort+antl. for 
a. given workload. Thr valltrs for thrsr l>~ri>nlr~l w!: arc 
ml. nccmsarily oj)l ilnill as Llic, wc~rltlon~l \.i\rics. III I his 
papr‘r, WC\ propose a Iic\w fa,nlily of fi(~xihlr~ 1111frw III~II- 
agrnienl I.cchniques 1 ha.t a.rc arlapi~ahlr f.0 f.lic workloil~~l 
of t,lie syst,em. The ha-sic idea. of onr approach is 1,o 
use predicl0r.q t,o predict, the eflect. a huffcr a.lloralion 
defisioii will have 011 I,lw prrfoi*lnancP of (,lie syst,em. 
‘l’hes~ predirt.ions a.re hascd nnl onI). on t hc availahil- 
it.y of hliffcrs a1. rilnl ime and 1 tic d,:i[*:Ictrrisl its r)T 1.11~ 
particular q~~c’ry, hilt. also 011 I h(l clynaniic worklon~l 
of the sysi.cm. Two prcdict,ors art’ considcrrd ill I his 
paprr: I/IWN~/~~II~ a.nd e,flfcl?rlr d%.sk nl~l?za/zo~. Siln- 
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ulation result,s show that buffer allocation algorithms 
hased on t,hesc t.wo predicl,ors perform better than con- 
vuil iona. onrs. 

In Srcl.ion 2 WC review related work and motivate the 
research descrihrd in this paper. In Section 3 we 
present, formulas for computing t,he expected number 
of pa,gc fa.ults for different types of database references, 
and ont’line flcxihle buffer allocat,ion strategies. Then 
in S(‘ct ion 4 we int,rodnce the predictors and present 
I hr lmlicics for I)rc>tlirl,ive aJlocat,ion schemes. Finally, 
wf’ 1)r(%scln1, ill Scct.ion 5 simulat,ion results that com- 
pa.rc t,hc> performance of our algorithms with ot,her al- 
location methods. We conclude in Section 6 with a 
discussion on ongoing research. 

2 Related Work and Motivation 

I II rClat.iohal dal,at)a.se management systems, the buffer 
Inanagrr is responsible for all the operations on buffers, 
including load cont,rol. Tha.t is, when buffers become 
availnhle, the manager needs to decide whether to ac- 
t’ivat,e a query from t)he wait,ing queue and how many 
huffrrs to a.llorxtc t,o t.ha.t. query. If too few buffers are 
givc>11, I ho qllcry will ra.nse ma.ny page faults, and t,he 
I’f’s~mlsf’ I.imr’ will IW too high. If t,oo many buffers 
arc’ F;ivc\n, otl~cr clll(‘rips waiting lo get into the syst,em 
will IF hlocke(l ollt I and t.he throughput of the whole 
syst,em will decrease. Achieving the “golden cut” is 
the objective of a buffer allocation algorithm. 

As depict,ed in Figure 1 which out.lines the buffer man- 
ag’r a.lltl it.s rrlat(‘(l romponents, t#he buffer pool area is 
a wiii1110ii rcsoIIrr(’ aiid all qlleric>s - queries currenlty 
rlinning antI cllic-ric’s in thr wait.ing queue - compete for 
(,hc hltli’rrs. I,ikc in arty competitive environment, the 
principle of supply and demand, as well as protect,ion 
against, starvation and unfairness must be employed. 
Hence. in principlr, the number of buffers assigned to 
a qwvy shorllrl IF determined hased on the following 
I’artors: 

I, tllP dc??rnnr/ fR(.lOl t.hc space reqnirement of t,he 
qnery a.s tlrt.erniin~d by bhe access pattern of the 

265 
Barcelona, September, 1991 



Figure 1: Buffer Manager and R,elated Componcnt,s 

dynamic access awlabihty 
algonthms workload pal t ems of buffers 

of queries at runtimr 
FIFO. LRU. - \ 

Random, etc 
Hot-Set, J 
DBMIN 
MG-x-y J \/ 

proposed d 
algorithm6 

Table 1: Cla.ssificat.ion of Alloca.tion Algorithms 

query (shown a.5 patch (1 ) in l:ig11rf1 I ), 

2. t,he h?t,@er aT!aalnhilily fa.ct#or t.hr numbt‘r of avn.il- 
a.ble buffets a.t. runt,imr (shown a.s pat.h (2) iI1 Fig- 
urr I), and 

3. t,hf: dynnmlr 1ondfact.m t.hc ch;\.ra.ct.erist,ics of’ I,he 
qlieries cllrrent,ly in t#lie sysl.rm (shown as pat II (3) 
in Fiffiirr 1). 

ferred t’o in the second group lies in their consideration 
of the access patterns of queries, their weakness arises 
from their oblivion of runtime conditions, such as the 
availability of buffers. This imposes heavy penalties 
on the performance of the whole system. For instance, 
t,he buffer utilixat,ion is low and the response time is 
high[7]. 

The ahovr deficiencies have led us to propose flexible 
buffer allocation techniques. In [7] we design a class of 
allocation methods, named MG-z-y, which simultane- 
ously take into account the access patterns of queries 
a.nd the availability of buffers at runtime. Simulation 
reslllts show tha.t this added flexibility gives better per- 
formalice t,han DRMJN[7]. 

However, all t,hc nlgoritms mentioned above are static 
in nat,ure, and t,hey cannot adapt to changes in sys- 
tem loads and the mix of queries using the system. 
This weakness motivates us to investigate how to in- 
corporate bhe dynamic workload factor into the buffer 
allocat.ion decision. In this paper, we introduce pre- 
dict.ivc 1oa.d cont,rol ba$ed on the notion of predictors 
r.hat, est,imat’C t,he effec.t a buffer allocation will have on 
t.hr pc~rformanw of t,he syst.eln. These predictions not 
only t,akc int.0 account t,he a.ccess patterns of queries 
a.nd t,he nva.ilnbility of buffers, but they also include 
dynamic workload inform&ion such as the character- 
ist,ics of queries current,ly running in the system and 
qiicries bring kepl in t,he waitring queue. 

lja.sed on these factors, previous proposals on hiiffrl 3 Models for References and Flexible 
alIoca.tion cmi hc classified int.o t.llc following groilps, 
a.s summa.rixed in Ta.ble 1. 

Buffer Allocation 

Allocat,ion algorithms in 6hc first, group consider only 
thr hlif?er a.vailahiiit,y factor. Thry include varia- 
tions of First,-Jn-First-Out, (FTIY)), R.andom, J,t>asl- 
Rcrent.ly-I!scti (l,RU), (:lock, and Wnrking-Sct,[4. 6, !I], 
FJowever, a.s l,hry focus 011 a.da.pt,ing incmory iiia.iiagr~- 
rnent, t,erhniques used in operating sysf.ems I,O datahasc 
systems, t,hey fa.il t,o t,akp a,dva,nt8age of t#hp sprrifir ac- 
cess pa.tterns exhihit,ed by relat,ional tla.t.a.ba.se queries, 
aud bheir performnnre is not. sat,isfa.ct,ory[l]. 

Allocation strat,egies in t(lie second group cnnsitlf~r es- 
rlirsively t hr dema.nd fart,or, or niorc spt~cifirall~~ l.li(y 
arcess pat,trriis of queries. ‘I‘li~y inrlilclc t,lir Ilot.-Scr 
model tIesigned hy Sacca a.llrl Srlrkolllirk[ft], anal t IIC~ 
st,rat,egy ~isrcl hy Cornell and Yu[:3] iii the int~egral.ioll 
of buffer management with qllery opt.imizat.ion. This 
a.pproa.4 of buffer alloca.t,ion is rulminat~rd in t,hp work 
of Chon and DeWit.tt[l]. They int,rodurc t.he nolion of a 
locnlzl~,~ .srf of a qIiwy3 i.e. t.hc 1111iiilw nf hIifl;\rs iwrclctl 
by a query wiI.lioiit~ causing inany pagcx faiill~s. ‘I’hr’! 
propose t,hr! I)RMJN algoribhlll I.1la.t. rna,kcs allocal,i(>ll 
cqua.l t,o the size of t,he localit,y SPY.. Simillal~ion resiilk 
show t,ha.t DRMIN outperforms t.hc Hot.-Set, st.rat,tlgy 
a.nd t.hc algorit,hnls referred t,o in t’he first, group. 

While the strength of J>BMIN and other a.lgorit~hms rc- 
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In t,his section we first present mathematical models 
for relat,ional database references. As we shall see in 
Srrt ion 1, t,ht‘se n~otlcls provide formulas for predictive 
load cont~rol. ‘I’hcn WC review DBMIN and out)line t*he 
class of flrxihlr hllffer a.llocation algorithms MG-x-y 
which a.re precursors t.o the predictive buffer allocation 
st,rat.egies proposed in t,his paper. 

3.1 Models for Rdational Database 
R.eferc?nces 

JII [I] (:IIOII all(l Dr>Wit,t show how pa.ge references of 
wlat.iona.1 da.1 a.l,aw queries can be decomposed into se- 
qucnces of simple and regular access patterns. They 
identify four major types of references: random, se- 
quential, looping and hierarchical. A random refer- 
t’nrc consist,s of a. sequence of rat.ndom page accesses. 
A wlrrt iou Iming a non-clust,ered index is one exam- 
1’1’. ‘The following dcfinit ions forma.liae t,his kype of 
i.r~rr~rcwrcs. 

Definition 1 A rrffrence Ref of length k to a rela- 
t,ion is a sequence < PI, Ps, . . . , Pk > of pages of the 
rela.tion t#o be read in the given order. 0 
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Definition 2 A mndom Feferenw 7?.k,~ of 1engt.h k to 
a relation of size N is a refcrencc < PI, , F$. > sllch 
that for all 1 < i,j 5 k, Pi is uniformly dist,ributed 
over the set of all pages of the accessed relation, and 
Pi is independent of Pj for i # j. El 

In a sequential reference, such as a seiect,ion using a 
clust,ered index, pa.ges a.rc\ referrnced and proccsscd 
one after another without repeti t,ion. 

Definition 3 A sequenhal refewncp S~,N of Icngt,h h 
to a relation of size N is a reference < PI, , Pk > 
such that for all 1 5 i, j < R < N, Pi # Pj. 0 

E:f(lk,l$ 6) = t -+ (t - 6) * t + 
(k/t - 1)/(1. - l), 

ifs 5 1., and 

Ef (&,t 3s) = t 
otherwise, 

(4) 

(5) 

When a, sequent~ial reference is pcrformrd r~p~atcdly~ Next, WC review DRMIN and the MG-x-y policy, which 
such as in a, ncstcd loop ,join, lht> rcf~~r(\ncc is rallccl a gencralixcs a,nd improves DRMIN by permitting flexi- 
looping reference. blc bilffer a.llocat.ions to references. 

Definition 4 A looping reference Gk,* of length k is a 
reference < PI 1 . . . & > such thi%t for some 1 < /c, 
i) Pi # Pj, for all 1 i i,j 5 t, and 
ii) P;+l = Pi, for 1 < i 5 X: - 1 
The subsequence < I’, , I P, > is rnlhl the lonp. and 
t is callrd t,ho lrngfh of’ I.IIP 1001). n 

3.2 Generic Load Control and DBMIN 

During load control, a buffer manager determines 
whet,her a. waitming reference can be activated, and de- 
cidcs how manv huffcrs t,o allocate t,o this reference. 
‘I’hrollghout~ l,his paper, we use the term admission 
policy t,o refer t,o the first, decision and the term al- 
location policy t,o refer to the second one. Once the 
admission a.nd a.lloca.tion policies are chosen, a buffer 
allocation a.lgorithm can be outlined as follows. 

Finally, a hierarchical rcfrrc\ncc, is il Sf'~~II(‘IlCC Of I';\gt' 

accesses t,hat. form a t,raversa.l pat~lr from I 11~ root down 
to the leaves of a.n index. In [‘i] we show how the anal- 
yses for random, opquent,ial and looping references can 
be applied t#o hierarchical rcfprenres and ot,hcr ~norc 
complrx t,ypcs of rcfrrcnccs. Jlc~lrc~, fllic lo space littli- 
t,abions, hcrp we present, nlat I~cmnt.icaI tid~~ls ouly foi, 
the t,hree t,yprs of references. In pi1r1~iclllil.r wc givcx 
formulas for computing I.llc (~xp(~c1~4 ililtnbcr of I'ilg(' 

faults using a given number of buffers s. 

Definition 5 Let Ef( Rrf, s) denok t,lw expwtcd 
number of pa,gc‘ fault,.3 ca.llscd by I lit rcfrrcnc(~ /fc,[ Its- 
ing s buffers, where Rrj can IY R ranrlon~, wrl~~c~tlt ial 
or looping reference. q 

Random References: For a random rcft>rcncr. 1’11~ 
expectred number of page fa.ult,s is given by: 

Ef(Rk,N,S) = k f * P(f, b, s, iv) (1) 
.I= 1 

where r(f? /z, s, N) denotes t,hc prohahilit,y that t I~c\rr 
a.re f fa.ult,s in 1: accesses t,o a relation ofsixc h’ iising .q 
buffers. The proba.bility p(f, k, s, !Y) can he comput,etl 
by t.he recurrence equat,ions listed in [5, 71. Here due 
t,o space limit,ations, we only sliow t.ha formula l~lial 
gives a very close approximalion lo E.T(R~,.\~, s): 

where to = In(l - s/N) / In( I - l/N). Not.e t,hat all 
these formulas make the unif0rmit.y a.ssumpt ion whosrl 
effects are discussed in [2]. 
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Sequential References: Trivially 

L?f(&,N,S) = k. (3) 

Looping References: Using the Most-Recently-Used 
replacement policy, which is proved to be optimal in 
[7], we have: 

Algorithm 1 (Generic) Whenever buffers are re- 
I(>ascd by a newly completed query, use the given nd- 
iiiissiolr policy t,o tlct,crminc> whrt,lier t,he query Q al. 
thr head of t.hc waiting qucllc can be act,ivated. If t,his 
IS l’cGl)l(a, t.11~ bluffer mana.gcr decides the number of 
buffers s that. Q should have, based on the allocation 
policy. After Q is activated, continue with the next 
query, until no more query can be activated. Notice 
t.hat, only Q ca.n writ,c on these buffers; these buffers 
arc rct.urnrtl to I hc buffer pool aft,er the termina.l.ion 
of Q. 0 

Throughout, t#his paper, we use A to denote the num- 
ber of available buffers, and s,,i,, and s,,~ to denote 
respectively the minimum and maximum numbers of 
buffers that a buffer allocation algorithm is willing to 
assign t,o a reference. 

For DljMIN. lli~> admission policy is simply t,o acti- 
vat r A cllwry wllcnmvr t,hr specified number ,of buffers 
arc availa.hl(~, t.1ia.t is s,,,in 5 A. As for t,he allocation 
policy, it, depends on the t,ype of the reference. For 
ease of present,at,ion, here we only consider the most 
ba.sic references: looping, sequential and random. For 
a looping refcrencP, DRMIN specifies t,hat exactly t 
buffers have to 1,~ allocatXrd, i.e. Sn,in = smaI = t. For 
a. sequrntial and a. random reference’, DBMJN speci- 
fics s ,,,,, 1 = s,,,,,,. = 1, Ta.hlc 2 summarizes the admis- 
siorl and allocation policies of DRMIN. Note that the 

‘In [l], il is proposed t.hat a random reference may be 
allocat.ed 1 or byno buffers where byao is the Yao estimate 
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I allocation nlloca.tioil policy admlsslon 
algorithm< looping I ra.ndom 1 scquent,ial policy 

Smtn SWLX 977Xlll SlWr STtll7l SIlUZ 

DBMIN t 6 1 1 1 1 Smin < A 
MG-x-y r%*t t. 1 a, 1 1 Smin 5 A 

predictive mct.hods f(load) t f load) Qyao 1 1 Smin ,<A. 

Tnhle 2: Cha.ract8erist,ics of Buffer Allocation Algorithms -- 

inflexibility of DBMIN is illllstrated hy t.he fact t.hat. 
the range [smin, s,,, ] degenerates t.o a point.. In otthe 
words, DBMIN never toleratrs suboptSirnal a.llocat,ions 
to looping references, and it, never a.llows randonl rcf- 
erences t,he luxury of many h\lf[brs rvrn if t,lresc b~~ffefcrs 
are available. These problems lead us t.o the devclop- 
ment of the flexible MG-x-y ~)olicy tliscuss~rl nr~xt.. 

3.3 Flexible Buffer Allocation: MG-x-y 

The MG-x-y buffer allocat,ion policy 
rameters t and y. In particllla.r, for 
ante, MG-x-y uses smin = X(X, rc I a,nd 

[7] uses t,wo pa- 
a looping refer- 
SW7 w = 1, whcrc 

t is in t,he range of OYrj t,o 1(30%. As MC;-s-y tric>s 
t,o alloca.te a.9 many buffers as pnssihl~~ 1.0 a rcfcrrncc>. 
MG-x-y can allocat,c flexibly antI PII~-optimally if IIW- 
essa.ry. For random references, MC&x-y uses stlrin = 1 
and smar = y, where y is a vaI\Ie relat’ecl t#o t,he Ya.o es- 
timat#e byao. Thus, MG-x-y allows random references 
the luxury of many huffers, il’ t.hcsc> 1~11fl~rs it,rf‘ ava.iI- 
able. See Table 2 for a. summ:~rp. 3ol.r i,haf MC ;- 1 W-I 
(i.e. 2=100%, y=l) is l.lie sa.l\~r a.s DI3MIN. In [7] wc* 
show that if we allow more flc\xihle va.lIIes for .I* and !I 
t,han DBMJN, MG-x-y gives higher t~hrol~gllp~~t~s. 

The significa.nce of t.he MG-x-y policy is t.o show t,hc 
benefitIs of flexible buffer a.llocation. Ifowcvcr, AS t#hc .I’ 
and y pa.rameters are detlermincd ht~forc+antl a.c(.ord- 
ing to the mix of qlteries t,o IIW t IIC ~yst.~ln. I Itt>y RW 
generally not. easy to find, Riltl they are vlllnt~ral~lc I.0 
changes in t,he mix of queries. In 1.11~ rust. oft hip paler. 
we explore furt,hcr t.he idcn of firxihlr I~IIRW allocation I 
a.nd wc propose alloca.tion a.lgc~ritlrllis Iha1 (lyllamifitllj 
choose t,he s,,,in an dS mar vn111~ losing run-time infor- 
ma.tion. Thus, apart, from t8hr fact. l’hat. t.he proposed 
algorithms are a.s flexible as MG-x-y. t hry ha.vc thr 
ext,ra advimtSage of not, relying 011 any paranlr\l~~rs IO 
be chosen in atlvance, and !,IIP~ cali a(lapl l,o clt+111g- 
ing workloads. The ma.in idea is 1.0 IISC a rll~cl~riug 
model 1.0 give prt:dict,ions ahollt t 11~ prrformaiicr of 
t.he syst,em, and bo make the R,,,{,, and .smn.,. parame- 

on the average nomher of pages referenced in a. series of 
random record a.ccesses[l I]. H owevcr. il. is IlnclPar Ilndf:t 
w1ia.t circllmst.ances n random rr~fr~rr~nc7 filif~t~ld IW aII0(.ai.~d 
It yao hllffers[l]. Regmilcss, in rc$;tlity. t hc Van cs~itnatr~~ arc’ 
~~snally too high for nllocat.ion. P’or exmplcs, for a. I)locking 
fa.rtor of 5, t.he Yao estimabr of accessing 1111) rccol,tlr of II 
lOWrecord relat.ion is 82 pages. TI~IIs, DBMlN almost. 
always allocat,es 1 buffer to a random reference. 
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t,ers vary according to t,he state of the queueing model. 
In the next section, we describe the proposed queueing 
model, as well as the ways the model can be used to 
perform buffer a.llocation in a fair (FCFS), robust and 
a.dapt,a.hle wa.y. 

4 Predictive Buffer Allocation 

4.1 Predictive Load Control 

As described in the previous section, both DBMIN and 
MG-x-y a.re stat.ic in na.ture and their admission pol- 
icy is simply: srn,i,a < /l, where smin is a, pre-defined 
consl,ant., for ench t#ypr of rcfrrence. Here we pro- 
posc~ prc(lictivr methods t,hat use dynamic informa- 
t.ion, so that smin is now a function of the workload, 
denoted by f(load) in Table 2. .More specifically, a 
waiting reference is activa.ted with s buffers, if this 
admission is prediclrd t,o improve the performance of 
t.lte c\lrrent, st.a.te of t,he syst,em. Jn more precise no- 
t at ions, suppose P f drnol,es a performa.nce measure 

(c,.g. t,hronghpnt,), Hcyf,,,, represents all the references 
(i.e. queries) R~fl ) . . , Ref,, currently in the system, 

wit,h s:;~= sl,. . , s, buffers respectively, and Ref is 
t,he reference under consideraCon for admission. Then 
s,,,,,, is t,he smnllest~ .F t,hat will improve the Pf pre- 

dicl.or: PS( Rex,,,,. Rc,,,) 1 Pf(Rez,,,sZr), where 

Rcxirr,= R-E,,,. ~R.r,l, s,z,,= ~1, . . , s,,, s, and the 
sy1111wl !I[( ii, a) rlcnnt.es the perfornmnce of the sys- 

trnl wit.h I? act,ive refrrances and s’buffer allocations. 
Thus, t,he reference Ref is admitted only if it will not 
degrade t,he performance of the system2. 

In 1,hi.L; paper wc consider two performance measures 
or prrd%~lo~s: /lrro~r,qh~wl 7’1’ ancl e,ffectitje disk nlllzzn- 
/rnn i:‘/)ll. Nrxt,, wr analyar t.h(! above predictors and 
discllss t,hc> mot,ivat,ian hehind our choices. But first, 
we outline a queueing model that forms the basis for 
these predict,ors. At the end of this section, we discuss 
how these predictors can he incorporated with various 
alloca.tion policies t#o give different predictive buffer al- 
locat,iorr a.lgorit,hllls. JII sc*ct.ion 5 we present simulat.ion 
rc3lllls ronlpa.ring 1.11~ pf>rformnrice of these predict.ive 
alp,:r,rit.hnls with \I(;-x-y ;~IICI TIT3MIN. 

“Wit.h one only excrpt.iou; see Section 4.4 for a 
discossion. 
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4.2 Queueing Model 

We assume a closed queueing system wit#h two servers: 
one CPU and one disk. Within the system, there are n 
references (jobs) Re jl, . . . , Re j,, whose CPU and disk 
loads are 7;;,; and To,i rrsprct ivcly for i = 1,. (17. 
Furthermore, Re ji has si buffers. Thcrcfore, if rvery 
disk access cost#s TV (e.g. 30 msrc), a.nd t’he procrssing 
of a page aft.er it. has heen brought. in corr cost.s 1~~5 
(e.g. 2 mspc), we have the following equations: 

TD,i = 1D * Ej(Rpji,Si) (6) 
Tc,i = tc * Rj (7) 

where ki is t,he number of pages arc’rssrcl by /?FJ’, . 
and Ef( Rr ji, q) can he compl]l,t>d using f,he forlnu1a.s 
listed in Section 3. 

The general solution to such a network can be calcu- 
lated; see for exa.mple [lo, pp. 451-4521. It involves 
an n-class model wit,h ea.ch job being in a cla.ss of it,s 
own. Rut while it gives nccurntr perfmmncc mea- 

sures SIIC.~ as throughput. a.ntl ~~i.ilixa.t.ions, I his solllf.intl 
is expensive t.0 comput,t>, since it, rt’quirrs rxpnnc,ll1 ial 
time on Lhe number of classes. Aa ra.s(’ of coiiip~tl~i- 

t,ion is essent#ia.l in load control, wr a1)prosinlat.r it with 
a single-cla.ss model; a,11 t.he jobs come from onr clil.ss, 

wit,h t.he overall CPIJ load 7(-e and t.ht? overall disk load 
‘Tr, being the averages of t,he respcclive loads of t,he in- 
dividual referenres. 7~ and ‘7’~ n1a.y hr t.hr harnronic 
or geometzic means tlepcndiitg 011 1 hf> J)r~~dict,ors I0 Ire 
introduced in t.he following. 

4.3 Predictor TP 

Since our ultimat,e performirncc measure is t.hr 
throughput. of the syskm, a natlirwl prCdict,or is IO 
eslimat,c t,hc t.hroiighput tlirrrf~ly. lrr gc,nfyrnl. l.hcrc, ilff 
t.wo ways 1.0 increase t.he I hro\tghJ’11t r)P a S~S~CYII: ill- 
crease the mlrlt,iprogramnling lrvcl II??‘!, or (IerrITasC 
the disk 1oa.d of the jobs hy allocat,ing morr hllfft>rs I,(-, 
t,he jobs. However, t,hese two rt~q~~iremen1.s normally 
conflict. wit.h each other, as t,he t,ol’al number of buffers 
in a. system is fixed. Hence, for 0111’ first’ predict.or ‘TP, 
we propose f#he following a.dmission policy: 

Admission Policy 1 (TI?) Act.ivatr thr rcfr>rc>llrc> ii 
opt8imal a.llocat.ion is possihlr: ol~hc~rwisc, acl,ivi\t(’ only 
if t.he reftarcnce will incrcasc t.hc, ll\ro~~ghptlt.. 0 

To implement. t,he above policy, we provide formulas 
t(o compute t,he t,hroughput,. ‘The solut,ion t,o the single 
class model is given in [IO]: 

TP = li,,/‘Tr,. 
l/n is t#he utilizat,ion of t#he disk 

(8) 

p” - 1 
l/D = P ,*+, 

P -1 
where p is t,he ratio of the disk load versus the CPU 
load 

p = 7D/P. (10) 
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To derive the average loads Ic and 70, we use the 
harmonic means of the respective loads 

1/7c = l/n * f: l/T’,i (11) 
i=l 

(12) 
‘= 

Since t#he equat,ions of the que:e:ng systems are baaed 
on the concept of “service rate” which is the inverse 
of the load, using the harmonic means of the loads is 
equivalent to using the arithmetic means of the rates. 
Not.ice t,hat. t.he calculation of the throughput requires 
O(I) operat,ions, if the buffer managers keeps track of 
t.hc values 70 and 7~. 

4.4 Predictor EDU 

Alt,hough very intuitive, using the estimated through- 
put, as the criterion for admission may lead to some 
a.nomalics. Consider the sit.uation when a long sequen- 
l.ial rcfr>rence is al t,he head of the waiting queue, while 
sonar short., opGmnlly allocattid random references are 
current,ly running in the system. Now admitt.ing the 
sequent.ial reference may decrease the throughput, a3 
it, increases the a.verage disk load per job. However, 
a.s t,he opt(imal a.lloca.tion for the sequential reference 
is only one buffer, activat$ing the sequential reference 
is rea.sonahle. Exact81y for this reaSon, Admission Pol- 
icy I is “patched up” 1.0 a.dmit, a referenc.e wit,h smac 
buffers, even if t#his admission decreases the through- 
put,. 

This anomaly of the predictor TP leads us to the de- 
velopment, of our second predictor - Effective Disk 
Utilization (EDU). Consider the following point of 
vic+w of t,llc\ prohlrm: There is a. queue of jobs (i.e. ref- 
(‘rrnccs), a system wit.11 one CPU and one disk, and 
a huffrr pool thiti, ca.n help decrease the page faults 
of the jobs. Assuming that the disk is the bottleneck 
(which is t,he ca.se in a.ll our experiments, and is usually 
t.he case in pra.ctice), a reasonable objective is to make 
l’he disk work as efficiently aa possible. In general, 
t,here are t,wo sources of inefficient uses of the disk: (1) 
I hr disk is sitt,ing idlr hcca.usr there are very few jobs, 
01’ (2) 1hr disk is working on pa.ge requests t1la.t could 
havr hrrn avoided if rnough buffers had been given to 
t,hc references ca.using the page faults. The following 
concept, captures t#hese observations. 

Definition 6 The e,fleclive disk vliliralion EDU is 
t.hr porbion of t,ime t,hat, the disk is engaged in page 
faulfXs t.ha.t, could not br avoided even if the references 
a.rr each assignrd it#s opt,imum number of buffers (infi- 
nik, or, cquivalcnt.ly sopl which is the maximum num- 
ber of buffers usa.hle by a reference). Cl 

Hence, for our second predictor EDU, we use the fol- 
lowing admission policy (Rej is the reference at the 
hea.d of the waiting queue): 
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give a better approximation to the the disk utilization. 
Thus, the average CPU and disk loads are given by: 

0% 

L-4 L-4 

loos, 

wasie1 11, n .’ t f ,) 

Figure 2: Effective disk ut.ilization 

Admission Policy 2 (EDU) Act,ivabe Ref if ib will 
increase the effective disk utilizatjion. 0 

Mathematically, the af?‘~ct.ivr~ disk Ilt.ilizal ion is rs- 
pressed by: 

EDIJ = (13) 
i=l i= 1 

where uD,j represent,s the disk llbilizat~ion d\le t,o /?ef; 
and wi is the portion of “avoitlal~lc” (or “wastc4”) IGI~C 
fa.JJlt~s caused hy Ref, : 

Ef(Ref,,s;) - l;f(Rrl;,rxj) wi = 
Ef( RF~, ( .q) ’ (11) 

For practical calcolntions, WC IISC s~),~ inst.eacJ of CO; 
clearly, sopt is I, t and byao for scqnent.ia.l, looping a.nd 
random references respect,ivrly. informally, Eqnatinn 
(13) sppcifins t.hat, a.1. every unil Iilnr. I,J1p diSli scv\:cs 
Rcfi for lJ~,i Ilnits of t.inlr. 011r of ILha(, Rrj; wn.st,rs 
Wi * iJD,i units Of I,ime. Summing over a.11 jobs, WI’ gft. 
Equation (13). 

Figure 2 illustrates the concept, of effective disk uti- 
lization. The horizontal line corresponds t,o a 100% 
disk ut,iliza.tion; the dot.t,ed port.ion st,nnds for t.hr idle 
time of t#he disk, t,he da.shcd p;lrls cnrrc~spond to I Ire> 
“wasted” disk R.CCCSS~S and (IV- ~11111 of t.hc solid parts 
corresponds t,o t,he rffec~,ivo disk IlCliza.tinn. 

Note that, for J/O bonnd jobs. every job J1a.s approsi- 
mately an equal share of the tota. disk utilization 11, 1 
even though the jobs may have di~flrrcni disk loa.ds. 
Thus, we have the following formula: 

I'D,i = l//J/n. 

which simplifies Equat,ion (13) t.o: 

(IS) 

Notice t,hat, we have not yet used a, single-class a.pprox- 
imat.ion. Weonly need this a.pprosimat.ion lo ralrulat,r 
t.hr disk utilizal,ion I/D. 1Jsing f.hc rxa.C1 ,)-clans m&l 
[IO], we find out that, t,he gcotnrlnc avera.ges +WI~I io 
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5% = II Tc,i 
i=l 

07) 

(18) 

Ra.sed on these equations, the disk utilization UD can 
br comput,ecl according t,o Equations (9) and (10). As 
for tIhe TP predicbor, the calculation of EDU requires 
O(1) steps, if the buffer manager keeps track of the 
loads Tc, ?D and of the total “wasted” disk accesses 
cy=‘=l wi- 

4.5 Predictive Buffer Allocation Algorithms 

Thus fa.r we have int#roduced two predictors: TP and 
EDU. We have presented thk admission policies baqed 
on t,hese predictors and provided formulas for comput- 
ing these predictions. To complete the design of pre- 
dictive buffer allocation algorithms, we propose three 
a.lloca.tion policies, which a,re rules to determine the 
iiitilihcr of I>ufPrs s to alloc.a.te t,o a reference, once the 
refc>rence has pa.ssf4 I,lie a.dniission criterion. 

Allocation Policy 1 (Optimistic) Give as many 
buffers as possible, i.e. s=min(A, smaz). 0 

Allocation Policy 2 (Pessimistic) Allocate as few 
hllfffxs as ner~ssary t,o random references (i.e. snlin), 
1x1!. as 111;1ny a.s possible t.o sequential and looping ref- 
Crrii (‘es. cl 

The optimistic policy tends to give allocations as close 
to opt,imal as possible. However, it may allocate too 
ma.ny buffers t,o ra.ndom references, even though these 
ext,ra. buffers ma.y otherwise be useful for other refer- 
cncc’s in t,hp wait.ing queue. The pessimistic policy is 
I IIIIS drsignerl I.0 dea.1 wit,h t,his problem. But, a. weak- 
IIPSS of t,his policy is tShnt. iI’ unfairly penalizes random 
references. In particlllar, if t,here are abundant buffers 
nvaila.ble, there is no reason to let the buffers sit idle 
and not to allocate these buffers to the random refer- 
ences. 

Allocation Policy 3 (2-Pass) Assign tentatively 
huffcrs t#o thr first, IV references in the waiting queue, 
following l,he pcssimist,ic policy. Event,ually, either the 
end of the waiting queue is reached, or the m+l - 
t,h reference in t,he waiting queue cannot be admitted. 
Then perform a second pa5s and distribute the remain- 
ing buffers equa.lly to the random references that have 
heen cl.dmit,t.ed dilring t,he first pa5s. 0 

In rxsr~lce, when f.11~ ~-PASS policy makes allocation 
dr\c~isioun. Ilot ortly tloc>s il. consider I,he reference at 
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Table 3: Summary of Query Types 

Table 4: Details of Relations 

Table 5: Summary of Query Mixes 

the hea.d of the waiting queue, hut. it also takes into 
account as many references a,s possihlta in the rest of 
t,he queue. 

The three allocat,ion policies can he used in conjunc- 
tion wit.h both TP nnd EDll, giving risr t.o six pot.t~l- 
tia.l predict,ivr huffpr allocation nlgorit.hlns. AF: ti. 11;1111- 
iiig conv&ion, eacll algorit.hm is rlpnot.r~d by 1,he pail 
“~reniclo~ fl,llornlion” where “prrrlirlor” is eit,her TJ’ 
or EDU, and “nlloca.lion” is one of: o, p, 2, represent.- 
ing optimistic, pessimist,ic and 2-Pass alloca.tion poli- 
cies respectively. For inst,ancc, EDU-o st,ands for t.hc 
algorit,hm a.dopt,ing t,he EDII admissiotl policy and I hr 
opt,imist,ic alloca.t,ion polir,y. Nol,r t,hat, all t hc dmvc al- 
gorit,hms follow the generic description of Algorithm I. 
And 0nc.e t,he number of buffers s allorat,rtl t,o R rrf(yr- 
ence has been decided, all buffer allocat.ion a.lgorit,hms 
operat,e in exactly t,he sa.me way as DBMJN, that is, 
those s buffers are exclusively used by t,he reference, 
until it terminat,es. 

5 Simulation Results 

In this section we present simulal.ion results eva.luatjing 
the performance of predirtive a.llocat,ion algorit8hms in 
a multiuser environment. As Chow a.nd DeWit,t ha.ve 
shown in [l] that, DBMJN performs bpt.t,pr t’ha.11 t.ha 
Hot,-Set, a.lgarit,hm, First.-Tn-First-Olrt j Clark, J,ra~t.- 
Recently-Used a,nd Working-%+, wo only compare I hf\ 

1.7s MG-50.12 . . 
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d 1.25 

I 
” 120. 

I: 1 1.15. 
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; 1.10. 
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0954 4 
0 2 4 6 8 10 12 14 16 

number of concurrent queries 

Figure 3: Mix 1 - no Data Sharing 

l>rcdict,ive nlgorit.hms with MG-x-y and DBMIN. Fur- 
t hrrnlnrr t.0 highlight, t#hc rompnrisons, we only present 
sirnulat.ion resu1t.s for TP-o, EDU-o, EDU-2, and the 
best set of parameters for M&x-y. 

5.1 Details of Simulation 

In or&r t.o nlake tlirpct comparison with DBMIN, we 
IIW t.hl> simllIa.t.ion pr0gra.m Chou and Dewitt used for 
DRMIN, and WC cxpcrimenb wit,h t,he same types of 
qilflries. Table 3 summarizes t,he details of the queries 
t,ha,t are chosen to represent varying degrees of demand 
on CPU, disk and memory [l]. Table 4 and Table 5 
show respectively the details of the relations and the 
query mixes we used. In the simulation, the number of 
concurrent, queries va.ries from 2 to 16 or 24. Each of 
t,hese concurrent, queries is genernt,ed by a query source 
which ca.nnot, gcnerat,e a new query until t,he last query 
from the same source is completed. Thus, the simu- 
lation program simulates a closed system3. Further- 

“Besides buffer management, concurrency control and 
t.ra.nsact.ion ma.na.gement, is anot,her important factor affect- 
ing t,he performance of t,lle whole dat-abhse syst,ern. While 
t.he simrllat,ion package does not. consider transaction man- 
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Figure 4: Mix 2 - no Da.t.a Sharing l!‘igure 5: Mix 1 - Full Data Sharing 

more, to highlight the increase or decrease in t+hrough- allocat#ions to random references. Figure 4 shows the 
put relative t,o DBMIN, the t,hroughput values shown 
in the following figures are normalized by the values of 

relative throughput, using again a total number. of 35 
buffers. 

DBMIN, effective showing t,he ra.tio in t,hrolrghpltt.. 
Again when cornpad with DBMIN, allour algorithm8 

5.2 Alh;ations to Looping hd’crnnccs 
give hrt.t.er performance. This demonstrates the effec- 
t.ivrncss of flcxihlc buffer allocations to random refer- 

TOP first, mix of queries consist,crl of 10% ca.rlt of 
queries of type I, II and IV (seqllent.inl, random 8nd 
ra,ndom, respf?ct,ivsly), and 70% of qilerirs of I.ypr Vl 
(looping references). 'l%r purpose of I.his mix is lo 
avaluat,e the cffe’ct.ivenoss of predict.ivc allocat,ions IO 
looping rcfrrcnccs, i.r. q11cry t,ypC Vi. l~igilrf~ 3 slinws 
the relnt,ive t.hroughput( using a l,otaI nllmhrr nf 35 
buffers. 

When compared with DBMIN, all our nlgorit,hms per- 
form better. Because of t,he low percent,ages of se- 
quential and random references in i#llis mix of qucrics, 
t,he improvcmrnt~ shown hy our algnrithms can 11~ al- 
trihut,ed t.o Pffrct,ive sub-opt~imal allncat inns to looping 
references. Furthermore, TP-o, F;l)li-o a.nd F:1)1;-2 aIt 
perform compa.rahle to t$he best. MC;-x-y schcmc fog 
this mix of queries. 

5.3 Allocations to Randonl References 

The second mix of queries consisted of 45% (~arh of 
qucrips of l,yp~ I I a.nd IV (ritn(lolit rc~fi~rc~nrrr;). a.llrl 
10% of quericbs of type 1 (scqucnt,inl rdrwnrrs). ‘I’liis 
mix of qllerics is set, up t,o rvaluafc t,lirl prrfornianrc of 

ngement, see [I] for a discussion on how t,he t.ra.usa.ction 
and lock manager can be integrated wit.11 a buffer manager 
nsing DRMIN. Since our algorilhms differ from DFIMIN 
only in load con(.rol, t,hc int.rgrat,ioll propnar~l !.hcbrr ti.lso 
apphes I,0 a biiffer mana,Rer ilsitlg 0111’ aJgoriIlinls, 

enres. In part,icular, when buffers are available, ran- 
dom references arc benefited by allocations of extra 
buffers. Though I)att.cr Qhan DBMIN, EDU-2 does not, 
perform as well as ollr ot,hrr algorithms. This is he- 
cause evrry time? during bhe first pass of allocations 
(rf. Alloratiotl Policy 3), F=T>IJ-2 has the tendency of 
ariivat,ing many random refcrenres. A8 a result,, t,he 
1111mhcr of buffers per random reference allocated by 
E;DU-2 is lower than that allocated by our other algo- 
rithms, thereby causing more page fault8 and degrad- 
ing overall performance. 

5.4 Effect of Data Sharing 

In I.hr siml~lat~iotis ra.rricd oiit so far, every query can 
otlly arrr’ss dat(a in it,s own buffers. To examine the 
effect of da.ta sharing on the performance of our al- 
gorithms relative to DBMIN, we also run simulations 
wit.h varying degrees of data sharing. Figure 5 shows 
the relative throughput of our algorithms running the 
first. mix of qoerics wit,h 35 buffers, when each query 
lt>ls rratl a.rrrss I,O t,hc htlffers of all t.he other queries, 
i.r. fllll rlat,a sha.ring. 

C:ompared with Figure 3 for the case of no data shar- 
ing, Figure 5 indica.tes that data sharing favors our 
algorithms. The same phenomenon occur8 for other 
query mixes we have used. In fact, this phenomenon 
is not surprising heca.usa it is obvious that with data 
sha.ring, !,he higher t,he buffer ut,iliza.tion, the higher 
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Figure 6: Adaptability: (a) Stage 1 - Mix 4, (b) Stage 2 - Mix 3 

t,he t,hroughput is likely t,o hr. In a~,her words. t,hc ill- 
flexibility of DRMIN in buffer a.liocal,ion I~ccomcs cvcn 
more cost,ly than in t.he ca.sc of IIO data sharing. 

5.5 Comparisons with MG-x-y - 
Adaptability 

Among all t.he simulat.iona WP have s1v~w1~ bus far. 
t,hc predict,ive allocation algorit 11111s ‘I’P-o. EDlJ-o and 
EDIT-2 perform a.pprosimately as wrll as 11~~ 1~~1. of 
Me-x-y. The rca.son is l,llal \VI’ havr R fixed ~nis of 
queries, wit,h few types of qurrics, allrl wc have st:lrct,rd 
carefully t,he T and y paramcf,rrs that, RI’C best suited 
for t,his specific mix. The weaknesses of t.he MG-x-y 
policy st,rm exact,ly from t,hr rigiciil,y of t,hc .z aild Tj 
paramel.crs. The simulations df~scrib~rl I~c~low (Icnlf~ll- 
sl,rate t,hc weaknesses of M(;-x-y i\tld I III’ ~~~~WI,~VI~IIWS 
of t,he prp(lict.ive algorit,hms. 

The first, wea.kness of MG-x-y lies in t.he fa.ct that, rarh 
MG-x-y scheme ha8 only OVP .c and O~P y value for nil 
kinds of looping and random references. Rut now con- 
sider Query Type II and V resprct.ivc>ly: Query ‘Type 
I1 (T&j~,ls) ha.s a low Ya.0 rsl.iI~rs1.c of I3 and A lligll 
stalect,ivit,y of nlaking 30 randoln RCUXSP~ on i 5 pag(‘s, 
Ql~ery Type V (7?.3n,lso) has a high Ya.9 Pst.imalr of 27 
and a. low sc1ect.ivit.y of making 30 randon acccsscs on 
150 pages. For a query of the first, t,ypr? il is hrnrficial 
t.o a.llocat,e as close t,o the Yao csl.imat,c as possible. 
But for a query of the second t#ypc, it, is not, worth- 
while t&o a.lloca.tc ma.ny buffers t,o t.hr q~~cr.y. 7’hw. for 
any MC;-x-y schne, Iwing nw !I vaIItc> IF IIOI. sllfri- 
cicnt. t#o ha,ndIe I,he diversit,y of q\Ierics. l’his ~)rohlrm 
is demonst,ra,ted by running a sinlrrlal.ion on I hr t Ilirtl 
query mix which consists of thr I.wo kinds of random 
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rc>frrcnces ment,ioned above (Query Type II and query 
‘l’ype V). Figure 6(h) shows t.he rela.tive throughput 
of running this mix of queries with 30 buffers. When 
compared with the best result of MG-x-y (i.e. MG- 
50-16 in this case), the predictive algorithm8 perform 
better, handling the diversity of queries more effec- 
tively. 

The ser.ond ma*jor wenkness of MG-x-y is its inability 
of adjusting to changes in query mixes. Figure 6 shows 
I IMP rcslllt, of running a. simnlat,ion t,hat. consists of two 
stages. In the first. stage, t,he query mix consists of 
ra.ndom references only (i.e. mix 4). As shown in 
Figure 6(a), the best result of MG-x-y (i.e. MG-50- 
18 in t.his case) performs comparably to the predictive 
algorithms. Rut when t,he second stage comes and the 
qr~rry mix changes from mix 4 to mix 3, MG-50-18 
cannot atla.pi, t,o t,hc cha.nges, as illust#rat(ed by Figure 
C,(l)). On t,hr ot.her hand, t.he predictive a.lgorithms 
a.djust, appropria.tely. 

5.6 Summary 

011r simulatjion rcslllt,s indica.te that predictjive allo- 
cat ion stra.tegies’ glc more t>ffecf,ive and more flexible 
111an DTIMIN. wit.h or wii,hout. da.ta sharing. They are 
cnpahlc of making allocat,ion drcisions based on the 
cha.ract,erist,ics of queries, the runtime ava,ilability of 
huffcrs, and t)he dynamic workload. When compared 
wit,h t.he MG-x-y algoriUims, the predictive methods 
a.re more a.da.pt.ahlc> to changes, while behaving as flex- 
il,lt, a.s thr MC:-x-y schf~lnrs. For simple query mixes, 
I.hcly typically ptxrforln as well as t,he best MG-x-y 
scl~rn~c; for complicahl or cha.nging query mixes, they 
clearly perform het,ter. 
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As for the two predict.ors TP and EDU, hot,h of t.hem 
perform quit,e well. While EDI’ is prohahly niorc a~- 
curat,e for a single disk syst,rm, ‘T’P is IIIOW extrnflilrlf~ 

to mult,i-disk syst,ems, a.nd is sligllt.ly c’asic>r t,o WIII- 

put,e. Considering allocatioti policies, t,lic witjt~c\rs arc’ 
the P-Pass approach and t,hr opt.imist.ir one. The pes- 
simistic approa.ch gives results only slight.ly brt t.rr than 
DBMIN in most cases. The 2-Pass approach performs 
well in most, sit,ua.t.ions, wit,li t,lic exc‘el~tioti of hravy 
workloads consist 111g prlnlarlly of ran(lotl~ r~~ff\t,~~t~(~~s. 
In t#his case, t.hc 2-Pass policy dcgrnc,ratcs 1.0 t,hr I)(‘+ 
simistic one, beca.use t,hrrc is no lcyfi.-ovrr I>~~f[;,rs lo al- 
low for a second pass. A prar1,ica.l clisac-lvailt,agr~ of t IjtT 
2-Pass policy is that. it cannot act.ivat#t‘ qft&c:s ins1 an- 

taneously because queries admit.t,ed in thr first, pass 
may have to wait, for the second pa.ss for additional 
buffers. Thus, it, is slower t,ha11 thr policicxs I 11;11 onI> 
require one pass. Finally, t,hc% opt imist ic allocat ioll pni- 
icy performs very well in Inosl, sil.irat,ions. In acl(lit,ioir 

it. is easy to implement. and is capable of malting in- 
st’ant,aneous decisions. 

6 Conclusions 

Thr main irloa in t,his pqw is t,o irlcorporatr IVIII- 
t,ime infornlat.ioll in I,hc I~llfl‘r~r nllocat.ioil i+lgoril.llln. 
We propose using ii simple. blit accltra.l#(> singlc-c,lass 
queuring model t.o predict, t,hc impact, of carlI l>llfff>l 
allocat,ion decision. The propos(ld approa.rll builtIs on 

the concept. of flexihilit.y, tllai’ was int,ro(lIIcP(l by t,he 
MG-x-y policy [7], and it, improves tht> MC;-x-y pot- 
icy 1’url.hrr: il 1 rrill.S 1111~ .r anrl !/ Viilllf‘h ils v;l~,iillllw. 
which a.re drtternlincd by lhr loarl nf 1.11~ sgs1~111 50 ili: 
t,o ma.ximize t,he t.lii-ollglipul. 01’ (lisli ill ilimt icon. 

The st,rong point.s of t.lie propos(‘(I nif~t.liorls a.rt’ RS I’ol- 
lows. 

They require no para.mctrr values t.o bc dct.rr- 
mined stat.ically. They arc ncl;lpt~ahlc, prrfol,llling 
well under any mis of qllwiw, as vdl as wllc\u ~IIV 
work1oa.d chara.ct.erist,ics rllallgC OV(Y tinlr. 

The methods are fair (FCFS) and fa.st, requiring 
O(1) ca.lculat#ions for each pprformanre predict.ion. 

Simulat#ion resu1t.s show that, t.hcy perform at. Icant. 
as well, and usually 1~m4l hf~ttt~r tllnn c’xist.c\nl 
met hods. 

Finally, t#he t,wo p(arformanccT nicasllrc‘s (‘I’[’ ;111(-l 
f?Dli) pprfornl eqita.lly w(\II, aiifl Imt Ii 1.h~ opt i- 
misit,ic and the ‘L-pass allocii.lLi0ll lmlif:ies arft cr- 

fect(ive. 

Future work in adaptive 1>11ff~r mana~gcmcn!. incllldrs 
the extension of our predict,ors fnr syst.rms wit.11 111ar1) 

disks, and the ana.lytical st,udy of t.he ca.sr wljerr data 
sharing is allowed. 
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