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Abstract

Existent buffer allocation methods use pre-
calculated parameters to make huffer allo-
cation decisions. The main idea proposed
here is to design an adapiable buffer alloca-
tion algorithm that will automatically opti-
mize itself for the specific query workload.
To achieve this adaptabifity, we propose ns-
ing run-time information, such as the load of
the system, in our buffer allocation decisions,
In particular, based on a simple queueing
model, we use prediciors to estimate whether
a buffer allocation will improve the perfor-
mance of the system. Simulation results show
that the proposed method consistently out-
performs existent algorithms.

1 Introduction

Previous proposals on buffer allocation are hased
either exclusively on the availability of huffers at
runtime(4, 6, 9] or on the access patterns of queries[].
8]. In [7] we propose a unified approach for buffer
allocation in which both factors are taken into consid-
eration. Simulation results show that this added flox-
ibility in buffer allocation achieves good performance.

However, one weakness common to all the above ap-
proaches is that they are sfafic. That is, they uti-
lize parameters, which are calculated beforehand, for
a given workload. The values for these parameters are
not necessarily optimal as the workload varies, T this
paper, we propose a new family of flexible buffer man-
agement techniques that are adaptable to the workload
of the system. The basic idea of our approach is to
use predictors to predict the effect a buffer allocation
decision will have on the performance of the system.
These predictions are based not only on the availahil-
ity of buffers at runtime and the charactersties of the
particular query, but also on the dynanmic workload
of the system. Two predictors are considered in this
paper: throughput and effective disk wizhzation. Sim-
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ulation results show that buffer allocation algorithms
hased on these two predictors perform better than con-
ventional ones,

In Section 2 we review related work and motivate the
research described in this paper. In Section 3 we
present. formulas for computing the expected number
of page faults for different types of database references,
and outline flexible buffer allocation strategies. Then
in Section 4 we introduce the predictors and present
the policies for predictive allocation schemes. Finally,
we present in Section 5 simulation results that com-
pare the performance of our algorithms with other al-
location methods. We conclude in Section 6 with a
discussion on ongoing research.

2 Related Work and Motivation

In relational database management systems, the buffer
manager is responsible for all the operations on buffers,
including load control. That is, when buffers become
available, the manager needs to decide whether to ac-
tivate a query from the waiting queue and how many
huffers to allocate to that query. If too few buffers are
given, the query will cause many page faults, and the
response time will be too high, If too many buffers
are given, other queries waiting to get into the system
will be blocked out, and the throughput of the whole
system will decrease. Achieving the “golden cut” is
the objective of a huffer allocation algorithm.

As depicted in Figure 1 which outlines the buffer man-
ager and its related components, the buffer pool area is
a conunon resource and all queries - queries currently
running and queries in the waiting queue - compete for
the buffers. Like in auy competitive environment, the
principle of supply and demand, as well as protection
against starvation and unfairness must be employed.
Hence., in principle, the number of buffers assigned to
a query should he determined based on the following
factors:

1. the demand factor - the space requirement of the
query as determined by the access pattern of the
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Figure 1: Buffer Manager and Related Components
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Table 1: Classification of Allocation Algorithms

query (shown as path {1) in Figure 1),

2. the buffer availabslity factor - the number of avail-
able buffers at runtime (shown as path (2) in Fig-
ure 1), and

3. the dynamic loadfactor - the characteristics of the
queries currently in the system (shown as path (3)
m Figure 1).

Based on these factors, previous proposals on huffer
allocation can he classified into the following groups,
as summarized in Table 1.

Allocation algorithms in the first group consider only
the buffer availability factor. They include varia-
tions of First-In-First-Qut (FIFQ), Random, leasi-
Recently-Used (LRU), Clock, and Working-Set[4. 6, 9].
However, as they focus on adapting memory manage-
ment techniques used in operating systems to database
systems, they fail to take advantage of the specific ac-
cess patterns exhibited by relational database queries,
and their performance is not. satisfactory(i].

Allocation strategies in the second group consider ex-
clusively the demand factor, or more specifically the
access patterns of queries. They inclide the Hot-Set
model designed hy Sacca and Schkolick[R], and the
strategy used by Cornell and Yu[3] in the integration
of buffer management with query optimization. This
approach of buffer allocation is culminated in the work
of Chou and DeWitt[1]. They introduce the notion of a
locality set of a query, i.e. the number of hoffers needed
by a query without causing many page faults, "I'hey
propose the DBMIN algorithm that makes allocation
equal to the size of the locality set. Simulation resulis
show that DBMIN outperforms the Hot-Set strategy
and the algorithms referred to in the first group.

While the strength of DBMIN and other algorithms re-
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ferred to in the second group lies in their consideration
of the access patterns of queries, their weakness arises
from their oblivion of runtime conditions, such as the
availability of buffers. This imposes heavy penalties
on the performance of the whole system. For instance,
the buffer utilization is low and the response time is

high[7].

The above deficiencies have led us to propose flexible
buffer allocation techniques. In [7] we design a class of
allocation methods, named MG-z-y, which simultane-
ously take into account the access patterns of queries
and the avatlability of buffers at runtime. Simulation
results show that this added flexibility gives better per-
formance than DBMIN([7].

However, all the algoritms mentioned above are static
i nature, and they cannot adapt to changes in sys-
tem loads and the mix of queries using the system.
This weakness motivates us to investigate how to in-
corporate the dynamic workload factor into the buffer
allocation decision. In this paper, we introduce pre-
dictive load control hased on the notion of predictors
that estimate the effect a buffer allocation will have on
the performance of the system. These predictions not
only take into account the access patterns of queries
and the availability of buffers, but they also include
dynamic workload information such as the character-
istics of queries currently running in the system and
queries being kept in the waiting queue.

3 Models for References and Flexible
Buffer Allocation

In this section we first present mathematical models
for relational database references. As we shall see in
Section 4, these models provide formulas for predictive
load control. Then we review DBMIN and outline the
class of flexihie huffer allocation algorithms MG-x-y
which are precarsors to the predictive huffer allocation
strategies proposed in this paper.

3.1 Models for Relational Database
References

In [1] Chou and DeWitt show how page veferences of
relational database ueries can be decomposed into se-
quences of simple and regular access patterns. They
identify four major types of references: random, se-
quential, looping and hierarchical. A random refer-
ence consists of a sequence of random page accesses.
A selection using a non-clustered index is one exam-
ple. The following definitions formalize this type of
references,

Definition 1 A reference Ref of length k to a rela-

tion is a sequence < Py, Ps,..., Pr > of pages of the
relation to be read in the given order. 0
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Definition 2 A random reference Ry n of length k to
a relation of size N is a reference < Py, ..., P, > such
that for all 1 < 4,5 < k, P; is uniformly distributed
over the set of all pages of the accessed relation, and
F; is independent of P; for i # j. 0

In a sequential reference, such as a selection using a
clustered index, pages are referenced and processed
one after another without repetition.

Definition 3 A sequential reference Sy y of length k
to a relation of size N is a reference < Py,..., Pr >
such that forall 1 <4, j <k < N, B # P 0

When a sequential reference is performed repeatedly,
such as in a nested loop join, the reference is ealled a
looping reference.

Definition 4 A looping reference Ly 4 of length kis a
reference < Py, ... Py > such that for some t < k,

i) P#£ P, forall 1 <14,j <t and

i) P,'.H:P,',fOI‘IS?'Sk—i

The subsequence < Py, ..., P > is called the loop. and
t is called the length of the loop. 0

Finally, a hierarchical reference is a sequence of page
accesses that form a traversal path from the root down
to the leaves of an index. In [7] we show how the anal-
yses for random, sequential and looping references can
be applied to hierarchical references and other more
complex types of references. Henee, due to space Timi-
tations, here we present. mathematical models only for
the three types of references. In particular we give
formulas for computing the expected number of page
faults using a given number of buffers s.

Definition 5 Let Ef(Ref,s) denote the expected
number of page faults caused by the reference Ref us-
ing s buffers, where Ref can be a random, sequential
or looping reference. a

Random References: For a random reference. the
expected number of page faults is given hy:

k
Ef(Rin.8) = [+ P ks N) (1)

I=1

where P(f, k,s, N) denotes the probability that there
are [ faults in k accesses to a relation of size N using s
buffers. The probability P(f, k,s. N} can he computed
by the recurrence equations listed in [3, 7]. Here due
to space limitations, we only show the formula that
gives a very close approximation to Ef(R; . 8):

. SNs[E= (1= 1N k<ke .
Ef(R""N"q)~{s+(k--lm)*(l CoIN), k> ke Y

where ko = In(1 —s/N)/ In{(1 = 1/N). Note that all
these formulas make the uniformity assumption whose
effects are discussed in [2].

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

Sequential References: Trivially

Ef(Sen,s) = k. (3)

Looping References: Using the Most-Recently-Used
replacement policy, which is proved to be optimal in
[7], we have:

Ff(Lris)=t+(t—s)xtx
(k/t = 1)/t = 1), (4)

if s <1, and
Ef(Ley,s)=t (5)

otherwise.

Next we review DBMIN and the MG-x-y policy, which
generalizes and improves DBMIN by permitting flexi-
hle buffer allocations to references,

3.2 Generic Load Control and DBMIN

During load control, a buffer manager determines
whether a waiting reference can be activated, and de-
cides how many buffers to allocate to this reference.
Throughout this paper, we use the term admission
policy to refer to the first decision and the term al-
location policy to refer to the second one. Once the
admission and allocation policies are chosen, a buffer
allocation algorithm can be outlined as follows.

Algorithm 1 (Generic) Whenever buffers are re-
leased by a newly completed query, use the given ad-
mission poliey to determine whether the query @ at
the head of the waiting queue can be activated. If this
is feasible, the buffer manager decides the number of
buffers s that @ should have, based on the allocation
policy. After @Q is activated, continue with the next
query, until no more query can be activated. Notice
that only @ can write on these buffers; these buffers

are returned to the buffer pool after the termination
of Q. a]

Throughout this paper, we use A to denote the num-
ber of available buffers, and s,in and s;.. to denote
respectively the minimum and maximum numbers of
buffers that a buffer allocation algorithm is willing to
assign to a reference. ‘

For DBMIN, the admission policy is simply to acti-
vate a query whenever the specified number of buffers
are available, that is sy < A. As for the allocation
policy, it depends on the type of the reference. For
ease of presentation, here we only consider the most
basic references: looping, sequential and random. For
a looping reference, DBMIN specifies that exactly 1
buflers have to be allocated, i.e. $min = Smaz = 1. For
a sequential and a random reference!, DBMIN speci-
fies Spmin = Smar = 1. Table 2 summarizes the admis-
sion and allocation policies of DBMIN. Note that the

"In [1), it is proposed that a random reference may be
allocated 1 or bya, buffers where byao is the Yao estimate
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allocation allocation policy admission
algorithms looping random sequential policy
Smin Smax Smin Smaz Smin Smaz
DBMIN t 1 i 1 1 1 Smin S A
MG-x-y T/ % 1 t 1 ¥ 1 1 Smin < A
predictive methods [ f{Toad) 1 Jf(load)  byao 1 1 Smin < A

Table 2: Characteristics of Buffer Allocation Algorithms

inflexibility of DBMIN is illustrated by the fact that
the range [$min, Smaz) degenerates to a point. In other
words, DBMIN never tolerates sub-optimal allocations
to looping references, and it never allows randon ref-
erences the luxury of many buffers even if these buffers
are available. These problems lead us to the develop-
ment of the flexible MG-x-y policy discussed next.,

3.3 Flexible Buffer Allocation: MG-x-y

The MG-x-y buffer allocation policy [7] uses two pa-
rameters & and y. In particular, for a looping refer-
ence, M(3-x-y uses spin = &% x 1 and s,,4, = 1, where
z is in the range of 0% to 100%. As MG-x-y tries
to allocate as many buffers as possible to a reference,
MG-x-y can allocate flexibly and suh-aptimally il nec-
essary. For random references, MG-x-y uses spin = 1
and smqr = Y, where y is a value related to the Yao es-
timate by,,. Thus, MG-x-y allows random references
the luxury of many buffers, if these huffers are avail-
able. See Table 2 for a sumymary. Note that MG-100-1
(i.e. z=100%, y=1) is the same as DBMIN. In [7} we
show that if we allow more flexible values for 2 and y
than DBMIN, MG-x-y gives higher throughputs,

The significance of the MG-x-y policy is to show the
benefits of flexible buffer allocation. However, as the a
and y parameters are determined heforehand accord-
ing to the mix of queries to nse the system, they are
geuerally not easy to find, and they are vulnerable ta
changes in the mix of queries. In the rest of thig paper,
we explore further the idea of flexible bufler allocation,
and we propose allocation algorithms that dynamically
choose the §,,in and smae values using run-time infor-
mation. Thus, apart from the fact that the proposed
algorithms are as flexible as MG-x-y, they have the
extra advantage of not relying on any parameters to
be chosen in advance, and they can adapt to chang-
ing workloads. The main idea is to use a quencing
model to give predictions about the performance of
the system, and to make the sp,;, and syae parame-

on the average number of pages referenced in a series of
random record accesses[1]). However, il is nnclear under
what circumstances a random reference shonld be allacated
byao buffers[1]. Regardless, in veality. the Yao estimates are
usnally too high for allocation. For example, for a blocking,
factor of 5, the Yao estimate of accessing 100 records of a
1000-record relation is 82 pages. Thus, DBMIN almost
always allocates 1 buffer to a random reference.
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ters vary according to the state of the queueing model.
In the next section, we describe the proposed queueing
model, as well as the ways the model can be used to
perform buffer allocation in a fair (FCFS), robust and
adaptable way.

4 Predictive Buffer Allocation

4.1 Predictive Load Control

As described in the previous section, both DBMIN and
MG@G-x-y are static in nature and their admission pol-
icy is simply: smin < A, where s, is a pre-defined
constant, for each type of reference. Here we pro-
pose predictive methods that use dynamic informa-
tion, so that s;,;, s now a function of the workload,
denoted by f(load) in Table 2. More specifically, a
waiting reference is activated with s buffers, if this
admission is predicted to improve the performance of
the current state of the system. In more precise no-
tations, suppose Pf denotes a performance measure

(e.g. thronghpnt), Re f.,, vepresents all the references
(i.e. queries) Refy,..., Ref, currently in the system,
With S.qr= 81,...,8n buffers respectively, and Ref is
the reference under consideration for admission. Then
Smin I8 the smallest s that will improve the Pf pre-

dictor: Pf(Re-ﬁ,',,,.S;:”,) > Pf(Rgf;ur.s—c:,), where

,?f-}:('ﬂ'erf/fur URFI'. S::u: 81,0004 80, 8, and the
symbol Pf{R, &) denotes the performance of the sys-

temi with R active references and § buffer allocations.
Thus, the reference Ref is admitted only if it will not
degrade the performance of the system?.

In this paper we consider two performance measures
or prediciors: throughpu! T and effective disk uliliza-
Lion f; DI, Next, we analyze the above predictors and
discuss the motivation hehind our choices. But first
we outline a queueing model that forms the basis for
these predictors. At the end of this section, we discuss
how these predictors can he incorporated with various
allocation policies to give different predictive buffer al-
location algorithms. Tn section 5 we present simulation
results comparing the performance of these predictive
algorithms with MG-x-y and DBMIN.

?With one only exception; see Section 4.4 for a

discussion.
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4.2 Queueing Model

We assume a closed queueing system with two servers:
one CPU and one disk. Within the system, there are n
references (jobs) Refy,..., Ref, whose CPU and disk
loads are To; and Tp i respectively for i = 1,....n.
Furthermore, Ref; has s; buffers. Therefore, if every
disk access costs 1p (e.g. 30 msec), and the processing
of a page after it has been brought in core costs 1
(e.g. 2 msec), we have the following equations:

Tps = tp* Ef(Ref;, si) (6)
TC‘,- = texk; (7)

where k; is the number of pages accessed by Ref;.
and Ef(Ref;,s;) can be compnted using the formulas
listed in Section 3.

The general solution to such a network can be calcu-
lated; see for example [10, pp. 451-452]. Tt involves
an n-class model with each job being in a class of its
own. But while it gives accurate performance mea-
sures such as throughput and utilizations, this solution
is expensive to compute, since it requires exponential
time on the number of classes. As ease of computa-
tion is essential in load control, we approximate it with
a single-class model; all the jobs come from one class,
with the overall CPU load T+ and the overall disk load
Tp being the averages of the respective loads of the in-
dividual references. 7¢ and 7p may he the harmonic
or geometric means depending on the predictors to he
mtroduced in the following.

4.3 Predictor TP

Since our ultimate performance measure is the
throughput of the system, a natural predictor is o
estimate the throughput direetly, 1n general. there are
two ways (o increage the thronghpnt of a system: in-
crease the nmltiprogramming level mpl, or decrease
the disk load of the jobs by aliocating more buffers to
the jobs. However, these two requirements normally
conflict with each other, as the total number of huffers
in a system is fixed. Hence, for our first predictor TP,
we propose the following admission policy:

Admission Policy 1 (TP) Activate the reference if

optimal allocation is possible: otherwise, activate only
if the reference will increase the throughput. O

To implement the above policy, we provide formulas
to compute the throughput. The solution to the single
class model is given in [10}:

TP = Up/Tn. (])
Up is the utilization of the disk
pY) — 1
UD pm (9)

where p is the ratio of the disk load versus the CPU
load

p = Tn/Te. (10)
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To derive the average loads 7¢ and 7Tp, we use the
harmonic means of the respective loads

1Te = 1/"*i1/TC,i (11)
YTp = 1nxY_ 1/Tp,. (12)
=]

Since the equations of the queueing systems are based
on the concept of “service rate” which is the inverse
of the load, using the harmonic means of the loads is
equivalent to using the arithmetic means of the rates.
Notice that the caleulation of the throughput requires
0O(1) operations, if the buffer managers keeps track of
the values Tp and T¢.

4.4 Predictor EDU

Although very intuitive, using the estimated through-
put as the criterion for admission may lead to some
anomalies. Consider the situation when a long sequen-
tial reference ig at. the head of the waiting queue, while
some short, optimally allocated random references are
currently running in the system. Now admitting the
sequential reference may decrease the throughput, as
it increases the average disk load per job. However,
as the optimal allocation for the sequential reference
is only one buffer, activating the sequential reference
is reasonahle. Exactly for this reason, Admission Pol-
icy 1 is “patched up” to admit a reference with spuy
buffers, even if this admission decreases the through-
put.

This anomaly of the predictor TP leads us to the de-
velopment of our second predictor — Effective Disk
Utilization (EDU). Consider the following point of
view of the prohlem: There is a quene of jobs (i.e. ref-
erences), a system with one CPU and one disk, and
a buffer poal that can help decrease the page faults
of the jobs. Assuming that the disk is the bottleneck
{which is the case in all our experiments, and is usually
the case in practice), a reasonable objective is to make
the disk work as efficiently as possible. In general,
there are two sources of inefficient uses of the disk: (1)
the disk is sitting idle hecause there are very few jobhs,
or (2) the disk is working on page requests that could
have heen avoided if enough buffers had been given to
the references causing the page faults. The following
concept captures these observations.

Definition 6 The effective disk utilization EDU is
the portion of time that the disk is engaged in page
fanlts that could not be avoided even if the references
are each assigned its optimum number of buffers (infi-
nite, or, equivalently 8,5, which is the maximum num-
her of buffers usable by a reference). o

Hence, for our second predictor EDU, we use the fol-
lowing admission policy (Ref is the reference at the
head of the waiting queue):
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Figure 2: Effective disk utilization

Admission Policy 2 (EDU) Activate Ref if it will
increase the effective disk utilization. ]

Mathematically, the effective disk utilization is ex-
pressed by:

n

n
(z Upi) - (Z Up.i*wy)
i=1

i=1

EDU = (13)

where Up ; represents the disk utilization due to Ref;
and wy is the portion of “avoidable™ (or “wasted™) page
faults caused hy Ref::

Ef(Ref;,8:) = EJ(Ref; 50)
Ef(Refi,s;) '

For practical calculations, we nse s, instead of oo;
clearly, sopr 18 1, & and by, for sequential, looping and
random references respectively. Informally, Equation
(13) specifies that al every umt time, the disk serves
Re f; for Up ; units of time, Out of that, e f; wastes
w; * Up ; units of time. Summing over all jobs, we get
Equation (13).

Figure 2 illustrates the concept of effective disk uti-
lization. The horizontal line corresponds to a 100%
disk utilization; the dotted portion stands for the idle
time of the disk, the dashed parts correspond to the
“wasted” disk accesses and the sum of the solid parts
corresponds to the eflective disk utilization.

(11)

Note that, for /O bound jobs, every job has approxi-
mately an equal share of the total disk utilization {7p,
even though the jobs may have different disk loads.
Thus, we have the following formula:

Ipin, {15)

which simplifies Equation (13) to:

[ID,i =

n

Up ~Up/n=* (Z w;).

i=l

EDU = {(16)

Notice that we have not yet used a single-class approx-
imation. We only need this approximation to calenlate
the disk utilization Up. Using the exact n-class model
[10], we find out that the geomelric averages seem to
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give a better approximation to the the disk utilization.
Thus, the average CPU and disk loads are given by:

Te = 7 ﬁTc," 17)
\ i=1

o = ][[7os (18)
\ i=1

Based on these equations, the disk utilization Up can
he computed according to Equations (9) and (10). As
for the TP predictor, the calculation of EDU requires
O(1) steps, if the buffer manager keeps track of the
loads 7¢, Tp and of the total ”wasted” disk accesses

Z?:l Wi
4.5 Predictive Buffer Allocation Algorithms

Thus far we have introduced two predictors: TP and
EDU. We have presented the admission policies based
on these predictors and provided formulas for comput-
ing these predictions. To complete the design of pre-
dictive buffer allocation algorithms, we propose three
allocation policies, which are rules to determine the
number of buffers s 1o allocate to a reference, once the
reference has passed the admission criterion.

Allocation Policy 1 (Optimistic) Give as many
buffers as possible, i.e. s=min(A, smaz)- ]

Allocation Policy 2 (Pessimistic) Allocate as few
buffers as necessary to random references (i.e. smin),
but as many as possible to sequential and looping ref-
erences, 0

The optimistic policy tends to give allocations as close
to optimal as possible. However, it may allocate too
many buffers to random references, even though these
extra buffers may otherwise be useful for other refer-
ences in the waiting quene, The pessimistic policy is
thus designed to deal with this problem. But a weak-
ness of this policy is that it unfairly penalizes random
references. In particular, if there are abundant buffers
available, there 1s no reason to let the buffers sit idle
and not to allocate these buffers to the random refer-
ences.

Allocation Policy 3 (2-Pass) Assign  tentatively
huffers to the first m references in the waiting queue,
following the pessimistic policy. Eventually, either the
end of the waiting queue is reached, or the m+1 -
th reference in the waiting queue cannot be admitted.
Then perform a second pass and distribute the remain-
ing buffers equally to the random references that have
heen admitted during the first pass. 0

In essence, when the 2-Pass policy makes allocation
decisions, not only does it consider the reference at
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query query selec- access path join access path reference
type operators tivity of selection method of join type
T select(A) 10 % clustered index - - 530,500
i select(B) 10 % | non-clustereq index - R30,15
HI select(C) 1% | non-clustered index - Rao,150
[V {select{AYXB | 1% sequential scan index join | non-clustered index on B T Rio,s
Vv select(B) ) C | 10 % sequential scan index join | non-clustered index on B | Rao,150
Vi select(A) MW B | 4 % clustered index nested loop sequential scan on B L300,15

Table 3: Summary of Query Types

relation A | 10,000 tuples

relation B 300 tuples

relation C | 3,000 tuples

tuple size 182 bytes

page size 4K

Table 4: Details of Relations

T 14 Tl vV \Y A%
mix 1| 10% | 10% | - | 10% | - | 10%
mix 2 | 10% | 45% | - | 45% | - -
mix 3 | 10% | 30% | - = 130% | 30%
mx4d| - T 50% | - | 50% | -

Table 5: Summary of Query Mixes

the head of the waiting queue, bul it also takes into
account as many references as possible in the rest of
the queue.

The three allocation policies can he used in conjunc-
tion with hoth TP and EDU, giving rise to six poten-
tial predictive huffer allocation aigorithms. As a nam-
ing convention, each algorithm is denoted by the pair
“predictor-allocation” where “predictor” is either TP
or EDU, and “allocation” is one of: o, p, 2, represent-
ing optimistic, pessimistic and 2-Pass allocation poli-
cies respectively. For instance, EDU-o stands for the
algorithm adopting the EDU admission policy and the
optimistic allocation policy. Note that all the ahove al-
gorithms follow the generic description of Algorithm 1.
And once the number of buffers s allacated to a refer-
ence has been decided, all buffer allocation algorithms
operate in exactly the same way as DBMIN, that is,
those s buffers are exclusively used by the reference,
until it terminates.

5 Simulation Results

In this section we present simulation results evaluating
the performance of predictive allocation algorithms in
a multiuser environment. As Chou and DeWitt have
shown in [1] that DBMIN performs better than the
Hot-Set algorithm, First-In-First-Out, Clock, Least-
Recently-Used and Working-Set, we only compare the
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predictive algorithms with MG-x-y and DBMIN. Fur-
thermore to highlight the comparisons, we only present
simulation results for TP-o, EDU-0, EDU-2, and the
best set of parameters for MG-x-y.

5.1 Details of Simulation

In order to make direct comparison with DBMIN, we
nse the simnlation program Chou and DeWitt used for
NBMIN, and we experiment with the same types of
queries, Table 3 summarizes the details of the queries
that are chosen to represent varying degrees of demand
on CPU, disk and memory [1]. Table 4 and Table 5
show respectively the details of the relations and the
query mixes we used. In the simulation, the number of
concurrent queries varies from 2 to 16 or 24. Each of
these concurrent queries is generated by a query source
which cannot generate a new query until the last query
from the same source is completed. Thus, the simu-
lation program simulates a closed system3. Further-

*Besides buffer management, concurrency control and
transaction management is another important factor affect-
ing the performance of the whole database system. While
the simulation package does not consider transaction man-
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more, to highlight the increase or decrease in through-
put relative to DBMIN, the throughput values shown
in the following figures are normalized by the values of
DBMIN, effective showing the ratio in throughput.

5.2 Allocations to Looping References

The first mix of queries consisted of 10% each of
queries of type I, Il and IV (sequential, random and
random, respectively), and 70% of gueries of type VI
(looping references). The purpose of this mix is to
evaluate the efféctiveness of predictive allocations to
looping references, i.e. query type VI Figure 3 shows

the relative throughput using a total number of 35
buffers.

When compared with DBMIN, all our algorithms per-
form better. Because of the low percentages of se-
quential and random references in this mix of queries,
the improvement shown by onr algorithms can he at-
tributed to effective sub-optimal allocations to lonping
references. Furthermore, TP-o0, EDU-0 and EDU-2 all
perform comparable to the best M(i-x-y scheme for
this mix of queries.

5.3 Allocations to Random References

The second mix of queries consisted of 45% each of
queries of type 11 and 1V (random references), and
10% of querics of type I (sequential references). This
mix of queries is set up to evaluate the performance of

agement, see [1] for a discussion on how the transaction
and lock manager can be integrated with a buffer manager
using DBMIN. Since our algorithms differ from DBMIN
only in load control, the integration proposed there also
applies to a buffer manager nsing our algorithms,
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allocations to random references. Figure 4 shows the

relative throughput using again a total number of 35
buffers,

Again when compared with DBMIN, all our algorithms
give better performance. This demonstrates the effec-
tiveness of flexible bufler allocations to random refer-
ences. In particular, when buffers are available, ran-
dom references are henefited by allocations of extra
buffers. Though hetter than DBMIN, EDU-2 does not
perform as well as our other algorithms. This is be-
canse every time during the first pass of allocations
(cf. Allocation Policy 3), EDU-2 has the tendency of
activating many random references. As a result, the
number of buffers per random reference allocated by
EDU-2 is lower than that allocated by our other algo-
rithms, thereby causing more page faults and degrad-
ing overall performance.

5.4 Effect of Data Sharing

In the simulations carried out so far, every query can
only access data in its own buffers. To examine the
effect of data sharing on the performance of our al-
gorithms relative to DBMIN, we also run simulations
with varying degrees of data sharing. Figure 5 shows
the relative throughput of our algorithms running the
first. mix of queries with 35 buffers, when each query
has read access to the buffers of all the other queries,
i.e. full data sharing.

Compared with Figure 3 for the case of no data shar-
ing, Figure 5 indicates that data sharing favors our
algorithms. The same phenomenon occurs for other
query mixes we have used. In fact, this phenomenon
is not surprising hecause it is obvious that with data
sharing, the higher the buffer utilization, the higher
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the throughput is likely to be. In other words, the in-
flexibility of DBMIN in buffer allocation hecomes even
more costly than in the case of no data sharing.

5.5 Comparisons with MG-x-y -
Adaptability

Among all the simulations we have shown thus far,
the predictive allocation algorithins TP-o, EDU-0 and
EDU-2 perform approximately as well as the hest of
MG-x-y. The reason is that we have a fixed mix of
queries, with few types of queries, and we have selected
carefully the ¢ and y parameters that are best suited
for this specific mix. The weaknesses of the MG-x-y
policy stem exactly from the rigidity of the » and y
parameters. The simnlations described below demon-
strate the weaknesses of MG-x-y and the effectiveness
of the predictive algorithms.

The first. weakness of MG-x-y lies in the fact that each
MG-x-y scheme has only one & and one y value for all
kinds of looping and random references. But now con-
sider Query Type Il and V respectively: Query Type
1T (Ran,15) has a low Yao estimate of 1d-and a high
selectivity of making 30 random accesses on 15 pages;
Query Type V {Ran150) has a high Yag estimate of 27
and a low selectivity of making 30 random accesses on
150 pages. For a query of the first. type, it is beneficial
to allocate as close to the Yao estimate as possible.
But for a query of the second type, it is not worth-
while to allocate many buflers to the query. Thus, for
any MG-x-y scheme, using one y value 1s not suffi-
cient to handle the diversity of queries. This prohlem
is demonstrated by running a simulation on the third
query mix which consists of the two kinds of random
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references mentioned ahove (Query Type II and query
Type V). Figure 6(b) shows the relative throughput
of running this mix of queries with 30 buffers. When
compared with the best result of MG-x-y (i.e. MG-
50-16 in this case), the predictive algorithms perform
better, handling the diversity of queries more effec-
tively.

The second major weakness of MG-x-y is its inability
of adjusting to changes in query mixes. Figure 6 shows
the result of running a simulation that consists of two
stages. In the first stage, the query mix consists of
random references only (i.e. mix 4). As shown in
Figure 6(a), the best result of MG-x-y (i.e. MG-50-
18 in this case) performs comparably to the predictive
algorithms. But when the second stage comes and the
query mix changes from mix 4 to mix 3, MG-50-18
cannot adapt to the changes, as illustrated by Figure
G(b). On the other hand, the predictive algorithms
adjust appropriately.

5.6 Summary

Our simulation results indicate that predictive allo-
cation strategies are more effective and more flexible
than DBMIN, with or without data sharing. They are
capable of making allocation decisions based on the
characteristics of queries, the runtime availability of
buffers, and the dynamic workload. When compared
with the MG-x-y algorithms, the predictive methods
are more adaptable to changes, while behaving as flex-
ihle as the MG-x-y schemes. For simple query mixes,
they typically perform as well as the best MG-x-y
scheme; for complicated or changing query mixes, they
clearly perform better.

273

Barcelona, September, 1991



As for the two predictors TP and EDU, both of them
perform quite well. While EDU is probahly more ac-
curate for a single disk system, TP is more extendihle
to multi-disk systems, and is slightly easier ta com-
pute. Considering allocation policies, the winners are
the 2-Pass approach and the optimistic one. The pes-
simistic approach gives results only slightly hetter than
DBMIN in most cases. The 2-Pass approach performs
well in most situations, with the exception of heavy
workloads consisting primarily of random references,
In this case, the 2-Pass policy degenerates to the pes-
simistic one, because there is no left-over huffers to al-
low for a second pass. A practical disadvantage of the
2-Pass policy is that it cannot activate queries instan-
taneously because queries admitted in the first pass
may have to wait for the second pass for additional
buffers. Thus, it is slower than the policies that only
require one pass. Finally, the optimistic allocation pal-
icy performs very well in most situations. In addition.
it is easy to implement and is capable of making in-
stantaneous decisions.

6 Conclusions

The main idea in this paper is to incorporate run-
time information in the bufler allacation algorithm.
We propose using a simple, but accurate single-class
queneing model to predict the impact of each buffer
allocation decision. The proposed approach builds on
the concept of flexibility, that was intraduced by the
MG-x-y policy [7]. and it improves the MG-x-y pol-
ey further: it treats the @ and y values as variahles,
which are determined by the load of the system so as
to maximize the thronghput or disk utilization.

The strong pomts of the proposed methads are as fol-
lows.

e They require no parameter values Lo he deter-
mined statically. They are adaptable, performing
well under any mix of queries, as well as when the
workload characteristics change over time,

¢ The methods are fair (FCFS) and fast, requiring
O(1) calculations for each performance prediction.

¢ Simulation results show that they perform at least
as well, and usually much betier than existent
methods.

o Finally. the two performance measnures (7'F and
EDU7) perform equally well, and both the opti-
misitic and the 2-pass allocation policies are ef-
fective.

Future work in adaptive huffer management includes
the extension of our predictors for systems with many
disks, and the analytical study of the case where data
sharing is allowed.
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