Dynamic Constraints and Object Migration*

Jianwen Su
Computer Science Department
University of California
Santa Barbara, CA 93106-5110
U.S.A.

su@cs.ucsb.edu

Abstract

In a class hierarchy, a “role set” is the set of classes
where an object may reside simultaneously. A “mi-
gration pattern” is a sequence of role sets. A “mi-
gration inventory,” which is a set of migration pat-
terns, is viewed as a dynamic constraint on ohject
migration. A set of transactions is “sound”™ wrt an
inventory if it generates only patterns in the inven-
tory; “complete™ if all patterns in the inventory can
be generated. An initial study on characterizing mi-
gration inventories of transactions is presented. Three
update languages are considered: SL which contains
five operators, CSL* which extends SL with positive
conditionals, and CSL which allows both positive and
negative conditionals. Four kinds of inventories are
studied based on lazmness and immecdiate start. It is
shown that inventories produced by SL transactions
are regular and every regular inventory can be gener-
ated by SL transactions. Soundness and completeness
for SL transactions are decidable. Inventories gener-
ated by CSL (CSL*) transactions are r.e. and every
r.e. inventory can be generated by CSL* (CSL) trans-
actions under nonimmediate start. [t is also show that
every r.e. immediate-start inventory can be obtained
by a left quotient of the mventory of CSL* (CSL)
transactions by a regular set. The exact characteri-
zations are open. However, every context-free set can
be geunerated. Soundness and completeness for (:SL
(CSL*) transactions are undecidable.

1 Introduction

Database applications are hecoming more and more
complex. Techniques to model, organize and manip-
ulate behaviors, and to incorporate behaviors into

*Supported in part by NSF grant IRI-87-19875. Part of the
work was done while the author was at the University of South-
ern California.

Proceedings of the 17th International
Conference on Very Large Data Bases

233

databases in a systematic way are increasingly de-
sired. The growing popularity of OODBs has evi-
denced this trend. Important work on dynamic as-
pects of databases includes practically-oriented re-
search on behavior modeling and transaction design
[Bro81, MBW80, BR84, KM85, NCL*87, BMSW89],
encapsulating behaviors and structural data, (e.g.,
[CM84]); and theoretical studies on transactions as
specification languages [AV89, AV88], and dynamic
constraints [Via87, Via88]. Previous studies on mod-
eling database behaviors can be roughly categorized
into two approaches. One is to use behavioral con-
structs to describe semantic information in a way sim-
ilar to the use of data constructs in modeling struc-
tural data. Examples are the transaction composition
operators [Bro81, BR84], the inflow schemas of IN-
SYDE [KMS85], and the scripts'in TAXIS [MBWS80,
NCL*87]. The other is to specify database behav-
iors using “dynamic constraints.” Temporal logic is
a typical example of this approach {CF84, dCCF82].
In this paper; we study the interrelationships between
dynamic constraints, transaction languages and be-
havior modeling primitives.

In an object-oriented database, an object belong-
ing to a class can be also viewed as playing a role of
that class [Sci89]. It is natural to allow objects to dy-
namically change their roles. For examples, a Ph.D.
student must to go through “pre-screening,” “post-
screening,” “candidate” stages in the specified order
to obtain a doctorate degree; a plane may be in dif-
ferent- status, but it can never get into the “flying”
state directly from being at a “repair depot.” Cur-
rently, there are some proposals for systems to support
such “object migration™ [Sci89, Per90, DL90, RS91].
In this paper, we initiate a theoretical investigation
on object migration. Specifically, we consider “mi-
gration patterns” as a new type of dynamic con-
straints which specify the “good” sequences of states
that a database object can possibly live through.

Barcelona, September, 1991

These constraints are similar to “path expressions”
[CHT4, AS83], which is used to control concurrent
operations. We focus on the problems of character-
izing migration patterns of transactions and testing
(in)consistency of transactions and a set of migration
patterns. The framework and techniques developed
here can provide part of the basis for type checking of
dynamic types on transactions [HJ190], fransaction de-
sign [BR84, KM85, BMSW3Y], and the study of meth-
ods in OODBs. They lead to a new view of hehavior
specifications and dynamic constraints which extends
the work in [AV89, AV88, Via87, Viags].

We consider a simple semantic data model, which
contains class hierarchies and attributes ranging over
printable values. The model can he viewed as a proper
subset of many semantic models (IFO, SDM, GSM.
etc.) [HK87]. In a class hierarchy, an ohject can be-
long to several classes simultancously and objects can
migrate between classes. The set of classes in which a
object lives at a time instant if a role sel. A migration
patlern is a sequence of role sets. A magration -
ventory is a set of migration patterns which is closed
under taking prefixes. A set of transactions (possi-
bly with parameters) is sound with respect to (wrt) a
migration inventory if it produces only migration pat-
terns in the inventory; it is complete if it can produce
all patterns in the inventory. The problems studied
here are (1) whether a given set of transactions (with
parameters) is sound and for complete wrt a migration
inventory: (2) expressiveness of transaction languages
in terms of migration inventories that transactions can
produce; and finally (3) expressiveness of a behavior
modeling construct in which transactions are ordered,
similar to inflow schema and scripts.

Three transaction languages are studied here: SI
which contains five atomic operations: create, delete,
modify, generalize, and specialize; CSL* which is SI
extended with conditionals having positive test condi-
tions; and CSL in which test conditions may be nega-
tive. The languages extend the relational language of
[AV89] to incorporate objects. The major difference is
that our languages allow object-based manipulations.

We study four kinds of migration pattern, hased
on two independent factors: laziness or not, immedi-
ale or delay start. A lazy pattern “discards” consec-
utively repeated role sets, 1.e., it “records” only when
an object migrates to a different role set. The idea of
“immediate start” is to focus only on patterns in which
objects are created at the first step starting from the
empty database. The following results are obtained.
For the language SL, the set of migration patterns gen-
erated by a given finite set of SL transactions is always
a regular language under each kind of pattern. As a

Proceedings of the 17th International
Conference on Very Large Data Bases

consequence, it is decidable whether it is sound and/or
complete wrt a given migration inventory. Conversely,
for each regular migration inventory there is a set of
SL transactions which is both sound and complete
wrt it. For the extended languages, the set of mi-
gration patterns generated by a finite set of CSL (and
hence CSI*) transactions is recursively enumerable
(r.e.) under each kind of pattern. When consider-
ing delay-start patterns (lazy or non-lazy), wrt each
r.e. migration inventory, there is a finite set of CSL+
(CSL) transactions which is both sound and complete.
When considering immediate-start patterns (lazy or
nonlazy), every r.e. migration inventory is a left quo-
tient of the set of migration patterns generated by
some set. of CSL* (CSL) transactions by a regular
set. In other words, each pattern can be generated
with a padding. If padding is not allowed, the exact
characterizations for immediate-start patterns of CSL
and CSL* transactions are still open. However, it
is shown that every context-free language of role sets
can be generated by some CSL (or CSL*) transac-
tions with immediate-start patterns. Consequently, it
is not decidable whether a set of transactions is sound
(or complete) wrt a migration inventory. Finally, we
apply the obtained results and techniques to analyzing
a behavior modeling construct similar to transaction
design methodologies of [KM85, NCL*87, BMSW89).
The construct imposes a (precedence) relation on the
transactions so that only sequences of transactions de-
fined by the relation can be executed. It is shown that
this construct does not yield richer expressiveness in
terms of migration patterns.

This paper is organized as follows. Section 2 in-
troduces the simple semantic model and the language
SL. The formal notion of migration patterns is given
in Section 3, and the characterization of SL trans-
actions is provided. In Section 4, the two extensions
CSL* and CSL are informally defined, and the results
concerning them are presented. The application of the
techniques is discussed in Section 5. Due to space lim-
itation, many detailed proofs and formal definitions
are omitted.

2 Preliminaries

In this section we introduce a semantic data model
and an update language used in the paper. We begin
with the following definitions.

Let (G = (V, E) be a directed graph, where V is a
(finite) set of vertices and £ C V x V a set of edges.
A pair of vertices in V is weakly connected if there is
an undirected path between them. A subgraph of G is

234

Barcelona, September, 1991

SSN Name
<+—— PERSON P~
Salary Major
| EMPLOYEE STUDENT
Works-In \ First-Enroll
%-Appoint

GRAD-ASSIST —*

Figure 1: A Database Schema D

weakly connecled if vertices are pairwise weakly con-
nected and not weakly connected to any other vertices
inG.

A graph G is a specialization-graph if it is acyclic
and for each pair of weakly connected vertices u,v,
there exists a vertex w which has directed paths from
both u and v. Intuitively, a specialization graph con-
sists of several weakly-connected components and each
component has a single root which has directed paths
from all other vertices in the component. This notion
is motivated by ISA rules of IFO schemas [AH87].

For the formal development, we assume the exis-
tence of the following pairwise disjoint and countably
infinite sets:

o U = {a,b,c, ..} of constanis;

o C={P,Q,R, ..} of class names,

e A={A, B,C,..} of attribute names;

¢ O = {o01,02,03,...} of abstract objects, with a to-
tal ordering <o such that 0; <o o; iff ¢ < j;

o V={z,y,2,..} of variables.

Definition: A (semaniic) database schemais a triple
D = (C,isa, A), where:

1. C C (is a finite set of class names;

2. isa C C x C such that (C,isa) is a specialization-
graph. The reflexive and transitive closure of isa
is denoted by isa*;

3. A : C — powerset™(A) is a total mapping such
that A(P)N A(Q) = 0 whenever P # Q. (This

restriction is included for technical simplicity.)

Intuitively, a database schema consists of a set of
classes, subclass relationships, and attributes which
range over 4. Due to inheritance. the set of all at-
tributes defined on class P is the set. A*(P) = {A |
3Q,Pisa* QAA € A(Q)}.

(a) o(PERSON) = {o1,032,03,04,0
o(EMPLO EI:‘.){=l {ol,og,o: s}
o{STUDENT) = {07, 07,04
o{GRAD-ASSIST) = {01}

(b) a is shown by the following tables

PERSON SSN Name
o1 0302 | Charles
02 3698 David
03 6657 Faith
04 9709 Chris
0% 0067 | Michelle
EMPLOYEBE balary Works-In
01 150 History
03 140 [of:]
04 200 EE
2I1VDENT wviajor First-bnrol
01 History T
02 CS 1988
04 EE 1989
[TGRAD-ASSIST | %-ngomf |
I o1 | 49% |

Figure 2: An Instance d = (o, a, 0g)

Notation: Let D = (C,isa, A) be a schema. A
class P € C is an isa-root if there does not exist a
QeC,PisaQ.

Definition: A (dalabase) instance of a database
schema D = (C,isa, A) is a triple d = (0, a, 0), where

1. 0 : C — powerset () such that o(P) € o(Q)
if P isa Q, and o(P)No(Q) = 0 if P,Q are not
weakly connected;

2. a:Up.c(o(P) x A(P)) — U is a total mapping;

3. 0 € O such that YP, 0, if o' € o(P) then o’ <o o.

The set of all instances of D is denoted by inst(D).

Intuitively, the mapping o assigns to a class a set
of abstract objects, a specifies a value for each object
and each appropriate attribute, and the object o is the
next object to be used when objects are created into
the database. In our model, each object in O can be
“created” into a database at most once.

Example 2.1: A schema and its instance are shown
in Figures 1 and 2. O

We now briefly introduce the manipulation lan-
guage SL. The language extends the transaction lan-
guage of [AV89] to incorporate objects and their ma-
nipulations. There are two major differences: (1) SL
allows to manipulate “object identifiers” since it is
based on an object-based model while [AV89)] used the
relational model and operations focus on tuple ma-
nipulations. For example, the operator create of SL
always creates an object with an identifier, but the
operator insert of [AV89] creates a tuple only when
the tuple is not in the database. (2) SL has two new
operators, specialize and generalize, to support
object migration.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

235 Barcelona, September, 1991

An atomic condition is in one of the following
forms: ‘A=a,’ ‘A#a,” ‘A=z, or ‘A#cr, where A € A
is an attribute, a € &/ a constant, and z € V a vari-
able. A condition is a set of atomic conditions. Let T
be a condition. I' is ground if it does not contain any
variables. Define At{(I') = {A € A | A appears in T'}.
For A € Att(I'), Ais definedin I' if A=s €T for some
s€VUU. Let Attger(T) = {A] A is defined in T).

Let D = (C,isa, A) be a database schema and
d = (o,a,0;) € inst(D). Suppose P € C is a class
and T is a ground condition with A(T) C A*(/).
For each object 0 € o(P), the notion of “o satisfics I™
is defined in the natural manner. Define Sat(T".d, P)
= {0 € o(P) | o satisfies T'}.

Intuitively, an “atomic update” with respect to
some database schema is an operation on instances
of the schema which satisfies some syntactic restric-
tions. A “transaction” is then a sequence of atomic
updates.

Definition: Let D = (C,isa, A} be a database
schema. An afomic update on D is an expression in
one of the following forms: (The names are the ini-
tials of “create,” “delete,” “modify,” “generalize,” and
“specialize.”)

1. ¢(P.T), where P & Cis an isa-root, T is a condi-
tion, and AtYT) = Al (1) = A(P);

2. d(P,1'), where P € C is an isa-root, T is a condi-
tion, and Ati(T) C A(P):

3. m(P, T, T'), where P € C, I',T" are conditions,
At(T), AL(T"YCA*(P), and All 4ot (T")=At(T');

4. g(P,T), where P € C is not. an isa-root, I' is a
condition, and At((T) C A*(]’):

5. 8(P,Q, T, T"), where P,Qe C. Qisa P, I',T! are
conditions, At{(I') C A"(P), and Attqer(1V) =
Aty = A*(Q) - A*(P).

An atomic update is groundif ' (and I) are ground.
Definition: Let D = (C,isa,A) he a database
schema. A fransaction T on) is a sequence ;... 6,,.
where n > 0 and §; is an atomic update for each
i € [l.n]. T'is groundif §; is ground for each i € [1..n].
A lransaction schema is a finite set of transactions.

In the following, we informally describe the seman-
tics of atomic updates. Generally, the semantics of
each update is a mapping on inst(D). We first con-
sider ground transactions. If the conditions are not
satisfiable, then the atomic update yields the iden-
tity mapping. Now suppose condition(s) are satisfi-
able and d = (o, a,0;) € inst(D).

L [e(P.)](d) = (o'.&'.0i41) where o adds the
new object o; to class P, whose attribute values
are assigned by T'.

2. [[d(P, F)](d) = (o', a’, 0;) where o' deletes all ob-
Jjects in Sat(T,d, P) from d.

3. [[m(P,I“,I"):ﬁ(d) = (o0,a’,0;) where the attribute
values of objects in Sat(T,d, P) are changed ac-
cording to I'.

4. H:g(P,I‘)]](d) = (o’,a’,0;) where o’ removes all
objects in Sat(l', d, P) from P and its subclasses.
Since P is not an isa-root, the objects are not
completely deleted from d.

5. ﬂ:s(P,Q,I‘,I")]](d) = (o', a’,0;) where o’ adds to
class Q all objects in Sai(I', d, P) but not in class
@, whose new attribute values are assigned by I".

Definition: The semantics of a ground transaction
T =0);...6, on D is a mapping on inst(D) defined
by [T] =[6:] - -o[6s]), where fog(z) = g(f(z)).

An assignment is a mapping from V to U, i.e.,
from variables to constants. In general, a transac-
tion T may contain variables. We also denote T as
T(zy,...,2n) if 21, ..., 2, are all variables occurring in
T. If o is an assignment, T[a] is the transaction ob-
tained from T by substituting all occurrences of each
variable £ by a(z). Thus, T[e] is a ground transac-
tion.

Definition: The semantics of a transaction T'(zy, ...,
T,) is a mapping from assignments to mappings on
inst(D) defined by: ﬂtT(rh...,z,,)]](a) = || T{a]] for

all assignments a.

3 Object Migration

In this section, we initiate the theoretical study on
migration patterns in ohject-based models. We first
introduce the notion of migration patterns and four
kinds of inventory. A new type of dynamic constraints
is then defined. As the main result of the section, The-
orem (Theorem 3.7) states that the set of migration
patterns of SL transaction schema is always a regu-
lar set, and conversely, every regular set of migration
patterns can be “simulated” by some SL transaction
schema.

We begin with the following informal discussion.
Within a class hierarchy, an object can belong simul-
taneously to a set of classes, called its “role set,” and
can migrate to a different role set. The sequence of
role sets in the object’s life span is its “migration pat-
tern.” For example, an object residing in classes PER-
SON and STUDENT plays roles both as a person
and as a student. If the object is added into EM-
PLOYEE and deleted from STUDENT, its role set
is changed to {PERSON, EMPLOYEE}. One possi-
ble migration pattern for this object is from {PER-
SON, STUDENT} to {PERSON, EMPLOYEE} to

Proceedings of the 17th Intemational 236 Barcelona, September, 1991

Conference on Very Large Data Bases

{PERSON}. A “migration inventory,” which is a set
of migration patterns, restricts the patterns through
which objects can migrate. Here we view each migra-
tion inventory as a dynamic constraint on datahase
updates. Our focus is to study the relationship be-
tween transaction schemas and migration inventories.
the essential problem is to characterize migration in-
ventories of transaction schemas.

To simplify the formal presentation, we assume
in this section that the schema graphs are weakly
connected. This is because operations in S on one
class do not depend on the contents of other unre-
lated classes, and objects cannot migrate to classes
which are not weakly connected, The assumption is
similar to focusing on a single relation in [AV89] and
will be relaxed when we consider richer languages in
Section 4.

Definition: A role setw on a database schema) =
(C,isa, A) is a subset w of C such that for each class
P € w, all ancestors of P are also inw,ie., {Q e C| P
isa®* @} C w. The empty role set is denoted by wy.
The set of all role sets on D is denoted by . The set of
non-empty role sets is denoted by Q4 (= Q ~ {wyg}).

Example 3.1: Consider the database schema shown
in Example 2.1. The set of role sets is {wg, (G). (S).
(E), (SE), (P)} where (G) means {GRAD-ASSIST},
.., (SE) means {STUDENT, EMPLOYEE}, etc. In
the instance shown in Figure 2, the role sets of 0y, 04,
and os are (G), (SE), and (P) (respectively). O

Let d = (0,a,0;) be an instance of D. For each
object o define RoleSet{o.d) = {P | o € o(P)}. Note
that if o does not occur in d, RoleSet(o,d) = wy. The
following fact states that the two operations 8 and g
are sufficient to migrate objects between role sets.

Proposition 3.2: Let D be a database schema and
wi,wy € Q4 two nonempty role sets on D. There
is a ground transaction T consisting of only {s, g}-
operations such that if d € inst(D) and o € O with
RoleSet(o,d) = wy, then RoleSet(0,[T](d)) = w). O

We now consider object migration patterns, i.e.,
sequences of role sets through which objects can pass
in their life cycles, in the context of a given transaction
schema. Migration patterns are viewed as words over
the alphabet Q. In this study, we focus on patterns
starting from the empty database (8,0, 0;). Tn general,
a migration pattern of an object may start with an
element in' w} (before being created), be followed by
an element in Q7 (while in database), and end in an
element in w} again (after being deleted).

1 We also use regular expressions to denote languages.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

237

Definition: Suppose D is a schema and Q the set
of all role sets on D. An object migration patiernis a
word over which is ir the set w3Qiwy.

An object migration inventory is a set L of migration
patterns such that INIT(L) C L, where INIT(L) =
{z |3y € Q*,zy € L} is the set of initial words of L.

Example 3.3: Consider Example 3.1. Suppose that
each person will live through exactly one continuous
time period as a student, perhaps receive assistant-
ships from some point on, and eventually be employed.
This can be expressed as a migration inventory:
INIT(L) where? L = w}[P]*[S]*[G]*[E}* [P]'w}. O

Before we define the notion of a transaction schema
“satisfying” a migration inventory, we discuss two or-
thogonal decisions that allow us to study four different
kinds of migration patterns: laziness and immediate
start.

Laziness concerns whether consecutively repeated
role sets are included or not. In reality an object
may not migrate or even be updated frequently. Lazy
patterns discard all consecutively repeated role sets.
Formally, we define the function (‘r’emove ‘r’epeats)
for 1 = Q as®: (1) fir(A) = A; (2) frea) = aif
a € 3) filwaa) = f(wa)if a € O and w € Q*;
and (4) foo(wab) = fir{wa)b if a,b € Q, w € 0*, and
a#b

Immediate-start patterns are patterns of those ob-
jects which are created by the first transaction exe-
cuted. Thus, the first role set is not empty.

Definition: Suppose D is a schema, Q the set of all
role sets on D, and w is a migration pattern. Then, w
is nonlazy and delay start. If fu(w) = w, w is called
lazy. If w € Qiwy, w is called immediate start. An
inventory L is lazy (nonlazy) and/or immediate (delay)
start if L is a set of lazy (nonlazy) and/or immediate
(delay) start patterns.

Example 3.4: Continuing from Example 3.1, (P)(S)
(G)(E) is a lazy and immediate-start object migra-
tion pattern. (P)(S)(S)(S)(G)(G) is an immediate-
start but not lazy migration pattern. Also, wgwe
(P)(P)(P)(S) is neither lazy nor immediate start.

Let L = {(P}S)™(G)™(E)*(P) | n,m,k > 1}.
Then INIT(L) is an (immediate-start) migration in-
ventory. fe(INIT(L)) = {(P), (P)(S), (P)(8)(G),
(PY(SHG)E), (P)S) (G)(E)(P)} is a lazy migration
inventory. O
Example 3.5: In concurrent programming, opera-
tions on shared resources are synchronized to ensure

20t = qa*.
3\ is the empty word.

Barcelona, September, 1991

Figure 3: A Class Hierarchy for Four Qperations

correctness. One synchronization mechanism is to as-
sociate with each resource a “path expression”, which
are regular expressions (over the set of available op-
erations) [CHT4]. Intuitively. path expressions specify
the order in which operations can be executed with-
out causing inconsistency of resources. The following
illustrates that the path expressions are a special case
of inventories.

Suppose B is an abstract data type with four op-
erations p,q,r, and s. Using a schema (Figure 3)
to represent four operations hy four suhclasses of the
root, each path expression is “converted™ into a mi-
gration inventory in the natural fashion. For ex-
ample, suppose {p(q Ur)s)* is a path expression of
the four operations. Then, the nonlazy inventory
L = INIT(wy - (p(qUr)s)" -wy) specifies the restriction
that each transaction which simulates one operation
has to obey the path expression. O

Definition: Let T be a transaction schema on a
database schema D. An (object) migration pattern of
T is an element wy - - w, in wy - QL - wy with the
following property:

1. n>0; and

2. 30e O, Ty,...,T, € T, and assignments ay, ..., ap
such that RoleSet(o,d;) = w; for i € [1..n], where
do = (0,0,01) and d; = [Ti[0;]](di-1) for i €
(L.n].

The migration inventory generated by T, denoted
L(T), is the set of all migration patterns of T.

A migration pattern of T is immediate siart if it is
an element of Qf - wy. A(n immediate-start) migra-
tion pattern u of T is lazy if v = fo{u') for some
(immediate-start) migration pattern u’ of T.
The immediate-start inventory generated by T, de-
noted Limm(T), is the set of all immediate-start mi-
gration patterns of T. The lazy (or lazy and imme-
diate-start) migration inventory generated by T is
L(T) = fu(L(T)) (o L2 (T) = frel Cimm(T))).
The semantics of the new family of dynamic con-
straints is now defined as follows:

Definition: Let T be a transaction schema over a
database schema D and L a migration inventory over
D. T is sound wri L if L(T) € L; T is complete
wrt L if L C L(T). T is sound [complete] under lazy
(smmediate-start) patterns wrt L if L is lazy (imme-
diate start) and the lazy (immediate-start) inventory
generated by T is contained in [contains] L.

Example 3.6: Consider the database schema shown
in Figure 3 and the regular expression p(gqqp)*, where
p (¢) is a role set containing a singleton class p (g).
Further let L = INIT(wgzp(g99p)*w3). L is now a (non-
lazy and delay-start) migration inventory.

We can design a transaction schema T to gener-
ate the inventory L. Specifically, T contains a single
transaction: T(z) = To(z); T1(z); Ta; Ts; T4(z), where

To(z) = m(g, {A=c, B=z}, {A=d});d(R,0),

Ty(z) = g(g, {A = ¢, B#z});m(R, {A=c), {A=a});

8(R,p,{A=a},0),

T, = m(g, {4=b}, {A=c}),

Ts = g(p, {A=a)});s(R, q, {A=a}, 0);

m(g, {A=a}, {A=b}),

Ty(z) = (R, {A=a, B=2});8(R,p,{A=a},0).

Here a,b, ¢, d are constants in /. They are used to
“control” migration of objects. Intuitively, the trans-
action Ty will create an object in the class p. The
transaction T3 will migrate object(s) in the class p to
q and Ty will let object(s) stay in ¢. Transaction T)
will finally migrate those objects whose attribute B
values are not to p to enter another migration cycle.
For those objects having z as their value for attribute
B, the transaction T simply deletes them from the
database. The parameter « is used to “randomly” de-
termine whether objects will continue to migrate or to
be deleted. O

We now present the main theorem which states
that inventories of SL transaction schemas are regular.

Theorem 3.7: Let D be a database schema and 2
the set of role sets on D.

1. For any transaction schema T:
(2) L(T), Limm(T), £L2#(T), and L2 (T) are
all regular.
(b) £(T) = W} Limm(T).

2. For every regular set L C Q7 , there is a transac-
tion schema T such that £(T) = wy-INIT(L wy).

Corollary 3.8: It is decidable whether a given trans-
action schema is sound (complete) wrt a given migra-
tion inventory represented by a regular expression. O

Proceedings of the 17th International Barcelona, September, 1991

Conference on Very Large Data Bases 238

Define a function (remove empty mitial) f.. :
Q" — Q" as: frei(wi..wn) = wp..wn where k > 1,
wi # we, and for ¢ € [1.k ~ 1], w; = wy.

Corollary 3.9: (1) £L**¥(T) = f.(L(T)). (2)
L (T) = fre(Limm(T)). (3) Limm(T) = frei(L(T)).
(4) L2 (T) = frei(£*¥(T)). O

In other words, the diagram commutes:
LTy L g
Jeei 1 L frei
Limm(T) L= £B2(T)
The remainder of the section is devoted to the dis-

cussion on the proof of Theorem 3.7. Due to space
limitation, only a sketch is presented.

For Part 2, it can be shown by induction that a
“migration graph” can be constructed from a given
regular expression. Informally, a migration graph is
a directed graph with a distinct source and sink such
that the source and sink are labelled by wy and the
rest vertices are labelled by nonempty role sets, Gen-
eralizing the argument in Example 3.6, it is straight-
forward to prove that a single transaction ean he con-
structed which generates the inventory from the mi-
gration graph.

The proof of Part 1 involves constructing a migra-
tion graph for T. In the following, we first show that
objects in databases behave independently as far as
updates in SL are concerned; and then present the
main steps of constructing the migration graph.

Let D = (C,isa, A) be a schema, d = {(0,a,0;) €
inst(D), and I C O be finite. The resiriction of d
onto I, denoted by d|;, is an instance of D: di; =
(o',a’, 0;), where for each P € C, o’(P) = o(P)N]
and a’ = {((P,0,A),a)€ajo€ [}

Lemma 3.10: If d € insi(D), T is a ground trans-
action, and I C O such that every object in I appears

in d, then [T](d|;) = [T](@)l;. O

Since each object behaves independently of the
others, it is easy to see that if an object o has a mi-
gration pattern wf,u generated by a sequence of trans-
actions Ty,...,T,, (with assignments ay, ..., a,) where
n 2> 1, then the sequence of transactions Tiyy,...,Tn
will generate the migration pattern u for some object
o'. Thus, Part 1(b) holds. Furthermore, the subse-
quence of all transactions in 7y, ..., T, which changed
the role set of o generates the lazy migration pattern
frr(w;u). Hence, Corollary 3.9 follows. Consequently,
if Limm(T) is regular, then £(T) is regular. Since the
family of regular sets is closed under homomorphism

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

239

[Har78], £'*#(T) and £°* (T) are also regular. It

mm

remains to be shown that Linm(T) is indeed regular.

Lemma 3.10 allows to focus on each individual ob-
ject when studying migration patterns. To construct
the migration graph, we extend the notion of “hy-
perplane” [AV89] to partition the object space (with
respect to role sets and attribute values) so that el-
ements in the same subspace are not distinguishable
by T. Now suppose S = {A;,...,An} is a set of at-
tributes and C = {a,,...,ax} is a set of constants.
The partition m¢(S) is obtained through the follow-
ing procedure,

First, define a hyperplane on S wrt C to be a condi-
tion {£1,....,€n}, where Vi € [1..n),& € {(4Ai=ay), ...,
(Ai:ak)a (A,‘#Cll, s ak)}}'

Let I' to be a hyperplane. Define Att#(T') = {4 |
(A#ay,..,0¢) € T} and Er = {(4,4") | A4 €
At (TY A A # A'}. For each r C Ep, let r* de-
note the reflexive and transitive closure of r (relative
to Att#*(I')). Define an equivalence relation on r's:
ry =r rpif v} = r}. If Att*(T') is nonempty, =r yields
a partition {[r}],....[r}])} and T is partitioned further
into {(T',[r}]) | j € [1..k]}. Otherwise, T is not par-
titioned and it is also denoted as (I',0) for technical
convenience.

Now let 7¢(S) = {(T,[r*]) | a hyperplane and r C
Er or r* = 0}.

Let Att{w) be the set of all attributes defined on
classes in a role set w. Suppose C contains exactly
all constants in T. Define Vp = {(w,p) |w € Q4,p €
re{Att(w))}.

Given v = (w,(T,[r*])) € Vr, for an object o oc-
curring in a database d, o maiches v if RoleSet(o,d) =
w, 0 =T, and the attributes whose value is not in C
satisfles the equality relation r*. It is obvious that
every ohject of d matches exactly one v in Vip.

Lemma 3.11: Let vy = (wy,(Ty,[r]])) and v; =
(wa, (T2, [r3])) be two vertices in Vip. It can be decided
if there exist a database instance d consisting of a
single object 0 matching vy, an assignment o, and a
transaction T € T such that? [T[a] (o) matches vj.

Proof: (Sketch) We first construct an object ¢ such
that its role set is wy and its attribute values satisfy
I'; and r} with new values for attribute in Att*(T).

Claim: There exist a database instance containing
o which matches v; and an assignment a such that
[[T [a](o)]] matches vy iff there exists an assignment
o' such that [[T[a’](ol)]] matches vy.

4[[:T[cx]]](o) denotes the object in the output.

Barcelona, September, 1991

The if part is trivial. For the only if part, sup-
pose there exist a d and a which satisfy the above
conditions. Since both 0,0, match vy, there is a iso-
morphism p between 0,0y. We now define o'(2) =
pla(z)) if a(z) = 0.4 for some attribute 4 and a
new value otherwise, such that Vz,y, a(z) = a(y) iflf
a'(z) = o'(y). It can then be shown that || 7'{a’]]j(01)
matches vs.

By the above claim, only finite number of as-
signments need to be examined. The decidahility re-
sult follows easily. O

Define £ = {(u,v) | there exist a datahase d con-
taining an object o matching u, an assignment o and a
transaction T € T, such that [T[a]]](o) matches v}.
The edges of the migration graph to be constructed
include E and also the edges correspondiug to ob-
ject creations and deletions. Since the constructions
for these cases are similar to the case discussed, we
leave out the construction (details in full paper). Let
vs, vy be two distinct vertices representing the source
and the sink and E’ the set of edges emanating from
v, to Vp and from Vi to v,. Finally, the graph
G = (Vr U {vs, i}, E U E', Label) is the migration
graph of T, where Label assigns wy to v,, v, and w to
(w1p) € Vr.

Using an induction, it can be shown that:

Lemma 3.12: (1) Let G be the constructed migra-
tion graph and o € Q. Then the migration pattern of
018 w; . ps, where p, is a walk® in G starting from v,.
(2) If v, has at least one outgoing edge, then for
each walk v, = wvp,...,vy, each 0o € O, there exist
m > 0, assighments af, ..., an,, (1, ..., 0q, and trans-
actions 77, ..., Ty, T1, T,, € T such that if

d =[T{[ai]; .. Ty []] (0,0, 01)),

then o does not occur in d and for each i € [1..n],
(][Tl [aq); - ;ﬂ[aim(d))[{n) matches »;. O

From the above lemma, it is straightforward that
the patterns in Limm(T) is the set of all walks starting
from v, in . Tt is then easy to construct from G a
regular grammar corresponding to all walks departing
from v,. This concludes the proof of Theorem 3.7.

4 Extended Languages

We consider two extensions to SL, which has the abil-
ity to test before executing an update. We informally
describe the languages first and then state the results.

SA walk of a graph (V, E) is a sequence of vertices (not
necessarily distinct) vy, ...,vn, where ¥i € [1.n),», € V and
vig{l.(n=1)],(vi.vig1) €E.

Proceedings of the 17th Intemational
Conference on Very Large Data Bases

240

Let D be a database schema. A positive literal
(negative literal) is of form ‘P(T)’ (‘~P(I')’), where P
is a class in D and T a condition such that At{(I') C
A*{P). A lileralis either a positive literal or a nega-
tive literal. For any d € inst(D), satisfaction of liter-
als is defined in the natural manner.

A conditional update is of the form: ‘6y,...,6, — 8,
where n > 1, §;’s are literals, and 6 is an atomic up-
date. The conditional update is positive if §;’s are pos-
itive. The semantics is defined in the natural fashion:
the atomic update is executed if all literals are satis-
fied. Note that they are restricted conditionals since
variables local to a conditional are not allowed. A CSL
(CSL™) transaction is a sequence of (positive) condi-
tional or atomic updates. A CSL (CSL*) transaction
schema is a finite set of CSL (CSL*) transactions.

In CSL* (CSL), isolated classes in a schema can
he “connected” by testing literals, so results similar
to Lemma 3.10 do not hold. Thus, weak connectiv-
ity of schema is not assumed. However, we still focus
on migration patterns with respect to some weakly
connected component. In the formal framework, we
extend the relevant definitions. For example, if D
is a database schema, a role set must be a subset
of a weakly-connected component; if G is a weakly-
connected component, 0z denotes all nonempty role
sets on G. If T is a transaction schema, £(T, G) de-
notes L(T) Nwy - Qg - w.

Theorem 4.1: For a CSL* (CSL) transaction schema
T, L(T), Limm(T), L (T), and L% (T) are r.e.

Proof: We consider only £(T), the other cases leav-
ing similar. Notice that inst(D) is r.e., the number of
variables in T is finite, and for each d € inst(D) there
are only finitely many assignments which are not iso-
morphic to each other. It is easy to construct a Turing
machine M which checks if a pattern is in £(T). O

Theorem 4.2: If D be a schema containing at least
two weakly-connected components G, S, where S has
at least four attributes, then, for eachr.e. set L C Qg:

1. there exists a CSL* (CSL) transaction schema
T such that £(T,G) = wy - INIT(L - wy) and
L% (T, G) = wy - fre INIT(L - w3));

2. if G has at least two classes then there ex-
ists a CSL* (CSL) transaction schema T such
that {wjws}™!Limm(T,G) = INIT(L - wy) and
{wiw2} 1LY (T,G) = fu(INIT(L - w})) for
some wy,wy € Qg, where X~1Y is the left quo-
tient [Har78] of Y by X.

Barcelona, September, 1991

Corollary 4.3: There exist non-recursive migration
inventories for CSLY (CSL) transaction schemas. O

Corollary 4.4: There is some inventory [such
that it is not decidable if a CSLY (CSL) transactions
schema is sound (complete) wrt L. O

The proof of Theorem4.2 is based on simulating
Turing machines. The objects in class § will hold
an encoding of a Turing computation. There are
transactions to generate an input word, simulate each
move, and if the computation halts, create an object in
classes in (& and migrate it according to the accepted
word. When we consider immediate-start patterns, w,
is used while simulating computations. If the cormnpu-
tation halts, we sets a mark and the pattern is then
produced. Thus, each word in the r.e. set is produced
with a padding. What if padding is not allowed? The
exact characterizations are remain open at this point.
The following theorcmn partially answers the question,
The proof uses Greibach normal forims, where cach
application of a production generates at least one ter-
minal —- a “real time" property that CSL* (CSL)
transactions can simujate.

Theorem 4.5: Let D be a schema containing at
least two weakly-connected components (7,8, where §
has at least three attributes. Then, for each context-
free set L C Qp;, there is a CSL* transaction schema

T: Liam(T, G) = INIT(L - &}). O

5 Applications

We now illustrate through two examples how the tech-
niques and results obtained here can be applied to
many practical problems. The two examples are no-
tivated by the INSYDE model [KMB85] and scripts in
the TAXIS data model [MBWR&0, NCL*87]. The es-
sential ingredient in both frameworks is to introduce
a precedence relation over update transactions.

Definition: An SL (CSL*. CSLY mflow sehema
over a schema D is a pair T = (T E), where T
is an SL (CSL*, CSL) transaction schema on D and
ECTxT.

A sequence of transactions Ty, ..., T}, is well-formed un-
der T if Ti's are in T and (7}, T;41) € E for each
i€[l.(n-1)]

It turns out that this precedence relation does not
increase expressive power in terms of producing mi-
gration patterns.

Theorem 5.1: The inventories of S (CSL*, CS1)
inflow schemas correspond to regular (r.e.) sets (re-
spectively).

Proceedings of the 17th International
Conference on Very Large Data Bases

241

Within this framework, it is interesting to answer
questions such as “will a student currently majoring
in history work in business office with salary > 35K
in the future? and “will an airplane which belongs to
United Airlines be in the repair depot at Los Angeles
International Airport?” In some situations such infor-
mation can be used to detect mistakes in the data to
be added into a database.

Example 5.2: Consider a database used by an office
of Immigration Service in country X. According to the
immigration law, hefore a person entering the coun-
try with a type (C visa can be allowed to immigrate,
s/he has to go back to his/her own country (defined
as the country s/he was a citizen of just before s/he
entered the country X) and stay for at least 3 years.
The transactions designed for this application have to
guarantee that no one can direcily change his/her sta-
tus from visa type C to an immigrant, O

For a class P, a property on P is a set of formulas
of form “A=a” or “A=B,” where A,B € A*(P) are
attributes and a € i a constant.

Reachability Problem: Given a database schema
D. an inflow schema T'*f| classes P,Q, and proper-
ties pr, pa on P.Q (respectively), for any d € inst(D)
which contains an object o in class P satisfying p;,
can o be updated by a well-formed sequence of trans-
actions to class @ with property p2?

Theorem 5.3: Reachability is decidable for SL in-
flow schemas and undecidable for CSL* (CSL) inflow
schemas. O

The precedence relation on transactions is some-
times unnatural. We can also refine it to specify the
order on updates for each object, motivated by scripts
in TAXIS. Syntactically, a script schema is the same
as an inflow schema. Semantically, the ordering is in-
terpreted globally for inflow schemas but at the level
of objects for script schemas (details in full paper). It
is not hard to see that the above results can basically
be translated into this framework. For example, we
can show that:

Theorem 5.4: The reachability problem is decid-
able for SL script schemas and undecidable for CSLt
(CSL) script schemas.- O

Acknowledgment

The author thanks Rick Hull for his encouragement
and stimulating discussions during the course of this
research.

Barcelona, September, 1991

References

[AH87]

[AS83)

[AV8S]

[AV89]

[BMSWS9]

[BR84]

[Bro81]

[CF84]

[CHT74]

[CM84]

S. Abiteboul and R. Hull. IFO: A formal
semantic database model. ACM Trans. on
Database Systems, 12(4):525--565, 1987,
G.R. Andrews and F.B. Schneider. Con-
cepts and notations for concurrent pro-
gramming. ACM Cowmputing Surveys,
15(1):3-44, March 1983,

S. Abiteboul and V. Vianu. The connec-
tion of static constraints with deterinin-
isty and boundness of dynamic specifica-
tions. In C. Beerio JW. Schmidt. and
U. Dayal. editors, Proc. 3rd mi. conf. on
Dala and Knowledge Bases, pages 324
334, Jerusalem, lsrael, June 1988,

S. Abiteboul and V. Vianu. A transaction-
based approach to relational database
specification. Journal of the ACM, 36(4):-
758-789, October 1989,

A. Borgida, J. Mylopoulos. J.W. Schmidt,
and I. Wetzel. Support for data-intensive
applications: Conceptual design and soft-
ware development. In R. Hull, R. Mor-
rison, and D. Stemple, editors, Proc. 2nd
Int. Workshop on Database Programming
Languages. Morgan Kaufmann Publish-
ers, 1989.

M.L. Brodie and D. Ridjanovic. On the
design and specification of database trans-
actions. In M.L. Brodie, J. Mylopoulos,
and J.W. Schmidt, editors, On Concep-
tual Modelling, pages 277--306. Springer-
Verlag, 1984.

M.L. Brodie. On modelling behavioural
semantics of databases. In Proc. [Int.
Conf. on Very Large Dala Bases, pages
32-42, 1981,

M.A. Casanova and A.L. Furtado. On
the description of database transition con-
straints using temporal constraints., In
H. Gallaire, J. Minker, and J.M. Nicolas,
editors, Advances in Data Base Theory,
volume 2, pages 221 236. Plenum Press,
New York, 1084,

R.H. Campbell and A.N. Habermann.
The specification of process synchroniza-
tion by path expression. In F. Gelenbe
and C. Kaiser, editors, Pror. of Intl
Symp. on Operating Systems, volume 16
of Lecture Noles in Computer Science,
pages 89-102. Springer-Verlag, 1974.

G. Copeland and D. Maier. Making
Smalltalk a database system. In Proc,

Proceedings of the 17th International
Conference on Very Large Data Bases

[dCCF82)

(D1.90]

[Har78]

[HJ90)

[HK37)

[KM35]

[MBWS80]

INCL*87]

[Perg0)

[RS91]

[Sci89]

[Via87]

[Via&s)

242

ACM SIGMOD Int. Conf. on the Man-
agement of Data, 1984,

J.M.V. de Castiltho, M.A. Casanova, and
A.L. Furtado. A temporal framework for
specifications. In Proc. Int. Conf. on Very
Large Data Bases, pages 280-291, 1982.
G. Dong and Q. Li. Object migration
in ohject-oriented databases. Manuscript,
1990.

M.A. Harrison. [Introduction 1o Formal
Language Theory. Addison-Wesley, 1978.
R. Hull and D. Jacobs. On the seman-
tics of rules in database programming lan-
guages. Technical report, USC Computer
Science Dept., 1990,

R. Hull and R. King. Semantic data
modeling: Survey, applications, and re-
search issues. ACM Computing Surveys,
19(3):201-260, 1987.

R. King and D. McLeod. A database de-
sign methodology and tool for information
systems. ACM Trans. on Office Informa-
tion Systems, 3(1):2-21, January 1985.

J. Mylopoulos, P.A. Bernstein, and H K.
Wong. A language facility for design-
ing database-intensive applications. ACM
Trans. on Dalabase Systems, 5(2):185-
207, June 1980.

B.A. Nixon, K.L. Chung, D. Lauzon,
A. Borgida, J. Mylopoulos, and M. Stan-
ley. Design of a compiler for a seman-
tic data model. Technical Report CSRI-
44, Dept. of Computer Science, Univ. of
Toronto, 1987.

B. Pernici. Objects with roles. In Proc.
of Conf. on Office Information Systems,
pages 205-215, 1990.

J. Richardson and P. Schwarz. Aspects:
Extending objects to support multiple, in-
dependent roles. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, May
29-31 1991

E. Sciore. Object specialization. ACM
Trans. on Office Informatlion Systems,
7(2):103-122, April 1989.

V. Vianu. Dynamic functional dependen-
cies and database aging. Journal of the
ACM, 34(1):28-59, January 1987.

V. Vianu. Database survivability under
dynamic constraints. Acta Informatica,
25:55-84, 1988.

Barcelona, September, 1991

