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Abstract

A model capturing the data manipulation ca-
pabilities of a large class of methods in object-
oriented databases is proposed and investi-
gated. The model uses a deterministic, par-
allel synchronous semantics with concurrent-
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cus on the expressive power of methods and
help understand various constructs and se-
mantics associated with methods. Restric-
tions of methods providing various tractability
guarantees are also discussed. The restrictions
correspond closely to well-known relational
query languages such as relational calculus,
Datalog, the firpoint queries, and the while
queries. They provide complexity bounds
such as constant parallel time, PTIME and
PSPACE. Exact characterizations for some
complexity classes are also obtained under cer-
tain assumptions. Qur methods provide a
model of database parallel computation which
makes explicit the potential parallelism in
databases. We compare our model to tra-
ditional parallel computation models such as
PRAMs and Hardware Modification Machines
and show mutual simulation results with rea-
sonable cost. We also compare methods to a
newer model of generic computation involving
parallelism. We show that certain complex-
ity classes defined using the two models are
the same, which suggests that methods cap-
ture database parallel computation in a natu-
ral and robust fashion.

1 Introduction

Behavior encapsulations using methods is one of
the important features of object-oriented databases.
Methods provide a new programming paradigm
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which integrates data and computation. While meth-
ods are extensively implemented in object-oriented
database systems [B88,A+90], there has been little
study of their- semantics and computational proper-
ties. This paper contributes towards a formal frame-
work for understanding methods in object-oriented
databases. We propose and study a model for deter-
ministic methods, with parallel synchronous seman-
tics. The model abstracts the data manipulation ca-
pabilities of such methods, much like relational cal-
culus and algebra abstract the data manipulation ca-
pabilities of relational database systems. The results
help understand various constructs and semantics as-
sociated with methods, particularly their impact on
expressive power.

In the model we propose, each method is a simple
line program which performs straightforward manip-
ulations of printable constants and pointers to other
objects. As in the relational model, values are un-
interpreted and there is no-computation on the val-
ues themselves (methods can only test for (in)equality
among values). Individual methods contain no recur-
sion. They can send messages to other objects, either
by broadcasting to all objects of a given type, or by
following pointers to other objects. The messages re-
sult in method invocations, and the call graph can
be recursive. Methods can also create and initialize
new objects. The semantics is a parallel synchronous
semantics. Multiple computation threads associated
with one object are allowed, with concurrent-read and
concurrent-write (CRCW) semantics.

While parallelism has long been an underlying con-
cern in databases, the model proposed here comes the
closest so far to a true database parallel computation
model. It captures explicitly the potential for parallel
computation in databases. Of course, the model does
not necessarily assume a truly parallel implementa-
tion. It can be implemented in a massively paral-
lel environment, but also in a sequential environment
which simulates true parallel semantics.

The results concern primarily the computational
capabilities of the method paradigm. The focus is
on the impact of various constructs and semantics
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on expressive power. In order to evaluate formally
the expressive power, we provide notions of computa-
tional completeness and compare the power of meth-
ods to that of classical relational query languages.
This is done by mapping object-oriented database in-
stances to relational representations, and conversely.
The comparison is not straightforward due to the mix
of constants and object identifiers in object-oriented
databases. In particular, the ability of methods to
create new objects complicates the comparison. For
instance, there is a distinction between completeness
of computation producing only printable constants,
and computation producing new object identifiers in
the result (for the latter, we adopt the notion of com-
pleteness proposed in [AK89)). In particular, we show
that methods are complete for the first case, but not
the second. This highlights important computational
differences between pure value models and models
with object identity. We also show that the power
of the language is increased if complex objects allow-
ing grouping of values into sets are used.

A second group of results involve restrictions of the
model which provide tractability guarantees. Thus,
we provide restrictions which limit the complexity of
computations to constant parallel time, monotonic-
PTIME, PTIME, and PSPACE. We show close con-
nections with well-known relational query languages
which provide similar tractability guarantees: rela-
tional calculus, Datalog, the fizpoint queries, and
the while queries of [Ch81]. In particular, we ob-
tain restrictions expressing precisely the PTIME and
PSPACE transformations, with the additional as-
sumption that objects have integer id’s which can
be compared by methods!. The restrictions consid-
ered concern: recursion, how new objects are created,
bounds on the number of alternations of insertions
and deletions from a type {a sort of stratification con-
dition), the ability to modify values of attributes, and
tests for inequality of values.

As mentioned above, our methods provide a model
of database parallel computation. We compare
the method model to traditional models of parallel
computation, primarily the classical CRCW-PRAM
[Pa87). We also compare methods to the Hardware
Modification Machine (HMM) of [Co81], since HMMs
are closer in nature to methods. We provide mutual
simulation results with PRAMs with reasonable cost
(logarithmic time and constant space blowup). This
shows that classical parallel complexity classes are
closely related to corresponding classes defined wrt
the method model. A primary difference with classi-
cal models is that methods treat objects generically,

1This assumption is similar to the ordered domain assump-
tion used sometimes with relational query languages.
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t.e. objects which are undistinguishable from each
other in the database are always treated uniformly.
In contrast, most traditional models provide a way
of breaking symmetry. The distinction disappears if
such a mechanism is provided in the database, for
instance if object id’s are integers which can be com-
pared. With this assumption, complexity classes on
PRAMs are generally the same as those defined wrt
methods . In particular, this holds for the well-known
class NC of “tractable” problems wrt to parallel time
and space complexity (see [Pi79]). Lastly, we also
compare the method model to a model which, un-
like PRAMs or HMMs, captures generic computation.
The model, introduced in [AV91] and called Generic
Machine, involves parallelism. We show that PTIME
and PSPACE complexity classes defined based on the
two models coincide. This suggests that the method
model provides an alternative robust basis for under-
standing the complexity proper to database parallel
computation, even beyond the object-oriented frame-
work.

There have been few previous formal studies of
methods. The investigation that comes closest to
ours is that by Hull and Su [HS89]. They also pro-
pose a formal model for methods, which captures data
manipulation aspects, and look at issues of expres-
sive power and complexity. However, the approach
is fundamentally different. Indeed, their semantics of
methods is non-deterministic, whereas ours is a paral-
lel deterministic semantics. Hence, most of the results
in this paper and [HS89] are incomparable. Further-
more, methods in [HS89] are used in conjunction with
an external language, while we focus on the power
of the methods themselves. The results in [HS89)
emphasize queries, whereas we look at transforma-
tions of database states which emphasize behavioral
aspects, and raise problems of a different nature. Fi-
nally, many of the results in [HS89] concern complex
objects, which we do not consider here except inci-
dentally.

Other investigations of methods have been primar-
ily related to typing issues. For instance, [AKW90]
discusses compile-time detection of typing errors.
Methods in this model are uninterpreted functions
from types to types. The model retains only the typ-
ing information about methods. The results concern
the tractability of compile-time typechecking with
various assumptions on the schemas.

The paper is organized as follows. The model is
presented in Section 2. The expressive power of meth-
ods is discussed in Section 3. Section 4 presents
the restrictions on methods which provide various
tractability guarantees. Connections with relational
query languages are also shown. Section 5 discusses
the relation of our model to PRAMs and other mod-
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els of parallel computation, and Section 6 locks at the
connection with Generic Machines. Due to space con-
straints, the presentation is mostly informal in this
abstract. More details are provided in [DV91].

2 Database Method Schemas

In our object-oriented database model, a schema con-
sists of a finite set of {ypes. Each type has a struc-
tural and a behavioral component. Types have names
which identify them uniquely. Type names are de-
noted by P,@, R, T, ... . Since the behavioral compo-
nent of types is specified using methods, our schemas
are referred to as database method schemas (dms)?.
We first describe informally the structural component
of types, then the behavioral one.

The structural component of types provide a “bare-
bones” object-oriented specification mechanism. It
specifies, for each type, a finite set of attributes and
their sorts. Each attribute is of one of the follow-
ing sorts: (printable) constant, or pointer to an ob-
ject of a type in the schema. Attributes are de-
noted by A, B,C, ... the constant sort by censt, and
the pointer-to-a-type-@Q sort by @Q. For instance,

T:[A:const,B:const,C:QQ)

defines the structural component of a type T', assum-
ing that @ is a type in the schema. Note that the
model does not provide explicit inheritance, which is
orthogonal to the issues discussed here. Neither does
it provide complex objects.

The behavioral component of a type provides a fi-
nite set of methods attached to the type. The methods
attached to a type are said to be owned by the type.
A method can be owned by several types. Methods
are line programs of simple instructions, whose syn-
tax and semantics are described later in this section.

A type consists of a name and a pair < S, B >,
where S is the structural specification for the type,
and B is the finite set of methods owned by the type.
Given a type T =< S, B >, we denote its structural
component S by str(T). Given a dms M, we denote
by str(M) the set of structural specifications of its
types.

Instances of schemas are defined wrt the structural
components of the types of the schema. In defining in-
stances, we distinguish between object identifiers and
printable constants. Let T be an infinite set of sym-
bols called object identifiers (id’s) and C an infinite
set of symbols called constanis. T contains a special
value called nil. Consider a dms M. An instance / of
str(M) consists of:

2The term method schema was first used in [AKW9Q] with
a different meaning.
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e a mapping associating to each type T of M a
finite subset Ty of T —{nil}, and

¢ for each attribute A of the schema, a mapping
which associates to each object { in T} for some
T in M with attribute A, a constant or id i{.A
of the appropriate sort; if A is of sort @P, then
either 1.A = nilor :.A must be in Py.

Note that the definition of instance allows distinct ob-
jects with precisely the same values for all attributes.
Thus, the identities of objects are determined by their
id’s alone. Also, note that an object can belong to
more than one type in a given instance. We refer to
the membership of an object in a type as a role of
the object. However, note that if the same attribute
A occurs in more than one type containing a given
object id 1, the value of i.A is the same regardless of
the type. To emphasize the fact that the definition of
an instance requires consistency conditions as above,
we sometimes also refer to an instance as a consistent
instance.

The set of instances of sir(M) is denoted
inst(str(M)). For brevity, we also use the notation
inst(M) whenever convenient.

We next describe the syntax and semantics of
methods. A method owned by a type T is a pro-
cedure which can run on all objects of type T in any
given instance. Methods run on objects in their role
as members of a given type. We refer to an execution
of a method on a given object (in its role as a mem-
her of a type) as a thread of the method. A method
thread running on an object can only access directly
the values of its parameters and declared variables,
the id of the object (denoted self), and the values of
attributes of the object (denoted self.A, self.B, etc).
A method can do the following: test for equality and
inequality among values to which it has direct access;
transfer values among the variables and attributes it
can directly access; send messages invoking methods
of other objects, passing along some values as param-
eters; create and initialize a new object; create a role
of self, as a specified type; delete itself.

We wish to capture methods which are determin-
istic and generic (i.e., they treat uniformly objects
which are undistinguishable in the database). This
naturally leads to a parallel, synchronous semantics
for methods. A computation is initiated by an ex-
ternal call which consists of invoking a method, si-
multaneously, for all objects in some type owning
the method. This generates one computation thread
for each object of that type in the instance. In the
course of the computation, objects invoke methods of
other objects. In general, one or several methods of
an object can be invoked simultaneously by distinct
objects. Each such invocation results in a separate
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computation thread. Thus, for a given object, there
may be several methods, and several threads of the
same method, running simultaneously. In this case,
variables of the method are duplicated in each thread,
and no conflict can arise by assignments to these vari-
ables. However, conflicts can arise if there are simul-
taneous attempts to change an attribute value of a
given object to distinct values. This yields a run-
time error which crashes (or makes undefined) the
entire computation. This is a usual concurrent-read
concurrent-write (CRCW) semantics.

We next describe methods in more detail. Let M
be a dms. A method owned by a type T in M is
identified by a header providing a method name and
a list of parameters of the sorts const or @P for some
type P in M. Parameters, and variables local to the
method, are denoted z,y, z,... . For instance,

m (z : const, y: @P)

is a method header (for method m), if P is a type
in the schema. The variables ¢ and y are parame-
ters whose values are supplied when the method is
invoked. (An invoked method never returns values
to the object invoking it.) The header may he fol-
lowed by a statement declaring variables local to the
method, of the form

var z:8orty, 3 :sorty, .., T} : sorty;

where sort; is const or @P, where P is a type of the
schema. All variables occurring in the method are
either parameters or declared variables. The header
and declaration statement are followed by the body,
consisting of a finite sequence of statements. We next
describe the statements allowed in methods and dis-
cuss their semantics. Below, I, 7 and the z; may be
variables, constants in C, the id value nil, or self or
self,A, where self denotes the id of the object running
the method, and A is an attribute of its type.
1. .=
The assignment statement has the obvious se-
mantics: ! is assigned the value of r. Here [ can-
not be a constant, self, or nil. Note that, if a
method m owned by type T modifies the value of
some attribute A of an object with id ¢ belong-
ing to T, the modification occurs in all types to
which 7 belongs (indeed, there is only one ob-
ject with id ¢, although it may belong to several
types). If simultaneous attempts are made to

assign different values to the same attribute of
one object, the computation crashes (the result

is undefined).

2. if condition then statement,
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where conditionis a boolean combination of tests
of the form z; = z5 or zy # z2, and state-
ment is not another if statement. This tests for
(in)equality of the values of z; and z;.

. 1:=) newp(Ay 2y, ..., Ap ¢ 2p),

where the A; are the attributes of T'. This cre-
ates a new object of type T and initializes its
attributes. The id of the new object may be as-
signed to |. The id is an arbitrary value from
Z —{nil}, not occurring in the current instance.
In general several such statements may be exe-
cuted simultaneously, since several methods may
be running in parallel. Then, we allow two possi-
ble semantics. The default semantics is that each
new command results in the creation of a sepa-
rate object, with a distinct id. However, for rea-
sons discussed later, we provide the option of a
different, “value-oriented” semantics, where only
one object is created for distinct new commands
with identical attribute values in the initializa-
tion, and no object is created if another object
with the same attribute values already exists in
the type. Toindicate the latter semantics we use
the notation

[ :=] newt! (A1 :zy,....,Apn: Ts).

If no object is created and the assignment to [ is
present, ! is assigned the value nil. If simultane-
ous attempts are made to assign different values
(new id’s or nil) to the same attribute of an ob-
ject, the computation crashes (the result is un-
defined).

. Senddestination: m(zly"‘lzn))

where m is a method name, and the z; provide
values to the parameters declared in the header
of m. The destination can be: (i) a type T own-
ing method m, (ii) a variable of type @T" where T
owns m, (iii) selfif m is owned by the type of the
object running the method, (iv) z.4 or self.A,
if A is of sort @T for some type T owning m.
In cases (ii)-(iv), where the message is sent to
an object of a specified type, only the method m
owned by that type is executed. Thus, the mes-
sage always affects the destination object in its
role as a member of the specified type, although
it may belong to several types. If the specified
destination object does not exist in the destina-
tion type, the computation crashes (the result
is undefined). Once again, simultaneous invoca-
tions can result in multiple threads of the same
method running on an object, with CRCW se-
mantics. As for the new command, we provide

Barcelona, September, 1991



a “value-oriented” version of the send command,
denoted

al .
send‘éeatina!ion ' m(zl TN xn)-

The semantics is that simultaneous invocation of
a method on an object with identical parameter
values results in a single computation thread.

5. roler(Ay 1z, ..., An @ Zn),

where T'is a type in the schema, with attributes
Ai. This inserts into type T’ the id self; the at-
tribute values are initialized by the z;. If the
value of some attribute of selfbecomes ill-defined
as a result of simultaneous inconsistent role com-
mands or because self already exists in the type
T with different attribute values, the computa-
tion crashes (the result is undefined).

6. delele-self,

This removes the object from the type running
the method and halts any computation threads
running on the object in its role as a member of
the type. If referential integrity is violated as a
result of a deletion, the computation crashes (the
result is undefined).

In addition, there are simple typing rules which
prohibit assigning values of sort const to variables or
attributes of sort @P, and conversely. However, as-
signments among different pointer sorts are allowed.

It is assumed that methods run synchronously. All
statements take one unit of time. We elaborate this
for statements 2 and 4. If statement 2 is run at time
t, evaluating condition takes one unit of time3; if con-
dition holds, statement is executed at time {4 1 and
the instruction following the if statement is executed
at time ¢ + 2. If the test is not satisfied, the next
instruction is executed at time t + 1. In statement
3, if the destination is a type, then the procedure in-
vocation is broadcast to all objects of that type. If
the destination is a particular object id, that object
alone receives the message. If statement 3 is executed
at time ¢, we assume the first statement of an invoked
method is executed at time 1 4 1; the instruction fol-
lowing the send instruction is also executed at time
t + 1 (thus, a method invoking other methods using
send does not wait while the invoked methods are
run, and no values are returned).

Clearly, programs are very sensitive ‘- timing,
Also, all programs interact, so they cannc. - - written
independently. A real programming language based

3We could have assumed that each comparison takes one
unit of time. This is a minor variation which does not affect
the results.
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on this paradigm is likely to provide additional con-
structs which would render the programming task
easier. We do not explore this issue here. However,
relaxing the synchronicity while preserving determin-
ism is an important and difficult problem.

As noted above, a computation of a dms may lead
to inconsistent instances, and thus to undefined re-
sults. Possible inconsistencies are:

e violations of referential integrity due to deletions,
or insertions by the role and new commands;

» crashes due to a CRCW conflict arising fom
inconsistent simultaneous assignments, inconsis-
tent role commands, or sends to non-existing des-
tinations:

It can be shown that it is undecidable whether a given
dms can lead to an inconsistency as above. While suf-
ficient conditions ensuring consistency can be found,
we do not explore them here. In the general case, con-
sistency is the programmer’s responsibility. However,
the following important fact can be shown. Suppose
that we allow intermediate inconsistent states which
do not cause the computation to crash, as follows: vi-
olations of referential integrity are allowed, and types
can contain several inconsistent versions of the same
object as a result of role commands or CRCW con-
flicts arising from assignments to an attribute (in the
latter case, one version of the object is included in the
type for each value assigned to the attribute), Also,
suppose send commands to non-existing destinations
have no effect instead of crashing the computation,
The following shows that allowing inconsistent inter-
mediate states does not provide any additional com-
putational power.

Lemma 2.1 Every transformation on instances ex-
pressible by a dms with inconsistent intermediate
states is expressible by some dms such that all in-
termediate states in the computation are consistent.

Thus, no expressive power is lost by disallowing in-
consistencies in intermediate states. Throughout the
paper, we disallow inconsistent intermediate states in
dms computations.

As mentioned above, a computation is started by
an external invocation of some method of M, broad-
cast simultaneously to all objects of the type owning
the method. We assume that no other external invo-
cation is allowed before the computation triggered by
the previous external invocation ends. Each external
invocation defines a transformation on instances of
M, i.e. a mapping on inst(M). The semantics of a
method invocation m is the transformation it defines,
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called the effect of m and denoted effy1(m). The se-
mantics of a dms M can be viewed as the sum-total
of the semantics of all invocations of its methods.

In general, we assume that, in addition to the types
of the schema which are visible to users, there are
other types which are “hidden”, employed by meth-
ods for internal bookkeeping purposes. As we shall
see, the use of such hidden types is essential for the
expressive power of dms’s. In general, we are only in-
terested in the transformations defined on the visible
types. Given a dms M containing another dms V (the
visible portion), we define the semantics of an invo-
cation m wrt V by the restriction to V of effyg(m)
{(inputs over V are extended to inputs over M by
making the typesin M — V empty) This is called
the effect of m wri V, and denoted QUM VU”) Let
S be the structure of a dms. A transformation r on
S Y X AN AatAd ba ha amemacos Ala bhat 2 Aden o 3€ ¢lnns o

$718i\0 ) IS 8ald WO DE eIpressivic uy a dms if there ex-
ists a dms M and an invocation m ofa method in M,
such that S C str ( 1) and 7 = effyyg(m). S =
str(M) (i.e. M uses no additional typeQ) the trans-
formation 7 is said to be computed in- pmcc by M.

We will elaborate on the ex pressweness of “in place”

.......... XK s it mmmmmdomen Lo 4l b &5
bUlllPubd&lUll Id.l;c[' VVUJUBD l“c”blUll nere uilau vie il
place” requu‘ement generally restricts the expressive

mwoantraw o
puw WET Ol ams 5

Followmg is an example of a dms computmg the
: obje

Example 2.2 The following dms computes (in log-
time) the transitive closure of a graph of objects
whose nodes are in type N and edges in type £.
To cause the transitive closure to be computed the

. ot b

method trans() is externally broadcast to the type
E. The structur al and behavioral components of the
schema are described below.

Type structures:

N:{] EfA:@QN, B:

©
=

Methods for E:

trans()
sendg : connected(self A , self.B)

connected(z : QN |, y: @QN)
var z; @QF
if = self.B then
z = newy® (self.A | y)
ifz=self.B A z # nilthen
sendg : connected(self.A | y)
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We next elaborate briefly on some of the choices
made regarding the semantics of methods. They con-
cern the creation of objects (the new command), the
treatment of computation threads, and method invo-
cations (the send command).

Creating new objects: note that the two versions
of the new command which are provided are non-
redundant. Indeed, consider two types T and R with
the same structure [A : const], and an input instance
where T' consists of n objects with the same value a
for A. If only the {l :=]newy(...) is provided, then
the transformation outputting in & one object with
value a is not computable by dms’s. Clearly, this is
computable with the [{ :—-jnew'”'( .) command. On
i ]new""’( ) is prov:ded

mand WithAnt H-\{g sATATA tha nralifanatian ~f
(R R<0 PRN Y Y IUULIVULY uillo wwg lﬂllu, Vil lelllClaulUll i
threads may result in a combinatorial explosion. We
naote that thia sammand n ha gimnlatad hy tha
R AN Uil VI VWilLiliasiv 19 VO Qlinuiauveu VJ viie

traiochtforward
131 uubuuxu; vwalQ.

ending messages: the semantics allows an object to
broadcast a message to all objects of a certain type,
or to sen

messages to specific objects accessible by
he ]

atter semanticsis ¢ ,Lar‘v subsumed by

the first. The conversel ot true. We discuss this in

3 Expressive Power

In this section we examine the expressive power of
dms’s, i.e. their ability to express transformations
of instances. To this end, we first explore various
notions of completeness appropriate to the object-
oriented context. As we shali see, there are important
differences with the classical relational framework. It
will turn out that dms’s are complete with respect to
some notions and not others.

In the relational database framework, a query lan-
guage is complete if it expresses all transformations
of relational instances which are: (i) computable, and
(ii) generic, i.e. data is treated uniformly. The gener-
icity requirement is a natural and well-accepted con-
sequence of data independence [AU79 CH80] It sa.ys
bﬂdt a quex‘"y‘ ca y use llllUrmablUH dUUUll Udbd
which is provxded at the conceptual level. Thus, a
query language cannot access physical level informa-
tion about data, o data items with the same log-
____________ ad srmifam e Gen

u,cu PlUlJcl IIICB alLc hu:q.hcu uuuuuu_y

formalized as follows* : a relational transformation

amtatbe Io
€ricivy is

4 This assumes that no constants occur in the query; indeed,
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T is generic iff for each input instance I and each
isomorphism® f on I, 7(f(I)) = f(r(I)). The above
definition cannot be directly extended to the object-
oriented framework. The difficulty is that transfor-
mations of object instances typically result in the
creation of new objects. This is different from the
relational case, where the result of a query contains
only values from the input. We use the notion of
completeness for object-oriented databases proposed
in {AK89]. In addition to genericity, the definition
of [AK89] requires that the different possible results
of a transformation differ only in the choice of new
id’s. Transformations satisfying these requirements
are called, as in [AK89), db-transformations. A lan-
guage or computation mechanism is said to be sound
if it expresses only db-transformations and compleir
if it expresses all db-transformations.

It is fairly easy to see that dms's are sound wrt db-
transformations. The genericity is a consequence of
the symmetric, uniform treatment of objects. This is
ensured by the synchronicity and the CRCW seman-
tics. Indeed, objects which are undistinguishable at
the conceptual level are always treated identically.

Can we expect dms’s to be complete? This seems
likely at first glance, since dms's are computationally
complete. Indeed, they can simulate Turing Machines
whose tapes are encoded as sequences of objects (one
for each tape cell), as in Figure 1.

toftfjojoJul: -

0
@
01 001
Cells: C:[@C,@C, const) -
Head: H:[@C, const] Qi

Figure 1: Encoding of a Turing Machine in a dms
instance.

Rather surprisingly, it turns out that dms’s are
not complete. We show this by exhibiting a db-
transformation which is not expressible by dms’s (see
{DV91]). That particular transformation becomes
computable if complex objects are allowed as values
of attributes of objects {in fact, sets alone are suffi-
cient)., This shows that complex objects would add
to the expressive power of dms’s. However, it can be
shown that, even with complex objects, dms’s would
not be complete, This follows from recent results on

constants specified in the query can be distinguished from oth-
ers. The definition can be easily extended to accommodate
such constants.

5An isomorphism on I is a one-to-one mapping on con-
stants, extended to [.
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the language IQL of [AK89], which has complex ob-
jects but was shown to not be complete. These dif-
ficulties disappear if the generic treatment of objects
by methods is circumvented. This can be done by

supposing that object id’s are integers which can be
accessed and compared by methods,

Theorem 3.1 Each db-transformation on instances
with integer id’s is expressed by some dms with inte-
ger comparison.

We note that no deterministic language for object-
oriented databases is known which is complete with-
out an assumption equivalent to integer id’s, except
by including an unnatural primitive construct which
amounts to checking graph isomorphism [AK89].

In order to better understand the expressive power
of methods, it is useful to compare them to known
relational languages. To this end, we establish a
straightforward correspondence between object in-
stances and relational instances®. We associate to
each db-transformation r a relational transformation
rel(r), and conversely, to each relational transfor-
mation v a db-transformation obj(v). We first de-
fine rel(r). Consider a dms M. To each type T in
M with structure T : [A;,..., Ap], associate a rela-
tional schema sch(T) with attributes Tiq, Ay, ..., An.
To each object of type T with id i and attribute val-
ues ay, ..., an, associate the tuple rel(i) = [i, a1, ..., a,]
over sch(T). The mapping rel extended to instances
over sir(M) is clearly one-to-one. For a given db-
transformation 7, denote by rel(r) the relational
transformation mapping rel(l) to rel(r(I)) for each
dms instance I. Conversely, suppose v is a relational
transformation. We can “lift” a relational instance
to a dms instance by associating to each relation in
the schema a type, and to each tuple in a relation
an object in the corresponding type. This is done by
assigning an id to each tuple; the attribute values of
the id are specified by the tuple. For a relational in-
stance I, the corresponding dms instance is denoted
obj(I}. The db-transformation associating obj(v(I))
to obj(I) is denoted by obj(v).

We focus on a category of relational languages
which provide a construct analogous to the creation
of new objects: the invention of new values from the
domain [AV88a,AV88b}. One such language is an ex-
tension of Datalog which allows: (i) negations in bod-
ies of rules, (ii) negations in heads of rules interpreted
as deletions, and (iii) the ability to invent values using
variables occurring only in heads of rules. Rules are
fired in parallel with all applicable valuations, until no
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€We note that the correspondence between relational
databases and instances of object-oriented or semantic
databases has also been discussed in [HS89,LV87].
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rules can be fired. This language, denoted Datalogy,,
is defined precisely in [AV88a,AV88b]. It turns out
that dms’s and Datalogy} have essentially the same
expressive power.

Theorem 3.2 A db-transformation r can be ex-
pressed by a dms iff rel{r) can be expressed by
Datalogl}.

It was shown in [AV88a,AV88b] that Datalog]}
is complete for relational transformations for which
outputs do not contain invented values. Similar re-
sults can be obtained for dms’s using Theorem 3.2.
Consider db-transformations which: (1) do not cre-
ate new objects in the output; (2) are over schemas
with types whose attributes are all of type const.
Db-transformations satisfying (1) manipulate point-
ers and constants among existing objects. We refer
to these as m-transformations. Db-transformations
satisfying (2) involve instances which are essentially
relational tuples of constants, “lifted” to an object
instance by the obj mapping described above. Thus,
there are no pointers among objects. Such “rela-
tional” transformations are called r-transformations.
It turns out that (i) each m-transformation can be
expressed by a dms, and (ii) each r-transformation
can be expressed by a dms.

We lastly look at the expressive power for two
important special cases: in-place computation, and
dms’s which do not perform internal broadcast of
messages.

In-place compuiation. As stated earlier, there is a
loss of expressive power if in-place computation is
required, i.e. the dms cannot use additional types.
Indeed, consider the type P : [A :consif]. Consider
the transformation even over instances I of P defined
by: even(I} = I if I has an even number of objects,
and even(I) = ¢ otherwise. It can be shown that
the transformation even is not computable in-place
by dms’s. Thus, additional types are necessary for
full expressive power. However, it turns out that it
is sufficient to add one particular type with structure
T : [A: @T,C : const] in order to recover the full
power of dms’s [DV91]. In some sense, this provides
a normal form for the hidden structural component of
dms’s. It follows almost immediately that, if V con-
tains a type T as above, then any db-transformation
over V which is computable by dms’s is computable
in-place. The cyclicity involved in the structure of
T is essential. The following more general condition
can be shown. It involves the reference graph of a
structural schema, i.e. the graph whose nodes are
the types of the schema, and where an edge from type
P to type @ indicates that type P has an attribute
of sort @@Q. Let V be a dms whose reference graph
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has some cycle such that there exists a type in the
cycle with an attribute of sort const. Then each db-
transformation over V which is computable by dms’s
is computable in-place. The above follows from the
observation that the type T can be encoded using the
types occurring in a cycle as above.

Internal broadcasts. The send instruction allows
sending a message either to individual objects using
pointers, or by broadcasting the message internally
to all objects of a given type. It is useful to under-
stand the difference between these constructs. There
is a loss of expressive power if internal broadcasts
are not allowed. Indeed, let a pointer schema be a
dms which uses no internal broadcasts (however, an
external broadcast is allowed to start the computa-
tion). The transformation even defined above is not
expressible by pointer schemas. Intuitively, a message
sent by an object can only reach objects reachable by
pointers. It turns out that pointer schemas can sim-
ulate internal broadcasts within strongly connected
components (of the graph whose nodes are objects
and directed edges indicate the existence of pointers
among objects). The simulation of broadcast is non-
trivial due to timing requirements (all objects must
know when the global simulation of the broadcast has
been completed). Pointer schemas are as powerful as
full dms’s on strongly connected inputs. However,
this does not follow from direct simulation of broad-
cast, since intermediate results may not be strongly
connected. Instead, the proof requires a more sub-
tle technique involving the construction of pointer
chains among new objects representing the objects in
the input. This builds in effect orderings of the ob-
Jects in the input, which are used in the computation
in a manner similar to integer id's. These orderings
are constructed in polynomial time and space. Since
building orderings dominates the complexity of some
hard transformations, strong connectivity influences
complexity in general. For example, the hard (expo-
nential space) transformation even is in polynomial
time and space under strong connectivity.

4 Restricted Dms’s

We have seen that dms’s are very powerful computa-
tional tools. In particular, there is no bound on the
complexity of dms computations. As for relational
query languages, it is of interest to identify tractable
restrictions of dms's. In this section we present sev-
eral such restrictions, which provide tractability guar-
antees to various degrees; constant paralle] time,
polynomial time, polynomial space, and monotonic-
ity. We also show connections with traditional query
languages which provide analogous tractability guar-
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be reached from some cycle in the call graph of the

dms. \noue that the command itself need not occur
in a cycle.) Otherwise, the command is called acyclzc.
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new objects are created only by t e new® command
(without the assignment option). We call such dms’s
while dms’s, due to the close correspondence with the

relational while queries. We can now show:

Theorem 4.2 (i) Each computation of a while dms
takes polynomial space in the size of the input in-
stance.

(i1) An m-transformation 7 is expressed by a while
dms iff rel(r) is a while query.

(i) A relational transformation v is a while query iff
obj(v) is expressed by a while dms.

Theorem 4.2 (i) places a PSPACE upper bound
on the space complexity of while dms computations.
From (ii), (iii) and [V82], it follows that there are
transformations computable (by a Turing Machine)
in PSPACE which are not expressible by while dms’s
(e.g., even, introduced earlier). However, it can be
shown that while dms’s express ezactly the PSPACE
transformations if integer id’s and comparison are as-
sumed. The proof is similar in spirit to that for show-
ing that the relational while queries express exactly
PSPACE on ordered databases [V82).
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Syntactic conditions with the same effect can also be
added, but we do not elaborate on these here. In-
stead, we simply assume that the computation stops
once a vacuous infinite loop is reached (this is similar
to usual fixpoint semantics). We can show:

Theorem 4.3 (i) Each computation of a fizpoint
dms takes polynomial time in the size of the input
instance.

(ii) An m-transformation  is expressed by a fizpoint
dms iff rel(r) is a fizpoint query.

(iii) A relational transformation v is a firpoint query
iff obj(v) is expressed by a fizpoint dms.

The proof of {ii) and (iii) uses the normal form for the
fizpoint queries provided by the language Datalog™,
shown in [AV88a,AV88b].

Theorem 4.3 (i) places a PTIME upper bound on
the computation of fizpoint dms computations. How-
ever, the fizpoint dms’s do not express all PTIME
db-transformations. As for while dms’s, exact expres-
siveness is achieved with integer id’s and comparison.
The proof is similar to that for showing that the re-
lational fizpoint queries express exactly PTIME on
ordered databases {I86,V82].

We finally consider a further restriction which guar-
antees monotonicity of computation and corresponds
closely to Datalog. Let a Datalog dms be a fizpoint
dms with the following restrictions: (i) there are no
delete-self statements, and (i) conditions in if state-
ments are conjunctions of equality tests (z = y). We
can now prove an analog of Theorems 4.2 and 4.3 for
Datalog dms’s and Datalog relational queries [DV91].

5 Dms’s and Parallel Compu-
tation Models

Dms’s provide a parallel model of computation which
is database-oriented. It is fundamentally distin-
guished from other known models of parallel com-
putation by its generic, symmetric treatment of
data/processors. Indeed, in the traditional models
of parallel computation, genericity is not an issue
because of various assumptions, such as integer id’s
for processors, integer-numbered memory cells, etc.
However, there are close connections between dms’s
and some of these models. A close match occurs
only when dms’s use integer id’s. We compare dms’s
with one of the main models of paralle] computation,
the Parallel Random Access Machine with Concur-
rent Read and Concurrent Write semantics (CRCW-
PRAM, or simply PRAM) [Pa87]. In the process,
we also point out the connection with a model closer
in form to ours, the Hardware Modification Machine
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(HMM) of Cook [Co81]. We conclude that many par-
allel complexity classes, including the well-known NC
(Nick’s class), are the same with respect to PRAMS
and dms’s with integer id’s.

We begin with a brief review of the PRAM model
(details can be found in {[Pa87]). A PRAM consists of
an unbounded tape and unbounded processor pool.
Processors have unique integer id’s which they can
refer to. A processor can be activated by other pro-
cessors having its id number. Each processor has a
fixed finite number of registers storing binary encod-
ings of arbitrary integers, as does each cell of the tape.
The standard sequential RAM instruction set is used
[AHUT76], subject to restrictions on growth rates of
integers. Thus, multiplication is not an instruction,
but shifts (or multiplication/division by 2) are. Each
processor can access the tape to load/write an inte-
ger to/from any of its registers, whose addresses can
be accessed. Conflicting concurrent writes cause the
computation to crash.

We show that dms computations can be simulated
by PRAMs within a logarithmic time and constant
space factor, assuming that the input database is
encoded in some standard way on the PRAM tape.
(Note that the encoding is necessarily ordered.) This
cost is standard for such simulations. Indeed, a log
factor time difference exists between different PRAM
models. The precise result and proof sketch are given
in [DV91).

We next look at the converse simulation, of PRAMs
by dms’s. However, instead of a direct simulation,
we use a third model called Hardware Modification
Machine (HMM). Thus, we show how dms’s can sim-
ulate HMMs, and use the known result that HMMs
can simulate PRAMs with time within a logarithmic
factor and space within a polynomial factor of the
PRAM [D80]. HMMs are of particular interest to us
because the computational paradigm is closer to that
of dms’s.

An HMM consists of a set of identical finite-state
transducers computing in parallel. Each finite-state
transducer is called a unit. Each unit owns a fixed
number k of pointers to other units called taps. In
each finite-state transducer, transitions occur syn-
chronously based upon its current state and the out-
puts of the units it taps. A tap can be moved to any
unit not more than two units away from its owner
and each unit may activate and initialize one new
unit per step. Note that units are similar to objects
(or computation threads running on objects) and the
taps are somewhat similar to pointers among objects.
An important difference with dms’s is that HMMs are
not viewed as computing transformations from HMM
configurations into other HMM configurations. In-
stead, an input to a HMM H with k taps per unit is
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essentially a tape of arbitrary length /, encoded as the
ieaves of a k-ary tree of units (of depth iogx(/)). This
circumvents genericity, since inputs are in effect or-
dered. However, the HMM computation itself treats
the unit machines in a generlc fashion.
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simulate each other within a logarithmic time factor

and polynomial space factor. The mutual simulation

of PRAMs and dms’s allows us to conclude that paral-
lel complexity clasges defined on the two models are
closely related. Note first that, in the simulations
above, the encodings of dms instances as PRAM in-
stances were assumed given, and were not factored
into the cost of the simulation of PRAMs by dms’s.
Obviously, we cannot generally assume that a dms
can simulate such encodings since this may violate
genericity. However, the encodings can be computed
with integer id’s with logarithmic cost. Now we can
show that parallel time and space complexity classes
defined on PRAMs and dms’s with integer id’s are
identical, as long as they are insensitive to logarith-
mic factors in time complexity and polynomial fac-
tors in space complexity. In particular, the class NC
of “tractable” parallel problems are the same in the
two models. More precisely, let PRAM-NC he the
functions computable in a PRAM with log-time and
polynomial-space cost, and DMS™™.NC be the dh-
transformations on instances with integer id's com-
putable by some dms (with integer comparison) with
log-time and polynomial-space cost. Then we have:

Theorem 5.1 DMS™.NC = PRAM-NC.

Without the integer id assumption, the equality
no longer holds. Let DMS-NC be the class of db-
transformations (without integer id’s) computable by
some dms with log-time and polynomial-space cost.
It can be shown that DMS-NC C PRAM-NC. Indeed,
the db-transformation even is clearly in PRAM-NC.
However, it is not in DMS-NC, since it can be shown
that computing even with dms’s without integer id’s
requires exponential space.

6 Dms’s and Generic Machines

We have seen in the previous section the connection of
methods with classical parallel computation modeis.
In particular we have seen that, without the integer
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complexxty classes defined by dms’s and those defined
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PRAM model does not capture generic computation,
and cannot provide an appropriate basis for measur-
Ing its intrinsic complexity. Similar remarks apply
to sequential complexity and classical sequential de-
vices such as Turing Machines, which circumvent the
genericity issue (Turing Machines always work on an
ordered tape!).

A compmawonax model called Generic Machine
(GM) designed to capture the com lexnty proper to
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store. The relational store can be viewed as asso-
ciative access storage supporting the generic portion
of the computation, while standard computation is
carried out on the tape. GMs compute relational
transformations, with no invented values in the re-
sult. Designated relations contain initially the input,
and others hold the output at the end of the compu-
tation. Communication between the tape and the re-
lational store is provided. GM allows spawning other
GM’s which then compute synchronously in parallel.
There is a mechanism for merging parallel machines.
The output is only obtained after all machines are
merged into a single one.

Based on GM, complexity classes proper to generic
computation are defined: GEN-PTIME, and GEN-
PSPACE, obtained by polynomial restrictions on
time and space resources used in the computation.
We can define analogous complexity classes based on
the method model. Let DMS-PSPACE be the set
of db-transformations expressible by some dms such
that, at each point in the computation on input I,
uses a number of objects and active threads which is
polynomial in the size of I. Let DMS-PTIME be the
set of DMS-PSPACE db-transformations expressible
hy some dms such that the computation on every in-
put / terminates in a number of steps polynomial in
the size of /. It turns out that these generic compiex-
ity classes essentially coincide in the two models. To
make the classes comparable, we need to restrict the
comparison to db-transformations whose relational
lt‘prﬁbCHhﬂathll UU I]()D lllVUlVC m‘venbeu Vd.lUCS The .
following can be shown:

GM is a Turing Machine (TM) au
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Theorem 6.1 (i) An m-transformation 7 is in DMS-
PTIME (DMS-PSPACE) iff rel(r) is in GEN-PTIME
(GEN-PSPACE).

(i1) A relational transformation v is in GEN-PTIME
(GEN-PSPACE) iff obj(v) is in DMS-PTIME (DMS-
PSPACE).
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significant. It speaks to the robustness and natural-
ness of the generic complexity classes based on these
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models. Since DMS-PTIME and DMS-PSPACE in-
clude transformations with new objects in results,
they can be viewed as extensions of the GEN-PTIME
and GEN-PSPACE. Dms’s provide an elegant, prac-
tically motivated alternative to GM as a model of
database parallel computation.
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