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llbstract This paper proposes schemes for fast page 
transfer between transaction system Instances In a 
shared disks (SD) environment where all the sharing 
Instances can read and modify the same data Fast page 
transfer improves transaction response time and concur- 
rency because one or more disk I/OS are avoided while 
transferring a page from a system which modified it to 
another system which needs it. The proposed methods 
work with the steal and no-force buffer management 
policies, and fine-granularity (e.g., record) locking For 
each of the page-transfer schemes, we present both 
recovery and coherency-control protocols Updates can 
be made to a page by several systems before the page 
is written to disk. Many subtleties Involved in correctly 
recovering such a page in the face of single system or 
complex-wide failures are also discussed. Assuming that 
each system maintains its own log, some methods require 
a merged log for restart recovery while others don’t 
Our proposals should also apply to dlstrihuted. 
recoverable file systems and distributed virtual memory 
in the SD environment, and to the currently oopular 
client-server object-oriented DBMS environments where 
the clients cache data. 

1. Introduction 

One approach to improving the capacity and avaIlability 
characteristics of a single-system transaction system 
(e.g,, a data base management system fDBMSIl IS to 
use multiple systems. There are two major architectures 
in use In the multisystem environment: shared disks (SD) 
or also called data sharing [DIRY89, MoNaSlb, MoNP90, 
MaNSSO, Rahm86, Rahm89, ShoeBG]. and shared nothing 
(SN) or also called partitioned [StonBS: Wth SD. aI1 
the disks containing the data base are shared arnonq 
the different systems Every system that has an Instance 
of the transaction system executing on it may access 
and modify any portion of the data base on the shared 
disks, Since each transaction system Instance has its 
own buffer pool and because conflicting accesses to the 
same data may be made simultaneously from different 
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systems, the interactions among the systems must be 
controlled via various synchronization protocols. Thlr 
necessitates the use of global locking facilitler and pro- 
tocols for the maintenance of the coherency of the data 
buffered (cuched) in the different systems. SD is the 
approach used in IBM’s IMSNS Data Sharing product 
[StUW82], TPF product [Scru87] and the Amoeba re- 
search project [MoNaSlb, MoNPSO, MoNS90, SNOP851, 
and in DEC’s VAX DBMS’ and VAX RdbNMS’ [KrLS88, 
ReSW89]. More recently, for the VAXcluster’ environ- 
ment, third-party DBMSs like ORACLE’ and INGRES have 
been modified to support SD, Hitachi and Fujitsu also 
have products which support the SD environment. SD 
has also, of late, become popular in the area of distributed 
virtual memory [Lie& WuFu89]. 

With SN, each transaction system instance owns a portion 
of the data base and only that portion may be directly 
read or modified by that instance. That is, the data base 
is cartit~oned amongst the multiple systems. The kind 
of synchronization protocols mentioned before for SD 
are not needed for SN. But, a transaction accessing data 
in multiple systems would need a form of two-phase 
commit protocol (e.g., the industry&andard Presumed 
Abort protocol of [MoLO86]) to coordinate its activities. 
SN is the approach taken in Tandem’s Nonstop SQL’ 
[Tand87], Teradata’s DBC/1012’ [Nech88], MCC’s Bubba 
[ BACCDSO], and University of Wisconsin’s Gamma 
[ DGSBHSO] There are many advantages and disadvan- 
tages with both SD and SN [Bhid88, PMCLSSO, Shoe88, 
Ston86]. Our intention in this paper is not to argue the 
relative merits of the two approaches. Even though ma- 
jor products have come out which support either SD or 
SN, the debate still goes on. We concentrate on solving 
some problems relating to SD. 

The rest of the paper is organized as follows. In the 
remainder of this section, we first introduce the buffer- 
coherency problem and IMS’s solution for handling it. 
Then, we state the assumptions that we make in propos- 
ing our solutions. In section 2, we provide a brief over- 
view of the different page-transfer schemes. The details 
of the Medium. Fast and Super-Fast schemes with record 
locking are covered in section 3. Due to space constraints 
In this paper, we do not discuss the optimized versions 
of these protocols that are possible when the granularity 
of loglcol locking is a page, rather than a record 
[MoNaSl b]. In section 4, we compare our proposals with 
existing proposals and implementations by others, Lastly, 
in section 5, we summarize our contributions. 

I, I. Buffer Coherency and Page Transfer 

In a single-system transaction system, if a transaction 
were to update a record in a page, then that update is 
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made visible to other transactions once the updating 
transaction, after committing, releases the (exclusive) 
lock on the record. This visibility is the result of per- 
forming the update in the same buffer pool which is 
shared among all the transactions. We call this instant 
propagation of updates. However, in SD, when a trans- 
action updates a record in one system, the update is not 
reflected instantly in the other systems’ buffer pools. 
This is the buffer-coherency problem. Special protocols 
must be used to ensure that transactions do not see 
data that is not current. An updated page can be prop- 
agated by the updating system to the other sharing sys- 
tems in many ways such as via disk only, or disk and 
intersystem communication links, or links only. A factor 
which plays a role in how propagation could take place 
is whether the single-system transaction system writes 
pages updated by a transaction to disk at commit time. 
The latter policy is followed by IMS, VAX DBMS, VAX 
RdbNMS, etc. 

In IMS Data Sharing, propagation of updates takes place 
as follows: (1) the updater writes the page to disk, (2) 
after the disk I/O completes, the updater sends a mes- 
sage to the other systems to invalidate their cached, if 
any, copies.of the page, (3) the other systems acknowl- 
edge the invalidation messages after their cached copies 
have been marked invalid, (4) the updater releases its 
(exclusive) locks on modified data after receiving all the 
acknowledgements, and (5) the other systems, when they 
need to access the cached copies which have been 
marked invalid, read the page from disk to get a more 
recent copy of the page, Actions (1) and (2) typica!ly 
happen at commit time, thereby increasing the lock hold 
time and the transaction response time, For IMS, prop- 
agation via disk is a natural approach to take because 
(1) IMS in the single-system environment, before releas- 
ing the exclusive locks of a transaction, writes the up- 
dated pages to disk (follows the force policy) anyway 
and (2) IMS in the SD environment supports only 
page-level concurrency between systems for updates2 

If a single-system transaction system like DB2’, which 
does not write updated pages to disk at commit time 
(follows the no-force policy), were enhanced to operate 
in the SD environment, then update propagation via disk 
and sending of invalidation messages would be very 
expensive In terms of concurrency and transaction re- 
sponse time, when compared to a single-system envi- 
ronment. Then, in this context, the following question 
arises: how are updates to be propagated when the 
updater neither writes the page to disk nor sends inval- 
idation messages? One possible answer is: the updater 
(1) leaves a trufl with the global lock manager using 
which the other systems can detect that their cached 
versions of the page are not current, and (2) sends the 
updated page quickly to the other systems when they 

need it. The former is called detectlon and the latter 
reaction. Since detection takes place when the transac- 
tions in the other systems actually need a more current 
version of the page, it is imperative that we make the 
reaction part execute as fast as possible. Therefore, in 
this paper, we describe schemes for fast page transfer 
between systems and their recovery implications in case 
of a variety of failures. The detection technique that we 
employ is similar to the techniques used in [Rahm86], 
whichcallsit on-request invoZidotion(Check-on-Access), 
and [DIRY89], and in DEC’s VAXcluster file system 
[KrLS86], VAX DBMS and VAX RdbNMS [ReSW89]. 

Fast page transfer improves transaction response time 
and concurrency because one or more disk I/OS are 
avoided while transferring a page from a system which 
modified it to another system which needs it. This per- 
mits updates to be performed on a page by several 
systems before the page is written to disk, thereby fur- 
ther increasing concurrency and amortizing the cost of 
disk writes. With such a flexible scheme, care must be 
taken to ensure that recovery is performed correctly 
should failures occur. For the schemes that we propose, 
we ensure that recovery is performed correctly in the 
face of (1) loss of messages and (2) single system or 
complex-wide failures. The proposed schemes work with 
the steot and no-force buffer management policies 
[HaRe83] and fine-granularity (e.g., record) locking. As- 
suming that each system maintains its own log, some of 
our schemes require a merged log for restart recovery 
while others don’t. Of course, a merged log will always 
be needed for media recovery. We also present some 
techniques for enhancing data availability when one or 
more systems fail while holding some important locks. 
Our proposals should also apply to distributed, recover- 
able file systems and distributed virtual memory in the 
SD environment, and to the client-server architecture 
environments where the clients cache data obtained 
from the server. The latter has become popular in the 
object-oriented data base area [CFLSSI, DMFV90, 
WiNeSO]. 

1.2. Assumptions 

In proposing our solutions, we make the following as- 
sumptions about the transaction system. 

Log Management For performance reasons, each of the 
systems maintains its own log to which log records are 
first written, For the purpose of handling data recovery, 
one system in the SD complex which has connectivity to 
all the local logs’ disks produces a merged version of 
those logs. A standby log merge process is available to 
take over in case the current merge process fails. The 
local log manager associates with each log record a log 
sequence number (ISN) which is a monotonically increas- 

1 DE2 and IBM arc Wademarks of the htemaQonal Rwness Machlner Corn Nonstop SQL and Tandem are trademarks of Tandem Computers, Inc. 
DEC, VAX DBMS, VAX, VAXcluster and Rdb/VMS are trademarks of the Dl@tal Eqtupment Corp. Oracle is a registered trademark of the Oracle 
Corp. DBC/lOll IS a trademark of the Teradata Corp. 

a In IMS, updabng hansactrons, in addrQon to acqrunng conmut.duraQon global exclus~vc locks on records that they modify, also obtatn comnt t-durotton 
global exclunve locks on the pogrs which contam those mo&tied records. These global exclunvc page locks do not prevent mulQple updating transachons 
wrthtn the same system from modifpg the same page concurrently. IMS supports record-level concurrency between an updaQng system and rcadmg 
systems of a page nnce a transaclux reading records in a page acquires global (share) locks only on records and not on the page. 
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Ing value. Typically, in single-system (nonSD) transaction 
systems, LSNs are the logical addresses of the corre- 
sponding log records [MHLPS89]. At times, version num- 
bers or timestamps are also used as LSNs [MoNP90]. 
Here, we are assuming that the LSN is a timestamp and 
that the clocks across the SD complex are perfectly syn- 
chronized. 

Recovery Recovery is based on w&?-ahead logging 
(WAL). In WAL systems, an updated page is written back 
to the same disk location from where it was read. That 
is, In-place updating is performed on disk. Even in the 
buffer pool, in-place updating is performed. The WAL 
protocol asserts that the log records representing 
changes to a page must already be on stable storage 
before the changed page is allowed to replace the pre- 
vious version of that page on disk. Every page in the 
data base has a pagr_LSN field which contains the LSN 
of the log record that describes the lotest update to 
that page. This allows the page state to be related pre- 
cisely with respect to the log records that have been 
written for that page in order for recovery to be performed 
correctly. The buffer manager also uses the page_LSN 
information to ensure that the log has been written to 
stable storage (forced) up to that LSN before it writes 
the modified page to disk. We are assuming that an 
ARIES-style [MHLPS89, MoPi91, RoMo89] recovery 
method is in use. This means that the so-called com- 
prnsatlon log records (CLRs) will be written to describe 
the updates that are performed as a result of rolling 
back some actions of a transaction. Writing CLRs allows 
us to think of the page state, as reflected by page LSN, 
as always going forward in time, even though at %mes 
some earlier updates of a transaction might be getting 
undone [ MHLPS891, 

Lock Management Locking is managed by a global lock 
manager (GLM) in conjunction with one local lock man- 
ager (LLM) in each system. When it is not necessary to 
distinguish between LLM and GLM, we use the generic 
term LM (lock manager). The transaction system makes 
its lock request to its LLM which may then forward it to 
GLM. This is simllar to the way lock management is 
done in the DEC VAXcluster [KrLS88] for the SD envi- 
ronment. Such a lock manager provides global locking 
functions for its clients but it does not perform disk I/OS 
for them. LM assists a transaction system instance in 
determining which transaction system instance, if any, 
has a dirty version of a particular page. A page version 
is considered to be dirty if the buffer pool (cached) ver- 
sion of the page is more recent than the disk version of 
the page. Given a message and a lock name, LM can 
send the message to the current holder(s) of that lock. 
This is called the not& mechanism. In order to deal 
with a failure of GLM, a backup GLM is defined and it 
monitors the state of the primary GLM to determine 
when to take over. When a backup GLM takes over, it 
communicates with LLMs to reconstruct GLM’s global 
lock table information. When GLM notices that an LLM 
has failed, it will release all the locks, except those that 
were specifically asked to be retalnsd, that were held 
by the failed LLM. To recover from the failure of multiple 
systems in the SD complex, GLM’s lock tables are peri- 
odically checkpointed. Such a failure is treated as an 
SD-complex failure. It should be emphasized that the 
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focus of this paper is not on how to build a highly avail- 
able LM. The design assumed above can be easily 
changed to produce a more distributed LM. 

Buffer Management The buffer manager (BM) is free to 
adopt the very flexible policies of steal and no-force 
[HaRe83]. If a page modified by a transaction is allowed 
to be written to disk before that transaction commits, 
then the steal policy is said to be followed by BM. Oth- 
erwise, the no-steal policy is said to be in effect. Steal 
implies that during normal or restart rollback, some undo 
work might have to be performed on the disk version of 
the data base. If a transaction Is not allowed to commit 
until all pages modified by it are written to disk, then the 
force policy is said to be in effect. Otherwise, the no-force 
policy is said to be in effect. With the force policy, during 
restart recovery, no redo work will be necessary for 
committed transactions. No-force decreases lock hold 
times. It also allows write I/OS to disk to be performed 
more efficiently by writing multiple pages in one l/O and 
by amortizating the cost of a disk write of a page over 
updates made by several transactions. Many more ar- 
guments in favor of adopting the no-force and steal pol- 
icies are given in [MHLPS89]. 

Locking and Coherency-Control Protocols We do not wish 
to permit the same page to be updated concurrently in 
different systems since that would require that a mech- 
anism exist to merge those updates into a single version 
of the page. Furthermore, we could have difficulties with 
storage management when fine-granularity (e.g., record) 
locking is supported in the most general way (e.g., as in 
ARIES/IM [MoLe89] and ARIEUKVL [MohaSO]). To 
avoid these problems, we use a physical (P) lock on a 
page to serioltre the updating of that page by multiple 
systems. Note that, unlike logical (L) locks which are 
held for the duration of a transaction, physical locks are 
not held for the duration of a transaction. P locks will 
never be involved in deadlocks, unlike L locks. In this 
paper, P locks are acquired only on pages, while L locks 
are acquired only on records. Hence, later in the paper, 
we do not always identify the type (L or P) of a lock 
explicitly. P locks need to be held only as long as a 
system is caching a page in its buffer pool. P locks are 
acquired by BM on behalf of the transaction system 
while L locks on records are acquired by the data man- 
ager on behalf of individual transactions. To update 
(read, respectively) a record, the transaction gets an X 
(S) lock on the record. The compatibility relationships 
amongst the different modes of locking, for both L and 
P locks, are shown in Figure 1. A check mark (‘4’) indi- 
cates that the corresponding modes are compatible. 
That is, in the case of such an entry, if transaction Tl 
were to hold the lock in the mode indicated by the row 
and T2 were to request the lock in the mode indicated 
by the column, then T2’s request will be granted imme- 
diately. 

Flgurr 1: Lock Modr Compatibility M8trlx 
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P locks are also used to detect that a cached page in a 
particular buffer pool is not the latest version of the 
page. BM gets an S lock on a page before caching it in 
the local buffer pool. This lock is held as long as the 
page remains cached in the local buffer pool. Before 
allowing a transaction to dirty a clean page, EM gets a 
U lock on the page. This lock must be held by BM as 
long as the page remains dirty and it is cached by this 
BM. As a result of these locking protocols, the 
intersystem concurrency is multiple readers and an 
updater per page as far as the buffer managers are 
concerned. Of course, because of the record locking 
performed by transactions, a given page can contain at 
any time the uncommitted updates of transactions run- 
ning in any number of the sharing systems. LM will be 
asked to retain all the U and X locks. 

Communlcatlons The different systems in the complex 
are directly connected to one another via high-speed 
communication links (Comm-l/&s) whose performance 
is orders of magnitude better than that achievable by 
communicating via the shared disks. When pages are 
shipped directly between the systems, a datagram pro- 
tocol is used with no guarantees about delivery. Using 
datagrams is important to assure that the cost of shipping 
pages directly is not high. 

Distributed Transactlons For simplicity, we assume here 
that each transaction executes entirely within .a transac- 
tion system instance. It is easy to extend the proposed 
schemes to work in a complex in which a single trans- 
action might span multiple transaction system instances 
in order to exploit parallelism even more than what is 
possible within a single system [PMCLSSO]. With this 
assumption, we are not precluding the possibility of the 
transactions executing in this complex being distributed 
transactions which also access data outside of this com- 
plex. For distributed data base management purposes, 
this complex is thought of as a single node of the distrib- 
uted system. 

2. Overview 

In an SD environment, if a dirty page is cached in one 
system (referred to as the owner), then a different system 
requiring access to that page must get the current ver- 
sion of the page from the owner. P locks are used to 
detect that a cached page in a particular buffer pool is 
not the latest version of the page. When a transaction 
Tl updates a record in page Pi in system Sl. it updates 
Pl’s page_LSN. When Tl commits, Pl’scurrent page_LSN 
is sent to LM along with the unlock requests for the L 
locks. LM registers the page_LSN in the P lock entry for 
Pl, before unlocking the L locks. When T2 in S2 locks a 
record in Pl, it requests PI’s page_LSN. When LM re- 
turns the latter as part of granting the L lock, S2 can 
detect if its cached version, if any, of Pl is not current. 
If Pl in S2 is not current, then LM assists 52 in getting 
the current version of PI from Pl’s owner Sl. 

Before updating a page, a system which is not already 
the owner of the page must first become the owner of 
the page by acquiring a U mode P lock on the page. The 
ownership of a page can be given up by a system only 
after the dirtjl page is written to disk or as part of trans- 
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fer of ownership to another system. The current owner 
of a page could transfer the page to a requesting system 

1. by writing the page to disk and then making the 
requestor read it from disk, or 

2. by a memory-to-memory transfer. 

With memory-to-memory transfer, the response time and 
concurrency advantages are the same as with caching 
a dirty page in a single-system environment. This Is 
because, with memory-to-memory transfer, it is possible 
to save 2 disk I/OS - a write I/O by the owner and a read 
I/O by the requestor. 

Next, we give a brief description of the mechanics of a 
page transfer and how LM assists a requestor in getting 
the latest verison of a page. 

When BM acquires a U mode P lock to update a page, 
it declares to LM that BM’s page-transfer procedure 
should be invoked if (1) there is an intersystem lock 
conflict involving that page (i.e., another system wants 
to update the page), or (2) the requestor, in another 
system, makes a nonconflicting lock request for that 
page (i.e., another system wants to read the page). BM 
will then make the page available to the requestor. 

BM can transfer the page to the requesting system using 
one of the following schemes: Simple, Medium, Fast, and 
Super-Fast, For each scheme, we compare the number 
of I/OS and messages to obtain for updating purposes a 
dirty page cached in another system. This comparison 
is done to motivate the development of faster page- 
transfer schemes. 

A transaction in the requesting system initiates access 
to a page by invoking its BM via the Nxgage call (also 
called p/n). The fix page request will also indicate 
whether the transactLn intends to update the page. If 
the page is not already cached, then BM will request a 
P lock for the page in the appropriate mode (S for read 
access and U for update). If the page is cached but the 
request is for update and the current system is not al- 
ready the owner of the page, then BM will make a re- 
quest to upgrade (from S to U mode) the P lock for the 
page. This request triggers LM to invoke the page- 
transfer procedure in the owning system, if there is one. 
BM in the owning system then transfers the page. The 
owning BM, if necessary, downgrades its P lock so that 
the requesting BM’s lock is granted. The downgrading 
from U to S would be required if the request is for a U 
lock. The subsequent fix-page processing depends on 
the scheme used for the page transfer. 

Next, we briefly describe four page-transfer schemes. In 
this section, we consider the case where an owner for 
a page exists and another system wants to become the 
owner. The schemes are also applicable when the second 
system only wants to read the page. The latter case is 
covered in the section “3. Details of the Page-Transfer 
Schemes”. 

2.1. Simple Scheme 

In this scheme, the following actions occur on the owner 
and the requestor sides. We are not showing the lock 
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request message from the requestor to GLM and the 
lock grant message from GLM to the requestor since 
these costs are common to all the schemes discussed 
here. 

l A lock conflict message is sent from GLM to the owner. 
. A disk 110 is performed by the owner to write the page 

to disk. Due to the WAL protocol. there will be an 
implicit log force. 

l After the disk 110 completes, a message is sent from 
theowner to GLM for downgrading the P lock to S mode. 

l A disk I/O is performed by the requesting system to 
read the page from disk. 

Therefore, using the Simple scheme, the costs of a page 
transfer are 2 messages, 2 I/OS and, possibly, a log 
force. As it should be obvious, the simple scheme is 
very costly compared to the single-system case where 
BM locates the updated page in memory at CPU speed. 
These additional costs increase transaction response 
time and decrease concurrency. Hence, the need for 
more efficient page-transfer schemes, In IMS, VAX 
DBMS, VAX RdbNMS and Oracle 6.2 in a VAXcluster, a 
page is transferred from one system to another via disk. 
This simple scheme is not discussed further in the rest 
of this paper. 

2.2. Medium Scheme 

Continuing with the above example, the Medium scheme 
differs as follows: The owning BM writes the page to disk 
and simultaneously ships the page directly to the re- 
questor using the comm-link. After the disk write is 
complete, the owning EM downgrades the P lock to the 
S mode. Then, LM grants the lock to the requestor. 

The costs involved in accessing a page using the Medium 
scheme are as follows: 

l A lock conflict message from GLM to the owner. 
l A disk I/O by the owner to write the page to disk. Due 

to the WAL protocol, there will be an implicit log force 
l A message to send the page directly to the requesting 

BM. 
l A message from the owner to GLM for downgrading 

the P lock. 

Therefore, using the Medium scheme, the costs of a 
page transfer are 3 messages, 1 I/O and, possibly, a log 
force. This scheme is more efficient than the Simple 
scheme, because (1) the page transfer is a memory- 
to-memory transfer which should be much faster than a 
disk I/O and which should reduce the contention on the 
disk arm, and (2) the page transfer Is overlapped with 
the disk write. Of course, there is no guarantee that the 
requestor would receive the shipped page in a timely 
manner or receive it at all. Therefore, care has to be 
taken so that the requestor does not (1) wait forever for 
the page to arrive, or (2) use a stale version of the page. 
The details about the avoidance of such problems are 
described in the section “? on page ?‘I. 

2.3. Fast Scheme 

The Fast scheme differs from the Medium scheme as 
follows: the owner BM does not write the page to disk. 
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In the page-transfer procedure, the owning BM issues, 
if necessary, a log force for ensuring the WAL protocol, 
ships the page to the requestor and then downgrades 
the P lock. Then, LM grants the lock to the requestor. 
With the Fast scheme, the costs of a page-transfer are 
3 messages, no disk l/O and, possibly, a log force. The 
disk write, which in the Simple and Medium schemes 
causes most of the delay, is entirely eliminated In this 
scheme. 

In the normal case, the Fast scheme provides better 
response time and concurrency than the Simple and 
Medium schemes. However, it complicates page recov- 
ery since a dfrty page may be transferred from one 
system to another and since it may contain updates from 
more than one system. In the Simple and Medium 
schemes, a dirty page contains updates of only the own- 
ing system. Hence, with the Fast scheme, during recovery 
from a system failure or on noticing the nonarrival of a 
shipped page, a merged log of all the system8 may be 
required to recover a dirty page. Since a dirty page may 
contain updates from multiple systems which have not 
been reflected in the disk version of the page, for each 
such page, the transaction system records a value called 
the Recover LSN (RLSN) at GLM. An RLSN is the earliest 
log point in the merged log from where the log must be 
scanned to redo the changes logged for the associated 
page in case the system owning the page were to fail 
before writing the page to disk. Since the clocks across 
the SD complex are synchronized, we use a timestamp 
as the value of RLSN. In the section “33.1. Assigning 
and Tracking Recover LSN”, we discuss how the RLSN 
value at GLM is manipulated. 

2.4. Super-Fast Scheme 

With the Super-Fast scheme, the owner is not required 
to ensure that the log is forced up to the LSN of the 
page before shipping the page. With this scheme, the 
costs of a page transfer are 3 messages, no disk I/O, 
and no log force. However, in order to ensure that the 
WAL protocol is followed before the dirty page is written 
to disk by some owning system ultimately, this scheme 
requires the tracking of the LSN values associated with 
a dirty page on a per system basis for all the systems 
whose updates to the page have not yet been reflected 
in the disk version of the page. For each updating sys- 
tem, the LSN to be remembered is the LSN of the page 
when the page was shipped by that system to some 
other system. The page can be written to disk only after 
all those updating systems have forced their respective 
logs up to the LSNs being tracked. Note that this is 
required since we have assumed that each system has 
its own log which makes the log force of each system 
independent of those of the other systems. 

3. Details of the Page-Transfer Schemes 
In this section, we describe the Medium, Fast and Super- 
Fast schemes in detail when the granularity of Zogfcal 
locking is a record within a page. Due to space con- 
straints, we do not discuss here the optimized versions 
of these protocols that can be used when the granularity 
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In this scenario, a transaction T, in system S1, finds out, via the L-Short-message returned on L locktng record R10 in page PI, 
that it needs to access PI’s version with an LSN that is at least as high as 15. Buffer manager BMI In Sl has no cached version 
of Pl, but BM2 In S2 has a dirty version of P: BMI, by P locking P4 In S mode and with the assistance of LM, acqutres Pl with 
LSN 20 from the owner (EM2). The P-Short-message sert by BM2 Informs BMI that the shipped page has 20 as its LSN. Since 
only an S mode P lock IS requested, BM2’s Page-Transfer procedure does not write PI to disk, Irrespective of the page-transfer 
scheme. 

Figure 2: Scenario Showlng Logical and Physical Locking, and Page Transfer 

of logical locking is a page, rather than a record 
[MoNaSlb]. 

We illustrate message flows relating to locking and page 
transfer for 4 different scenarios in Figure 2, Figure 3, 

details of the different page-transfer schemes, we discuss, 
in the next subsection, how the lock manager assists in 
dealing with the buffer-coherency problem. 

3.1. Lock ManageJs Coherency Assists 
Figure 4, and Figure 5. The figures include descriptions 
of the illustrated scenarios. We will refer to these figures 
in the following descriptions. Before we delve into the 

For record locking, LM assists in maintaining a page 
coherent in the following ways: 
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In this scenario, a transaction T, In system Sl, wants to update page Pi. Buffer manager EM1 in Sl has no cached version of PI, 
but BM2 in S2 has a dirty version of Pi. BMl, by P locking PI in U mode and with the assistance of LM, acquires the current 
version of PI from BM2. BM2’s Page-Transfer procedure downgrades its U mode P lock on PI to the S mode. The P-Short-message 
sent by BM2 informs BMl (the new Owner) that the Shipped Page has 20 as its LSN. When BM2 ships the page to BMl, it indicates 
that the page is dirty. This means that ether the Fast or the Super-Fast scheme IS being used for page transfer. LM ignores the 
RLSN value of 50 provided by BMl since the page IS already dirty and rts current RLSN IS 20. 

flgurr 3: Scenario Showing Physical Locking, and Page and Ownership Transfer 

In each P lock’s lock table entry, LM assigns a field for 
keeping track of the LSN of the associated page. This 
field is in addition to the RLSN, the log point for page 
recovery, mentioned before. LM initializes the LSN field 
to zeroes. LM replaces this field’s value in its lock table 
entry only when an LSN provided by a system is greater 
than the currently stored value Each lock table entry 
for a held P lock would have at least the following pieces 
of information: 

Page Recover 
Lock LSN 
Name (RLSN) 

Current 
LSN 
U-SW 

Lock 
Holder, 
Waiter 
info, . . . 

J 

With an unlock request, LM accepts a list of lock names 
and their associated LSNs. When a transaction termi- 
nates and the transaction system issues an unlock call 
to release ail the (L) locks held by the transaction, it 
also sends, along with the unlock request, a list of page 
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In this scenario, a transactlon T, In system Sl, wants to up- 
date page Pi. BMI has no cached version of PI and currently 
there is no owner for Pi. EM1 P locks PI in U mode and LM 
sets the RLSN of PI to the value 50 provided by EM1 since 
there IS no previous owner for the page. On betng told, via 
the P-Short-message generated by GLM, that there is no pre- 
vious owner for Pl, BMl reads the page from disk. 

flgurr 4: Scmarlo Showing Ownership Acquisition with No 
Previous Owner and No Cached Version of Page 

(P) lock names and those pages’ current LSNs to LM. 
The purpose of passing the list with the unlock call is to 
register the LSNs of the updated pages so that other 
systems which have cached those pages may verify the 
currency of their pages. It is using this information that 
the page incoherency detection problem discussed be- 
fore is solved. LM updates the supplied LSNs before 
processing the accompanying unlock request. Also, when 
BM steals a dirty page’s buffer slot by writing the page 
to disk, it passes to LM the LSN of the page with the 
unlock request for the P lock. 

LM supports a verify option with a lock request. The 
verify option is used by the data manager to ensure that 
it will read only the correct version of a needed page. 

proceedigsofthe 17thIntemational 
ConferenceonVecy Large Data Bases 
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In this scenario, a transaction T, in system Sl, wants to up- 
dale page Pi. EM1 already has a cached version of Pi and 
currently there IS no owner for Pl. BMl upgrades its P lock 
on Pi to the U mode and LM sets the RLSN of Pi to the value 
50 provided by EM1 since there no previous owner for the 
page. On being told, via the P-Short-message generated by 
GLM, that there is no previous owner for Pi and that the LSN 
of the page is 0, EM1 realizes that Its cached verslon Is 
current and continues to let it be Used by Its transactlons. 

flguro I: Scenario Showing Ownrrship Acquisition with No 
Previous Owner and a Cached VOrW‘I of Pago 

That is, it helps the systems in dealing with the detectfon 
problem. The verify option returns the LSN associated 
with a Second lock name provided in the lock request. 
With this option, when the data manager issues the 
record lock request, it gets the LSN for the corresponding 
page lock (see steps 1, 2. 3 and 4 in Figure 2). if the 
latter lock is not currently held by any system, then LM 
returns an LSN value of zero which implies that the 
latest version of the page is on disk (see steps 4 and 5 
in Figure 4). A value of zero will be returned even if the 
page lock is currently held by one or more systems, 
including possibly an owner, in case the owner has not 
so far committed its updates (see steps 4 and 5 in Figure 
5). In ail cases, a returned value of zero means that the 
latest comitted version of the page is definitely on disk. 
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The LSN value is looked up by LM after the record lock 
is granted to the requestor and, obvrously, before LM 
returns to the requestor with the lock-granted response 
This is important since, at the time the record lock re- 
quest is made, another system might be still modifying 
that record and we need the LSN of the corresponding 
page after the modification of the other system is com- 
mitted. By delaying looking up the LSN until the record 
lock becomes grantable to the requesting system, LM 
can guarantee that it would have come to know about 
the LSN of the latest committed version of the page 
The latter is made possible since a transaction’s loglcal 
locks are not released until it is ensured that the current 
LSNs of the pages modified by the transaction have been 
stored at LM. It was to accomplish thus that the LSNs 
are updated before the unlock requests accompanying 
the LSNs are processed during transactjon termination. 
as mentioned before. 

The LSN requested as part of a verify request IS returned 
as a Short-message that accompanies the lock grant 
response. We refer to the Short-message returned with 
an L lock request as an L-Short-message (see steps 3 
and 4 in Figure 2). The L-short-message is used in 
fix-page processing (see step 5 in Figure 2) If the 
cached page’s LSN is less than the LSN tn the L- 
short-message, then BM needs to obtain a new version 
of the page. BM would use LM’s Nottfy option to get a 
new version of the page from the owner, if there IS one 
BM would note in the buffer control block (SCB) which 
is associated with the buffer pool slot that is allocated 
for the page that a new version has been requested so 
that subsequent requestors who need a more recent 
version than the cached version are made to wart until 
the new version arrives The readers whose requests 
can be satisfied with the older verson can contrnue to 
use the cached version. If LM indicates that there IS no 
owner for the page, then that would imply that the disk 
version of the page is the latest verston. In that case, 
BM would read the page from disk. 

In the page-transfer procedure, the owner’s BM sends 
the page directly to the requesting system’s BM (see 
step A in Figure 2). In addition, it sends, via LM (LLM 
on owner to GLM to LLM on requestor). a P- 
Short-message (see steps 10, 11, 12 and 13 in Figure 2). 
The P-Short-message contains the LSN of the shopped 
page. The owner attaches the message to the P lock 
related downgrading operation if it does such an opera- 
tion as part of the page-transfer processing. Otherwise, 
it passes to LM just the P-Short-message as a response 
to the Notify message presented to it earlier by LM. A 
flag (Qwner-Exists) is included in the Short-messaqe 
which Indicates whether or not an owner exists for the 
page (Yes or No, respectively). This flag IS set by GLM 
If there is no owner for the requested page, then GLM 
creates the P-Short-message and includes the LSN that 
it has for the page When there is no owner, GLM will 
already have an entry for this page if at least one system 
is already holding an S lock on the page. In this case, 
the LSN value could be nonzero as a result of the page 
having been updated and then the U lock having been 
given up by the updater after the latter updated the LSN 
at GLM. Otherwise, the LSN will be zero due to the fact 
that the lock table entry would have been created as a 
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result of the current lock request (see steps 3 and 4 in 
Figure 4). In the latter case, as mentioned before, the 
LSN field would have been Initialized to the value of 
zero. If. no owner exists and the requestor finds that its 
cached version, if any, is out of date, then it can obtain 
the latest version from disk (see step 6 in Figure 4) 

Due to space constraints, we are unable to include some 
Interesting details about our protocols here. The reader 
IS referred to [MoNaSla] for those details. 

3.2. Medium Scheme Details 

3.2.1. Avoiding Using Stale Pages 

In the Medium scheme, the page is transferred by the 
owner initiating a disk write (write is done only in the 
case of ownership transfer for a dirty page) and simul- 
taneously shipping the page via comm-link, but without 
requiring a guarantee that the requestor will receive the 
shipped page. The page may arrive (1) before the P lock 
is granted to the requestor (the normal case), (2) after 
the P lock is granted and the page is already cached 
(because it was read from disk), (3) after the requesting 
BM read the page from disk, allowed it to be modified, 
wrote it to disk and purged it from the buffer pool, or 
(4) all actions of (3) followed by a fix-page request which 
causes a P lock to be requested. In cases (3) and (4), 
the received old versron of the page is referred to as a 
stale page. Below, we describe how we handle the ab- 
normal cases (2), (3) and (4). 

If the P lock is granted and the page is not cached, then 
the BCB for the page is marked to indicate that the page 
will be read from disk. Note that there is no timeout 
mechanism to request the page again from the owner. 
In the case of a U mode lock request, since the lock 
would have been granted to the requestor only after the 
disk write was complete, the requestor can read the 
page from disk. If the S mode lock had been requested, 
since the page would not have been written to disk by 
the owner, the requestor would have to first ensure that 
the page gets written to disk before it does the read 
from disk. This can be accomplished by the requestor 
becoming the owner by upgrading the lock to the U 
mode Subsequently, if the originally shipped page were 
to arrive when there IS already a cached version, then 
the shipped version will be discarded. 

We avoid using a stale version of the page as follows: 
In case (3) when the page arrives a BCB for it would 
not exist and hence the received page will be discarded. 
In case (4), when the P lock is granted, the LSN included 
In the P-Short-message will be used to ensure that the 
cached page will not be used if it IS not the current version 

3.2.2. Recovery from Failures 

Since the Medium scheme writes the updated page to 
disk before another system is allowed to update the 
page, only one system’s log records are needed to re- 
cover the page in case of a system failure. For a single 
system failure, the failing system would have retained 
U locks on the dtrty pages that were in its buffer pool 
at the time of its failure. These pages are recovered 
using the failed system’s log. Even if the retained locks 
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are lost because of a catastrophic failure of LM, the log 
records of only one system will possibly be reapplied for 
a given page. In the ARIES-style recovery methods 
[MHLPSi39, MoPi91, RoMoJ.391, the LSN of a log record 
relating to a page is compared with the page_LSN and 
only if the latter IS less than the former IS that log 
record’s update redone. 

With reference to restart recovery after a system failure, 
the following points should also be noted. 

During the undo pass, the U lock must be reacquireri 
on an affected page if it is not already held Thrs iJ 
lock acqulstion WIII not cause deadlocks since, even 
during forward processing, U locks are not tnvolved in 
deadlocks. 

In the case of recovery from a single system failure, 
a page involved in redo recovery ii.e, a page for 
which the U lock was held at the time of system farlure) 
is transferable to any other system which rieeds it 
after the redo pass is completed If the falled system 
is in its restart recovery, then LM would queue the 
incoming remote lock request until the falled system 
indicates that its page-transfer procedure IS enabled 
The transaction system would enable the page-transfer 
procedure at the end of the redo pass (i e., after 
repeating history for all the misstng updates 
[MHLPS89]). 

The current way of determinlng the restart recovery 
point (e.g., by the analysis pass of a slngie system 
recovery method like ARIES) would ensure that all the 
log records which might have to be reapplled will be 
encountered during the redo pass of restart recovery 
This will be the case even if there IS an SD-complex 
failure. 

In the case of an SD-complex fatlure IGLM and at least 
one LLM failed), which IS expected to be very rare, ~0 
surviving system WIII be granted any i locks by the 
backup GLM which has taken over unttl all the falled 
systems recover completely (i.e.. redo and undo passes 
are completed). P locks will not be granted until all 
the failed systems (1) complete their reso pass of re- 
covery, and (2) on completion of the redo pass, they 
reacquire the needed P locks (U mode for dirty pages 
and S mode for nondlrty pages) for pages currently In 
their buffer pools and register LSNs for the dirty pages 
in their buffer pools. At this point. GLM can reconstruct 
its lock table entrees for all the C locks by gathering 
the information from all the LLMs The grdc pass of 
recovery for none of the recovering systems can be 
started until this happens. During this undo pass pro- 
cessing, P locks may need to be acquired as In normal 
processing. Once the undo pass IS completed for all 
the recovering systems, GLM will be able to populate 
its lock table with all the L locks needed to protect all 
the uncommitted updates for the In-doubt (prepared 
state of two-phase commit [MoLo86]) transactions In 
the recovered systems and all the locks held by active 
transactions in the systems which dtd not fail. Note 
that the redo (undo) passes for the different recovering 
systems can be performed in parallel. 
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3.3. Fast Scheme Details 

The key constderations in the Fast scheme are: 

l A dirty page IS transferred from one system to another 
without writing it to disk. If, as a result of this action, 
the page’s ownershlp IS also transferred, then if BM 
were to malntaln a queue of dirty pages, call it Dirty-Q, 
to support deferred and batched writes to disk, then 
the shipped page will be removed from it. The page 
can contain committed and/or uncommitted updates 
from multiple systems. When a dirty page is transferred 
to another system for updating by the latter (ownership 
transfer), It is \he latter system’s responsibility to write 
the page to disk That IS, the system which has the U 
lock on the page (the owner) is the one responsible 
for writing the page to disk. The owner is also respon- 
sible for recovering the page in case the owner fails 
before writing the page to disk. Of course, the owner- 
ship may be further transferred without the page being 
written to disk 

l Since, during the transfer of ownership of a page, BM 
removes the page from Dirty-Q of the transferrlng 
system, the LSN of the page’s earliest unapplied (to 
the disk version of the page) log record is not factored 
tn the computat;on of the restart recovery point which 
#s checkpointed by the previous owner. For example, 
If there is only one dirty page in system Sl and its 
ownershlp is transferred to system S2, then the next 
checkpoint In Sl would result in the recording of the 
restart recovery point to be the start of this checkpoint 
as opposed to the RLSN of the dirty page (see 
:MHLPS89]). But, the RLSNs of all the pages which 
are owned by a recovering system must be factored 
in the calculation that determines the restart recovery 
redo point starting from which redo might have to be 
performed using the encountered log records. 
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Since, during the transfer of ownership of a page, BM 
removes the page from Dirty-Q of the transferrtng 
system, there IS a time period during which if the RLSN 
IS lost (e.g., as a result of an SD complex failure), then 
the recovery of the page would be jeopardized. The 
following scenario shows that: A page was held in U 
mode in system Sl and system S2 requests it in U 
mode. Sl ships the page to S2, removes it from 
Dirty-Q, and releases the lock. Then, Sl’s next check- 
point starts whtch records the restart point which is 
later than the earliest unapplied log record for the 
dirty page which was shipped. Now the complex fails. 
The RLSN is lost and Sl’s and S2’s checkpoint infor- 
mation will not posltion us to include the relevant log 
records of the dirty page. Hence, to correctly deal 
with thts problem, we need to checkpoint GLM’s lock 
table, lncludlng the RLSNs, on a pertodic basis This 
IS a complex-wide checkpoint of the dirty page list. 
The lowest recorded RLSN is used to determine the 
restart redo recovery point during an SD-complex re- 
start. 

A copy of the page is shipped via comm-link, as in the 
Medium scheme. A P-Short-message is sent to the 
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requestor with the lock grant The usage of a stale 
version of the page IS avolded in the same way as In 
the Medium scheme. However, with the Fast scheme, 
if a stale version is cached or the page is not received 
by the time the lock IS granted, the requestor cannot 
read the page from disk and use it as It is since, even 
during ownership transfer, the previous owner does 
not write the page to disk. The requestor first becomes 
the owner of the page, if it hasn’t already become the 
owner as a result of getting the P lock In doing so it 
asks, via the lock request message, that the page be 
written to disk by the previous owner. If the prevtous 
owner has not failed, then it wrttes the page to disk 
and lets the requestor read the page from there. If 
the previous owner has failed, then the requestor 
would recover the page. Such a recovery involves 
reading the older version of the page from disk and 
applying Ihe log records by scanntng the merged lo9 
from the RLSN to the LSN when the ownlnq system 
failed. An upper bound for the latter can be obtalned 
by the new owner by noting, at the time It becomes 
the owner of the page, what the LSN would be if a 
new log record were to be written right then. 

3.3.1. Assigning and Tracking Recover LSN 

With the Fast scheme, since a dirty page’s ownershlp IS 
transferred without first writing it to disk, the page’s 
Recover LSN (RLSN) has to be tracked at GLM to recover 
the page correctly in case the new owner falls before 
the page is written to disk. To accomplish this, BM as- 
signs and tracks RLSN in the BCB when a U lock is 
requested for a page or whenever the page’s state 
changes from nondirty to dirty. BM chooses as RLSN 
the LSN that would be associated with a log record if it 
were to be written now (essentially the end-of-log LSN) 
LLM and GLM initialize the RLSN field of a lock table 
entry to the maximum number that can be stored In that 
field (referred to as Hi-Value). An RLSN value of Hi-Value 
for a page implies that no recovery IS needed for that 
page. When a U lock is requested for a page, the P lock 
request would include the RLSN value asslgned by BM 
BM would request that the value be set condztzonolly 
by LM. LM would set its lock table entry’s RLSN field to 
the supplied value if the current RLSN value at LM IS 

Hi-value. This means that when a dirty page’s ownershlp 
IS being transferred from one system to another. without 
the page being written to disk, the RLSN value at LM is 
not modified. In any case, LM would return to EM the 
RLSN value that it has after it processes the lock re- 
quest. When a U lock is released or downgraded to an 
S lock without the ownership of the page being transferred 
to another system (which can happen only after the cur- 
rent owner writes the page to disk), LM can set RLSN 
to Hi-Value. 

To reduce the log range that would have to be processed 
for page recovery, BM in the owning system pushes the 
RLSN forward after writing the page to disk, but before 
It IS dirtied again, by asking LM to set RLSN to HI-value 
uncondztzonolly. In this case, when the page becomes 
dirty again, BM would have to first update RLSN at LM 
before allowing the update to take place AlternatIvely. 
the RLSN can be pushed after the page becomes drrty 
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again to the higher value tracked in the BCB without the 
value being set at LM to HI-value in between. Pushing 
the RLSN forward is not required by the algorithms pre- 
sented here. This is an optimization to reduce the range 
of the log that would have to be scanned in case a failure 
happens and the page needs to be recovered. 

3.3.2. Recovery from a Single System Failure 

We first discuss the case when the page locks and their 
RlSNs are available from GLM at the time of the restart 
of a failed system. A page which needs redo recovery 
would have a U lock held and its RLSN will not be equal 
to Hi-value. The minimum of the RLSNs of all the pages 
for which U locks were retained by the recovering system 
is taken into account in computing the start point for the 
log scan of the redo pass [MHLPS89]. The merged log 
is scanned during the redo pass for redoing any updates 
which might be missing from the pages. A log record’s 
update would be redone only if the U lock IS held and 
the page’s LSN is less than the LSN of the log record. 
The log is scanned up to End-LSN (the last log record 
written by the recovering system before it failed). 

If a system requests a page lock which is retained in the 
U mode and the failed system has not bagun its recovery 
processing, then GLM can grant the lock to the other 
system along with the message you recover the page. 
This option Improves availability to the data. GLM can 
Indicate, via the P-Short-message, to the requestor the 
need for recovering the page before it is used. With this 
enhancement, under the above conditions, even if only 
the S lock was requested, GLM will grant the U lock to 
make that page recovery possible. 

The P-Short-message would have the following additional 
information: 

l lndtcator -you recover the page. 
l System-ID of the system which retained the lock 

The requestor can query the system merging the local 
logs to determine the End-LSN of the failed system that 
held the U lock. As before, the RLSN kept at GLM would 
be returned when the lock is granted. The requestor can 
then read the page from disk, scan the merged log from 
RLSN to End-LSN of the failed system and recover the 
page When such a recovery is done, the recovered 
page IS marked dirty and placed in the Dirty-Q. 

3.3.3. Recovery from an SD-Complex Failure 

An SD-complex failure is characterized by the loss of all 
the locks at GLM and the inability to recreate at least 
some of them since one or more LLMs would have aiso 
failed This means that for the U mode page locks. the 
LSNs and RLSNs would have also been lost. In such an 
event, the start point for the redo processing scan of the 
log cannot be determined as in the case of a single 
system failure. For this reason, periodically, a system 
takes a GLM checkpoint by first writing a 
Begzn-GLM-Checkpoint log record and then requesting the 
IDS of all pages and associated RLSNs for pages with 
RLSNs not equal to Hi-value from GLM and writes them 
into an End GlM Checicpczrt log record. The following IS 

required to determine the restart redo point after an 
SD-complex failure: 
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l The end_GLM checkpoint log record must be accessed 
and, based on-its contents, the minimum of the RLSNs 
must be determined. If no page had an RLSN value 
smaller than HI-value when the GLM lock table check- 
point was taken, then the above mrnlmum IS set to be 
the LSN of the begin-GLM-checkpoint log record 

l The merged log must then be processed starting from 
the LSN which is the minimum of the LSN of the 
begin-GLM-checkpoint log record and the LSN deter- 
mined in the previous step. This redo processing IS 
similar to the way it is done in ARIES [MHLPS89] 
Until the redo scan reaches the begcn_GLM-checkpoint 
log record, only log records relating to pages in the 
GLM checkpoint log record need to be processed Af- 
ter that point, all log records would have to be pro- 
cessed until the end of the log is reached. 

l The rest of the processing here is mostly the same as 
that for the Medium scheme. But, unlike in the case 
of the Medium scheme, here the redo pass for al 1 the 
systems must be performed by one system by dotng 
a single scan of the merged log. The easiest thing to 
do at the end of this pass is to write to disk all the 
dirty pages. If this is not desirable, then the RLSNs 
can be determined as redo is performed by associating 
with each page the LSN of that log record whose redo 
causes the page state to go from nondirty to dirty. 
The lock table entries for the dirty pages that are in 
the buffer pool at the end of the pass can be tnitlaliled 
from those RLSNs. Once the redo pass IS completed 
by a single system on behalf of all the falled systems, 
the undo passes can be performed In parallel by the 
individual systems, as in the Medium scheme, 

3.4. Super-Fast Scheme Details 

In addition to the key points described for the Fast 
scheme, the following points also apply to the Super-Fast 
scheme: 

l To enforce the WAL protocol, a page cannot be written 
to disk until all the log records written for that page 
by the different updating systems have been forced to 
stable storage. The tracking of these log records is 
done as follows: Associated with each dirty page, there 
are a certain number of slots Each slot IS used to 
track the LSN of the latest log record written by one 
of the systems which updated the page and whose 
updates have not yet been reflected In the disk version 
of the page. If a slot is available, then an updating 
system notes (or modifies its already existing entry) 
the LSN of the log record it just wrote for this page. 
Otherwise, the system would follow the Fast scheme 
when it is asked to transfer ownership of the page. 
That is, it would force the log before transferring the 
page. If a dirty page’s ownership IS transferred without 
some updating systems’ logs having been forced to 
the requisite points, then the information in the slots 
is also passed on to the new owner along with the page. 

l Before writing a dirty page to disk, its owner ensures 
that all the systems which updated the page have 
forced their respective logs up to the LSNs noted in 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

the corresponding slots (see below for a method to do 
this check efficiently). If the log is not already known 
to have been forced up to the desired LSN in another 
system, then the owner sends a message to that sys- 
tem and requests it to do so. The interesting question 
that now arises is what happens if such a system had 
farled and hence It wouldn’t respond. We may have, 
in the buffer pool, a dirty page which has some updates 
for which there are no log records on stable storage. 
Therefore, the page must be recovered by the owner 
by reading its old version from disk and redoing its 
updates using the merged log. Before doing such a 
page recovery, all surviving systems which had pre- 
viously updated the page must be made to force their 
log records up to the requisite LSNs. This is required 
because It would be incorrect to miss a log record 
which is not yet forced and which relates to an update 
made by another system which may be committed 
later on. 

l On a periodic basis, each system would register with 
GLM the highest LSN up to which that system’s log 
has been forced to stable storage. This highest LSN 
is referred to as Hi-LSN. GLM locates the entry cor- 
responding to the system-ID and replaces its Hi-LSN 
value. Periodically, when it sends a message to a 
particular system, GLM would forward Hi-LSNs of all 
the other systems. Each system has a vector of the 
other systems’ IDS and their respective Hi-LSNs. This 
vector’s information is updated based on the messages 
from GLM. 

4. Comparisons with Existing Work 

We know of no existing work where 

fine-granularity (e.g., record) locking is supported with 
as much flexibility (e.g., semantically-rich modes of 
locking) as our schemes do, 
the combinatron of no-jorce and steal buffer manage- 
ment policies are supported, 
the extent of data availability under failure conditions 
is as high as with our schemes, 
recovery issues are addressed for the different 
schemes in as much depth as we have done, 
partial rollbacks are supported, 
the Super-Fast scheme is described, and 
pages are shipped using datagrams. 

4.1. Rahds Scheme 

The only paper in the SD area that discusses recovery 
to a reasonable extent in the context of concurrency and 
coherency control is [Rahm89]. In the following, we 
compare our work with Rahm’s protocols in that paper. 

Rahm’s coherency control and recovery protocols are 
designed for supporting a very particular form of con- 
currency control protocol called primary copy locking 
(PCL). With PCL. the data base is divided into logical 
partitions and each system is assigned the synchroniza- 
tion responsibility (or primary copy authority (PCA)) for 
one partition. This PCA/PCL method increases the burden 
on the data base administrator who now has to decide 
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how to partition the data base into logical partitions. 
This is very similar to the data base design problem in 
the partitioned (shared nothing) architecture [PMCLSSO, 
Shoe86]. 

When a system fails, access to all the data for which 
that system was the PCA is denied, In our case, only 
the data for which the failed system had retained locks 
would be unavailable until recovery is completed for the 
failed system. Almost always, the latter data would be 
a much smaller portion of the data base than would be 
the case with the former data. 

The detection technique that we employ is similar to the 
technique used by Rahm. The LSN for a locked page is 
maintained only at the PCA system for that page, Rahm 
supports essentially only page locking, although he hints 
at how the protocols might be extended for some very 
PeStFtcted forms of record locking. This means that 
index concurrency control methods like ARIESIKVL 
[MohaSO] and ARIES/If4 [MoLe89] cannot be supported 
in the SD environment by his protocols. 

Rahm’s protocols support only physical, not logical or 
operation, logging [MHLPS89]. Further, they do not sup- 
port partial rollbacks. No logging is done of updates 
performed during rollbacks of transactions. That is, com- 
pensation log records (CLRs) are not written, As a result, 
media recovery requires a two-pass algorithm to make 
sure that no log records written by uncommitted trans- 
actions are redone. Also, it requires that image (archive) 
copies be taken with locking being done on the copied 
data to ensure that no uncommitted data is copied. With 
this approach, image copy will take a longer time to 
finish, will be more expensive in terms of CPU overhead 
and there will be more interferences between the image 
copy operation and (regular) transactions. We support 
the cheaper fuzzy image copy method of [MHLPS89]. 

Rahm supports only the no-steal buffer management 
policy (i.e., pages with uncommitted data cannot be writ- 
ten to disk). As argued in [MHLPS89], this is an inflexible 
and expensive policy, ,especially when fine-granularity 
locking is being done. This will be the case even if large 
amounts of real memory are available. Also, too much 
bookkeeping is needed to enforce the policy. 

Like us, Rahm also allows a modified page to be shipped 
over a comm-link. Before a page is written to disk, it 
may be modified by many systems. However, in Rahm’s 
scheme, only the PCA node for the page has the authority 
to write the page to disk. Consequently, at commit time, 
an updating system has to send pages updated by the 
transaction to the pages’ respective PCA systems. This 
lead8 to wasted buffer storage since the updated version 
of the page is present in at least two buffer pools when 
the updating system is different from the PCA system 
for the page. Further, when a page is modified in any 
system other than its own PCA system, double logging 
is required: logging is done in the modifying system as 
well as in the PCA system for that page. For this reason, 
the updating system sends the log records written by a 
transaction to the PCA system for the affected data at 
commit time. These commit time actions can significantly 
increase the communication traffic, in terms of volume 
of data, on the intersystem communication network. 
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They also increase the complexity of the software since 
log records have to be separated by the PCA nodes of 
the updated data. In our schemes, any system which is 
currently the owner (updater) of the page has the au- 
thority to write the page to disk. 

Rahm does not describe shipping the page with the 
Super-Fast scheme. That is, not forcing the log before 
shipping the page. We addressed the page-recovery is- 
sues when the Super-Fast scheme is used. 

Rahm does not mention his assumptions about the char- 
acteristic of the communication protocol (guaranteed de- 
livery or datagram) used for shipping the page. Rahm’s 
protocols ship the page with the lock grant message if 
the page is present in the buffer pool of the PCA system 
and that version of the page is not already present in 
the buffer pool of the locking system. 

4.2. Dias et a2. ‘s Scheme 
An approach to concurrency and coherency control is 
presented by Ijias et al. in [DIRY89]. There are some 
major differences between our approach and theirs. they 
do not deal with most of the failure and recovery impli- 
cations of their design. They support only page-level 
granularity of locking by transactions between systems 
for reads and updates. Their GLM treats transactions, 
rather than LLMs, as the owners of locks. This means 
that the number of locks acquired, and the message and 
processing overhead will be higher if multiple transac- 
tions within a system access the same page. Further, 
separate page-level (global) locks are used for coherency 
control and these locks are acquired by BM. The message 
overhead is reduced for these extra locks by piggybacking 
them on transaction lock requests. Due to space con- 
straints, we did not describe here our optimized protocols 
for page locking by transactions. Those protocols 
[MoNaSlb] are even more efficient than the protocols 
of Dias et al. 

Dias et al. require that the system always write pages 
modified by a transaction to disk or an intermediate 
shared storage before commit. Hence, a requestor al- 
ways reads the page from disk or the intermediate stor- 
age. For their Check-on-Access scheme, they do not 
track the LSN of the page at GLM. Instead, when a page 
is updated and the updating transaction releases its 
locks at GLM, their scheme invalidates the page at GLM 
for the other systems by releasing the other systems’ 
BM locks, If any, for that page. 

4.3. DECs VAXcluster Scheme 

As mentioned before, DEC’s VAX DBMS and VAX Rdbl 
VMS [KrLS86, ReSW89J support the SD environment in 
a VAXcluster with a detection scheme very similar to 
ours. They also use version numbers. Like IMS, those 
systems also force updated pages to disk at commit 
time, use physical logging and use the simple scheme 
for page transfer between systems, 

Unlike our assumption that each system has its local 
log, in the VAXcluster, all the sharing systems use a 
single global log. Having a single log for direct use by 
all the systems becomes expensive since every write to 
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theglobal log requires acquiring a global lock to serialize 
the space allocation in the log file. In the VAXcluster, 
even single system failures are very disruptive, This is 
because, locking activities across all the sharing systems 
are suspended until the failed system’s recovery is com- 
pleted by one of the surviving systems. Because of the 
force policy being used, recovery involves only rolling 
back uncommitted transactions. This could take a very 
long time if some long update transactions which were 
executing on the failed system have to be rolled back. 

5. Summary 

A transaction system, such as DB2, which does not write 
an updated page to disk at transaction commit has the 
current version of a page in its buffer pool. In an SD 
environment, each sharing transaction system instance 
has its own buffer pool. Therefore, when a system re- 
quests a page whose current version is cached in another 
system (referred to as the owner), the owner must pro- 
vide the page to the requestor. We proposed efficient 
schemes by which the owner provides a copy of the 
current version of the page to the requestor without disk 
I/OS. These schemes improve transaction response time 
and concurrency. Techniques which enhance availability 
of data in the presence of failures were also described. 

We described how the owner ships the page, the reques- 
tor ensures that it always uses the current version of 
the page, and the system recovers the page in case of 
failures, The methods presented here do not rely on any 
timeout mechanisms. We did not discuss media recovery 
specifically since there is nothing special that needs to 
be done for it, except for the use of the merged log. The 
latter is very similar to the way recovery from an SD- 
complex failure is handled in the Fast and Super-Fast 
schemes. The algorithm for fuzzy image (dump) copy 
proposed in [MHLPS89) can be easily adapted for use 
in the SD environment. 

In the following, we summarize what we consider to be 
the novel features of our schemes. 

1. Support for the no-force and steal buffer manage- 
ment policies, and fine-granularity locking and partial 
rollbacks in a flexible fashion, thereby accommodat- 
ing even the high-concurrency index locking proto- 
cols like ARIES/IM [MoLe89] and ARIES/KVL 
[MohaQO]. Also, support for nested transactions by 
using the ARIES/NT logging and recovery method 
[RoMoSQ]. 

2. The concept of keeping the recovery starting point, 
referred to as the Recover LSN (RLSN) of the page, 
at the lock manager and the use of a merged log to 
allow transfer of committed or uncommitted data 
from one system to another without having to write 
the modified page to disk first. 

3. The idea of communicating the LSN of the latest 
update that each system made to a page so that a 
page can be sent through and modified by a series 
of systems without the modifying systems having to 
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write the page or the log to disk before they pass 
on the page to a succeeding system in the series. 

4. The use of Recover LSN to enhance availability of 
data by allowing the recovery of a page by one 
system when another system has failed while owning 
the update privilege on the page. 

5. The use of a Short-message as grant data with a 
lock to ensure that the requestor never uses a stale 
version of the page which was transferred via a 
datagram. 

6. The idea of checkpointing the GLM lock table to 
recover in the case of an SD-complex failure (i.e., 
when locks are lost). 

7 The idea of transferring the page via datagram con- 
currently with the disk write which reduces the pro- 
gramming system complexity by not requiring a 
merged log for restart recovery. 

The choice of a particular scheme for page transfer can 
be based on the following criteria: 

Intersystem Contentionfor thePage Forlowcontention 
data, Medium scheme should suffice; for high conten- 
tion data, fast and Super-Fast schemes should be con- 
sidered. 

Requfrement of a Merged Log For Fast and Super-Fast 
schemes, restart recovery requires a merged log. For 
the Medium scheme, restart recovery does not require 
a merged log. Of course, with all schemes, for media 
recovery, a merged log is required. 

Record Locking Versus Page Locking With record lock- 
ing, the Fast and the Super-Fast schemes should be 
considered since the intent is to improve concurrency 
within a page. With page locking, the Super-Fast 
scheme does not apply [MoNaQlb]. 

Complexity of Programming The complexity of program- 
ming for the different schemes in increasing order is: 
Simple, Medium, Fast and Super-Fast. 

Our schemes can be easily incorporated in SD systems 
which are currently using schemes which are less efficient 
and which also have poor availability characteristics. 
Our schemes should also apply to distributed virtual 
memory and distributed, recoverable file systems in the 
SD environment and to the currently popular client-server 
object-oriented DBMS environments where the clients 
cache data. 
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