
A Performance Evaluation of Multi-Level Transaction Management* 

Christof Hasse and Gerhard Weikum 

Computer Science Department 
ETH Zurich 

CH-8092 Zurich, Switzerland 
E-Mail: {hasse,weikum}@inf.ethz.ch 

Abstract 
Multi-level transactions are a variant of open nested 
transactions in which the subtransactions correspond 
to operations at different levels of a layered system ar- 
chitecture. The point of multi-level transactions is that 
the semantics of high-level operations can be ex- 
ploited in order to increase concurrency. As a conse- 
quence, undoing a transaction requires compensation 
of completed subtransactions. In addition, multi-level 
recovery methods have to take into account that high- 
level operations are not necessarily atomic if multiple 
pages are updated in a single subtransaction. This pa- 
per presents a performance evaluation of the multi-le- 
vel transaction management that is implemented in the 
database kernel system DASDBS. In particular, it is 
shown that multi-level recovery can be implemented in 
an efficient way. We discuss performance measure- 
ments, using a synthetic benchmark for processing 
complex objects in a multi-user environment. 

1. Introduction 
Multi-level transactions are a variant of open nested 
transactions in which the subtransactions correspond 
to operations at different levels of a layered system ar- 
chitecture [BSWSS]. The point of multi-level transac- 
tions is that the semantics of high-level operations can 
be exploited in order to increase concurrency. For ex- 
ample, two “deposit” operations on a bank account are 
commutative and can therefore be admitted concur- 
rently (e.g., on behalf of two funds transfer transac- 
tions). However, executing such high-level operations 
in parallel requires that a low-level synchronization 
mechanism takes care of possible low-level conflicts, 
e.g., on indexes or data pages. In relational DBMSs 
where records do not span pages, this low-level syn- 
chronization is usually implemented by page latches, 
i.e., cheap semaphores that are held while a page is 
accessed. For advanced DBMSs with complex high- 
level operations that may access many pages in a dy- 
namically determined (Le., not pre-defined) order, the 
simple latching method is not feasible since it cannot 
ensure the Indivisibility of arbitrary multi-page update 
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operations. Rather, high-level operations need to be 
executed as subtransactions that are dealt with by a 
general concurrency control mechanism at the lower 
level. This principle, which can be applied to an arbi- 
trary number of levels, ensures that the semantic con- 
currency control at the top level need not care about 
lower-level conflicts. 
In this paper, we address multi-level transaction man- 
agement in advanced DBMSs that deal with complex 
objects, by applying multi-level transaction manage- 
ment to the following two levels: 
. At the object level Ll , semantic locks are dynamical- 

ly acquired and held until end-of-transaction (EOT) 
according to the strict two-phase locking protocol. 
The semantics of the high-level operations is ex- 
ploited in the lock modes and the lock mode compat- 
ibility table, which is in turn derived from the commu- 
tativity properties or semantic compatibility [Ga83, 
SZ89] of the operations. In prlnclple, one could even 
exploit state-dependent commutativity [O’N86, 
We88], but this is beyond the scope of this paper. 

l At the page level LO, page locks are dynamically ac- 
quired during the execution of a subtransaction and 
are released at end-of-subtransaction (EOS). Note 
that, unlike in conventional nested transactions 
[Mo85], the locks of a subtransaction are not inher- 
ited by the parent. Releasing the low-level locks as 
early as possible while retaining only a semantically 
richer lock at a higher level is exactly why multi-level 
transaction management allows more concurrency 
than single-level protocols. 

An example of a (correct) parallel execution of two mul- 
ti-level transactions is shown in Figure 1. Suppose an 
office document filing system where documents have a 
complex structure and can span many pages Users 
modify documents by specific high-level operations 
such as 1) “change the font of all instances of a particu- 
lar component type (e.g., text paragraphs)” and 2) 
“change the contents of a figure”. These two Change 
operations on the same document are commutative; 
however, since they may access many subobjects of 
the document (e.g., because the layout of the entire 
document is recomputed), the potential conflicts at the 
lower level have to be dealt with. In Flgure 1, this is 
done by acquiring locks on the underlying pages that 
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are released at the end of the subtransactions Ttt, TQ, 
and T21, respectively. 

Transactions 
al the 
Object Lcvcl 
(Ll) 

Sub!ransaclions 
at the 
Page Level 
u-0) 

Flg.1: Parallel Execution of Multl-Level Transactions 
Similar examples arise in advanced business applica- 
tions with large amounts of derived data. For example, 
in foreign exchange transactions, a forward transaction 
(e.g., a currency swap) may have to compute a large 
number of future positions for risk assessment (e.g., to 
compute how many Japanese Yen a bank will hold at a 
particular date). In such an application, the potential 
data contention can be reduced by updating the 
derived data within subtransactions that release low- 
level locks early. 
An Inherent consequence of multi-level locking is that 
transactions can no longer be undone by simple state- 
oriented recovery methods at the page level. Rather, 
since page locks have been released at EOS, com- 
pleted subtransactions must be compensated by in- 
verse high-level operations. These operations are in 
turn executed as so-called compensating subtrans- 
actlons [MGG86, Wei87, BSW88, GS87, KLSSO, 
SDP91, We89, WeiSl]. In the example of Figure 1, un- 
doing transaction T1 would require two inverse Change 
operations on y and x, i.e., two additional subtransac- 
tions that compensate the completed subtransactions 
T12 andT1 I (reversing the order of the original subtrans- 
actions). 
Compensating subtransactlons are necessary for both 
handling transaction aborts and crash recovery after a 
system failure. An Important prerequisite is that both 
regular subtransactlons and compensating subtrans- 
actlons have to be atomic. Otherwise, the recovery af- 
ter a crash may be faced with a database state that is 
not sufficiently consistent to perform the necessary 
high-level undo steps. For example, the storage struc- 
tures of a complex object may contain dangling point- 
ers, or some derived data may only partially reflect the 
primary updates. If a subtransaction modifies multiple 
pages, as shown in Figure 1, a low-level recovery 
mechanism at the page level is necessary in order to 
provide subtransaction atomicity. This problem is chal- 
lenging in that a straightforward implementation of mul- 
ti-level recovery may cause excessive logging and 
could thus diminish the benefits of the enhanced con- 
currency of multi-level transactions. 
Theoretical and practical issues of multi-level transac- 
tion management have been addressed by a variety of 
papers [BBG89, BF89, BR90, BSW88, 8088, CF90, 

FLMW88, GS87, HH88, Ma87, MGG86, MR91, RGNSO, 
SDP91, SG88, Sh85, WS84, WS91, Wei86, Wei87, 
WHBMSO, WeiSl]. However, to our knowledge, none of 
the previous work has presented a full implementation. 
Furthermore, only two papers have presented perform- 
ance figures. [wei contains performance measure- 
ments with a multi-level transaction manager built on 
top of the commercial Codasyl database system UDS; 
the results were strongly affected by the fact that UDS 
could not be changed in these experiments. [BR90] 
contains simulation results on multi-level concurrency 
control only; i.e., disregarding recovery issues. 
This paper presents a performance evaluation of a full- 
fledged implementation of multi-level transaction 
management. The implementation is integrated in the 
database kernel system DASDBS [SPSWSO]. The pa- 
per presents performance measurements, based on a 
synthetic benchmark for complex-object processing. 
In particular, it Is shown that multi-level recovery can be 
implemented in an efficient way. The implemented sys- 
tem even allows that subtransactions of the same 
transaction are executed In parallel. However, for 
space limitations, intra-transaction parallelism is not 
discussed in this paper (see (WH91] for performance 
results with varying degrees of inter- and intra-transac- 
tion parallelism). 
The rest of the paper is organized as follows, Section 2 
presents our implementation of multi-level transaction 
management, with emphasis on the performance-criti- 
cal recovery component. Section 3 discusses the re- 
sults of a comprehensive series of performance experi- 
ments Section 4 compares our implementation with re- 
lated work, especially the ARIES recovery method 
[Mo89]. We conclude with an outlook on future work 
that could further enhance the performance of multi-le- 
vel transaction management. 

2. Implementation of Multi-Level 
Transaction Management in DASDBS 

Our lock manager can manage multiple lock tables that 
are specified to handle particular types of lockable 
items (e.g., pages, ob)ects, objects of different object 
types, Index keys, keys of different indexes, conjunc- 
tive predicates, etc.). In addition to the usual lock 
modes “shared” and “exclusive”, semantic lock 
modes such as “increment” can be incorporated by 
specifying the lock mode compatibility matrix at the 
creation time of a lock table [SS84]. In the performance 
experiments that are described in Section 3, this fea- 
ture was not exploited; rather, shared and exclusive 
locks were acquired on sets of object identifiers. 
Our implementation of multi-level recovery is illus- 
trated in Figure 2. To ensure the atomicity of transac- 
tions, undo log records are written at the object level 
Ll, Each of these log records contains Information 
about the compensating subtransaction that is neces- 
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sary to undo an executed high-level operation. To en- 
sure the persistence of transactions, redo log records 
are written at the page level LO. Compared to opera- 
tion-oriented redo at the object level (as in System R 
[Gr81]), page-level redo saves work during a warm- 
start since it merely reconstructs pages rather than re- 
executing resource-intensive high-level operations. 
Transactions 

v 

Operation Log 
at the Object Level 

Ll Sub- + 
transactions 

V 
LO Actions 

Fig.2: Archltecture of the DASDBS 
Multi-Level Transaction Management 

Our implementation of page-level redo logging is 
based on the DB Cache method jEB84); that is, entire 
page after-images are written to a sequential log file. 
Compared to entry logging (i.e., logging page modifi- 
cations), the DB Cache method generates more log 
volume. Note, however, that after-image logging does 
not cause a higher number of log I/OS, provided that 
multiple pages can be sequentially written in a single 
set-oriented I/O. On the other hand, during a warm- 
start, a recovery method with entry logging is slower 
than a method with after-image logging. This is be- 
cause pages have to be fetched from the database be- 
fore the update that is described in a log record can be 
installed, whereas after-images can be directly written 
into the database right after they have been read from 
the log. That is, after-image logging saves a substan- 
tial number of random I/OS during the warmstart. In aci- 
dition, the DB Cache method has nice properties with 
respect to log space management, as the log file is dy- 
namically compacted without having to take check- 
points [EB84]. For these reasons and for simplicity, we 
have adopted the DB Cache method in DASDBS. Note, 
however, that our multi-level recovery architecture 
would allow LO entry logging (e.g., [MLC87]) as well. 

Ensuring Subtransaction Atomicity 

A requirement that makes multi-level recovery difficult 
is subtransaction atomicity. Essentially, this is also en- 
sured by applying the DB Cache method to subtrans- 
actions at the page level LO as follows: 
l before-images of incomplete subtransactions are 

kept in main memory as temporary page versions in 
the buffer pool, 

l modified pages are guaranteed to remain in the buffer 
pool until EOS (which is usually referred to as a No- 
Steal policy [HR83]), and 
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. the after-images of a subtransaction are written to the 
LO log file atomically at EOS, by including a special 
(EOS) flag in the header of the last page of the written 
after-images, 

In addition, before writing a subtransaction’s after- 
images, the corresponding high-level undo log record 
must be written to the Ll log file, in order to ensure 
transaction atomicity.* The log records that are written 
for the example of Figure 1 are shown in Figure 3. Oper- 
ations with an overbar denote inverse operations; 
“Change” operations are abbreviated to “C”. For cor- 
rectly handling non-idempotent high-level operations 
during a warmstart, the Ll log records and the after- 
images that are written at LO include a subtransaction 
identifier in a special header field (see [WHBMSO, 
WH31] for further discussion). Tine warmstan after a 
crash consists of the fOlIOWing two Steps: 

1 I 

14~;&-~ovel J& & 

8 

Low-Level TII Tll 
Red0 LO8 P 4 

1) 

2) 

Fig.% Log Contents for the Example of Fig.1 

Redo pass: During a forward pass on the LO redo 
log, after-images are loaded into the buffer pool 
and written into the database at the discretion of the 
buffer manager. The redo pass ensures transaction 
persistence and subtransaction atomicity. After- 
images after the latest EOS-flagged after-image 
are ignored since they belong to an incomplete 
write at EOS. 

Undo pass: After the redo pass, a backward pass is 
performed on the Ll undo log. The undo pass en- 
sures transaction atomiclty. Transactions for which 
an EOT log record is found are winners and do thus 
not need any processing. For loser transactions, 
compensating subtransactions are performed ac- 
cording to the contents of their log records. 

Deferred Log Writes 

The multi-level recovery algorithm described above 
has been implemented in a former version of DASDBS. 
This algorithm has a potential performance problem in 
that it may cause excessive log I/OS for ensuring the 
atomicity of subtransactions. This is because after- 
images of a subtransaction are forced to disk immedi- 
ately at EOS. In the example of Figure 1, this means that 
an after-image of page p is written to disk at the EOS of 
Tl I and the EOS of T21, as shown in Figure 3. 
While there are generic techniques to reduce these I/O 
costs such as batching log I/OS of multiple transac- 
tions [GK85], there is a more fundamental way to cut 

* This is simply a consequence of the write-ahead log prin- 
ciple. 
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down the log I/O costs of multi-level transactions. The 
general idea is to defer thewriting of a subtransaction’s 
after-images until EOT rather than forcing them at EOS. 
This would make multi-level logging as efficient as 
conventional single-level logging, e.g., the original DE3 
Cache method [EB84]. However, deferring all LO log 
writes until EOT is not a correct solution. The reason is 
that there may be subtransactions of different transac- 
tions such that the after-image sets of the subtransac- 
tions are overlapping, i.e., have a page in common. 
This is possible because page locks are released at 
EOS. In such a situation, forcing the after-images of 
one subtransaction at the EOT of its parent may violate 
the atomicity of other subtransactions. 
Consider the example of Figure 1. Ideally, we would 
want to write the after-images of T11 and TQ not before 
the EOT of Tl. The EOT of T2 requires writing the after- 
images of T2,, i.e., pages p and r as of the EOT time of 
T2, Writing these pages to the LO log, however, would 
implicitly write the modifications that Tll made on pI 
too. Then, if the system crashed before the EOT of T, 
(i.e., before the after-images of T,, are written), the 
redo pass of the warmstart would violate the atomicity 
of TI1 by restoring the update on p while disregarding 
Tll’s update on q. Note that this problem would arise 
also with entry logging (rather than after-image log- 
ging) because subtransactions of different transac- 
tions may have modified a common byte through com- 
mutative high-level update operations. 
The same problem, in a slightly different flavor, arises 
with respect to subtransaction T,2. For efficient 
memory use, the after-images reside in regular buffer 
frames rather than being copied to a separate LO log 
buffer. For the same reason, we do not want to keep 
multiple versions of a page in the buffer pool when 
there 1s no active subtransaction that has modified the 
page; that is, the temporary before-images are dis- 
carded at EOS. Therefore, at the EOT of T2, only one 
version of page r resides in the buffer pool. This version 
contains the updates of the completed subtransaction 
T12 even though T12 was serialized after T2,. Thus, writ- 
ing this after-image of r to the LO log file would violate 
the atomicity of TQ. 
These and other related problems have been dis- 
cussed more rigorously in [WHBMSO] and have led to a 
solution that is based on the notion of persistence 
spheres. The persistence sphere PS(T$ of a subtrans- 
action Ttj is defined as follows: 
l PS(T$ contains all pages that were modified by Tij. 
l If there is a page p in PS(Ttj) and a subtransaction Tkt 

such that p is also in PS(Tkt) or Tkt has read p after the 
EOS of Tt], then PS(Ttj) COMainS all pages of PS(Tkr); 
that is, the persistence spheres of the two subtrans- 
actions are merged. 

The persistence sphere PS(TJ of a transaction Ti is the 
union of the persistence spheres of its subtransactions. 

Now, our solution to the deferred log write problem is 
the following. At the EOT of a transactionTi, all pages in 
the persistence sphere of Tt must be written to the LO 
log. * In the example of Figure 1, the subtransactionT2, 
has modified pages in common with T11 as well as TQ. 
Thus, at the EOT of T2, the persistence sphere of T2 
contains the pages p and r that were modified by T2’s 
own subtransaction Tzl and the pages q and s that 
were modified by T,, and T12, respectively. 
Persistence spheres are written atomically to the LO log 
file, by setting the EOS flag in the header of the last 
page. As discussed above, a persistence sphere may 
contain updates of completed subtransactlons that be- 
long to incomplete transactions. These subtransac- 
tions will have to be compensated if the system 
crashes before the EOT of their parent. To be able to do 
so, the Ll undo log must be forced before the LO log I/ 
0. In addition, it seems that immediately after the writ- 
ing of the persistence sphere is completed, another Ll 
log I/O is often necessary in order to force the EOT log 
record of the committing transaction that caused the 
writing of the persistence sphere. Fortunately, this sec- 
ond Ll log I/O can be avoided by including an addition- 
al EOT flag and the number of the committing transac- 
tion in the header of the last page of the persistence 
sphere. An EOT log record is nevertheless created in 
the Ll log buffer pool, but need not be forced before the 
next compaction of the LO log file that would discard the 
after-image that contains the EOTflag. The log records 
for the example of Figure 1 are shown in Figure 4. 

.,:,,1mb 
L 

Persistence Sphere PS(T2) 

Flg.4: Log Contents of the Multi-level Recovery 
Method with Deferred Log Writes 

A nice property of our deferred log write scheme Is that 
it does not affect the warmstart procedure after a crash. 
That is, the warmstart simply requires a forward pass 
on the LO redo log and a backward pass on the Ll undo 
log, as described above. During the undo pass, both 
LO and Ll logging are again in effect to ensure the 
atomicity of compensating subtransactions and to 
keep track of the progress that is made. A detailed dis- 
cussion of the warmstarl procedure is contained in 

l In addition, replacing a dirty page p in the buffer pool re- 
quires forcing to the log all pages in the persistence sphere 
of the last completed subtransaction that modified p (see 
[WHBMSO]). 
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[WHBMSO, WH91]. The presented method for deferred 
log writes has been implemented in DASDBS; the de- 
tails of managing persistence spheres are described in 
DFJH91J. 

3. Performance Evaluation 
3.1 Description of the Experiments 

In this subsection, we describe the experiments that 
were performed to evaluate the performance of our al- 
gorithms for multi-level transaction management. We 
compared the following three strategies, all of which 
are implemented in DASDBS: 
l strategy 13, page-oriented single-level transaction 

management, using strict two-phase locking on 
pages and the DB Cache method for recovery, 

l strategy S2, two-level transaction management with 
log writes at each EOS, and 

l straregy SYPS, two-level transaction management 
with deferred log writes based on the notion of per- 
sistence spheres, as described in Section.2. 

Since the logging overhead was one of the main as- 
pects that we wanted to investigate, we summarize the 
principal log l/O costs of the above three strategies in 
Figure 5. 

Strateav Sl Strateav S2 Strateav SPIPS 

Fig.!? Log I/O Costs of Recovery Strategies 
Our performance evaluation is based on a synthetic 
benchmark which follows some ideas proposed in 
[DFMVSO]. The benchmark has the following character- 
istics, as illustrated in Figure 6. 
Our test database consists of 1000 complex objects 
(COs) each of which consists of 1000 “own” subob- 
jects (SOS) and 100 references to “foreign” subob- 
jects, i.e., subobjects that are owned by other complex 
objects. Thus, SOS can be referentially shared by multi- 
ple COs; however, each SO is owned by exactly one 
CO. The forelgn SO references of a CO are generated 
by selecting a CO according to an 80-20 rule and a SO 
within the selected CO according to a 50-50 rule. That 
is, 80% of the foreign SO references point to SOS that 
are owned by 20% of the COs in the database. This re- 
flects the skewed distribution of object relationships in 
most real-life applications. In our benchmark, the 
80-20 rule and the 50-50 rule were implemented by ap- 
plying a linear transformation to a normal distribution of 
random numbers. 
The 1000 “own” SOS of a CO constitute a storage clus- 
ter that consists of 10 contiguous pages, with a page 

Database: Workload: 
1000 complex objects (COs) 
each with 1000 “own” subobiects (SOS) 
and references to 100 “fore&” Sds ’ 
(10 pages per CO) 

105 pa&$.%& c operations on 

I 
. . I / 

cos . \ 

Page 1 Page 2 Page 10 

k J 

0 accesses lo “own” SOS 
f accesses lo “foreign” SOs 
both with update prob. u 

Fig. 6: Database and Workload of the Experlments 
size of 2KBytes. The first page of each storage cluster 
contains the CO header, i.e., a directory of SO refer- 
ences. The total database size is 10000 pages, i.e., 20 
MBytes. 
The workload of our benchmark consists of a single 
transaction type which performs c complex high-level 
operations each on a different CO. Each of these syn- 
thetic high-level operations accesses o own subob- 
jects and f foreign subobjects of a CO. A subobject is 
modified with probability u. These updates do not af- 
fect the CO header; that is, the header page of a CO is 
read-only to avoid an obvious data-contention bottle- 
neck in the benchmark. The COs that are processed by 
a transaction are selected according to an 80-20 rule, 
the own SOS within a CO are selected according to a 
50-50 rule, and the foreign SOS are selected to a uni- 
form distribution as the references themselves are al- 
ready non-uniformly distributed (see above). Accord- 
ing to [Ha87], this skewed distribution Is rather conser- 
vative compared to the access skew of many real-life 
applications. 
In the multi-level transactlon management strategies 
S2 and S2/PS, each high-level operation on a CO cor- 
responds to a subtransaction. At the object level, each 
high-level operation acquires shared locks on the set 
of accessed SOS, using object identifiers as the actual 
lock items. For modified SOS, these locks are acquired 
in exclusive mode. At the page level, all accessed 
pages are locked in shared mode, with conversions to 
exclusive locks for modified pages. In the strategies S2 
and S2/PS, all page locks are released at EOS (i.e., 
when a high-level operation completes), whereas in 
the single-level transaction management strategy Sl, 
all page locks are held until EOT. 
The experiments were designed as a stress test for 
transaction management on complex objects, with a 
small database and fairly long update transactions. All 
measurements were performed with DASDBS running 
on a 12-processor Sequent Symmetry shared-memo- 
ry computer, with a page buffer pool of 2 MBytes. Each 
run of the experiments was driven by a fixed number of 
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c = 12 (number of 
CO operations) 

o= 10 (number of 
own SO accesses) 

f=O (number of 
foreign SO accesses) 

u = 20% (update probability) 

01 I 
0 2 4 6 8 lo 12 14 16 18 2oDMp 

a) Throughput 
36 
30 
24 
18 
12 
6 
0 

c) Total Lock Walt Time 
I _I 

DMP 

01 0 2 4 6 8 10 12 14 16 18 2oDMp -s1 

b) Response Time 
-*--- s2 
--- S2IPS 

40 * --L----w- -Sl 
0 .--.- 

0 2 4 6 8 101214161820DMp 
s2 

--- SZIPS 
d) LO Log I/O Rate 

,:,: :::::):::::k:,y::: :.: :,:,., ., ,.,.: ,’ 
0 2 4 6 8 10 12 14 16 18 2ODMP 0 2 4 6 8 10 12 14 16 18 2ODMP 

e) Persistence Sphere Size 
Fig. 7: Performance Results of the Baseline Experiment with Disjoint Complex Objects 

processes that execute transactions. This number of 
processes restricts the maximum number of transac- 
tions that can be concurrently executing, and is referred 
to as the degree of multlprogramming (DMP). In !he 
experiments, the DMP was systematically varied for 
different runs. 

3.2 Results for Disjoint Complex Objects 

In this section, we discuss the performance results for 
the case without accesses to foreign subobjects (i.e., f 
was set to 0). We first discuss the results of a “baseline 
experiment” with c = 12 complex-object operations 
per transaction, o = 10 own-subobject accesses per 
complex-object operation, and update probability 
u = 20%. We have also performed a sensitivity analysis 
of these parameters, as discussed below. In the follow- 
ing, we discuss the key observations from these ex- 
periments. 
Overall performance: 
In all experiments, both two-level strategies S2 and 
S2/PS clearly outperformed the one-level strategy Sl. 
Transaction throughput and response time were im- 
proved by factors of up to 2.5 (i.e., more than two times 
higher throughput) and 2.4 (i.e., more than two times 
shorter response time). Figures 7a and 7b show 
throughput and response time as a function of the DMP, 
where the DMP was varied between 1 and 20. Maxi- 
mum throughput was reached at a DMP of 12. 
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Lock conflicts: 
The performance gains of the two-level strategies re- 
sult from the fact that the performance of Sl is limited 
by data contention whereas S2 and S2/PS have rela- 
tively few lock conflicts. For strategy Sl , we observed a 
conflict rate (i.e., ratio of lock waits to lock requests) of 
1.6 percent at a DMP of 12. This may appear accept- 
ably low. However, the specific page reference pattern 
of our benchmark, with high locality within a complex 
object, seems to underrate the impact of the lock con- 
flict probability. In fact, the total time that a transaction, 
on average, spent waiting for a lock is a more signifi- 
cant metric in this experiment. For example, with strate- 
gy Sl and a DMP of 12, an average transaction spent 
about 36 seconds waiting for locks, which Is about 60 
percent of a transaction’s response time. With strate- 
gies S2 and S2/PS, on the other hand, this lock wait 
time was reduced to less than 3 seconds per transac- 
tion. Figure 7c shows the total lock wait time of all three 
strategies as a function of the DMP 

Log IIOs: 
As the simple two-level strategy S2 performed log I/OS 
for each update subtransaction, its log I/O rate was 
dramatically higher than that of strategy Sl (see Figure 
7d). This disadvantage of S2 was almost completely 
eliminated by strategy S2/PS. For example, at a DMP of 
12, strategy S2/PS had about 2.7 times more page-le- 
vel log I/OS than strategy Sl; however, as it achieved 
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2.5 times the throughput of Sl, the log I/O rates of the 
single-level strategy and the improved two-level strat- 
egy are actually quite comparable. Note that these re- 
sults reflect the relative I/O performance of the investi- 
gated strategies. As for absolute performance, the log 
I/O rate did not have a significant effect on throughput 
or response time in any of our experiments. Even with 
strategy S2, the excessive number of log I/OS caused 
only about 5% utilization of each of the LO log disk and 
the Ll log disk. Keep in mind, however, that with more 
or faster CPUs, log I/O could eventually become a per- 
formance-limiting factor. Then the savings in log I/OS 
that strategy S2/PS achieved would become a crucial 
performance advantage. 
Strategy S2/PS was even superior to strategy Sl in 
terms of the number of pages that are written in one pa- 
ge-level log l/O. Because update subtransactions are 
dynamically combined Into persistence spheres, it 
was often the case ihat a page that was modified by 
multiple subtransactions of different transactions was 
written to the log only once. This main feature of our im- 
proved multi-level logging approach led to an effect 
similar to group commit. With strategy SYPS, on aver- 
age only 19.9 pages rather than 22.3 pages were writ- 
ten in one LO log I/O, at a DMP of 12. As the decreasing 
average persistence sphere size in Figure 7e shows, 
this nice effect increases with the DMP. Note, however, 
that, in contrast to group commit, our method does not 
impose any delays on transaction commits other than 
the log I/O Itself. In fact, group commit and our deferred 
log write approach are orthogonal steps toward reduc- 
ing log l/O costs. 
Performance impact of internal latches: 
As the throughput and response time curves in Figures 
7a and 7b show, strategy S2/PS performs slightly better 
than strategy S2. Even though one might think that this 
is the effect of the savings in log I/OS, the absolute 
costs of log I/O are actually negligible in both strate- 
gies. Rather the performance difference is because 
strategy S2/PS saves calls to the buffer manager as it 
defers the writing of after-images. This reduces some 
CPU overhead, and decreases the contention on inter- 
nal latches that are used to synchronize the access to 
the buffer manager’s frame control blocks (see also 
[GT90] for similar experiences). Such latch contention 
is also the major reason for the drop of performance 
that both S2 and S2/PS suffer when the DMP exceeds 
12 (i.e., the number of processors). Since we implem- 
ented latches by spin locks, latch contention actually 
led to wasted CPU cycles; and since the CPU utiliza- 
tion was almost 100% at DMP 12, increasing the DMP 
beyond 12 caused a significant decrease of petform- 
ante. 
Sensitivity of baseline parameters: 
We performed additional experiments to study the sen- 

sitivity of the various parameters of our baseline experi- 
ment. In particular, we varied the update probability u, 
the number o of own-subobject accesses per com- 
plex-object operation, and the number c of complex- 
object operations per transaction. The results are 
shown in Figure 8. These experiments essentially re- 
confirmed the observations discussed above. In inter- 
preting the slope of the curves, one should note that the 
number of modified pages per complex-object opera- 
tion increases only slowly with the number of updated 
subobjects because of the high locality within a com- 
plex object, 

3.3 Results for Complex Objects with 
Referentially Shared Subobjects 

In this section, we discuss the performance results for 
the case with accesses to foreign subobjects. We first 
discuss the performance when all subobjects that are 
accessed by a complex-object operation are foreign 
subobjects (i.e., subobjects that are physically clus- 
tered with other complex objects). In the discussed ex- 
periments, f = 10 foreign subobjects were accessed 
per complex-object operation with update probability 
u = 20%. We have also performed a sensitivity analysis 
of the f parameter, by keeping the sum o i-f (i,e., the to- 
tal number of SO accesses per CO operation) con- 
stantly at 10 and varying f from 0 to 10. In the following, 
we discuss to what extent foreign-subobject accesses 
changed the results obtained in Section 3.2. Strategy 
S2 is no longer considered here since it was always 
outperformed by S2/PS. 
Overall performance and lock conflicts: 
As shown in Figure 9, the performance difference of Sl 
and S2/PS became even bigger, compared to the case 
without foreign-subobject accesses. For example, at a 
DMP of 12, S2/PS achieved 16 times higher throughput 
and 10 times shorter response time than Sl . As Figure 
9c shows, this performance difference is mostly 
caused by data contention. For strategy Sl , both the to- 
tal lock wait time and the conflict rate were substantial- 
ly higher than in the experiment of Section 3.2. In addi- 
tion, the number of deadlocks increased considerably. 
With foreign-subobject accesses, the subobjects that 
are accessed by a subtransactlon are scattered across 
the entire database. Compared to the results of Section 
3.2, this fact destroyed the locality In the page ac- 
cesses of a subtransaction. Thus, the total number of 
pages that are accessed within a transaction was in- 
creased, and the page access pattern was better ran- 
domized. For example, in the experiment of Section 
3.2, the first SO access within each complex-object 
operation had a higher probability of getting blocked 
than the other SO accesses within the same CO, as the 
latter benefit from the already acquired locks because 
of the high locality of subobject (and hence page) ac- 
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cesses.* Destroying this locality led to the disastrous 
performance of strategy Sl. 
Log IIOs: 
The most interesting aspect of the experiment with fore- 
ign-subobject accesses is the relationship between 
the DMP and the size of persistence spheres, as shown 
in Figure 9e. Whereas the average size of persistence 
spheres was not much affected by the DMP, the maxi- 
mum persistence sphere size increased quite signifi- 
cantly with increasing DMP As pointed out in Section 
3.2, this effect can be quite beneficial, for it amounts to 
more batching of log I/OS (i.e., less but longer log I/ 
OS). However, batching log I/OS is desirable only up to 
a certain point. If persistence spheres become too 
large, then the writing of a persistence sphere adds a 
significant delay to the response time of the committing 
transaction that caused the log I/O. In our experiments, 
the maximum persistence sphere at a DMP of 12 con- 
tained about 95 pages (each of size 2K). Writing this 
persistence sphere to a single log disk takes about 100 
milliseconds, which is still negligible in our experiment 

* The net effect is similar to preclaiming, even though no 
preclaiming is actually performed. 
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but may be unacceptable in a different environment 
(e.g., with much faster CPUs). 
Of course, writing the after-images in a persistence 
sphere is unavoidable in order to commit a transaction, 
In fact, our deferred write approach minimizes the num- 
ber of pages that need to be written. The point, howev- 
er, is that our method may cause unpredictable delays. 
The reason is that a large amount of log I/O work may 
be imposed on a transaction that has not done much 
work itself but happens to have a large persistence 
sphere constituted mostly by subtransactions of other 
active transactions. These unpredictable delays 
should be avoided in a high performance environment 
with response-time constraints. Note, however, that 
the delay caused by writing a large persistence sphere 
is still much shorter and therefore less severe than the 
delay that a synchronous checkpoint mechanism (e.g., 
[Gr81]) would cause. 
There are two ways to eliminate or alleviate the de- 
scribed effect (none of which is currently implemented 
in DASDBS, though). The first way is to prevent the fcr- 
mation of large persistence spheres. This can be 
achieved by asynchronously writing persistence 
spheres whenever their size exceeds a certain thresh- 
old, even if the log I/O could be further deferred. Such a 
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mechanism may actually increase the total amount of 
work since it may write more pages, but it has the ad- 
vantage that it can distribute the log i/O load more 
evenly over time. The second way to cope with large 
persistence spheres is to make their writing more eff i- 
cient. This can be achieved by striping the log over mui- 
tiple disks in a round-robin fashion (i.e., RAID-like 
striping) with a sufficiently large striping unit (e.g., a 
track). By exploiting the I/O parallelism of such a muiti- 
disk log, the response time penalty of the deferred write 
approach could be eliminated, even with much larger 
persistence spheres than we observed in our experi- 
ments. 
Sensitivity of the number of foreign-subobjecf ac- 
cesses: 
The performance results with varying numbers of fore- 
ign-subobject accesses per complex-object opera- 
tion are shown in Figure 10. These results essentially 
reconfirm the above observations. That is, with increas- 
ing number of foreign-subobject accesses, transac- 
tions loose locality which leads to more conflicts with 
Sl and potentially larger persistence spheres with 
WPS. 

4. Comparison with Related Work 

Multi-level transaction management methods are im- 
plemented in the commercial database systems SW 
DS (which is essentially System R [Gr81]), Synapse 
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[Ong84], and informlx-Turbo [Cu88]. These systems 
deal with transaction management at two levels: the re- 
cord level and the page level. Their recovery methods 
use record-level redo, which slows down recovery at a 
warmstart; and they ensure the atomicity of record-le- 
vel operations (including index updates) by periodical- 
ly taking operation-consistent checkpoints that write 
ail dirty pages back into the database. Such check- 
points adversely affect transaction response time, and 
become increasingly unacceptable with evergrowing 
buffer pool sizes. 
An interesting unconventional multi-level recovery ar- 
chitecture has been implemented in the research pro- 
totype Kardamom [Bu88]. In this system, high-level 
update operations are performed on an object cache, 
and the propagation of updates onto pages is deferred 
until EOT. Thus, no high-level undo log records are 
needed, at the expense of performing redo at the ob- 
ject level. This approach may be well suited for a serv- 
er-workstation environment where data is exchanged 
at the object level. However, it does not become clear 
from the description of the algorithm if and how the ap- 
proach can ensure the atomicity of high-level updates 
that are propagated onto pages during a transaction’s 
commit phase. 
Our method of multi-level recovery is most closely re- 
lated to the ARIES method [Mo89, ML89, MP91]. Even 
though the two methods were independently devei- 
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oped with very different design objectives, they have 
quite a few properties in common, as discussed in the 
following. 

l Both methods perform redo at the page level (i.e., 
“physical redo” in the terms of [Mo89]), thus minimiz- 
ing the redo costs during a warmstart. 

. Both methods support semantic concurrency control 
in that they allow commutative update operations on 
the same object to be performed concurrently. In 
such a case, both methods consequently perform 
transaction undo by compensation rather than restor- 
ing previous object states. 

l As an unavoidable consequence of the above two 
properties, both methods may have to redo updates 
of “loser transactions” that are afterwards undone by 
compensation during a warmstart. This principle is 
called the “repeating of history” paradigm in [Mo89]. 

. To keep track of the modifications that are made by 
compensating (subtrans-) actions, both methods 
write a high-level log record when performing a com- 
pensating (subtrans-) action. These log records are 
called “compensation log records” (CLRs) in [Mo89]. 

Given these common properties, a simplified compar- 
ative view of our multi-level recovery method and the 
ARIES method is the following. Our method could 
“emulate” ARIES by 1) performing entry logging rather 
than after-image logging at the page level, 2) combin- 
ing the Ll log and the LO log into a single physical log 
file, 3) adding a compensation backward chain be- 
tween Ll log records to avoid undoing undo operations 
[Mo89], and 4) simply flushing all buffered log records 
whenever a persistence sphere has to be written. While 
the first three of these points would be (relatively sim- 
ple) modifications or extensions of our method (see 
also [WH91]), the fourth point would actually be a sim- 

plification, at the expense of writing more log records 
(see below). 
The similarity of ARIES and our method is especially re- 
markable because the two methods have been devel- 
oped with very different design goals in mind. ARIES is 
an industrial-strength recovery method for relational 
DBMSs that is tailored to the prevalent storage struc- 
tures of relational systems. The multi-level recovery 
method, on the other hand, evolved from a theoretically 
well-founded but relatively puristic framework, aiming 
at high modularity and generality In that it can handle 
arbitrarily complex high-level operations. These differ- 
ent objectives have led to the following two important, 
subtle differences. 
l ARIES presumes that each high-level undo log re- 

cord refers to exactly one page. This ensures the 
atomlcity of high-level operations. The restriction Is 
acceptable if one has only relational DBMS storage 
structures in mind, for a regular tuple always resides 
in one page, and page locking is considered to be 
good enough for long fields. The only significant 
problem arises with indexes, where a single high-le- 
vel operation such as inserting a key may update 
multiple index pages because of index restructuring 
such as splits. In ARIES [ML89], such cases are dealt 
with by dividing a multi-page high-level update oper- 
ation into a multi-page update that does not require 
(high-level) undo at all, and a single-page update 
that can be compensated. 
In the example of inserting a new key that causes a 
split, the multi-page update Is the split itself without 
inserting the key, and the atomic single-page update 
is the insertion of the new key into the restructured in- 
dex. The atomicity of the multi-page update is in turn 
ensured by executing it as a “nested top action”, 
which means that it is made persistent immediately 
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upon its completion (and independently of the trans- 
action to which it belongs). This method entails that 
page-level undo and redo information is recorded 
during the operation’s execution, but no high-level 
undo log record is written. Thus, the split operation 
cannot be undone once it is completed. While this is 
perfectly reasonable for index restructuring opera- 
tions, bundling subtransaction atomicity together 
with persistence is clearly unacceptable for arbitrary 
multi-page update operations on complex objects. 
In our Implementation of multi-level transactlon man- 
agement, ensuring subtransaction atomicity so that 
high-level compensation is feasible even for com- 
plex multi-page updates was one of the major chal- 
lenges. It has been solved efficiently without sacrific- 
ing generality. 

l A less important yet remarkable difference between 
ARIES and our method is the amount of redo process- 
ing during a w3rmstart. Persistence spheres, as used 
in our method, are the minimal sets of redo log re- 
cords that need to be written in order to ensure trans- 
action persistence by page-level redo while observ- 
ing subtransaction atomicity. ARIES, on the other 
hand, writes all generated log records to disk, which 
is much simpler. During the warmstart, ARIES there- 
fore redoes all updates up to the point of the crash. 
The enhanced version called ARIES/RRH [MP91] 
avoids some of this redo work by checking, during 
the redo pass, if a redo log record of a loser transac- 
tion is followed by a redo log record of a winner trans- 
action that refers to the same page. The update of the 
loser transaction need not be redone if. (and, in 
ARIES/RRH, only if) this Is not the case. In our meth- 
od, such a check (which may even require look- 
ahead in the log [MP91]) is unnecessary because the 
critical redo log record would have been written to the 
log file only if the subtransaction that generated the 
log record were followed by a winner transaction that 
modified the critical page or if the dirty page were 
written back into the database before the crash oc- 
cured. 

5. Conclusions 
The Implemented method of multi-level transaction 
management has the following advantages. 

l It allows exploiting the semantics of high-level oper- 
ations to enhance concurrency. 

6 Our algorithms can deal with complex high-level op- 
erations on arbitrarily complex ob)ects. In particular, 
it ensures the atomicity of high-level operations that 
modify multiple pages. This is a fundamental prereq- 
uisite for correctly dealing with compensation of 
high-level operations. 

l These advantages are achieved at about the same 
log l/O costs that an efficient page-oriented single- 
level recovery method has. Our method does not re- 

quire a costly checkpoint mechanism, and it provides 
fast recovery after a crash. 

l Our implementation supports also parallelism within 
a transaction. 

The performance of our implementation, within the re- 
search prototype DASDBS, is encouraging despite an 
obvious lack of fine-tuning at the code level. Neverthe- 
less, we are investigating various issues for improving 
the performance under specifically heavy load situa- 
tions. These issues include (see [WH91, WHMZSO] for 
further discussion): 

“light-weight” subtransactions that exploit specific 
reference patterns at the page level, 
multi-granularity locking on complex objects, 
alternative organizations of log buffers and log files 
(e.g., combining the Ll log and the LO log into a 
single physical file), 
log file partitioning such that all partitions can be pro- 
cessed independently and in parallel during a warm- 
start, and 
applying multi-level transaction management in a 
distributed environment with both data distribution 
and function distribution (as in a server-client archi- 
tecture). 
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