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Abstract 
Due to its potential for a high degree of 
parallelism, optimistic concurrency control is 
expected to perform better than two-phase 
locking when integrated with priority-driven 
CPU scheduling in real-time database sys- 
tems. In this paper, we examine the overall 
effects and the impact of the overheads in- 
volved in implementing real-time optimistic 
concurrency control. Using a locking mecha- 
nism to ensure the correctness of the imple- 
mentation, we develop a set of optimistic con- 
currency control protocols and evaluate them 
on a testbed. Throu h experiments, we in- 
vestigate, in depth, t R e effect of the locking 
mechanism on the performance of optimistic 
concurrency control protocols, and we com- 
pare the locking-based optimistic approach 
with a class of two-phase locking protocols. 
The experimental results indicate that the 
physical implementation schemes have a sig- 
nificant impact on the performance of real- 
time optimistic concurrency control. 

1 Introduction 

Concurrency control is one of the main issues in 
the studies of real-time database systems. With a 
strict consistency requirement defined by serializabil- 
ity, most real-time concurrency control schemes con- 
sidered in the literature are based on two-phase locking 
(2PL) (18, 2, 9, 171. This is not surprising since 2PL 
has been well studied in traditional database systems 
and is being widely used in commercial databases. But 
2PL, on the other hand, has some inherent problems 
such as the possibility of deadlocks and long and un- 
predictable blocking times. These appear to be serious 
problems for real-time transaction processing, since in 
a real-time environment, transactions need to meet 
their time constraints as well as consistency require- 
ments. 

Recently, some alternatives to two-phase locking 
for real-time systems have been proposed and studied 
[16, 8, 6, 10, 7, 131. A mong them is a class of con- 
currency control schemes based on t.he well-know op- 
timistic approach [12]. Ideally, optimistic concurrency 
control (OCC) h as the properties of non-blocking and 
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deadlock freedom. These properties make the scheme 
especially attractive to real-time transaction process- 
ing. In real-time database systems, OCC may be in 
a better position to be integrated with priority-driven 
CPU scheduling. Previous performance studies (6, 71 
have shown that under a policy that discards trans- 
actions which have missed their deadlines, OCC out- 
performs 2PL over a wide range of system utilizations. 
The results in i6, 71 are based on simulation, where 
optimistic concurrency control is carried out at the 
logical level and detailed implementation issues at the 
physical level are ignored. 

In this study, we examine the overall effects and 
the impact of the overheads involved in implementing 
real-timk optimistic concurrency control. Using a lock- 
ing mechanism to ensure the correctness of the OCC 
implementation, we develop a set of optimistic con- 
currency control protocols in connection with priority- 
driven preemptive CPU scheduling. The protocols 
possess the property of deadlock freedom and have the 
potential for a high degree of parallelism. Our per- 
formance studies conducted on a real-time database 
testbed show that the blocking effect caused by the 
locking mechanism adopted in the implementation 
scheme has a major impact on the performance of the 
optimistic concurrency control protocol. In meeting 
transaction deadline, the protocols are sensitive to pri- 
ority inversion, but not to resource utilization. As in 
non real-time databases, compared to a variation of 
2PL which aborts the lower priority transaction when 
conflict occurs, the locking-based OCC performs bet- 
ter when data contention is low and worse when data 
contention is high. 

Because of their higher probability to conflict with 
other transactions, long transactions are likely to be 
repeatedly restarted and thus have less chance to meet 
their deadline than short transactions. Instead of lim- 
iting the number of transaction restarts, as is often 
proposed to address this starvahon problem in tradi- 
tional database systems, we use a Iransachon length 
and deadline sensitive priority assignmenl to address 
the problem. We show that integrated with the pro- 
posed weighted priority scheduling policy the opti- 
mistic concurrency control approach is more flexible in 
coping with the starvation problem than the two-phase 
locking scheme. 

This paper is organized as follows. In Section 2, we 
present our locking-based OCC protocols and discuss 
implications of the implementation. In Section 3, we 
describe the real-time database testbed that was used 
for the performance studies. The experimental results 
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are presented and discussed in detail in Section 4. Fi- 
nally, we give concluding remarks and point out future 
research directions in Section 5. 

2 Optimistic Concurrency Control for 
Real-Time Transactions 

In this section, we first discuss the principles underly- 
ing optimistic concurrency control for real-time trans- 
actions, particularly regarding its validation. Then 
we propose a set of locking-based optimistic concur- 
rent control protocols and discuss their implications 
in comparison with a two-phase locking approach. Fi- 
nally, we present some conflict resolution policies used 
in conjunction with the proposed protocols. 

2.1 Ezi,tc$lle of Optimistic Concurrency 

With the original OCC [12], the execution of a trans- 
action consists of three phases: read, validation, and 
write. The key component in OCC is the validation 
phase where a transaction’s destiny is decided. To en- 
sure serializability if transaction T, is serialized before 
transaction ‘T;, then 

Condition 1: the writes of T, should not affect the 
read phase of Tj ; and 
Condition 2: T,‘s writes should not overwrite TJ’s 
writes. 

Basically, the validation process can be carried out 
in either of the following two ways[5]: 

l Backward validation: validating against com- 
mitted transactions. When a conflict is detected, 
the validating transaction will abort itself. 

l Forward validation: validating against active 
transactions. When a conflict is detected, either 
the validating transaction in validation phase or 
the conflicting transactions in read phase can be 
aborted. Futhermore, the validating transaction 
may defer validation until later on, thus avoiding 
any unnecessary abort. 

In real-time database systems, conflicts should be rc- 
solved according to the priority associated with real- 
time transactions. As a result, either the validating 
transaction or the conflicting transaction(s) may be 
chosen for abort or possible delay. Clearly, to pro- 
vide flexibility for conflict resolution, a transaction 
should be validated against active transactions instead 
of committed ones, i.e., forward validation is prefer- 
able. 

Let Tj be the validating transaction and T, (i = 
n i # j) be the transactions in their read phase. 

kkibi,) and WS(T) denote the read set and write 
set of transaction T, respectively. Then, the validation 
operation can be described by the following procedure. 

VALID := true 
for Ti (i = 1,2, . . . . n) do 

if WS(Tj) n RS(T; 
1 

# {} 
then VALID := alse 

if VALID 
then execute write phase 
else invoke real-time conflict resolution 

The condition WS(Tj) n RS(Ti) # (} guarantees that 
data read by the Ti’s have not been written by Tj. TO 
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ensure Condition 2, I/O operations in the write phase 
must be done sequentially in validation order. 

2.2 Optimistic concurrency control using 
locking (OCCL) 

Validating against active transactions is straightfor- 
ward at the iogical level. For example, a broadcast 
mechanism can be used for the validation, where the 
validating transaction “notifies” other currently run- 
ning transactions of data access conflict [6]. In the 
following, we describe a physical implementation of a 
set of validation protocols. 

The proposed protocols are based on a locking mech- 
anism [5], thus being named OCCL’. In the system, 
each transaction T; maintains its own read set, RS(Ti , 
and write set, WS(T,). d In addition, a systemwi e 
lock table, LT, is shared by all concurrently executing 
transactions. We define two lock modes - read-phase 
lock (R-lock) d I’d t an va t a ion-phaae lock 

4 
V-lock), where 

an R-lock for a data item is set in L by a transac- 
tion in its read phase while a V-lock on a data item is 
set only by a transaction in its validation phase. An 
R-lock is incompatible with a V-lock and a V-lock is 
incompatible with another V-lock. Thus, if a trans- 
action attempts to set an R-lock on an object that is 
currently locked by a V-lock, then the transaction is 
forced to wait until the lock can be held. On the other 
hand, if a transaction attempts to hold a V-lock on 
an object currently locked by R-lock(s) or a V-lock, 
then a conflict resolution mechanism (see Section 2.4) 
is invoked to determine which lock 

\ 
s) should prevail. 

As we mentioned above, to satis y the requirement 
of aerializabiltly, two conditions must hold. Here Con- 
dition 1 is ensured by the locking mechanism. We give 
two protocols for ensuring Condition 2. Again, we use 
T, (i = 1,2 ,..., n) to denote transactions in read phase 
and Tj as the transaction in validation phase. We 
bracket a critical section by I’<” and “>“. 

2.2.1 Serial validation-write: OCCL-SVW 

A simple way to guarantee Condition 2 is to embed the 
validation phase and write phase in one critical section. 
N’e call this scheme aerial validation-write since the 
validation phase and the write phase are indivisible. 

During the read phase, each transaction Ti works 
on its own local copy and sets an R-lock in LT for 
every data object in its RS(Ti). During the validation 
phase, the validating transaction 7’; attempts to set 
V-locks for all data objects in its WS(Tj) in LT. If all 
the V-locks can be obtained, that means that the write 
set of the validating transaction does not intersect with 
the read set of any other active transactions. At this 
point, the validating transaction deletes its R-locks in 
LT and proceeds to its write phase. A failure to set a 
V-lock, on the other hand, indicates that Condition 1 
has been violated, since this implies that a data object 
in WS(Ti) 1 f 11 a so a s in RS(Ti) of other transaction(s). 
In this case, the real-time conflict resolution policy is 
invoked to resolve the conflict (see Section 2.4). We 
give the protocol for the serial validation-write scheme 
via the following pseudo code. 

‘It was called pseudo-locking in our earlier work [lo]. 
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Read phase of Ti: 
for every data object to be read do 

place it in RS(Ti) 
< set an R-lock in LT > 

for every data object to be written do 
place it in WS(Ti) 

Validation and Write Phase of Ti: 
V.4LID := true 
< for every data object in WS(T,) do 

if another transaction has R-locked it 
then VALID := false 
else set a V-lock in LT 

release Tj’s R-locks in LT 
if not VALID 

then invoke real-time conflict resolution 
else execute write phase 

release Tj’s V-locks in LT > 
OCCLSVW is simple and is easy to implement. 

In fact, here, since V.locks are acquired and released 
within a single critical section, V-locks are not really 
required. R-locks are necessary to satisfy Condition 1. 
Condition 2 is satisfied by the serial execution of the 
validation-write phases. It can be applied both to main 
memory resident database systems where the write 
phase is done in main memory and to disk resident 
databases. 

On the other hand, serial validation-write may not 
be necessary if conflicts occur rarely between update 
transactions. Also, since the write phase and the val- 
idation phase are embedded together in a critical sec- 
tion, the critical section can easily become a bottle- 
neck. This is especially true of disk resident databases. 
To separate the write phase from the critical sec- 
tion, we now develop another protocol, called po.rallel 
validation-write. 

2.2.2 Parallel validation-write: OCCL-PVW 
In order to separate the write phase from the critical 
section and at the same time to guarantee Condition 
2, transactions in read phase need to set R-locks based 
on their write set as well as their read set. We give the 
protocol for parallel validation-write in the following. 

Read phase of Ti: 
for every data object to be read or written do 

place it in RS(Ti) or WS(T,) 
< set an R-lock in LT > 

Validation and Write Phase of Ti: 
VALID := true 
< for every data object in WS(Ti) do 

if another transaction has R-locked it 
then VALID := false 
else set a V-lock in LT 

release T3’s R-locks in LT 
if not VALID 

then invoke real-time conflict resolution > 
if VALID then execute write phase 

< release Tj’s V-locks in LT> 
Unlike in OCCL-SVW, V-locks are necessary in 
OCCL-PVW to satisfy Conditions 1 and 2. Further, to 
avoid conflicts between two transactions over V-locks, 
a transaction obtains an R-lock (during its read phase) 
over every object in its WS. This ensures that two 

Proceedings of the 17th International 
Conference on Very Large Data Bases 

transactions in their validation and write phase never 
conflict. 

Compared with OCCL-SVW, OCCL-PVW provides 
greater concurrency by separating the validation phase 
and the write phase into two critical sections. On the 
other hand, OCCL-TVW may cause a higher conflict 
rate, since there exist not only read-write conflicts but 
also write-write conflicts. Which protocol is chosen 
depends on the type of database system (memory or 
disk-resident) and the kind of workload (write/read 
ratio). 

2.3 Some Implications 

Since a locking scheme is used in OCCL, it is necessary 
to compare OCCL with the two-phase locking (2PL) 
approach in terms of locking mechanism and imple- 
mentation overhead. 

2.3.1 Locking mechanism 
With respect to the locking mechanism, OCCL pre- 
sented here is different from 2PL. Note that a V-lock 
is issued at the end of a transaction and the locking 
period is the duration of validation phase plus write 
phase. With 2PL, however, the write lock is issued 
whenever the update transaction accesses a data ob- 
ject for update and the locking period may be as long 
as the transaction lifetime. Furthermore, the R-lock 
used here will not block any concurrent transactions 
in their read phase, while under 2PL any conflict be- 
tween read/write locks will block the conflicting trans- 
<actions. 

In addition, OCCL is deadlock-free, even though 
R-locks and V-locks are used. This is guaranteed by 
letting the validating transaction set V-locks in the 
critical section. Since a transaction that has been 
granted all of its V-locks will not request any lock after 
leaving its critical section, it will not wait for any other 
(lock-holding) transactions. Thus, a wait-for cycle will 
not form. 

Because OCCL and 2PL use locks, priority inver- 
sion may occur.’ With 2PL,, priority inversion can 
be avoided by forcing the high priority transaction 
to abort the low priority transaction so that a higher 
priority transaction is never blocked. The problem is 
more complicated in OCCL than 2PL. Priority inver- 
sion may occur in two places with OCCL. One is in 
the validation phase, where setting the V-lock fails. 
This problem is addressed by various conflict resolu- 
tion policies (see Section 2.4). Priority inversion may 
also happen in the read phase when a transaction at- 
tempts to set an R-lock for the data object to be ac- 
cessed. In this case, it is preferable to let the higher 
priority transaction in the read phase wait for the low 
priority transaction. This is because the low priority 
t,ransaction is already in its validation stage or perhaps 
even in its write phase. Aborting a transaction near 
completion may cost more, on average, than blocking a 
higher priority transaction for a limited period of time. 
To shorten the blocking period, a priority inheritance 
scheduling scheme can be applied during the valida- 
t,ion phase and write phase [l l]. For instance, the CPU 
__~~ 

’ Priority inversion [IS] refers to the situation where R 
high priority tronsnction is blocked by n low priority trans- 
sction due to access conflict. 

37 Barcelona, September, 1991 



scheduler may raise the process priority of the validat- 
ing transaction to the highest among the concurrent 
transactions, thus reducing the time for validation pro- 
cessing. In addition, we may use transaction priority 
to manage access to the critical section. When more 
than one transaction is waiting for the critical section, 
then the one with the highest prioritv will get access 
first. Therefore, the worst case blocking time for the 
hi her priority transaction is limited to the delay in- 
vo ved in transaction validation (under OCCL-PVW). 7 

2.3.2 The starvation problem 
Another problem that 2PL and OCCL may encounter 
is siarvation. In this context, starvation occurs when 
transactions are restarted again and again until they 
miss their deadline. Long transactions have a higher 
probability of being starved because of their higher 
probability of access conflict. This results in a lower 
deadline guarantee ratio for long transactions than 
for short transactions. In traditional database sys- 
tems, OCCL may result in more severe starvation be- 
cause of its high degree of parallelism. Many solutions 
to the starvation problem have been proposed (e.g., 
114, 15, 191). Th ese schemes basically rely on lim- 
iting the number of transaction restarts. Given the 
timing constraints in real-time database systems, we 
use CPU scheduling to address the starvation prob- 
lem. Based on our earlier studies on transactions with 
different characteristics [9], here we group transactions 
into classes by transaction length and assign a weight 
to each class. The weighting factor is incorporated in 
the CPU scheduling such that long transaction9 may 
have higher priority over short transactions. Using 
transaction deadline information, the weighted trans- 
action priority is calculated by 

P = (d - t)lw, d > 0, t > 0, w 2 1. 

where d is the transaction deadline, t is the time 
when CPU scheduling takes place, and w is the length 
weighting factor. The smaller the p value, the higher 
the transaction priority. The specific weights used 
are discussed in Section 3. Note that for transac- 
tions with the same length, this corresponds to the 
earliest-deadline-firsl scheduling strategy. 

2.3.3 Implementation overhead 
In terms of physical implementation, both OCCJ, and 
2PL require a central lock table. For the sake of com- 
parison, we list the lock table operations required by 
the two schemes. 
OCCL: 

1. insert a data object ID with an R-lock into the 
lock table during the read phase; 

2. search for a data object ID and convert the cor- 
responding R-lock into a V-lock (if the object has 
been updated) during the validation phase; 

3. delete a data object ID when an R-lock is released 
during validation phase or when a V-lock is re- 
leased at the end of the write phase. 

2PL: 
1. search for a data object ID and check its lock com- 

patibility against the lock mode of lock holder(s): 
2. insert a data object ID with read or write lock into 

the lock table; 
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3. delete a data object ID when a lock is release at 
the end of the transaction. 

It is clear that the physical operations on the lock 
table are the same for the two protocols. Despite the 
similarity, there are some differences between OCCL 
and 2PL. For example, 2PL needs to detect poten- 
tial deadlock before a lock request is queued while 
OCCL does not. The implementation overhead of the 
two concurrency control protocols has been examined 
through experiments and the result9 are presented in 
Section 4. 

2.4 Conflict Resolution 

With OCCL, an algorithm is needed to resolve the ac- 
cess conflicts during the validation phase. As discussed 
above, this conflict resolution should consider transac- 
tion priority based on transaction deadlines and length 
as discussed above. In other words, the resolution 
policy should aim at improving the performance of 
real-time transaction9 in term9 of meeting traneaction 
deadlines. Here are some basic resolution policies: 

Commit: CMT 
Always let the validating transaction commit and 
abort all the conflicting transactions. This strat- 
egy guarantees that as long as a transaction 
reaches its validation phase, it will always fin- 
ish. The advantage of this strategy is that the re- 
sources (CPU, I/O, etc.) consumed by a finishing 
(validating) transaction are never wasted. Apply- 
ing CPU scheduling, we expect that transactions 
with higher priority have a higher probability of 
reaching the validation phase and, in turn, have a 
higher probability of committing. 
Priority abort: PA 
Abort the validating transaction only if its priority 
is less than that of all the conjlicting transactions. 
This strategy takes transaction priority into ac- 
count, but still favors the validating transaction. 
It aims at reducing the resources wasted due to 
aborted transactions. 
Priority wait: PW 
If the priority of the validating transaction is not 
the highest among the conflicting transactions, 
wait for the conflicting transactions with higher 
priority to complete. In some cases, the strat- 
egy of aborting conflicting transactions appears 
too conservative, causing unnecessary transaction 
abort. Consider the situation where the validating 
transaction conflicts with transactions which have 
only read operations. If the validating transaction 
has a lower priority compared with other conflict- 
ing ones, instead of being aborted, it may be de- 
ferred. In other words, this transaction is “pre- 
empted” from its validation phase and is placed in 
a waiting queue to wait until all of the conflicting 
transactions with higher priority finish their vali- 
dation. The version of the priority wait strategy 
evaluated here is WAIT-50 proposed in ‘71, where 
a validating transaction will wait if at i east 50% 
of the conflicting transactions have a higher prior- 
ity over the validating transaction. The protocol 
aims at balancing the wait factor and the priority 
cognizance. In this study the implemented PW 
policies refers to the WAIT-50 protocol. 
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Other variations of the conflict resolution strategy 
are possible. Since in this studv we emphasize the fun- 
damental analysis of OCC perfbrmance~ with respect to 
its implementation, we only examine the three simple 
conflict resolution policies discussed above. 

Table 1: System Parameters 

Parameter Settings 
Disks d. kl database; disk2:log. 
MPL lb” 8:6 4 
DB M’Pt *‘loo blocks 3 Test Environment 

The proposed locking-based optimistic concurrency 
control protocol, together with several real-time con- 
flict resolution schemes, have been implemented and 
evaluated on our real-time database testbed RT- 
CARAT [9]. In this section, we briefly introduce 
the testbed organization and describe the system and 
workload parameter settings. 

3.1 Testbed organization 

Currently, RT-CARAT is a centralized, secondary 
stora e real-time database testbed built on top of the 
VAX 7 VMS operating system. It contains all of the ma- 
jor functional components of a transaction processing 
system, such as transaction management, data man- 
agement, lo management, and communication man- 
agement. 1 T e testbed is implemented as a set of co- 
operating server processes which communicate via ef- 
ficient message passing mechanisms. A pool of trans- 
action processes (TR’s) simulate the users of the real- 
time database. Accordingly, there is a pool of data 
managers (DM’s) which service transaction requests 
from the user processes (the TR’s). There is one trans- 
action manager, called the TM server, acting as the 
inter-process communication agent between TR and 
DM processes. The communications between TR, TM 
and DM processes are carried out through mailboxes, a 
facility provided by VAX/VMS. To be more efficient, 
TM and DM processes also share some information, 
such as transaction deadline and priority, through a 
common memory space, called the global section in 
VAX/VMS. 

Using the underlying VAX/VMS operating svs- 
tern real-time priorities, the priority-driven preemptive 
scheduling is done by a CPU scheduler embedded in 
the TM. Upon the arrival of a new transaction, the 
scheduler assigns a priority to the transaction accord- 
ing to the CPU scheduling policy. The scheduling op- 
eration is done by mapping the assigned transaction 
priority to the real-time priority of the DM process 
which carries out the transaction execution. At. this 
point! an executing DM will be preempted if it is not 
the highest priority DM process at the moment, other- 
wise it will continue to run until it completes or until it 
needs to wait for an I/O. Concurrency control is part 
of the DM process. It incorporates the CPU scheduler 
of the TM process in its real-time conflict resolution. 

RT-CARAT is a system that contains a fixed num- 
ber of users that submit transaction requests one af- 
ter another, with a certain think time (T) in-betwern. 
This model captures many applications in the real 
world. For example, in an airline reservation system, 
there is a fixed number of computer terminals. The 
airline clerk at each terminal may check a flight, re- 
serve a seat, or cancel a reservation for customers. Af- 
ter submitting a request to the system, the clerk waits 
for a result. He may submit another request after grt- 
ting a response from the previous one. (Of course, this 
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modei does not capture all applications. For instance, 
an open system model is more appropriate for a pro- 
cess control system.) 

A transaction is characterized by its lengthand dead- 
Itne. The length is specified by T(z,y), where G is 
the number of steps that a transaction needs to exe- 
cute, and y is the number of records accessed in each 
step. The transaction deadline is randomly generated 
from a uniform distribution within a deadline window, 
[d-base,cr x d-base], where d-base is the window base- 
line and (Y is a variable determining the upper bound 
of the deadline window. For each workload in the ex- 
periments, d-base is specified first by the formula: 

d-base = aug-rsp - stnd-dvi 
where avg-rsp is the average response time of the read- 
only transactions with the same length when executed 
in a non real-time database environment, and atnddvi 
is the standard deviation of the response time. 

A transaction terminates upon completion or a ter- 
mination abort. The latter refers to the situation 
where a transaction has missed its deadline and it is 
thus aborted by the system. A transaction aborted due 
to deadlock or data access conflict will be restarted as 
long as it has not passed its deadline. Hence a transac- 
tion may make multiple runs before it eventually ter- 
minates. Note that a restarted transaction will access 
the same set of records as it did in its first run. 

3.2 Parameter settings 

Table 1 summarizes the system parameter settings. 
The experiments were conducted on a VAXstation 
3100/M38 with two RZ55 disks, one for the database 
and the other for the log. Given the physical machine, 
in order to examine the degree of resource contention 
CPU 

a 

and I/O), the system multi-programming level 
MPL) is varied from 10 to 4. While this is a low 
egree of multiprogramming, compared to what we 

would find in practice, the database size (DB) in the 
experiments (400 - 1000 blocks with 6 records/block) 
is also smaller than we would find in practice. With 
a proper system scaling, many factors, such as the 
level of data access conflict, can model practical sit- 
uations. Thus, the performance results obtained from 
the smaller system can often reflect the performance 
of a larger system. In our experiments, in order to 
isolate the effect of resource contention from that of 
data contention, the database size is set proportional 
t,o AlPI,. 

Table 2 describes the workload parameters and their 
settings in the experiments. We consider two work- 
loads: one where all transactions consist of 6 steps, 
P[z = 61 = 1, and the other where one half consists 
of 4 steps and the other half 8 steps, P[z = 4] = 
P[z = 8] = l/2. The latter workload is used par- 
ticularly for analyzing the starvation problem. The 
number of records to be accessed per transaction step, 
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Table 2: Workload Parameters 

I Parameter Settings i 
0 (steps per trans.) j 4, 6, 8 steps1 
y (records per trans. step) 4 records 1 
a (deadline window factor) 2.0 - 6.0 
P, (prob. of write trans.) 0.0 - 1.0 
7 (external think time) 0.0 seconds 

Table 3: Schemes Examined 

Scheme Conflict r&sol. I CPU scGIJi&j~ 
11 wait 1 FO 1 

2PL-WAIT wait EDF - 
PPL-PA priority abort EDF 
OCCL-NRT commit MLFQ 
OCCL-CMT commit EDF 

1 OCCL-PW I/ priority wait / EDF 

y: is fixed at 4. The deadline window factor, o, is a 
timing-related parameter which specifies the deadline 
distribution of real-time transactions. The smaller the 
value of LY, the tighter the transaction deadlines and 
vice versa. In RT-CARAT, a transaction is either read 
(where each step is a sequence of FIND and GET op- 
erations) or write (where each step is a sequence of 
FIND, GET and MODIFY operations).” The prob- 
ability that a transaction is a write transaction, P,,:, 
is another parameter that directly affects transaction 
conflict rate. The transaction external think time, T, is 
set at 0 in the experiments. The workload contains no 
deletion of records or insertion of entirely new records. 

3.3 Baselines and Metrics 

Table 3 lists the schemes examined in the exper- 
iments. We consider two basic concurrency control 
protocols, 2PL and OCCL, in combination with dif- 
ferent conflict resolution policies.J 2PL-NRT and 
OCCL-NRT are two baselines for the purpose of per- 
formance comparisons. They correspond to 2PL and 
OCCL schemes in non real-time NRT) database sys- 

r, tems, where a multi-level fcedbac queue (MLFQ) al- 
gorithm is used for CPU scheduling. In case of access 
conflict, under 2PL-NRT, the lock-requesting transac- 
tion is put into a wait queue; under OCCL-NRT, the 
validating transaction always commits. 2PL-WAIT 
and OCCLXMT employ priority-driven, preemptive 
scheduling. Transaction priority is assigned accord- 
ing to earlier-deadline-first (EDF) policy. Still, the 
two schemes do not take transaction timing constraints 
into account for resolving access conflict. 2PL..PA and 
OCCL-PW consider transaction priority for both CPU 
scheduling and conflict resolution. 

Besides the above schemes, we also examined 
the conflict resolution policy PA for OCCL (i.e., 
OCCL-PA). Th ose results show that PA performs no 
better than CMT due to aborts of the (validating) 
transaction near its completion. To save space, we 
do not include these experimental results here. 

The basic metric used for performance evaluation 
is deadline guarantee ratio, which is the percentage of 
transactions that complete by their deadline. We also 
collect statistics on transaction abort ratio, blocking 
time, wasted operations, and CPU and I/O utilizations 
so as to provide insights into the protocol performance. 

The data collection in the experiments is based on 
the method of replication. The statistical data has 
95% confidence intervals whose end points are within 
2% of the point estimate for deadline guarantee ratio. 
In the following graphs, we plot only the mean values 
of the performance measures. 

4 Experimental Results 
In this section, we present experimental results from 
our performance studies. We first compare the im- 
plementation overhead of the two types of concur- 
rency control protocols, 2PL and OCCL. Then, we ex- 
amine the protocol performance with respect to data 
contention, deadline distribution, resource contention, 
and transaction length. 

4.1 Experiment 1: Protocol overhead 
The overhead is measured by the average CPU pro- 
cessing time spent on concurrency control per page. 
To capture the overhead under all the execution paths, 
we vary the write probability P,,. At this point, other 
parameter settings are irrelevant. 

Figure 1 indicates that the implementation over- 
heads of the two protocols are quite close. This is 
due to the fact that even though the two protocols 
differ at the logical level (two-phase locking vs. opti- 
mistic approach), the underlying physical implementa- 
tions are very similar. Both protocols rely on a locking 
technique for data access control, and they both in- 
volve hashing operation and lock table management. 
Despite the similarities, 2PL employs deadlock detec- 
tion while OCCL does not. However, our previous 
studies (91 have shown that the deadlock detection on 
RT-CARAT does not incur significant overhead. On 
the other hand, the implementation of OCCL costs 
more to maintain read/write sets for each individual 
transaction. This may be the reason why OCCL has 
slightly larger overhead than 2PL. 

Knowing that the two logically different protocols 
have similar overhead, we now analyze how the imple- 
mentation schemes affect the performance of the two 
protocols. 

4.2 Experiment 2: Data contention 

‘FIND, GET, MODIFY etc. are the statements of Data 
In this experiment, we examine the protocol perfor- 

Manipulation Language in VAX DBMS. The corresponding mance under different data contention levels by varv- 

operations are fully implemented on RT-CARAT. ing the write probability, Pw. We fix the rnulii- 

‘The optimistic concurrency control orotocol imule- programming level at 8 with z = 6 and LZ = 5. -. ^ . .I I . . 3 1.. 
mented on RT-CARATis OCCLPVW. This is bernuse t.hr rlgure 2 shows the transactZ0n deadltne guarantee 
testbed is a disk-resident real-time datahnsr and cannot nf- rafzo for six schemes. As one would expect, t,he dead- 
ford the long waits (for writing) inhrrenl in OCCL-S\‘W lint- guarantee ratio drops as data contention increases. 
In the rest of the paper, we refer to it as OCCL. The performance of two baselines, 2PL-NRT and 
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OCCL,NRT, is consistent with the results from previ- 
ous studies (e.g., [4, l]), i.e., non real-time two-phase 
locking outperforms non real-time optimistic approach 
under large data and resource contention. Here an in- 
teresting observation is that combined with priority- 
driven preemptive scheduling, the optimistic approach 

I 
OCCL-CMT) performs better than two-phase locking 
2PL-WAIT). Furthermore, as we incorporate transac- 

tion priority into conflict resolution for the two types of 
protocols,, 2PL-PA further increases the deadline guar- 
antee ratio, with respect to 2PL_WAIT, by as much as 
17% for P,,l = 0.6, while OCCL-PW performs only 
slightly better than OCCL-CMT. 

The performance of these schemes may be affected 
by several factors, such as transaction blocking time, 
priority inversion and abort ratio. Based on the imple- 
mentation details, we now explain the results shown in 
Figure 2. 

A transaction can be blocked due to access conflict. 
Under OCCL, this hagpens in the transaction read 
phase where an R-lock requesting transaction has to 
wait for the transaction holding the V-lock. In addi- 
tion, under OCCL-PW, a validating transaction may 
be blocked when it conflicts with higher priority trans- 
actions in read phase. Under 2PL, blocking can occur 
at any point along the course of its execution when- 
ever there is a read-zurile or write-write conflict. Fig- 
ure 3 depicts the average transaction wailing lime (in 
seconds) for each blocking instance. Overall, the wait- 
ing time under OCCL scheme is shorter than under 
2PL. This is because even though both schemes rely 
on locking, OCCL shrinks the V-locking period to the 
final stage of transaction execution, thus reducing the 
waiting time. Furthermore, as we discussed in Sec- 
tion 2.3.1, applyin priority-driven CPU scheduling to 
OCCL further re (k uces the waiting time as much as 
40% (comparing OCCL-NRT with OCCLXMT and 
OCCL-PW). Compared with CCCL-CMT, the wait- 
ing time under OCCL-PW is increased by about lo%, 
from 0.59 to 0.65 (seconds), for P,,, = 0.2. On the other 
hand, when J’,,, is high, the two schemes perform the 
same. This is a direct result of the implementation 
which avoids cyclic V-lock conflicts between two write 
transactions. The lolal waiting lime for each transac- 
tion run is also measured, which is similar to what we 
observed in Figure 3. 

As discussed in Section 2.3.1, priority inversion, a 
special case of transaction blocking, may occur un- 
der both 2PL and OCCL. Figure 4 plots the average 
number of priority inversions encountered per trans- 
action run. In PPL-PA, a high priority transaction 
will not wait for a low priority transaction when a 
conflict occurs. Hence 2PL-PA performs the best in 
terms of avoiding the problem of priority inversion. 
Note that priority inversion under 2PL-PA is slightly 
greater than 0. This is because on RT-CARAT, a high 
priority transaction is forced to wait for a lower prior- 
ity transaction if the low priority transaction has al- 
ready completed its write operations on the database 
and is about to release its locks. Under OCCL, since 
a higher priority transaction blocked during its read 
phase has to wait for a V-lock holder to complete 
its validation phase and write phase, the probnbil- 
ity of the occurence of priority inversion is higher 
than under 2PL-PA, especially when Pw is large. 
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Again, combined with priority-driven CPU scheduling, 
OCCL-CMT and OCCL-PW outperform OCCL-NRT. 
Under OCCL-PW, a transaction in read phase has less 
chance to be blocked since the validating transaction 
might be in the validation-wait state. Thus, the roba- 
bility of priority inversion under OCCL-PW is s lghtly I! 
lower than that under OCCL-CMT. 

Transaction abort rate is another major factor that 
affect,s the protocol performance. Figure 5 illustrates 
the average lransaction abort ratio (i.e., the percent- 
age of submitted transactions that are aborted due to 
deadlock or access conflict). Clearly, the wait-oriented 
schemes, 2PL-NRT and 2PL_WAIT, result in a much 
lower abort ratio than the abort-oriented schemes - 
2PL-PA and OCCL. With a high degree of parallelism 
and the shorter blocking time (see Figure 3), all the 
OCCL schemes have a lower abort ratio than 2PL-PA 
when the data contention is low, but a higher abort 
ratio when the data contention becomes high. The 
saturation behavior under 2P_L is due to its increased 
blocking effect when the data contention becomes high. 
Among the three OCCL schemes, OCCL,PW has the 
lowest abort ratio (12% lower than OCCLXMT for 
P,,, = 0.2), since it mcorporates a wait mechanism in 
the validation phase. 

Figure 6 depicts the wasted operations per transac- 
2ion ezeculion, i.e., the number of steps wasted for each 
submitted transaction. This measurement reflects the 
combined effect of both transaction abort ratio and 
nborl length - the number of steps that have been pro- 
cessed when a transaction is aborted. 

With respect to resource consumplion, CPU and 
I/O utilizations are plotted in Figure 7 and Figure 8, 
respectively. As one would expect, the wait-oriented 
schemes, 2PL-NRT and 2PL-WAIT, consume less re- 
sources than the abort-oriented schemes - 2PL-PA and 
OCCL. Due to a high degree of parallelism and the 
shorter blocking time, OCCL results in higher CPU 
and l/O utilizations than 2PL-PA. Note that unlike 
what one might expect, the resource utilization of 
OCCL decreases when the data contention level is in- 
creased. This effect is caused by the locking mecha- 
nism employed in OCCL. As shown in Figure 3 trans- 
action waiting time under OCCL increases as P,, in- 
creases. 

Having examined the protocol performance in detail, 
we come to the following points with respect to the 
performance results demonstrated in Figure 2. 

41 

A CPU scheduling algorithm that takes transac- 
tion deadlines into account plays an important 
role in improving the performance of concurrency 
control protocols, particularly for OCCL which 
provides a high degree of parallelism and short 
blocking period. 

The three schemes, 2PL_PA, OCCL-CMT and 
OCCL-PW, with the least priority inversions, per- 
form the best. The difference between the three 
schemes depends on the amount of wasted opera- 
tions. 2PL-PA performs the best when data con- 
tention is high, since it results in the least wasted 
operations. 
The wait strategy employed by OCCL-PW has 
110 significant impact on improving OCCL perfor- 
mance. Increased waiting time overshadows the 
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performance gain due to reduced wasted opera- 
tions. In addition, the implementation scheme 
for avoiding cyclic V-lock conflicts prevents the 
wait strategy from taking part in conflict resolu- 
tion when the probability of write-write conflicts 
is high. 

Our results show that 2PL_PA, OCCL-CMT and 
OCCL-PW are superior to the other protocols. More- 
over, the further experiments with various work- 
loads and system parameter settings show that 
there is no significant performance differencr brt.wern 
OCCL-CMT and OCCL-PW. To simplify the presen- 
tation and to save space, we only demonstrate and 
compare the performance of 2PL..PA and OCCL-CMT 
in the following sections. 

4.3 Experiment 3: Deadline distribution 

Deadline distribution may also affect protocol perfor- 
mance. Extending Experiment 2, we vary the tightness 
of transaction deadlines while fixing the probability of 
write transactions, Pw. 

We first examine the possible effect of the deadline 
distribution on performance when data contention is 
low, Pw = 0.2. Figure 9 plots the deadline guarantee 
ratio versus deadline window factor (Y. As we have ob- 
served in Figure 2, when the deadline is loose (a = 5), 
2PL-PA and OCCL-CMT show similar performance, 
since transactions complete by their deadline most of 
the time. As cr decreases, OCCL-CMT becomes su- 
perior to 2PL-PA. This can be explained as follows: 
When data contention is low, the two protocols have 
nearly the same probability of priority inversion (see 
Figure 4) and the same amount of wasted operations 
(see Figure 6 . 

L 
Under such a condition, the protocol 

with shorter locking time (see Figure 3) wins. 
Next we vary the deadline window factor cy un- 

der high data contention with Pw = 0.8. Figure 
10 shows the deadline guarantee ratio for 2PLPA 
and OCCLXMT, respectively. In contrast to the re- 
sults shown in Figure 9, here 2PL-PA outperforms 
OCCL-CMT. This is mainly due to the fact that both 
the wasted operations and the probability of prior- 
ity inversion under OCCLCMT increase as data con- 
tention becomes high. Even though 2PL-PA has a 
longer blocking time, it works better as long as the 
transaction deadlines are long enough to accommodate 
the waits. 

4.4 Experiment 4: I/O resource contention 

All of the experiments presented above are carried out 
in a system with I/O resource contention, where the 
I/O utilization under 2PL-PA and OCCLCMT was 
always above 93% with average queue length > 4 (see 
Figure 8). In this set of experiments, we examine the 
protocol performance in a system where there is no 
severe resource contention. To do so, we reduce MPL 
from 8 to 4. Note that the database size is also reduced 
correspondingly, from 800 to 400 (blocks), so that the 
level of data contention for MPL = 4 is comparable 
with that for MPL = 8. 

We first exercise the two concurrency control 
schemes under low data contention. Figure 11 illus- 
trates the deadline guarantee ratio versus deadline 
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window factor cy with Pw = 0.2. Under such work- 
loads, the I/O utilization drops below 83%. Compar- 
ing Figure 11 with Figure 9, we observe again that the 
two protocols perform basically the same. We have 
also observed (not shown here) that the two protocols 
perform the same with respect to priority inversion 
and wasted operations, but 2PL-PA results in longer 
waiting time than OCCL-CMT. This is the main rea- 
son why reducing resource utilization does not affect 
the protocol performance. 

The possible effect of resource contention is then ex- 
amined under high data contention. Figure 12 shows 
the deadline guarantee ratio for Pw = 0.8. Compar- 
ing it with Figure 10, we see the similarity again, de- 
spite the drop of I/O utilization from 95% for MPL 
= 8 to 80% for MPL = 4 (under OCCLXMT). Un- 
der high data contention, the high abort ratio and 
the long abort length of OCCLXMT leads to a larger 
number of wasted operations, about 25% higher than 
2PL-PA. Furthermore, the chance of priority inversion 
for OCCL-CMT becomes high (0.16), as compared to 
2PL-PA (0.04). Th ese two factors, particularly the pri- 
ority inversion, degrade the OCCL-CMT performance. 

Here we can see that reducing resource utilization 
does not improve OCCL performance. Under OCCL, 
due to the use of locking, the effect of priority inversion 
is sensitive to the duration of the write phase. There- 
fore, it is the I/O speed that needs to be improved. 

4.6 Experiment 6: Transaction length 

The transactions thus far were equal in length (Z = 
6). We now look at workloads with a mix of different 
transaction lengths. To make the data analyzable and 
yet comparable with previous results, we exercise the 
workload with two lengths of transactions, z = 8 (long) 
and 3: = 4 (short), with mean value 6 (i-e, P[z = 41 = 
P[z 7 81 = l/2). 

Figure 13 shows the transaction deadline guarantee 
ratio versus P,, for 2PL-PA and OCCLXMT. Exam- 
ining the average deadline guarantee ratio, we can see 
that the result is similar to what we have observed in 
Figure 2 for z = 6, i.e., 2PL-PA performs better than 
OCCL-CMT when data contention is high. However, 
as we examine the deadline guarantee ratio of long 
and short transactions, we see that under data con- 
tention, OCCL-CMT outperforms 2PL-PA for short 
transactions while 2PL-PA performs much better than 
OCCLXMT for long transactions. In addition, under 
both schemes, the deadline guarantee ratio of short 
transactions is much higher than that of long transac- 
tions. This observation identifies the starvation prob- 
lem. Clearly, both the abort-oriented schemes result in 
transaction starvation. Due to its high degree of par- 
allelism, OCCL-CMT leads to more severe starvation 
than 2PL-PA. 

We have developed a weighted priority scheduling 
policy to cope with the starvation problem (see Sec- 
tion 2.3.2). F g i ure 14 shows the effect of such a CPU 
scheduling scheme on transaction starvation. Here we 
associate a weighting factor w to long transactions, 
varying it from 1.0 to 2.6, while fixing w at 1.0 for short 
transactions. When w is equal to 1.0, the scheduling 
scheme follows the earlie.+deadIine-first policy. At 
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this point, the average deadline guarantee ratio co- 
incides with the previous results for z = 6 (see Fig- 
ure 9). But, long transactions suffer from the starva- 
tion problem. As w increases, under OCCLXMT, the 
deadline guarantee ratio of long transactions increases 
while the deadline guarantee ratio of short transac- 
tions decreases. Under 2P,L-PA, however, the deadline 
guarantee ratio of long and short transactions changes 
slowly. Note that the average deadline guarantee ratio 
under both schemes does not change with w. 

The observation from the experiment indicates that 
OCCL-CMT is a more flexible scheme in that it can be 
integrated with an appropriate CPU scheduling pol- 
icy in order to resolve transaction starvation. This 
is due to the fact that the transaction blocking time 
under OCCLXMT is much shorter than that under 
2PL-PA (see Figure 3), which gives the CPU sched- 
uler more freedom to carry out priority scheduling. 
In addition, the weighted priority scheduling schemp 
follows the conservation law, i.e., the increase of the 
deadline guarantee ratio for long transactions leads ~.a 
the decrease of the deadline guarantee ratio for short 
transactions, and the average deadline guarantee ratio 
is kept constant. This brings up the question of fair- 
neas on transaction scheduling. At this point, there is 
no criterion for a “fair scheduling”. In practice, the 
system designer may choose the weighting factors for 
different groups of transactions such that their perfor- 
mance requirements can be met. 

5 Conclusions 

We have investigated real-time optimistic concurrency 
control with respect to its physical implementation. 
We have developed a set of locking-based protocols 
for the optimistic approach. The protocols, together 
with several conflict resolution schemes, have been 
implemented and evaluated on a real-time database 
testbed. The experimental results show that npt,i- 
mistic concurrency control ma,y not always outperform 
the two-phase locking which Incorporates priority in- 
formation in its conflict resolution. In particular, the 
performance difference between the two concurrency 
control schemes is sensitive to the amount of data con- 
tention, but not to the amount of I/O resource con- 
tention (as measured by resource utilization). The op 
timistic scheme performs better than the two-phase 
locking scheme when data contention is low, and vice 
versa when data contention is high. It is shown that 
the locking mechanism adopted in the OCC implemen- 
tation results in blocking and, in turn, priority inver- 
sion as well as high abort rate, thus affecting the pro- 
tocol performance. 

In this paper, we have also explored the starvation 
problem with respect to the deadline guarantee ratio 
for transactions of different lengt,h. The performance 
studies show that both the abort-oriented two-phase 
locking and optimistic approaches result in starvation 
for long transactions. Integrated with the -proposed 
weighted priority scheduling, the optimistic concur- 
rency control scheme exhibits a greater flexibility in 
coping with the starvation problem. 

Even though this study reveals some weaknesses of 
the optimistic approach with respect, to its implemen- 
tation, we believe that this approach is still a candidntr 
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for real-time concurrency control owing to its high de- 
gree bf parallelism and its flexibility in handling con- 
flict resolution and in integration with CPU schedul- 
ing. Since the effectiveness of the approach is closely 
rrlated to its physical implementation scheme, its per- 
formance can be further improved by adding certain 
processing components into the system. For example, 
regarding the locking-based scheme developed in this 
work, if a disk controller can perform the write oper- 
ations in transaction validation order and it can also 
intelligent1 manage the order of read and write op- 
erations [3 , 3 the V-lock holding period can be largely 
reduced. The integration of concurrency control with 
I/O scheduling is an interesting topic for future work. 
Another example for improving the performance of the 
optimistic approach is the use of a database cache 
which can accommodate data pages to be accessed 
by restarted real-time transactions. The development 
of such a technique also remains part of future work. 
Also, different variations of the locking-based imple- 
mentation of OCC need to be explored. For exam- 
ple, a transaction that fails in its attempt to acquire a 
V-lock could release all its other V-locks and attempt 
to reacquire them when the V-lock is released. This 
allows read transactions to proceed. 

Our experimental results do not completely agree 
with the simulation studies reported in [6, 71, where it 
was shown that the real-time OCC alway outperforms 
the two-phase locking protocol that employs priority 
abort. The difference may result from one or more of 
the following important factors: (1) Implementation 
overhead - our experimental work captures the block- 
ing effect of the real-time OCC protocol at the physical 
implementation level. This factor was ignored in the 
simulation studies. (2) Disk scheduling - because. of 
physical limitations of our testbed our lsk schedulmg 
pohcy did not account for deadlines, while priority I/O 
disk scheduling was used in [6, 71. (3) System model - 
ollr trstbed adopts a closed system, while the simula- 
tion studies considered an open system. In addition, 
the testbed is a single-CPU system with two disks. 
The simulaiion model, on the other hand, assumed 
a multi-processor system with at least 10 CPUs and 
20 disks (Most of the simulation results were obtained 
from the assumption that the system has infinite re- 
sources.) With the different types of system and the 
different degree of protocol implementation, it is not 
surprising to see the performance difference. However, 
when comparing 2PL and OCC (WAIT-50) in our en- 
vironment, the implementation costs of OCC do affect 
the results. 
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2~6, a=5 x=6, cr=5 
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Figure 6: Data Contention, MPL = 8, 
x=6, a=5 
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Figure 7: Data Contention, MPL = 8, 
x=6, a=5 
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Figure 9: Deadline Distribution, MPL = 8, 
x = 6, P, = 0.2 
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Figure 10: Deadline Distribution, MPL = 8, Figure 13: Mixed Transactions, MPL = 8, 
x = 6, P, = 0.8 x = [4,8], cr = 5 
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Figure 12: Deadline Distribution, MPL = 4, 
x = 6, P, = 0.8 
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Figure 11: Deadline Distribution, MPL = 4, 
x = 6, P,” = 0.2 
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Figure 14: Mixed Transactions, MPL = 8, 
x = [4,8], Pw = 0.2, a = 2 
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