
Experimental Evaluation of
Real-Time Optimistic Concurrency Control Schemes*

Jiandong Huang
ECE Department

University of Massachusetts

Abstract
Due to its potential for a high degree of
parallelism, optimistic concurrency control is
expected to perform better than two-phase
locking when integrated with priority-driven
CPU scheduling in real-time database sys-
tems. In this paper, we examine the overall
effects and the impact of the overheads in-
volved in implementing real-time optimistic
concurrency control. Using a locking mecha-
nism to ensure the correctness of the imple-
mentation, we develop a set of optimistic con-
currency control protocols and evaluate them
on a testbed. Throu h experiments, we in-
vestigate, in depth, t R e effect of the locking
mechanism on the performance of optimistic
concurrency control protocols, and we com-
pare the locking-based optimistic approach
with a class of two-phase locking protocols.
The experimental results indicate that the
physical implementation schemes have a sig-
nificant impact on the performance of real-
time optimistic concurrency control.

1 Introduction

Concurrency control is one of the main issues in
the studies of real-time database systems. With a
strict consistency requirement defined by serializabil-
ity, most real-time concurrency control schemes con-
sidered in the literature are based on two-phase locking
(2PL) (18, 2, 9, 171. This is not surprising since 2PL
has been well studied in traditional database systems
and is being widely used in commercial databases. But
2PL, on the other hand, has some inherent problems
such as the possibility of deadlocks and long and un-
predictable blocking times. These appear to be serious
problems for real-time transaction processing, since in
a real-time environment, transactions need to meet
their time constraints as well as consistency require-
ments.

Recently, some alternatives to two-phase locking
for real-time systems have been proposed and studied
[16, 8, 6, 10, 7, 131. A mong them is a class of con-
currency control schemes based on t.he well-know op-
timistic approach [12]. Ideally, optimistic concurrency
control (OCC) h as the properties of non-blocking and

‘This work was supported by the National Science
Foundation under Grant IRI-8908693 and Grant DCR-
8500332, and by the U.S. Office of Naval Research under
Grant N00014-86-K0398.

Proceedings of the 17th International
Conference on Very Large Data Bases

John A. Stankovic
Krithi Ramamritham

Don Towsley
COINS Department

University of Massachusetts

deadlock freedom. These properties make the scheme
especially attractive to real-time transaction process-
ing. In real-time database systems, OCC may be in
a better position to be integrated with priority-driven
CPU scheduling. Previous performance studies (6, 71
have shown that under a policy that discards trans-
actions which have missed their deadlines, OCC out-
performs 2PL over a wide range of system utilizations.
The results in i6, 71 are based on simulation, where
optimistic concurrency control is carried out at the
logical level and detailed implementation issues at the
physical level are ignored.

In this study, we examine the overall effects and
the impact of the overheads involved in implementing
real-timk optimistic concurrency control. Using a lock-
ing mechanism to ensure the correctness of the OCC
implementation, we develop a set of optimistic con-
currency control protocols in connection with priority-
driven preemptive CPU scheduling. The protocols
possess the property of deadlock freedom and have the
potential for a high degree of parallelism. Our per-
formance studies conducted on a real-time database
testbed show that the blocking effect caused by the
locking mechanism adopted in the implementation
scheme has a major impact on the performance of the
optimistic concurrency control protocol. In meeting
transaction deadline, the protocols are sensitive to pri-
ority inversion, but not to resource utilization. As in
non real-time databases, compared to a variation of
2PL which aborts the lower priority transaction when
conflict occurs, the locking-based OCC performs bet-
ter when data contention is low and worse when data
contention is high.

Because of their higher probability to conflict with
other transactions, long transactions are likely to be
repeatedly restarted and thus have less chance to meet
their deadline than short transactions. Instead of lim-
iting the number of transaction restarts, as is often
proposed to address this starvahon problem in tradi-
tional database systems, we use a Iransachon length
and deadline sensitive priority assignmenl to address
the problem. We show that integrated with the pro-
posed weighted priority scheduling policy the opti-
mistic concurrency control approach is more flexible in
coping with the starvation problem than the two-phase
locking scheme.

This paper is organized as follows. In Section 2, we
present our locking-based OCC protocols and discuss
implications of the implementation. In Section 3, we
describe the real-time database testbed that was used
for the performance studies. The experimental results

35
Barcelona, September, 1991

are presented and discussed in detail in Section 4. Fi-
nally, we give concluding remarks and point out future
research directions in Section 5.

2 Optimistic Concurrency Control for
Real-Time Transactions

In this section, we first discuss the principles underly-
ing optimistic concurrency control for real-time trans-
actions, particularly regarding its validation. Then
we propose a set of locking-based optimistic concur-
rent control protocols and discuss their implications
in comparison with a two-phase locking approach. Fi-
nally, we present some conflict resolution policies used
in conjunction with the proposed protocols.

2.1 Ezi,tc$lle of Optimistic Concurrency

With the original OCC [12], the execution of a trans-
action consists of three phases: read, validation, and
write. The key component in OCC is the validation
phase where a transaction’s destiny is decided. To en-
sure serializability if transaction T, is serialized before
transaction ‘T;, then

Condition 1: the writes of T, should not affect the
read phase of Tj ; and
Condition 2: T,‘s writes should not overwrite TJ’s
writes.

Basically, the validation process can be carried out
in either of the following two ways[5]:

l Backward validation: validating against com-
mitted transactions. When a conflict is detected,
the validating transaction will abort itself.

l Forward validation: validating against active
transactions. When a conflict is detected, either
the validating transaction in validation phase or
the conflicting transactions in read phase can be
aborted. Futhermore, the validating transaction
may defer validation until later on, thus avoiding
any unnecessary abort.

In real-time database systems, conflicts should be rc-
solved according to the priority associated with real-
time transactions. As a result, either the validating
transaction or the conflicting transaction(s) may be
chosen for abort or possible delay. Clearly, to pro-
vide flexibility for conflict resolution, a transaction
should be validated against active transactions instead
of committed ones, i.e., forward validation is prefer-
able.

Let Tj be the validating transaction and T, (i =
n i # j) be the transactions in their read phase.

kkibi,) and WS(T) denote the read set and write
set of transaction T, respectively. Then, the validation
operation can be described by the following procedure.

VALID := true
for Ti (i = 1,2, n) do

if WS(Tj) n RS(T;
1

{}
then VALID := alse

if VALID
then execute write phase
else invoke real-time conflict resolution

The condition WS(Tj) n RS(Ti) # (} guarantees that
data read by the Ti’s have not been written by Tj. TO

Proceedings of the 17th International
Conference on Very Large Data Bases

ensure Condition 2, I/O operations in the write phase
must be done sequentially in validation order.

2.2 Optimistic concurrency control using
locking (OCCL)

Validating against active transactions is straightfor-
ward at the iogical level. For example, a broadcast
mechanism can be used for the validation, where the
validating transaction “notifies” other currently run-
ning transactions of data access conflict [6]. In the
following, we describe a physical implementation of a
set of validation protocols.

The proposed protocols are based on a locking mech-
anism [5], thus being named OCCL’. In the system,
each transaction T; maintains its own read set, RS(Ti ,
and write set, WS(T,). d In addition, a systemwi e
lock table, LT, is shared by all concurrently executing
transactions. We define two lock modes - read-phase
lock (R-lock) d I’d t an va t a ion-phaae lock

4
V-lock), where

an R-lock for a data item is set in L by a transac-
tion in its read phase while a V-lock on a data item is
set only by a transaction in its validation phase. An
R-lock is incompatible with a V-lock and a V-lock is
incompatible with another V-lock. Thus, if a trans-
action attempts to set an R-lock on an object that is
currently locked by a V-lock, then the transaction is
forced to wait until the lock can be held. On the other
hand, if a transaction attempts to hold a V-lock on
an object currently locked by R-lock(s) or a V-lock,
then a conflict resolution mechanism (see Section 2.4)
is invoked to determine which lock

\
s) should prevail.

As we mentioned above, to satis y the requirement
of aerializabiltly, two conditions must hold. Here Con-
dition 1 is ensured by the locking mechanism. We give
two protocols for ensuring Condition 2. Again, we use
T, (i = 1,2 ,..., n) to denote transactions in read phase
and Tj as the transaction in validation phase. We
bracket a critical section by I’<” and “>“.

2.2.1 Serial validation-write: OCCL-SVW

A simple way to guarantee Condition 2 is to embed the
validation phase and write phase in one critical section.
N’e call this scheme aerial validation-write since the
validation phase and the write phase are indivisible.

During the read phase, each transaction Ti works
on its own local copy and sets an R-lock in LT for
every data object in its RS(Ti). During the validation
phase, the validating transaction 7’; attempts to set
V-locks for all data objects in its WS(Tj) in LT. If all
the V-locks can be obtained, that means that the write
set of the validating transaction does not intersect with
the read set of any other active transactions. At this
point, the validating transaction deletes its R-locks in
LT and proceeds to its write phase. A failure to set a
V-lock, on the other hand, indicates that Condition 1
has been violated, since this implies that a data object
in WS(Ti) 1 f 11 a so a s in RS(Ti) of other transaction(s).
In this case, the real-time conflict resolution policy is
invoked to resolve the conflict (see Section 2.4). We
give the protocol for the serial validation-write scheme
via the following pseudo code.

‘It was called pseudo-locking in our earlier work [lo].

36 Barcelona. September, 1991

Read phase of Ti:
for every data object to be read do

place it in RS(Ti)
< set an R-lock in LT >

for every data object to be written do
place it in WS(Ti)

Validation and Write Phase of Ti:
V.4LID := true
< for every data object in WS(T,) do

if another transaction has R-locked it
then VALID := false
else set a V-lock in LT

release Tj’s R-locks in LT
if not VALID

then invoke real-time conflict resolution
else execute write phase

release Tj’s V-locks in LT >
OCCLSVW is simple and is easy to implement.

In fact, here, since V.locks are acquired and released
within a single critical section, V-locks are not really
required. R-locks are necessary to satisfy Condition 1.
Condition 2 is satisfied by the serial execution of the
validation-write phases. It can be applied both to main
memory resident database systems where the write
phase is done in main memory and to disk resident
databases.

On the other hand, serial validation-write may not
be necessary if conflicts occur rarely between update
transactions. Also, since the write phase and the val-
idation phase are embedded together in a critical sec-
tion, the critical section can easily become a bottle-
neck. This is especially true of disk resident databases.
To separate the write phase from the critical sec-
tion, we now develop another protocol, called po.rallel
validation-write.

2.2.2 Parallel validation-write: OCCL-PVW
In order to separate the write phase from the critical
section and at the same time to guarantee Condition
2, transactions in read phase need to set R-locks based
on their write set as well as their read set. We give the
protocol for parallel validation-write in the following.

Read phase of Ti:
for every data object to be read or written do

place it in RS(Ti) or WS(T,)
< set an R-lock in LT >

Validation and Write Phase of Ti:
VALID := true
< for every data object in WS(Ti) do

if another transaction has R-locked it
then VALID := false
else set a V-lock in LT

release T3’s R-locks in LT
if not VALID

then invoke real-time conflict resolution >
if VALID then execute write phase

< release Tj’s V-locks in LT>
Unlike in OCCL-SVW, V-locks are necessary in
OCCL-PVW to satisfy Conditions 1 and 2. Further, to
avoid conflicts between two transactions over V-locks,
a transaction obtains an R-lock (during its read phase)
over every object in its WS. This ensures that two

Proceedings of the 17th International
Conference on Very Large Data Bases

transactions in their validation and write phase never
conflict.

Compared with OCCL-SVW, OCCL-PVW provides
greater concurrency by separating the validation phase
and the write phase into two critical sections. On the
other hand, OCCL-TVW may cause a higher conflict
rate, since there exist not only read-write conflicts but
also write-write conflicts. Which protocol is chosen
depends on the type of database system (memory or
disk-resident) and the kind of workload (write/read
ratio).

2.3 Some Implications

Since a locking scheme is used in OCCL, it is necessary
to compare OCCL with the two-phase locking (2PL)
approach in terms of locking mechanism and imple-
mentation overhead.

2.3.1 Locking mechanism
With respect to the locking mechanism, OCCL pre-
sented here is different from 2PL. Note that a V-lock
is issued at the end of a transaction and the locking
period is the duration of validation phase plus write
phase. With 2PL, however, the write lock is issued
whenever the update transaction accesses a data ob-
ject for update and the locking period may be as long
as the transaction lifetime. Furthermore, the R-lock
used here will not block any concurrent transactions
in their read phase, while under 2PL any conflict be-
tween read/write locks will block the conflicting trans-
<actions.

In addition, OCCL is deadlock-free, even though
R-locks and V-locks are used. This is guaranteed by
letting the validating transaction set V-locks in the
critical section. Since a transaction that has been
granted all of its V-locks will not request any lock after
leaving its critical section, it will not wait for any other
(lock-holding) transactions. Thus, a wait-for cycle will
not form.

Because OCCL and 2PL use locks, priority inver-
sion may occur.’ With 2PL,, priority inversion can
be avoided by forcing the high priority transaction
to abort the low priority transaction so that a higher
priority transaction is never blocked. The problem is
more complicated in OCCL than 2PL. Priority inver-
sion may occur in two places with OCCL. One is in
the validation phase, where setting the V-lock fails.
This problem is addressed by various conflict resolu-
tion policies (see Section 2.4). Priority inversion may
also happen in the read phase when a transaction at-
tempts to set an R-lock for the data object to be ac-
cessed. In this case, it is preferable to let the higher
priority transaction in the read phase wait for the low
priority transaction. This is because the low priority
t,ransaction is already in its validation stage or perhaps
even in its write phase. Aborting a transaction near
completion may cost more, on average, than blocking a
higher priority transaction for a limited period of time.
To shorten the blocking period, a priority inheritance
scheduling scheme can be applied during the valida-
t,ion phase and write phase [l l]. For instance, the CPU
__~~

’ Priority inversion [IS] refers to the situation where R
high priority tronsnction is blocked by n low priority trans-
sction due to access conflict.

37 Barcelona, September, 1991

scheduler may raise the process priority of the validat-
ing transaction to the highest among the concurrent
transactions, thus reducing the time for validation pro-
cessing. In addition, we may use transaction priority
to manage access to the critical section. When more
than one transaction is waiting for the critical section,
then the one with the highest prioritv will get access
first. Therefore, the worst case blocking time for the
hi her priority transaction is limited to the delay in-
vo ved in transaction validation (under OCCL-PVW). 7

2.3.2 The starvation problem
Another problem that 2PL and OCCL may encounter
is siarvation. In this context, starvation occurs when
transactions are restarted again and again until they
miss their deadline. Long transactions have a higher
probability of being starved because of their higher
probability of access conflict. This results in a lower
deadline guarantee ratio for long transactions than
for short transactions. In traditional database sys-
tems, OCCL may result in more severe starvation be-
cause of its high degree of parallelism. Many solutions
to the starvation problem have been proposed (e.g.,
114, 15, 191). Th ese schemes basically rely on lim-
iting the number of transaction restarts. Given the
timing constraints in real-time database systems, we
use CPU scheduling to address the starvation prob-
lem. Based on our earlier studies on transactions with
different characteristics [9], here we group transactions
into classes by transaction length and assign a weight
to each class. The weighting factor is incorporated in
the CPU scheduling such that long transaction9 may
have higher priority over short transactions. Using
transaction deadline information, the weighted trans-
action priority is calculated by

P = (d - t)lw, d > 0, t > 0, w 2 1.

where d is the transaction deadline, t is the time
when CPU scheduling takes place, and w is the length
weighting factor. The smaller the p value, the higher
the transaction priority. The specific weights used
are discussed in Section 3. Note that for transac-
tions with the same length, this corresponds to the
earliest-deadline-firsl scheduling strategy.

2.3.3 Implementation overhead
In terms of physical implementation, both OCCJ, and
2PL require a central lock table. For the sake of com-
parison, we list the lock table operations required by
the two schemes.
OCCL:

1. insert a data object ID with an R-lock into the
lock table during the read phase;

2. search for a data object ID and convert the cor-
responding R-lock into a V-lock (if the object has
been updated) during the validation phase;

3. delete a data object ID when an R-lock is released
during validation phase or when a V-lock is re-
leased at the end of the write phase.

2PL:
1. search for a data object ID and check its lock com-

patibility against the lock mode of lock holder(s):
2. insert a data object ID with read or write lock into

the lock table;

Proceedings of the 17th International
Conference on Very Large Data Bases

38

3. delete a data object ID when a lock is release at
the end of the transaction.

It is clear that the physical operations on the lock
table are the same for the two protocols. Despite the
similarity, there are some differences between OCCL
and 2PL. For example, 2PL needs to detect poten-
tial deadlock before a lock request is queued while
OCCL does not. The implementation overhead of the
two concurrency control protocols has been examined
through experiments and the result9 are presented in
Section 4.

2.4 Conflict Resolution

With OCCL, an algorithm is needed to resolve the ac-
cess conflicts during the validation phase. As discussed
above, this conflict resolution should consider transac-
tion priority based on transaction deadlines and length
as discussed above. In other words, the resolution
policy should aim at improving the performance of
real-time transaction9 in term9 of meeting traneaction
deadlines. Here are some basic resolution policies:

Commit: CMT
Always let the validating transaction commit and
abort all the conflicting transactions. This strat-
egy guarantees that as long as a transaction
reaches its validation phase, it will always fin-
ish. The advantage of this strategy is that the re-
sources (CPU, I/O, etc.) consumed by a finishing
(validating) transaction are never wasted. Apply-
ing CPU scheduling, we expect that transactions
with higher priority have a higher probability of
reaching the validation phase and, in turn, have a
higher probability of committing.
Priority abort: PA
Abort the validating transaction only if its priority
is less than that of all the conjlicting transactions.
This strategy takes transaction priority into ac-
count, but still favors the validating transaction.
It aims at reducing the resources wasted due to
aborted transactions.
Priority wait: PW
If the priority of the validating transaction is not
the highest among the conflicting transactions,
wait for the conflicting transactions with higher
priority to complete. In some cases, the strat-
egy of aborting conflicting transactions appears
too conservative, causing unnecessary transaction
abort. Consider the situation where the validating
transaction conflicts with transactions which have
only read operations. If the validating transaction
has a lower priority compared with other conflict-
ing ones, instead of being aborted, it may be de-
ferred. In other words, this transaction is “pre-
empted” from its validation phase and is placed in
a waiting queue to wait until all of the conflicting
transactions with higher priority finish their vali-
dation. The version of the priority wait strategy
evaluated here is WAIT-50 proposed in ‘71, where
a validating transaction will wait if at i east 50%
of the conflicting transactions have a higher prior-
ity over the validating transaction. The protocol
aims at balancing the wait factor and the priority
cognizance. In this study the implemented PW
policies refers to the WAIT-50 protocol.

Barcelona, September, 1991

Other variations of the conflict resolution strategy
are possible. Since in this studv we emphasize the fun-
damental analysis of OCC perfbrmance~ with respect to
its implementation, we only examine the three simple
conflict resolution policies discussed above.

Table 1: System Parameters

Parameter Settings
Disks d. kl database; disk2:log.
MPL lb” 8:6 4
DB M’Pt *‘loo blocks 3 Test Environment

The proposed locking-based optimistic concurrency
control protocol, together with several real-time con-
flict resolution schemes, have been implemented and
evaluated on our real-time database testbed RT-
CARAT [9]. In this section, we briefly introduce
the testbed organization and describe the system and
workload parameter settings.

3.1 Testbed organization

Currently, RT-CARAT is a centralized, secondary
stora e real-time database testbed built on top of the
VAX 7 VMS operating system. It contains all of the ma-
jor functional components of a transaction processing
system, such as transaction management, data man-
agement, lo management, and communication man-
agement. 1 T e testbed is implemented as a set of co-
operating server processes which communicate via ef-
ficient message passing mechanisms. A pool of trans-
action processes (TR’s) simulate the users of the real-
time database. Accordingly, there is a pool of data
managers (DM’s) which service transaction requests
from the user processes (the TR’s). There is one trans-
action manager, called the TM server, acting as the
inter-process communication agent between TR and
DM processes. The communications between TR, TM
and DM processes are carried out through mailboxes, a
facility provided by VAX/VMS. To be more efficient,
TM and DM processes also share some information,
such as transaction deadline and priority, through a
common memory space, called the global section in
VAX/VMS.

Using the underlying VAX/VMS operating svs-
tern real-time priorities, the priority-driven preemptive
scheduling is done by a CPU scheduler embedded in
the TM. Upon the arrival of a new transaction, the
scheduler assigns a priority to the transaction accord-
ing to the CPU scheduling policy. The scheduling op-
eration is done by mapping the assigned transaction
priority to the real-time priority of the DM process
which carries out the transaction execution. At. this
point! an executing DM will be preempted if it is not
the highest priority DM process at the moment, other-
wise it will continue to run until it completes or until it
needs to wait for an I/O. Concurrency control is part
of the DM process. It incorporates the CPU scheduler
of the TM process in its real-time conflict resolution.

RT-CARAT is a system that contains a fixed num-
ber of users that submit transaction requests one af-
ter another, with a certain think time (T) in-betwern.
This model captures many applications in the real
world. For example, in an airline reservation system,
there is a fixed number of computer terminals. The
airline clerk at each terminal may check a flight, re-
serve a seat, or cancel a reservation for customers. Af-
ter submitting a request to the system, the clerk waits
for a result. He may submit another request after grt-
ting a response from the previous one. (Of course, this

Proceedings of the 17th International
Conference on Very Large Data Bases

modei does not capture all applications. For instance,
an open system model is more appropriate for a pro-
cess control system.)

A transaction is characterized by its lengthand dead-
Itne. The length is specified by T(z,y), where G is
the number of steps that a transaction needs to exe-
cute, and y is the number of records accessed in each
step. The transaction deadline is randomly generated
from a uniform distribution within a deadline window,
[d-base,cr x d-base], where d-base is the window base-
line and (Y is a variable determining the upper bound
of the deadline window. For each workload in the ex-
periments, d-base is specified first by the formula:

d-base = aug-rsp - stnd-dvi
where avg-rsp is the average response time of the read-
only transactions with the same length when executed
in a non real-time database environment, and atnddvi
is the standard deviation of the response time.

A transaction terminates upon completion or a ter-
mination abort. The latter refers to the situation
where a transaction has missed its deadline and it is
thus aborted by the system. A transaction aborted due
to deadlock or data access conflict will be restarted as
long as it has not passed its deadline. Hence a transac-
tion may make multiple runs before it eventually ter-
minates. Note that a restarted transaction will access
the same set of records as it did in its first run.

3.2 Parameter settings

Table 1 summarizes the system parameter settings.
The experiments were conducted on a VAXstation
3100/M38 with two RZ55 disks, one for the database
and the other for the log. Given the physical machine,
in order to examine the degree of resource contention
CPU

a

and I/O), the system multi-programming level
MPL) is varied from 10 to 4. While this is a low
egree of multiprogramming, compared to what we

would find in practice, the database size (DB) in the
experiments (400 - 1000 blocks with 6 records/block)
is also smaller than we would find in practice. With
a proper system scaling, many factors, such as the
level of data access conflict, can model practical sit-
uations. Thus, the performance results obtained from
the smaller system can often reflect the performance
of a larger system. In our experiments, in order to
isolate the effect of resource contention from that of
data contention, the database size is set proportional
t,o AlPI,.

Table 2 describes the workload parameters and their
settings in the experiments. We consider two work-
loads: one where all transactions consist of 6 steps,
P[z = 61 = 1, and the other where one half consists
of 4 steps and the other half 8 steps, P[z = 4] =
P[z = 8] = l/2. The latter workload is used par-
ticularly for analyzing the starvation problem. The
number of records to be accessed per transaction step,

39
Barcelona, September, I991

Table 2: Workload Parameters

I Parameter Settings i
0 (steps per trans.) j 4, 6, 8 steps1
y (records per trans. step) 4 records 1
a (deadline window factor) 2.0 - 6.0
P, (prob. of write trans.) 0.0 - 1.0
7 (external think time) 0.0 seconds

Table 3: Schemes Examined

Scheme Conflict r&sol. I CPU scGIJi&j~
11 wait 1 FO 1

2PL-WAIT wait EDF -
PPL-PA priority abort EDF
OCCL-NRT commit MLFQ
OCCL-CMT commit EDF

1 OCCL-PW I/ priority wait / EDF

y: is fixed at 4. The deadline window factor, o, is a
timing-related parameter which specifies the deadline
distribution of real-time transactions. The smaller the
value of LY, the tighter the transaction deadlines and
vice versa. In RT-CARAT, a transaction is either read
(where each step is a sequence of FIND and GET op-
erations) or write (where each step is a sequence of
FIND, GET and MODIFY operations).” The prob-
ability that a transaction is a write transaction, P,,:,
is another parameter that directly affects transaction
conflict rate. The transaction external think time, T, is
set at 0 in the experiments. The workload contains no
deletion of records or insertion of entirely new records.

3.3 Baselines and Metrics

Table 3 lists the schemes examined in the exper-
iments. We consider two basic concurrency control
protocols, 2PL and OCCL, in combination with dif-
ferent conflict resolution policies.J 2PL-NRT and
OCCL-NRT are two baselines for the purpose of per-
formance comparisons. They correspond to 2PL and
OCCL schemes in non real-time NRT) database sys-

r, tems, where a multi-level fcedbac queue (MLFQ) al-
gorithm is used for CPU scheduling. In case of access
conflict, under 2PL-NRT, the lock-requesting transac-
tion is put into a wait queue; under OCCL-NRT, the
validating transaction always commits. 2PL-WAIT
and OCCLXMT employ priority-driven, preemptive
scheduling. Transaction priority is assigned accord-
ing to earlier-deadline-first (EDF) policy. Still, the
two schemes do not take transaction timing constraints
into account for resolving access conflict. 2PL..PA and
OCCL-PW consider transaction priority for both CPU
scheduling and conflict resolution.

Besides the above schemes, we also examined
the conflict resolution policy PA for OCCL (i.e.,
OCCL-PA). Th ose results show that PA performs no
better than CMT due to aborts of the (validating)
transaction near its completion. To save space, we
do not include these experimental results here.

The basic metric used for performance evaluation
is deadline guarantee ratio, which is the percentage of
transactions that complete by their deadline. We also
collect statistics on transaction abort ratio, blocking
time, wasted operations, and CPU and I/O utilizations
so as to provide insights into the protocol performance.

The data collection in the experiments is based on
the method of replication. The statistical data has
95% confidence intervals whose end points are within
2% of the point estimate for deadline guarantee ratio.
In the following graphs, we plot only the mean values
of the performance measures.

4 Experimental Results
In this section, we present experimental results from
our performance studies. We first compare the im-
plementation overhead of the two types of concur-
rency control protocols, 2PL and OCCL. Then, we ex-
amine the protocol performance with respect to data
contention, deadline distribution, resource contention,
and transaction length.

4.1 Experiment 1: Protocol overhead
The overhead is measured by the average CPU pro-
cessing time spent on concurrency control per page.
To capture the overhead under all the execution paths,
we vary the write probability P,,. At this point, other
parameter settings are irrelevant.

Figure 1 indicates that the implementation over-
heads of the two protocols are quite close. This is
due to the fact that even though the two protocols
differ at the logical level (two-phase locking vs. opti-
mistic approach), the underlying physical implementa-
tions are very similar. Both protocols rely on a locking
technique for data access control, and they both in-
volve hashing operation and lock table management.
Despite the similarities, 2PL employs deadlock detec-
tion while OCCL does not. However, our previous
studies (91 have shown that the deadlock detection on
RT-CARAT does not incur significant overhead. On
the other hand, the implementation of OCCL costs
more to maintain read/write sets for each individual
transaction. This may be the reason why OCCL has
slightly larger overhead than 2PL.

Knowing that the two logically different protocols
have similar overhead, we now analyze how the imple-
mentation schemes affect the performance of the two
protocols.

4.2 Experiment 2: Data contention

‘FIND, GET, MODIFY etc. are the statements of Data
In this experiment, we examine the protocol perfor-

Manipulation Language in VAX DBMS. The corresponding mance under different data contention levels by varv-

operations are fully implemented on RT-CARAT. ing the write probability, Pw. We fix the rnulii-

‘The optimistic concurrency control orotocol imule- programming level at 8 with z = 6 and LZ = 5. -. ^ . .I I . . 3 1..
mented on RT-CARATis OCCLPVW. This is bernuse t.hr rlgure 2 shows the transactZ0n deadltne guarantee
testbed is a disk-resident real-time datahnsr and cannot nf- rafzo for six schemes. As one would expect, t,he dead-
ford the long waits (for writing) inhrrenl in OCCL-S\‘W lint- guarantee ratio drops as data contention increases.
In the rest of the paper, we refer to it as OCCL. The performance of two baselines, 2PL-NRT and

Proceedings of the 17th International
Conference on Very Large Data Bases

40
Barcelona, September, 1991

OCCL,NRT, is consistent with the results from previ-
ous studies (e.g., [4, l]), i.e., non real-time two-phase
locking outperforms non real-time optimistic approach
under large data and resource contention. Here an in-
teresting observation is that combined with priority-
driven preemptive scheduling, the optimistic approach

I
OCCL-CMT) performs better than two-phase locking
2PL-WAIT). Furthermore, as we incorporate transac-

tion priority into conflict resolution for the two types of
protocols,, 2PL-PA further increases the deadline guar-
antee ratio, with respect to 2PL_WAIT, by as much as
17% for P,,l = 0.6, while OCCL-PW performs only
slightly better than OCCL-CMT.

The performance of these schemes may be affected
by several factors, such as transaction blocking time,
priority inversion and abort ratio. Based on the imple-
mentation details, we now explain the results shown in
Figure 2.

A transaction can be blocked due to access conflict.
Under OCCL, this hagpens in the transaction read
phase where an R-lock requesting transaction has to
wait for the transaction holding the V-lock. In addi-
tion, under OCCL-PW, a validating transaction may
be blocked when it conflicts with higher priority trans-
actions in read phase. Under 2PL, blocking can occur
at any point along the course of its execution when-
ever there is a read-zurile or write-write conflict. Fig-
ure 3 depicts the average transaction wailing lime (in
seconds) for each blocking instance. Overall, the wait-
ing time under OCCL scheme is shorter than under
2PL. This is because even though both schemes rely
on locking, OCCL shrinks the V-locking period to the
final stage of transaction execution, thus reducing the
waiting time. Furthermore, as we discussed in Sec-
tion 2.3.1, applyin priority-driven CPU scheduling to
OCCL further re (k uces the waiting time as much as
40% (comparing OCCL-NRT with OCCLXMT and
OCCL-PW). Compared with CCCL-CMT, the wait-
ing time under OCCL-PW is increased by about lo%,
from 0.59 to 0.65 (seconds), for P,,, = 0.2. On the other
hand, when J’,,, is high, the two schemes perform the
same. This is a direct result of the implementation
which avoids cyclic V-lock conflicts between two write
transactions. The lolal waiting lime for each transac-
tion run is also measured, which is similar to what we
observed in Figure 3.

As discussed in Section 2.3.1, priority inversion, a
special case of transaction blocking, may occur un-
der both 2PL and OCCL. Figure 4 plots the average
number of priority inversions encountered per trans-
action run. In PPL-PA, a high priority transaction
will not wait for a low priority transaction when a
conflict occurs. Hence 2PL-PA performs the best in
terms of avoiding the problem of priority inversion.
Note that priority inversion under 2PL-PA is slightly
greater than 0. This is because on RT-CARAT, a high
priority transaction is forced to wait for a lower prior-
ity transaction if the low priority transaction has al-
ready completed its write operations on the database
and is about to release its locks. Under OCCL, since
a higher priority transaction blocked during its read
phase has to wait for a V-lock holder to complete
its validation phase and write phase, the probnbil-
ity of the occurence of priority inversion is higher
than under 2PL-PA, especially when Pw is large.

Proceedings of the 17th International
Conference on Very Large Data Bases

Again, combined with priority-driven CPU scheduling,
OCCL-CMT and OCCL-PW outperform OCCL-NRT.
Under OCCL-PW, a transaction in read phase has less
chance to be blocked since the validating transaction
might be in the validation-wait state. Thus, the roba-
bility of priority inversion under OCCL-PW is s lghtly I!
lower than that under OCCL-CMT.

Transaction abort rate is another major factor that
affect,s the protocol performance. Figure 5 illustrates
the average lransaction abort ratio (i.e., the percent-
age of submitted transactions that are aborted due to
deadlock or access conflict). Clearly, the wait-oriented
schemes, 2PL-NRT and 2PL_WAIT, result in a much
lower abort ratio than the abort-oriented schemes -
2PL-PA and OCCL. With a high degree of parallelism
and the shorter blocking time (see Figure 3), all the
OCCL schemes have a lower abort ratio than 2PL-PA
when the data contention is low, but a higher abort
ratio when the data contention becomes high. The
saturation behavior under 2P_L is due to its increased
blocking effect when the data contention becomes high.
Among the three OCCL schemes, OCCL,PW has the
lowest abort ratio (12% lower than OCCLXMT for
P,,, = 0.2), since it mcorporates a wait mechanism in
the validation phase.

Figure 6 depicts the wasted operations per transac-
2ion ezeculion, i.e., the number of steps wasted for each
submitted transaction. This measurement reflects the
combined effect of both transaction abort ratio and
nborl length - the number of steps that have been pro-
cessed when a transaction is aborted.

With respect to resource consumplion, CPU and
I/O utilizations are plotted in Figure 7 and Figure 8,
respectively. As one would expect, the wait-oriented
schemes, 2PL-NRT and 2PL-WAIT, consume less re-
sources than the abort-oriented schemes - 2PL-PA and
OCCL. Due to a high degree of parallelism and the
shorter blocking time, OCCL results in higher CPU
and l/O utilizations than 2PL-PA. Note that unlike
what one might expect, the resource utilization of
OCCL decreases when the data contention level is in-
creased. This effect is caused by the locking mecha-
nism employed in OCCL. As shown in Figure 3 trans-
action waiting time under OCCL increases as P,, in-
creases.

Having examined the protocol performance in detail,
we come to the following points with respect to the
performance results demonstrated in Figure 2.

41

A CPU scheduling algorithm that takes transac-
tion deadlines into account plays an important
role in improving the performance of concurrency
control protocols, particularly for OCCL which
provides a high degree of parallelism and short
blocking period.

The three schemes, 2PL_PA, OCCL-CMT and
OCCL-PW, with the least priority inversions, per-
form the best. The difference between the three
schemes depends on the amount of wasted opera-
tions. 2PL-PA performs the best when data con-
tention is high, since it results in the least wasted
operations.
The wait strategy employed by OCCL-PW has
110 significant impact on improving OCCL perfor-
mance. Increased waiting time overshadows the

Barcelona, September, 1991

performance gain due to reduced wasted opera-
tions. In addition, the implementation scheme
for avoiding cyclic V-lock conflicts prevents the
wait strategy from taking part in conflict resolu-
tion when the probability of write-write conflicts
is high.

Our results show that 2PL_PA, OCCL-CMT and
OCCL-PW are superior to the other protocols. More-
over, the further experiments with various work-
loads and system parameter settings show that
there is no significant performance differencr brt.wern
OCCL-CMT and OCCL-PW. To simplify the presen-
tation and to save space, we only demonstrate and
compare the performance of 2PL..PA and OCCL-CMT
in the following sections.

4.3 Experiment 3: Deadline distribution

Deadline distribution may also affect protocol perfor-
mance. Extending Experiment 2, we vary the tightness
of transaction deadlines while fixing the probability of
write transactions, Pw.

We first examine the possible effect of the deadline
distribution on performance when data contention is
low, Pw = 0.2. Figure 9 plots the deadline guarantee
ratio versus deadline window factor (Y. As we have ob-
served in Figure 2, when the deadline is loose (a = 5),
2PL-PA and OCCL-CMT show similar performance,
since transactions complete by their deadline most of
the time. As cr decreases, OCCL-CMT becomes su-
perior to 2PL-PA. This can be explained as follows:
When data contention is low, the two protocols have
nearly the same probability of priority inversion (see
Figure 4) and the same amount of wasted operations
(see Figure 6 .

L
Under such a condition, the protocol

with shorter locking time (see Figure 3) wins.
Next we vary the deadline window factor cy un-

der high data contention with Pw = 0.8. Figure
10 shows the deadline guarantee ratio for 2PLPA
and OCCLXMT, respectively. In contrast to the re-
sults shown in Figure 9, here 2PL-PA outperforms
OCCL-CMT. This is mainly due to the fact that both
the wasted operations and the probability of prior-
ity inversion under OCCLCMT increase as data con-
tention becomes high. Even though 2PL-PA has a
longer blocking time, it works better as long as the
transaction deadlines are long enough to accommodate
the waits.

4.4 Experiment 4: I/O resource contention

All of the experiments presented above are carried out
in a system with I/O resource contention, where the
I/O utilization under 2PL-PA and OCCLCMT was
always above 93% with average queue length > 4 (see
Figure 8). In this set of experiments, we examine the
protocol performance in a system where there is no
severe resource contention. To do so, we reduce MPL
from 8 to 4. Note that the database size is also reduced
correspondingly, from 800 to 400 (blocks), so that the
level of data contention for MPL = 4 is comparable
with that for MPL = 8.

We first exercise the two concurrency control
schemes under low data contention. Figure 11 illus-
trates the deadline guarantee ratio versus deadline

Proceedings of the 17th International
Conference on Very Large Data Bases

window factor cy with Pw = 0.2. Under such work-
loads, the I/O utilization drops below 83%. Compar-
ing Figure 11 with Figure 9, we observe again that the
two protocols perform basically the same. We have
also observed (not shown here) that the two protocols
perform the same with respect to priority inversion
and wasted operations, but 2PL-PA results in longer
waiting time than OCCL-CMT. This is the main rea-
son why reducing resource utilization does not affect
the protocol performance.

The possible effect of resource contention is then ex-
amined under high data contention. Figure 12 shows
the deadline guarantee ratio for Pw = 0.8. Compar-
ing it with Figure 10, we see the similarity again, de-
spite the drop of I/O utilization from 95% for MPL
= 8 to 80% for MPL = 4 (under OCCLXMT). Un-
der high data contention, the high abort ratio and
the long abort length of OCCLXMT leads to a larger
number of wasted operations, about 25% higher than
2PL-PA. Furthermore, the chance of priority inversion
for OCCL-CMT becomes high (0.16), as compared to
2PL-PA (0.04). Th ese two factors, particularly the pri-
ority inversion, degrade the OCCL-CMT performance.

Here we can see that reducing resource utilization
does not improve OCCL performance. Under OCCL,
due to the use of locking, the effect of priority inversion
is sensitive to the duration of the write phase. There-
fore, it is the I/O speed that needs to be improved.

4.6 Experiment 6: Transaction length

The transactions thus far were equal in length (Z =
6). We now look at workloads with a mix of different
transaction lengths. To make the data analyzable and
yet comparable with previous results, we exercise the
workload with two lengths of transactions, z = 8 (long)
and 3: = 4 (short), with mean value 6 (i-e, P[z = 41 =
P[z 7 81 = l/2).

Figure 13 shows the transaction deadline guarantee
ratio versus P,, for 2PL-PA and OCCLXMT. Exam-
ining the average deadline guarantee ratio, we can see
that the result is similar to what we have observed in
Figure 2 for z = 6, i.e., 2PL-PA performs better than
OCCL-CMT when data contention is high. However,
as we examine the deadline guarantee ratio of long
and short transactions, we see that under data con-
tention, OCCL-CMT outperforms 2PL-PA for short
transactions while 2PL-PA performs much better than
OCCLXMT for long transactions. In addition, under
both schemes, the deadline guarantee ratio of short
transactions is much higher than that of long transac-
tions. This observation identifies the starvation prob-
lem. Clearly, both the abort-oriented schemes result in
transaction starvation. Due to its high degree of par-
allelism, OCCL-CMT leads to more severe starvation
than 2PL-PA.

We have developed a weighted priority scheduling
policy to cope with the starvation problem (see Sec-
tion 2.3.2). F g i ure 14 shows the effect of such a CPU
scheduling scheme on transaction starvation. Here we
associate a weighting factor w to long transactions,
varying it from 1.0 to 2.6, while fixing w at 1.0 for short
transactions. When w is equal to 1.0, the scheduling
scheme follows the earlie.+deadIine-first policy. At

42
Barcelona, September, 1991

this point, the average deadline guarantee ratio co-
incides with the previous results for z = 6 (see Fig-
ure 9). But, long transactions suffer from the starva-
tion problem. As w increases, under OCCLXMT, the
deadline guarantee ratio of long transactions increases
while the deadline guarantee ratio of short transac-
tions decreases. Under 2P,L-PA, however, the deadline
guarantee ratio of long and short transactions changes
slowly. Note that the average deadline guarantee ratio
under both schemes does not change with w.

The observation from the experiment indicates that
OCCL-CMT is a more flexible scheme in that it can be
integrated with an appropriate CPU scheduling pol-
icy in order to resolve transaction starvation. This
is due to the fact that the transaction blocking time
under OCCLXMT is much shorter than that under
2PL-PA (see Figure 3), which gives the CPU sched-
uler more freedom to carry out priority scheduling.
In addition, the weighted priority scheduling schemp
follows the conservation law, i.e., the increase of the
deadline guarantee ratio for long transactions leads ~.a
the decrease of the deadline guarantee ratio for short
transactions, and the average deadline guarantee ratio
is kept constant. This brings up the question of fair-
neas on transaction scheduling. At this point, there is
no criterion for a “fair scheduling”. In practice, the
system designer may choose the weighting factors for
different groups of transactions such that their perfor-
mance requirements can be met.

5 Conclusions

We have investigated real-time optimistic concurrency
control with respect to its physical implementation.
We have developed a set of locking-based protocols
for the optimistic approach. The protocols, together
with several conflict resolution schemes, have been
implemented and evaluated on a real-time database
testbed. The experimental results show that npt,i-
mistic concurrency control ma,y not always outperform
the two-phase locking which Incorporates priority in-
formation in its conflict resolution. In particular, the
performance difference between the two concurrency
control schemes is sensitive to the amount of data con-
tention, but not to the amount of I/O resource con-
tention (as measured by resource utilization). The op
timistic scheme performs better than the two-phase
locking scheme when data contention is low, and vice
versa when data contention is high. It is shown that
the locking mechanism adopted in the OCC implemen-
tation results in blocking and, in turn, priority inver-
sion as well as high abort rate, thus affecting the pro-
tocol performance.

In this paper, we have also explored the starvation
problem with respect to the deadline guarantee ratio
for transactions of different lengt,h. The performance
studies show that both the abort-oriented two-phase
locking and optimistic approaches result in starvation
for long transactions. Integrated with the -proposed
weighted priority scheduling, the optimistic concur-
rency control scheme exhibits a greater flexibility in
coping with the starvation problem.

Even though this study reveals some weaknesses of
the optimistic approach with respect, to its implemen-
tation, we believe that this approach is still a candidntr

Proceedings of the 17th International
Conference on Very Large Data Bases

for real-time concurrency control owing to its high de-
gree bf parallelism and its flexibility in handling con-
flict resolution and in integration with CPU schedul-
ing. Since the effectiveness of the approach is closely
rrlated to its physical implementation scheme, its per-
formance can be further improved by adding certain
processing components into the system. For example,
regarding the locking-based scheme developed in this
work, if a disk controller can perform the write oper-
ations in transaction validation order and it can also
intelligent1 manage the order of read and write op-
erations [3 , 3 the V-lock holding period can be largely
reduced. The integration of concurrency control with
I/O scheduling is an interesting topic for future work.
Another example for improving the performance of the
optimistic approach is the use of a database cache
which can accommodate data pages to be accessed
by restarted real-time transactions. The development
of such a technique also remains part of future work.
Also, different variations of the locking-based imple-
mentation of OCC need to be explored. For exam-
ple, a transaction that fails in its attempt to acquire a
V-lock could release all its other V-locks and attempt
to reacquire them when the V-lock is released. This
allows read transactions to proceed.

Our experimental results do not completely agree
with the simulation studies reported in [6, 71, where it
was shown that the real-time OCC alway outperforms
the two-phase locking protocol that employs priority
abort. The difference may result from one or more of
the following important factors: (1) Implementation
overhead - our experimental work captures the block-
ing effect of the real-time OCC protocol at the physical
implementation level. This factor was ignored in the
simulation studies. (2) Disk scheduling - because. of
physical limitations of our testbed our lsk schedulmg
pohcy did not account for deadlines, while priority I/O
disk scheduling was used in [6, 71. (3) System model -
ollr trstbed adopts a closed system, while the simula-
tion studies considered an open system. In addition,
the testbed is a single-CPU system with two disks.
The simulaiion model, on the other hand, assumed
a multi-processor system with at least 10 CPUs and
20 disks (Most of the simulation results were obtained
from the assumption that the system has infinite re-
sources.) With the different types of system and the
different degree of protocol implementation, it is not
surprising to see the performance difference. However,
when comparing 2PL and OCC (WAIT-50) in our en-
vironment, the implementation costs of OCC do affect
the results.

Acknowledgments

The authors would like to thank Purimetla Bhaskar for
helpful discussions and his assistance in implementing
the OCCL..PW protocol on RT-CARAT and C. Shih
for help in preparing this version of the paper.

References

[l] Agrawal, R., M.J. Carey and M. Livny, “Con-
currency Control Performance Modeling: Alter-
natives and Implications,” ACM Transaction on
Database Syslems, 1;01.12, No.4, Dec. 1987.

43
Barcelona, September, 1991

[2] Abbott, R. and H. Garcia-Molina, “Scheduling
Real-Time Transactions: A Performance Evalua-
tion,” Proceedings of the 14th VLDB Conference,
Aug. 1988.

[3] Abbott, R. and H. Garcia-Molina, ‘Scheduling
I/O Requests with Deadlines: A Performance
Evaluation,” Proceedings of the 11th Real- Time
Systems Symposium, Dec. 1990.

[4] Carey, M.J. and M.R. Stonebraker, ‘(The Per-
formance of Concurrency Control Algorithms for
Database Management Systems,” Proceedings of
the 10th VLDB Conference, 1984.

[5] Harder, T. “Observations on Optimistic Concur-
rency Control Schemes,” Information Systems,
Vol. 9, No.2, 1984.

[6] Haritsa, J.R., M.J. Carey and M. Livny, “On
Being Optimistic about Real-Time Constraints,”
PODS, 1990.

[7] Haritsa, J.R., M.J. Carey and M. Livny, “Dy-
namic Real-Time Optimistic Concurrency Con-
trol,” Proceedings of the 11 th Real- Time Systems
Symposium, Dec. 1990.

[8] Huang, J., “Real-Time Transaction Processingl”
Ph.D. Dissertation Prospectus, Dept. of Electri-
cal and Computer Engin., University of Mas-
sachusetts, June 1989.

(91 Huang, J., J.A. Stankovic, D. Towslev and K. Ra-
mamritham, “Experimental Evaluation of Real-
Time Transaction Processing,” Proceeding3 of the
10th Real-Time Systems Symposium, Dec. 1989

[lo] Huang, J. and J.A. Stankovic, “Concurrency Con-
trol in Real-Time Database Systems: Optimistic
Scheme vs. Two-Phase Locking,” A Technical Re-
port, COINS 90-66, University of Massachusetts,
July 1990.

[II] Huang, J., J.A. Stankovic, K. Ramamritham
and D. Towsley, “On Using Priority Inheritance
in Real-Time Databases,” A Technical Report,
COINS 90-121, University of Massachusetts, Nov.
1990.

[12] Kung, H.T. and J.T. Robinson, “On Optimistic
Methods for Concurrency Control,” ACM Trans-
actions on Database Systems, Vol.G, No.2, June
1981.

[13] Lin Y. and S.H. Song, “Concurrency Control in
Real-Time Databases by Dynamic Adjustment of
Serialization Order,” Proceedings of the 11th Real-
Time Systems Symposium, Dec. 1990.

[14] Peinl, P. and A. Reuter, “Empirical Comparison
of Database Concurrency Control Schemes,” Pro-
ceedings of the 9th VLDB Conference, Florence,
Italy, 1983.

[15] Pradel, U., G. Schlageter and R. Unland, “Re-
design of Optimistic Methods: Improving Perfor-
mance and Applicability,” Proc. IEEE 2nd Int.
Conf. on Data Engineering, 1986.

[16] Sha, L., R. Rajkumar and J.P. Lehoczky,
“Concurrency Control for Distributed Real-Time
Databases,” ACM SIGMOD Record, March 1988.

[17] Son, S.H. and C. Chang, “Performance Evalu-
ation of Real-Time Locking Protocols using a
Distributed Software Prototyping Environment,”

Proceedings of the 10th International Conference
on Distributed Computing Systema, Paris, France,
May 1990.

[181 Stankovic, J.A. and Wei Zhao, “On Real-Time
Transactions,” ACM SIGMOD Record, March
1988.

(191 Thomasian, A. and E. Rahm, “A New Distributed
Optimistic Concurrency Control Method and a
Comparison of its Performance with Two-Phase
Locking,” Proceedings of the 10th International
Conference on Distributed Computing Systemq
Paris, France, May 1990.

‘1
.

0) *

B i
I--- ---p------p ---- -47 ----- + ----- f7

h@-
z
E 9 - o---Q 2PL
P

?I

- OCCL

C-J-

t
04

0.0 0.2 0.4 0.6 0.6 1 .o
Pw

Figure 1: Concurrency Control Overhead

9
0

, * PPL-NRT
+ + BPL-WAIT
O---Q OPL-PA
x---w OCCL-NRT
*-4 OCCL-CMT
D---- CCCL-PW

,

0.0 0.2 0.4 0.6 0.8 1.0

Pw

Figure 2: Data Contention, II4PL = 8,
x=6, a=5

Proceedings of the 17th International
Conference on Very Large Data Bases

44
Barcelona, September, 1991

3 - - PPL-NRT
+..-...-.+ 2PLmy4AW
o- - - Q ZPL-PA
M- - -U CCCL-NAT
-- CCCL-CMT
o--4 CCCL-PW

0.2 0.4 0.6 0.6 1.0

Pw

Figure 3: Data Co.ltention, MPL = 8,
z=6, a=5

9
- - PPL-NRT

+ . . . + 2PL-WAIT
o- - - Q 2PL-PA
n- - --x OCCL~NRT

:~~~~

+..’

_,-*-

a---

03
d

0 9
t 0 a

$3

N
d

0
d

0.2 0.4 0.6 0.8 1 .o

Pw

Figure 4: Data Contention, MPL = 8,
x=6, a=5

PPL-NRT
;.......I, PPL-WA,T

- e---a PPL-PA
x- - -M CCCL-NRT
+---+ OCCL-CM-r
o------o CCCL-PW

In
d

c L PPL-NRT
+ + PPL-WAIT
O---Q PPL-PA
x- - --x CCCL-NRT
c-4 CCCL-CMT
O---r CCCL-PW

-I 1 8

0.0 0.2 0.4 0.6 0.8 1 .o

Pw

0.2 0.4 0.6 0.8 1 .o

Pw

Figure 5: Data Contention, MPL = 8, Figure 8: Data Contention, MPL = 8,
2~6, a=5 x=6, cr=5

Proceedings of the 17th International
Conference on Very Large Data Bases

in-
- ZPL-NAT
++ ppLy*~
C- - - 0 PPL-PA
X- - -M OCCL-NRT
-- CCCL-CMT
Q-----Q CCCL-PW

o-
! , 1 1

0.2 0.4 0.6 0.8 1 .o

45

Figure 6: Data Contention, MPL = 8,
x=6, a=5

- PPL-NRT
+ + PPL-WAIT
0---Q PPL-PA
x- - -u CCCL-NRT
.-4 OCCL~CMT
D---I CCCL-PW

x i{

0.0 0.2 0.4 0.6 0.8 1 .o

Pw

Figure 7: Data Contention, MPL = 8,
x=6, a=5

Barcelona, September, 1991

O---Q 2PL-PA

- OCCL-CMT

7 1 1

2.5 3.0 3.5 4.0

a

Figure 9: Deadline Distribution, MPL = 8,
x = 6, P, = 0.2

O---Q PPL-PA
- OCCL~CMT

al, , , , , , ,I
4.0 4.5 5.0 5.5 6.0 6.5 7.0

a

Figure 10: Deadline Distribution, MPL = 8, Figure 13: Mixed Transactions, MPL = 8,
x = 6, P, = 0.8 x = [4,8], cr = 5

/-/--+

/’
8’

b’

O---Q OPL-PA

- CCC-CMT

O---Q IPL-PA

- ocC~cMT

5.0 5.5 8.0 6.5 7.0 7.5 8.0

a

Figure 12: Deadline Distribution, MPL = 4,
x = 6, P, = 0.8

c

o- 0

- PPL-PA, Avg.
- PPL-PA, x.8
- PPL-PA. x.4
A- - - 4 OCCL-CMT, Avg.
c---Q OCCL~CMT,X.8
x----L OCCL~CMT,X.4

3.0 3.5 4.0 4.5 5.0 5.5 6.0

*

Figure 11: Deadline Distribution, MPL = 4,
x = 6, P,” = 0.2

1 .o 1.5 2.0 2.5

W

Figure 14: Mixed Transactions, MPL = 8,
x = [4,8], Pw = 0.2, a = 2

Proceedings of the 17th International
Conference on Very Large Data Bases

46
Barcelona, September, 1991

