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Abstract 

Queries in object-oriented datab;Lqcs are formulated 
against a class and retrieve instnnccls of the class sat,is- 
fying a certain predicate on the att,riblltes of the class. 
The presence of a class hierarchy, an integral part of 
any object-oriented data model, allows answers to be 
expressed implicitly in terms of classes and instances. 
This enables answers to be provided at different levels of 
abstraction. Shum and Muntz [SM88] presented a way 
of providing implicit expressions based on a taxonomy 
defined over the database. The algorithm presented in 
[SM88] is optimal in the length of the answer but the 
clarity of the answer is often poor. In this paper, the fo- 
cus is on coherent answers: implicit answers that are not 
necessarily optimal in the number of terms but are easy 
to comprehend. We show that a uniqlle coherent answer 
can be obtained efficiently in a top down nlanncr. Since 
the objective is to provide cohcrcnt, answers, and user 
queries are formulated by means of query operators to 
access the database, the standard query operators are 
redefined to obtain and manipulate coherent answers. 
Coherent answers are useful in coping with information 
complexity as they allow answers to be represented ab- 
stractly and are also a useful rctprescntation tool for 
complex information systems. 

1 Introduction 

Object-oriented databases are being developed to 
support complex data-intensive applications [KimSO, 
Deu90, Mai89]. Issues in the design of these informa- 
tion systems capable of supporting a rich collcct.ion of 
sophisticated data modeling c.oncc>l)t,s have hccomc> an 
important area of research [ZM90. KL90. BeeSS]. R,c- 
cent research efforts have concentrated on providing fa- 
cilities for querying object-oriented data models [DcuSO, 
ASLSO, KMOO, SZ90, BKK88]. Most of these propos- 
als for query processing in object-oriented databases are 
based on extending relational framework to support var- 
ious concepts of object-orient.at,ioll [DcuSO, SZSS, SZ90]. 
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Typically, an answer to a query is a set of objects sat- 
isfying certain predicates [BKK88, SZ89]. This type 
of answer does not necessarily provide a rich expres- 
sive technique nor is an efficient means of presenting 
complex information [SM88, Cor85]. For example, con- 
sider a personnel database of a large corporation and 
the query: 

Select all employees with a salary greater 
than 30K 

The conventional answer is formed as a set of employee 
objects whose salaries are greater than 30K. The objects 
can either be retrieved as object identities or as values 
of all the attributes of the object instances. If there is 
a large number of employees whose salaries are more 
than 30K, and it turns out that all engineers and all 
managers make more than 30K and also there are two 
secretaries who earn more than 30K, an elegant answer 
can be: 

engineers + managers + objid(secretary1) 
+ objid(secretary2). 

This assumes that “engineers” and “managers” are 
predefined classes. Such an answer is called an im- 
plicit ezpression or an implicit answer. We will use the 
words expression and answer interchangeably. We call 
the objects (represented by object ids) that appear in 
the conventional answer as instances. Groups of in- 
stances such as engineers and managers are referred to 
as classes. Some of the advantages of an implicit answer 
are: it does not require explicit enumeration of all the 
instances. This is useful in meeting resource constraints 
including those imposed by user interfaces. Further ) 
when complex information is presented, the user may 
not be interested in too fine a detail. Hence, implicit 
answers can be used to allow information exchange at 
higher levels of abstraction; a useful capability in deci- 
sion support systems. Also, implicit answers help the 
user in acquiring some global understanding of the an- 
swc’r. Finally, updates at a lower level of abstraction 
do not c.onflict with retrievals at a higher level of ab- 
straction. Hence, there exists a potential for enhanced 
concurrency [MGG8G, BR90]. 
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Since we are interested in providing implicit answers 
to users’ queries, it is necessary to design operators ca- 
pable of providing implicit answers. To this end, WC 
have defined a basic set of query operators bnsrd on 
the relational types of algebraic operat,ions. Thcrc are 
two main contributions in this paper: first, the char- 
acterization of implicit answers that are coherent, i.e., 
easy to comprehend, and a top down algorithm to ob- 
tain such answers. Second, the development of a basic 
query algebra that can efficiant,ly provide colicrent. an- 
swers. 

The remainder of this paper is organized as follows. 
Section 2 deals with related work both in the area of 
implicit answers in databases as well as query algebra 
for object oriented databases. In Section 3, we develop 
the notion of coherent expressions. First, a general defi- 
nition of implicit answers based on [SM88] is prcsentctl. 
Second, the definition of a coherent, c~xpression ant1 the 
motivation for it are presented. Finally an nlgorit,hm 
to obtain the coherent expression is described. We also 
prove the uniqueness of the coherent answer. Section 4 
presents a query algebra defined to obtain and manipu- 
late coherent expressions in object-oriented databases. 
Conclusions and future work are discussed in section 5. 

2 Related Work 

The notion of information being retrieved as concepts, 
as opposed to collection of objects, has been investi- 
gated in [Cor85, SM88]. In [SM88], A notion of implicit 
expression on a database with a taxonomy of concepts 
was developed. That is, providing an ariawer to a q~~ery. 
in an implicit, short way rather t.hiui a list, of’ ol)j(j?t,s. 
The implicit expression uses names of’ prerlcfincttl c:lassc>s 
of objects and individual objects. Implicit expressions 
that satisfy certain goodness criteria, called optimal cx- 
pressions were introduced, that is, the expression with 
the minimum number of names of classes or objects. 
Further, a polynomial time algorithrii to find the opt,i- 
ma1 expression after the answer to a cl1lc:ry WilS obt,ninccl 
as a list of objects is also presented. They also provitletl 
a proof to show that it is a NP complete problcnl to ob- 
tain an optimal expression during query processing. 

In our research, we have used a model that is based on 
the definitions of implicit expressions given in [SM88]. 
However, we have defined a different notion of ilnplicit. 
expression called i-coherent exprc>ssion. The value of i 
is a *‘simplicity” parameter of the expression. We allow 
the user to chose this parameter. There is a trade-off 
between the simplicity of the expression and its length. 
The i-coherent expressions can he obtained efficiently 
during query processing. We have also defined a ba- 
sic set of query operators capable of providing coherent, 
answers. 

Query languages based on cxt,rntling t,hc r(~liltiorl;tl 
framework have been proposed for obj(~c.t-oriclItc:tl 
databases in[KP!Xl, DcuDO, SZ’JO, SZ89, BKKSS]. In 

[SZ89, SZ90], a query algebra synthesizing relational 
algebra ideas with object-oriented data concepts was 
described. In [SZ89], modified operations for nested 
sets and operators with functions returning objects of a 
specified type are provided. Though the query algebra 
provides type specific operation against collections, the 
answer is still retrieved as a set of objects. The model 
described in [KP90] is based on supporting nested rela- 
tions, i.e., the attributes of a tuple can either be atoms 
or relations. A nested relational algebra is proposed to 
provide greater expressive power to deal with hierarchi- 
cal structure of data. 

We have developed query operators to manipulate 
coherent expressions in an object-oriented framework. 
However, we have assumed a simple model where the 
attributes are primitive objects. 

3 Coherent Answers 

The object-oriented data model uniformly models real 
world entities as objects. In addition, similar objects 
are grouped into classes that describe the behavior of 
objects. Classes are organized in an inheritance hierar- 
chy. Some models provide multiple inheritance and the 
domain of the attributes can be classes; thus, support- 
ing complex objects. However, in this paper, we restrict 
our discussion to a taxonomy and the attributes to be 
primitive objects. The concepts and ideas in this pa- 
per can be extended to a more general object-oriented 
data model that includes complex objects and multiple 
inheritance. This will be reported elsewhere. 

The objective of our research is to make use of the 
inheritance hierarchy and provide implicit expressions 
(answers in terms of classes and instances) M opposed 
to answers at a single level of abstraction, i.e., an ex- 
haustive list of instances. We consider a finite set D of 
objects: D = (01, Dz,. . .}. C = {Cl, Cz,. . .} is the set 
of classes relative to D. An entity is either an instance 
or a class. We do not deal with an arbitrary collection of 
inst,ances hilt with a tree-structure of classes, namely a 
t,axonomy. A iazonomy is a finite tree whose nodes are 
instances and classes. Instances are leaves and internal 
nodes including the root are classes. The successor of 
each node is subsumed by its parent class. The union of 
all successors of any non-leaf node is equal to the par- 
ent class. All siblings are mutually exclusive. A set of 
instances A, is claa@‘iable by a taxonomy T iff the root 
of T contains A. 

An example illustrating a taxonomy is shown in Fig- 
ure 1. Figure 1 is an example of a vehicle class. This 
example will be used to illustrate concepts and ideas 
presented in this paper. Classes are shown in ellipses 
and instances are shown in rectangles. In Figure 1, 
land-vehicle, water-vehicle, etc. are classes. The set of 
all instances of vehicles (shown in rectangles) is clas- 
sifiable by the vehicle schema. The common subset of 
attributes for all the instances are year, color, owner, 
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and insured. The domain of these attributes arc either 
strings or integers. Tl re values of the attributes are 
shown by the side of the instances, and constraints on 
the values are shown by the side of the classes, 

3.1 An implicit expression 

A conventional answer to a query consists of a set of 
instances satisfying a predicate. However, we uecd to 
find a way of expressing answers in terms of classes and 
instances. Hence, we need to explore the notion of im- 
plicit expressions. With respect to the vehicle schema of 
Figure 1, the following are answers t,hat, imply inst,nnces 
but contain both classes anti irrstalrccs; instances arc 
represented by their object ids. 

Example 1 Find all water-vehicles that were man- 
ufactured before Year 1989. For this query, exam- 
ples of implicit expressions are: 

l.water-vehicle - #tanker1 
2,ocean-vessel + sail-boat + speed-boat - 

#tanker1 
3.(water-vehicle - ocean-vessel) + liner + (tanker 

- #tankerl) 

Thus, an implicit expression consists of classes and in- 
stances. However, the set of instances implied by these 
expressions is often difficult to deduce and to comprr- 
bend. Hence, we need a cllarac.t,crizat.ioll of implicit~ 
expressions that are clear to the user. In order to do 
this, we need to define some terms and conrept.s. 

Definition 1: The alphabet of an expression de- 
fined over a taxonomy T is composed of the follow- 
ing: 

*Classes: Cr, Cs, . . . 
Each class is a label of a node in T. 

*Instances: D1, D?, . . . 
Each instance is an element of the root class of 
T. 

*Empty: e 
This denotes the empty expression. 

*Signs: +, -. 
The sign + denotes inclusion, while t,hc sign - 
denotes set difference 

*Parenthesis: (,). 
They can be added for clarity. 

Definition 2: An ezprekon over the taxonomy 
T is defined inductively as follows: 

*An entity (either an inst8ance or a class) is an 
expression. 

l c is an expression. 
*If e is an expression so is (e). 
*If er and es are expressions, so are ei + e?, 
el - e2. 

Definition 3: The naea~ii,/~g of an expression OVPI 
a taxonomy T is the set of instances (zero or nlorc) 

that are represented by the expression. The mean- 
ing of an expression is evaluated from left to right 
and is not associative. We assign it as meaning( 
exp ). Two expressions el, e2 are equivalent if 
meazning(el) = nieaning(ez). 

Definition 4: A path in the taxonomy is a list of 
successive nodes starting with the root and ending 
with a leaf. A subezpression of an expression e over 
a path P in the taxonomy is an expression formed 
by removing from e all those entities that are not 
in P 

Definition 5: The length of an expression is the 
number of entities that appear in it. The size of an 
expression is the number of instances it implies. 

3.2 Towards a coherent expression: 
Definitions and examples 

In this section, we will define certain constraints on im- 
plicit expression so that they are easy to comprehend. 
Such expressions are called coherent expressions. We 
will construct the coherent expression in two stages. 
First, a notion of simple expression is introduced and 
then coherent expression is defined by specifying the 
desired characteristics. Both expressions are implicit 
expressions with certain constraints. They both consist 
of two types of terms: 

Definition 6: A term is a sequence of entities 
with one of two possibilities: 

a. (Ci - Dil-. . . - Dir) Dij E Ci and 1 2 0. This 
term is named a conceptual term Cte,.,,, 

b. Dk, this is the individual term Ite,.,,,, or an in- 
stance 

Definition 7: A simple expression is an implicit 
expression consisting of the union of conceptual 
terms and individual terms with the following con- 
ditions: 

a. No entity appears more than once in the ex- 
pression 

b. For every path P, the subexpression over P 
includes at most one class 

c. For any Item and Cte,-,,,, Itenn E Ctennr if 
Itefin E expression 3 Cterm f$ expression. 

d. Entities appear in left to right order of the tax- 
onomy (for uniqueness). 

Example 2 Consider the query to find all ocean- 
vessels that were manufactured between the years 
1971 and 1975. Equivalent simple expressions for 
this query are: 

1. #liner2 + #liner3 + #liner4 + #tanker2 + 
#tanker3 + #tanker4 

2. (ocean-vessel - #liner1 - #tankerI) 

3. (liner - #linerl) + (tanker - #tankerl) 
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Definition 8: A coherent ezpression is a simple 2. #liner3 + #liner4 + (tanker - #tankerl) 
expression with the following constraints: l-coherent expression 

a. does not contain classes C1, C’s, . . . , Ckq b > I, 
s.t. meaning(C1 f C? + . . . + Ck) = 
meaning(Cj) for ~0111~ C, ~1~s b~lollgs to T 

b. no conceptual term contains Ci such that there 
exists Cj with equivalent meaning, and Cj is 
an ancestor of Ci in T 

c. does not contain Cter,” such that there is an 
equivalent sequence of instances that is not 
longer than it 

3.3 Features of the i-coherent expression 

In this section, we will prove that i-coherent expres- 
sions are unique, i.e., if er and es are i-coherent and 
meaning(ei) and meaning(e2) are equivalent, then er = 
e2. Further, given a taxonomy, it is shown that i- 
coherent expressions can be obtained top down in poly- 
nomial time. Notice that there can be an i-coherent 
expression and a j-coherent expression for i # j that 
are equivalent. 

Theorem 1: An i-coherent expression is unique. 

PTOOf: 

d. does not contain a sequence of instances when 
there is an equivalent Cler,n that is shorter 
than the sequence 

Example 3 Example of coherent expressions 

l.(ocean-vessel - #liner3) + (speedboat) -t(sail- 
boat) is not a coherent expression because of 
(4 

To aid in the proof, we define a new term called I,,,,,, 
term. This term is formed by grouping the maximum 
number of adjacent I+.,,,s in the i-coherent expression 
such that Imaz term has a class in the taxonomy that 
includes all the grouped elements but includes no other 
entity from the i-coherent expression. 

2.(water-vehicle - #liner3) is a coherent expres- 
sion 

S.(road-vehicle - #bike2) is not a coherent ex- 
pression because of (b) 

4.(land-vehicle - #bike2) is a coherent expression 
5.(tanker - #tanker3 - #tanker4) is not a coher- 

ent expression because of (c) 
6.#tankerl + #tanker2 is a coherent expression 
7.#tankerl + #tanker2 + #tanker3 is not a co- 

herent expression because of (cl) 
8.(tanker - #tanker4) is a coherent expression 

Conceptual terms with a large number of ncgativc in- 
stances tends to make an implicit expression incoherent. 
However, there is a trade-off between the length of the 
conceptual terms and the total length of the expression. 
We allow the user to decide the maximum number of 
negative instances in Cter,n. 

Definition 9: An i-coherent expressl:on is a coher- 
ent expression that does not, contain a Ctelrrl with 
more than i negative instances, but contains at least 
one Ctenn with i negative instances. 

Notice that the definition of the i-coherent expression 
makes the characteristics (a) and (d) of a cohcrcnt, cx- 
pression valid only if the corresponding CtcrnL dots not 
contain more than i negative instances. 

Example 4 Consider the query to find all occan- 
vessels that were manufactured between the years 
1972 and 1975. Examples of equivalent i-coherent 
expressions for this query are: 

1. (ocean-vessel - #lincrl - #liuor2 - #t,aukcrl) 
3-coherent expression 

Assume two i-coherent expressions, er and e2, that 
differ at least in one term. Without loss of generality, 
assume that these expressions differ in their left most 
term. We will call them term1 and lermz. 

Notice that two terms derived from the same target 
class can either subsume the meaning of the other, or 
be equivalent in meaning. They can not be overlapping 
because of the tree structure of the taxonomy. 

1. meaning(termr) subsumes meaning(term2): 
- if they are both conceptual terms, then term2 
is not the highest class that is possible, and thus 
violates (b) 
- if term1 is a Cterm and term2 is an I,,, term, 
then meaning of term1 subsumes the meaning of 
at least one more conceptual term of ez and thus 
e2 violates (b) 
- if term1 is an I,,, term, part of it is equivalent 
to a conceptual term in ez; this can not be the case 
(see next part of the proof). 

2. meaning( termi) and meaning( termz) are equiva- 
lent in their meaning: 
- if both are Germs then it is the case where a class 
in the taxonomy has only one child. The term with 
a lower class violates (b). 
- If term1 is an I,,, term and term2 is a et,,.,,,, 
If term? is not shorter than terml, e2 violates (c) 
else cl violates (d). 
- if both are I,,,, terms, they must be identical, 
else their meanings are not equivalent. 0 

For a given query, an i-coherent expression is obtained 
in two phases. In the first phase, for each class, the num- 
ber of positive instances and the number of negative in- 
stances for the query is found. This is done by a depth 
first search on the taxonomy starting from the root and 
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determining which instance satisfies the query. The scc- 
ond phase is described in the following algorithm. At 
each node of the tree, the algorithm either returns a 
term (conceptual or individual) or proceeds recursively. 
The final answer is the concatenation of these terms 
and is the maximum possible j-coherent expression for 
j 5 i. 

0. current-node +- the root. 

1. if current-node is a leaf (an instance) 
return instance if it satisfies the query, 
else return 6. 

2. if current-node has only one child 
current-node’s children +. granclchildrcn 

3. if all the instances under current-node do not sat- 
isfy the query 

return e. 

4. assume p instances under current-node satisfy the 
query and n instances under current-node do not 
satisfy the query. 
if n 5 i (i-conceptual term or less) and 

p > (n + 1) (The conceptual term is shorter 
than the equivalent sequence of instances) 

return (current-node - Dj I- Djz . . . - Djn ) 

5. If n > i or p 5 (n + 1) 
apply the algorithm to all the children 
of the current-node. 

Now, we will give a proof of correctness for the above 
algorithm. 

Theorem 2: An i-coherent expression can be ob- 
tained in two phases. The first phase in time O(d 
+ c), d is the number of instances and c is the num- 
ber of classes in the schema ant1 the ~econtl phase in 
time O(hA), where h is the height, of the tnxouollly 
and A is the size of the answer set. 

Proof of Theorem 2: 

The proof lies in correctness of the algorithm and its 
complexity. 
Correctness: Note that each term in the i-coherent 
expression is formed tither in step 1 or st,ep 4. 

a. The expression obtained by the algorithm is simple: 
By step 4, while returning a term at node C, the 
algorithm will not proceed to Cj’s children. 

b. No Ctem has more than i negative instances. A 
conceptual term cannot have more than i negative 
instances due to step 4. 

c. Condition (a) of coherent expression. The proof is 
contained in the following lemma. 

Lemma 1 
If the processing continues at a current-node’s sons 
because p < (n + 1) (while 71 < i) than in the 
final answer there is no set of classes Cl. C?, . . ( Cl, 
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I > 1, that meaning(C1 + Cz + . . . + Cl) is equal to 
meaning(current-node). 
Proof: Assume current-node has t sons and t > 1 
(because if there is only one child, then step 2 will 
be executed). 

node 
/ I \ 

Sl s2 . . . St 

1. If some of Sk’s are instances then there does 
not exist a set of classes in the expression such 
that the sum of their meaning is equivalent to 
that of the current-node. 

2. If Sk, 1 < k 5 t, are classes, the following 
lemma gives a proof: 
Lemma 2 
If the processing continues at the current- 
node’s children while p < (n + l), n 5 i, and 
Sk are all classes then not all of them will ap- 
pear in the final answer. 
Proof: Assume that all the Sks appear in the 
final answer. This implies that: 

pl > nl + 1 
p2 > n2 + 1 

which gives p>n+t>n+l(ast>l), 
contradicting the assumption p 5 (n + 1). o 

Lemma 2 implies that there are Sk’e that do not 
appear in the final answer. In these nodes p < 
n +l. Applying Lemma 2 to these nodes (Sk’s) 
implies that instances should be reached, else the 
tree has an infinite number of levels, contradictory 
to the definition of a taxonomy as a finite tree. 0 

d. Condition (b) of coherent expression. The concep- 
tual terms include the highest possible classes as 
the algorithm traverses the classes top-down. 

e. Condition (c) of coherent expression. In step 5, the 
algorithm is applied to the children if n > i or 
p<(n+l); hence instances are preferred over con- 
ceptual terms that are not shorter than the equiv- 
alent sequence of instances. 

f. Condition (d) of coherent expression. Assume that 
the the final expression contains a sequence of in- 
stances D1 + D? + . . . $ Dk and 3j (j 5 i and 
j < 6) such that meaning(C, - D,,,l - . . . - Dij) 
= meaning(D1 + . . . + Dk). Since the algorithm 
executes top down, it has processed the node 
C”, and has checked the possibility of the term 
(Cm-Dml-..a- Dij). The only reason for not 
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choosing a conceptual term with C,, is (j > i or 
j > k). Thus contradicting t,he assluilption. 

Complexity: First phase of tile i\lg()rit.lllll t,akcs O(tl 
ic). In the second phase, the algorithm scans only t,llc 
entities in the paths of those that, appear in t,he answer; 
hence, the complexity of the second phase is O(h*A) 
where h is T’s height and A is the number of instances 
implied by the answer. 

4 Query Algebra 

Query evaluation in object-orientM dat.abases requires 
operators to efhcicntly access complex struct,ines of 
data. Query algebras proposed in [KP90, DeuSO, SZ89] 
provide special operators to handle nested sets and 
other concepts of object orientation. Since coherent cx- 
pressions can be obtained front a hierarchy in a t,op 
down manner, it is possible to int,egratc the l)ro(‘ess 
of finding coherent expressions with convcnt~ional qllery 
processing. 

The algorithm described in Section 3.3 was applied t,o 
the root class. However, it can be applied to any other 
class as well. The set of instances implied hy a class, i.e., 
its leaves, is called a target set. A target, set can be given 
as either a name of a class or iniplicitly as a roliercnt. 
expression. Notice that a class uame is just a special 
case of a coherent expression. Thus, we define our query 
operators on coherent expressions rather than on a set 
of instances. We will define a basic set of operations: 
select, two types of project, and two types of join. 

4.1 The select operator 

The selccf. operation is dcfiuc:(l 011 eit,hcr A twrp~t,-st~t, 
or a coherent expression. The ac:lM returns a scxt. of 
instances that satisfy the select,ion predicate I’. In our 
case, the select would provide an i-coherent answer. 

1. select that is defined on a target-set, Relect(S. P), 
is calculated by the i-coherent, algorithni. 

2. select that is defined on a coherent expression. e, 
select.(e, P) is calculated as follows: 
e = term1 + te7mz + . 9 +te7ml, 

terlni E {Itern~, Cte~tj 

select(e, P) = Uf=, .Yelect(terlni),ter?ni E f? 

l If GYmi is Iter,,,: 
the answer is either the instance itself. if it, 
satisfies P, else e. 

l IftermiisCt,,,=(C-D1-...-Dk) 
the answer is derived by regarding the in- 
stances of C as members of a smaller target, 
set, S(C), and assuming that the “negative in- 
stances” of Ct, r,,, are nrgxt.ivr exaniples to t,lle 
predicate P. 

Example 5 

1. select(vehicle, year < 1987) = land-vehicle+ 
(mter-vehicle -#tankerl) 

2. select( land-vehicle 
+(water-vehicle-#tankerl),insured= Y) = 
land-vehiclefspeedboat + sailboat 

4.2 The project operator 

The project operation returns values of a subset of the 
attributes for each instance being queried. This sub- 
set is specified in the project operation. The project 
operation defined on an i-coherent expression, has 
the form: project(e, Al, At,. . . , Ak). The attributes, 
AI,&,..., Ak, are a subset of the attributes of the 
target-set S from which e is derived. We define two 
types of project. In s-project, the answer is a set of tu- 
pies, each tuple matches the queried attributes of one 
of the instances of e. Thus s-project is the standard 
project. In t-project, the answer is a tuple, where each 
tuple element consists of all possible values of the at- 
tribute in the instances implied by e. This definition 
of t-project can exploit the presence of a taxonomy if 
constraints on the values of the attributes are specified 
in the classes. 

4.2.1 t-project 

In the project operator, 
t-project (e, < Al, AZ,. . ., Ak >) =< al, a?, . . . , uk >, 
each oi is a set of all the possible values of Ai in the 
expression e. 
t-project is evaluated as follows: 
f: =terml + tcrm~ +...+term~ 

t-pr,oject(e, < AI, A?, . . . , Al. >) = 
&=,( t-project(te~mi, < Al, AZ,. . . , Ak >) 

where l+J;=,(< al,a2,a3 >, < bl, b2, b3 >) = 
< {al, bl}, (~2, b2}, (a3, b3) > 

If termi = It,,,, (an instance D): 
t-project(e, < Al, AZ, . . . , Al, >) = 

< DAI,DAZ,...,DA~ >, 

where DAi is the value of the attribute Ai of the 
instance D. 

If h?TT?li is Ct,,,,,, (C - Dl - . . . - D,): we can not 
substitute it with either t-project(C) or 
t-project(C)- t-project(Dl + 02 +. . .-t- D,,,). Con- 
sider the following example: 

/ /I: \\ 
instances : Di D2 D3 D4 D5 
color: Y = r g g 

t-project((C - D1 - D~),co~oT) =< {red,green} > 
t-project( C, color) =< {yellow, red, green} > 
t-project( C, color)- t-project( D1 + D?, color) = 

< green > 
Hence, we have to process t-project recursively: 
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C 

/ I \ 
Li L2 . . . Lb 

In the above figure, each Li could be either a class 
or an instance. 
t-projecl((C-D1 , . U-D,,,), < Al, Al,. . ,q Ak >) = 

I+JJp=1(LpTojeci(Ei, < Al, A?, . . . , Ak >) 
where Ei is the expression L,\ {Dl+D?+. .+D,,, }, 
and Li is a child of C. 

3. If ter??Xi is a Class C: 
The attributes Al,. . . , Ak are subset of the at- 
tributes of the instances of the target-set S. How- 
ever, the class C may have constraint,s on t,hc values 
for only a subset of thcsr at,t,riblltos. Wr c,xiunilic, 
each attribute separately and insrrt, t,his valll(l iu a 
tuple. 
&projecl(C, < Al, A?, . . . q Al, >) = 
OF=, i-projecl(C,Ai) (forms a tuple out of the b 
values) 
&project(C, Al) = C.A1 

if Al hn a const~raint, at, C 
uf=, 6p7qjec2( L,, Al) otherwise 

Example 6 
Let e = ( water-vehicle -#f~nker2), then 
t-project (e, < color, insu7*erl >) = 

O(red, U[&pTojecl ((ocean-ue,usel-~f((7LkeT:!i. 

<iii3lrcd > ). 
2-project (speedboul. < insuwtl >) 
&project (sailbouf, < insured >)] 1 = 

O(red, U[t-pTojeci(lineT, < inPuTed >) 

l-projec.l((t,anker - #innker2), 
< insured >) 

Y 
Y]) =< Td. {Y, N} > 

4.2.2 s-project 

The definition of this operation is the same as the 
standard definition of project. 
s-projecl(e, < Al, A?, . . . , AL >) = 

{< n],n?....,trk >} 
Each tuple consists of the values of the attributes 
AI, A??. . . , Ak for the instances of e. 

4.3 The join operator 

The join operator is used to create relationships be- 
tween two groups A and B of instances; these instances 
are implied by i-c.oherent expressions. The join opcra- 
tion returns a list of new instanrf5 t,llat. is tllc c;Lrt,c5iilll 
product of A and B. We dcfinct two t,ypcs of join: Join 
between two target sets A and B that, have cliff(~rcllt, at,- 
tributes at the leaf level, called d-jok. The other join is 
the special case where all the instances have attributes 
defined from the same attribute set, called s-joi,n. 
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The join operation of two coherent expressions is op- 
erated by adding the results of the join of the different 
terms, that it, 
el = terml,l + teT7nl,z + . . . + termI,, 

e2 = term?,1 + terrnz?:! + . . . + term2,m, 
teTms E {Germ, Lm} 

join(e1, e2) = (Jyzl Uy!=, join (teTml,i, ikTVL2,j) 

The concept of join on different terms depends upon 
the type of join. 

4.3.1 s-join 

The s-join is an intersection between two groups of 
instances, each implied by a coherent expression. 

1. If one of the terms is an instance: 
a-join(X, 02) = Dz, if(X = Dz)or(Dz E X) 

6, otherwise 

2. If both terms are classes: 
s-join(Cl, C2) = Cl, ifC1 C C2 

Cl, ifC2 C Cl 
6, otherwise 

3. If both are conceptual terms (and not both classes): 
s-join((C1 - Dl,l - 01,~. . . - Dl,k), (C2 - D?,l - 
D 2,2 . . . - &,h)) = 
s-join(C1,G) - [DI,I + 01,~. . . + Dl,k +Dz,I + 
D2,2.. . + D2,h 11 s-join(Cl, C2) I 

where ‘11’ represents the “restricted to” opera- 
tion, i.e., only the set of instances implied by s- 
join(C1, C?). At this point the resulting expression 
may be %-coherent. However, as the expression 
was obtained from two coherent expressions, it can 
be modified to an i-coherent by using the algorithm 
for obtaining i-coherent expression on each term 
that has more than i negative instances. 

Example 7 
el = car + (tanker - #tankeYl) 
e2 = (water-veliicle-#tanker4) 
s-join(e1, e2) = s-join(car,w&er-vehicle) - 
(#tanker41) s-join(car,waler-vehicle))t 
s-join(tanter,waier-l,ehicle) - (#tanker1 + 
#tanker411 s-join (tanker,water-vehicle)) = 
#tanker2 $ #tanker3 

4.3.2 d-join 

d-jotn is conceptually similar to a n&ml join. The 
groups of instances A and B implied by the coherent 
expressions are derived from target-sets having different 
attributes. Figure 2 is a taxonomy with the animal class 
as the root. D1 is an instance that belongs to class 
anilnal and Dz, Da are instances of the vehicle target 
class. 

1. If both terms are instances: 
d-join is the same as a regular join. 
for example: 
D1 =<Tail: 8in, Color: white, Friendly: N > 
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brown or white 

> 5 in 
white 

color N 

friendly (Y or N) 

Figure 2: Animal Schema 

Dz =<Year: 1988, Insured: Y, Color: white, 
Owner: john> 

DS =<Year: 1990, Insured: Y, Color: yellow. 
Owner: john> 

d-join( D1, D2) = 
<Tail: 8in, Color: white, Friendly: N, 

Year:1988, Insured: Y, Owner: john > 
d-join( Dl,Ds) = e 

2. If one of the terms is an instance: 
we can decompose it as: 
d-jo,in((Cl - Dl,l - D1,?, . . - Dl,k)$ Dz) = 
d-join(C1, Da) - [d-join(D1,l, Dz) + . . . 

+d-join(Dl,:!, D2)...-t-d-join(D1,I;, Da)] 

3. If both terms are classes with default values: 
treat the terms as instaiiccs. 

4. If both terms are conceptual terms: 
d-join((C1 - Dl,l - Dl,?. . . - Dl,k), (C2 - Da,l - 
02,~. . . - &,/a)) = 

d- join( Cl, CZ) - 
d-join( Cl, Dz,~) . . . +d-join(C1, DzTh))- 
d-join(C?, Dl,l). . . +d-join(C2, DI,~)) 

Note that the expression obtained from a d-joist is 
not i-coherent. 

Example 8 
el = (road-vehicle-#bibe3) target-set is vehicle 
e2 = (pets-#mnrti) target-set is animal 
d-join(e1, e2) = d-join( mad-chicle. pc+x)- 
d-jo%n( #biLe3, pets)- 
d-jo%71( roa.d- vehicle, #mart i) = 
< inswed : Y, tail : 3in, colo,r : { b7’0~um. white} > 
- < insllred : Y, tail : 3in, color : b7’own, Yeur : 
80, oulneT : Hildu > 
- < ,inswed : Y, tuil : 5in. ~0107' : ,white, f~imdly : 
N> 

5 Conclusions and Future Work 

In this paper, we explored the problem of providing im- 
plicit answers to queries in object-oriented databases. 
A new definition of implicit expression called a coher- 
ent expression was introduced. Coherent expressions 
are abstract responses that are easy to comprehend. A 
top down algorit,hm to obtain such coherent expressions 
was also described. Since coherent expressions are ob- 
tained top down, it was possible to integrate this pro- 
cess with query processing capabilities. To this end, 
we provided a basic set of operators that returns ab- 
stract responses. The capability of obtaining abstract 
responses from object-oriented databases is a useful tool 
not only for reasoning about complex information but 
also for presenting complex information in multi-media 
databases. 

We considered a simple object-oriented model. The 
concepts and ideas explored in this paper can be ap- 
plied to a more general object-oriented data model. One 
such extension is to apply the concept of i-coherent ex- 
pressions to complex objects, i.e., where the attributes 
are not atomic but may be classes or target sets. We 
are currently exploring the issues of providing abstract 
responses in such object-oriented databases. Another 
related open problem is to find the characteristics of 
expressions that can be obtained as part of the query 
processing in polynomial time (e.g. the coherent expres- 
sion). We must also investigate other ways of expressing 
abstract responses; possibly a family of expressions that 
have some special structure or features that make them 
amenable to better comprehension. 
Acknowledgments We would like to thank the rcfcr- 
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