
Integrating Implicit Answers with Object-Oriented Queries

Hava T. Siegelmann
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903
siegelma@lpaul.rutgers.edu

Abstract

Queries in object-oriented datab;Lqcs are formulated
against a class and retrieve instnnccls of the class sat,is-
fying a certain predicate on the att,riblltes of the class.
The presence of a class hierarchy, an integral part of
any object-oriented data model, allows answers to be
expressed implicitly in terms of classes and instances.
This enables answers to be provided at different levels of
abstraction. Shum and Muntz [SM88] presented a way
of providing implicit expressions based on a taxonomy
defined over the database. The algorithm presented in
[SM88] is optimal in the length of the answer but the
clarity of the answer is often poor. In this paper, the fo-
cus is on coherent answers: implicit answers that are not
necessarily optimal in the number of terms but are easy
to comprehend. We show that a uniqlle coherent answer
can be obtained efficiently in a top down nlanncr. Since
the objective is to provide cohcrcnt, answers, and user
queries are formulated by means of query operators to
access the database, the standard query operators are
redefined to obtain and manipulate coherent answers.
Coherent answers are useful in coping with information
complexity as they allow answers to be represented ab-
stractly and are also a useful rctprescntation tool for
complex information systems.

1 Introduction

Object-oriented databases are being developed to
support complex data-intensive applications [KimSO,
Deu90, Mai89]. Issues in the design of these informa-
tion systems capable of supporting a rich collcct.ion of
sophisticated data modeling c.oncc>l)t,s have hccomc> an
important area of research [ZM90. KL90. BeeSS]. R,c-
cent research efforts have concentrated on providing fa-
cilities for querying object-oriented data models [DcuSO,
ASLSO, KMOO, SZ90, BKK88]. Most of these propos-
als for query processing in object-oriented databases are
based on extending relational framework to support var-
ious concepts of object-orient.at,ioll [DcuSO, SZSS, SZ90].

‘Supported in part by Henry IIntgcrs Research Fcllow-
ship Award

B. R. Badrinath’
Department of Computer Science

Rutgers University
New Brunswick,pJ 08903

ba&iOcs.rutgers.edu

Typically, an answer to a query is a set of objects sat-
isfying certain predicates [BKK88, SZ89]. This type
of answer does not necessarily provide a rich expres-
sive technique nor is an efficient means of presenting
complex information [SM88, Cor85]. For example, con-
sider a personnel database of a large corporation and
the query:

Select all employees with a salary greater
than 30K

The conventional answer is formed as a set of employee
objects whose salaries are greater than 30K. The objects
can either be retrieved as object identities or as values
of all the attributes of the object instances. If there is
a large number of employees whose salaries are more
than 30K, and it turns out that all engineers and all
managers make more than 30K and also there are two
secretaries who earn more than 30K, an elegant answer
can be:

engineers + managers + objid(secretary1)
+ objid(secretary2).

This assumes that “engineers” and “managers” are
predefined classes. Such an answer is called an im-
plicit ezpression or an implicit answer. We will use the
words expression and answer interchangeably. We call
the objects (represented by object ids) that appear in
the conventional answer as instances. Groups of in-
stances such as engineers and managers are referred to
as classes. Some of the advantages of an implicit answer
are: it does not require explicit enumeration of all the
instances. This is useful in meeting resource constraints
including those imposed by user interfaces. Further)
when complex information is presented, the user may
not be interested in too fine a detail. Hence, implicit
answers can be used to allow information exchange at
higher levels of abstraction; a useful capability in deci-
sion support systems. Also, implicit answers help the
user in acquiring some global understanding of the an-
swc’r. Finally, updates at a lower level of abstraction
do not c.onflict with retrievals at a higher level of ab-
straction. Hence, there exists a potential for enhanced
concurrency [MGG8G, BR90].

Proceedings of the 17th International
Conference on Very Large Data Bases

15 Barcelona, September, 1991

Since we are interested in providing implicit answers
to users’ queries, it is necessary to design operators ca-
pable of providing implicit answers. To this end, WC
have defined a basic set of query operators bnsrd on
the relational types of algebraic operat,ions. Thcrc are
two main contributions in this paper: first, the char-
acterization of implicit answers that are coherent, i.e.,
easy to comprehend, and a top down algorithm to ob-
tain such answers. Second, the development of a basic
query algebra that can efficiant,ly provide colicrent. an-
swers.

The remainder of this paper is organized as follows.
Section 2 deals with related work both in the area of
implicit answers in databases as well as query algebra
for object oriented databases. In Section 3, we develop
the notion of coherent expressions. First, a general defi-
nition of implicit answers based on [SM88] is prcsentctl.
Second, the definition of a coherent, c~xpression ant1 the
motivation for it are presented. Finally an nlgorit,hm
to obtain the coherent expression is described. We also
prove the uniqueness of the coherent answer. Section 4
presents a query algebra defined to obtain and manipu-
late coherent expressions in object-oriented databases.
Conclusions and future work are discussed in section 5.

2 Related Work

The notion of information being retrieved as concepts,
as opposed to collection of objects, has been investi-
gated in [Cor85, SM88]. In [SM88], A notion of implicit
expression on a database with a taxonomy of concepts
was developed. That is, providing an ariawer to a q~~ery.
in an implicit, short way rather t.hiui a list, of’ ol)j(j?t,s.
The implicit expression uses names of’ prerlcfincttl c:lassc>s
of objects and individual objects. Implicit expressions
that satisfy certain goodness criteria, called optimal cx-
pressions were introduced, that is, the expression with
the minimum number of names of classes or objects.
Further, a polynomial time algorithrii to find the opt,i-
ma1 expression after the answer to a cl1lc:ry WilS obt,ninccl
as a list of objects is also presented. They also provitletl
a proof to show that it is a NP complete problcnl to ob-
tain an optimal expression during query processing.

In our research, we have used a model that is based on
the definitions of implicit expressions given in [SM88].
However, we have defined a different notion of ilnplicit.
expression called i-coherent exprc>ssion. The value of i
is a *‘simplicity” parameter of the expression. We allow
the user to chose this parameter. There is a trade-off
between the simplicity of the expression and its length.
The i-coherent expressions can he obtained efficiently
during query processing. We have also defined a ba-
sic set of query operators capable of providing coherent,
answers.

Query languages based on cxt,rntling t,hc r(~liltiorl;tl
framework have been proposed for obj(~c.t-oriclItc:tl
databases in[KP!Xl, DcuDO, SZ’JO, SZ89, BKKSS]. In

[SZ89, SZ90], a query algebra synthesizing relational
algebra ideas with object-oriented data concepts was
described. In [SZ89], modified operations for nested
sets and operators with functions returning objects of a
specified type are provided. Though the query algebra
provides type specific operation against collections, the
answer is still retrieved as a set of objects. The model
described in [KP90] is based on supporting nested rela-
tions, i.e., the attributes of a tuple can either be atoms
or relations. A nested relational algebra is proposed to
provide greater expressive power to deal with hierarchi-
cal structure of data.

We have developed query operators to manipulate
coherent expressions in an object-oriented framework.
However, we have assumed a simple model where the
attributes are primitive objects.

3 Coherent Answers

The object-oriented data model uniformly models real
world entities as objects. In addition, similar objects
are grouped into classes that describe the behavior of
objects. Classes are organized in an inheritance hierar-
chy. Some models provide multiple inheritance and the
domain of the attributes can be classes; thus, support-
ing complex objects. However, in this paper, we restrict
our discussion to a taxonomy and the attributes to be
primitive objects. The concepts and ideas in this pa-
per can be extended to a more general object-oriented
data model that includes complex objects and multiple
inheritance. This will be reported elsewhere.

The objective of our research is to make use of the
inheritance hierarchy and provide implicit expressions
(answers in terms of classes and instances) M opposed
to answers at a single level of abstraction, i.e., an ex-
haustive list of instances. We consider a finite set D of
objects: D = (01, Dz,. . .}. C = {Cl, Cz,. . .} is the set
of classes relative to D. An entity is either an instance
or a class. We do not deal with an arbitrary collection of
inst,ances hilt with a tree-structure of classes, namely a
t,axonomy. A iazonomy is a finite tree whose nodes are
instances and classes. Instances are leaves and internal
nodes including the root are classes. The successor of
each node is subsumed by its parent class. The union of
all successors of any non-leaf node is equal to the par-
ent class. All siblings are mutually exclusive. A set of
instances A, is claa@‘iable by a taxonomy T iff the root
of T contains A.

An example illustrating a taxonomy is shown in Fig-
ure 1. Figure 1 is an example of a vehicle class. This
example will be used to illustrate concepts and ideas
presented in this paper. Classes are shown in ellipses
and instances are shown in rectangles. In Figure 1,
land-vehicle, water-vehicle, etc. are classes. The set of
all instances of vehicles (shown in rectangles) is clas-
sifiable by the vehicle schema. The common subset of
attributes for all the instances are year, color, owner,

Proceedings of the 17th International
Conference on Very Large Data Bases

16
Barcelona, September, 1991

water-vehicle

,,\lbtankerll [-[
nn .-

\\
73 N

4 o”r7%-Tmy / qL
80 #bik<l3

Y
70

c4
X 1 i ner2

71 COINIIOII attributesyear

Color
Owner

insured (Y or N)

Proceedings of the 17th International
Conference on Very Large Data Bases

#liner4

r-!L ’ 73

liner3

72

Figure 1: Vehicle Schema with attribute values

17

74 N 75 N

Barcelona, September, 1991

and insured. The domain of these attributes arc either
strings or integers. Tl re values of the attributes are
shown by the side of the instances, and constraints on
the values are shown by the side of the classes,

3.1 An implicit expression

A conventional answer to a query consists of a set of
instances satisfying a predicate. However, we uecd to
find a way of expressing answers in terms of classes and
instances. Hence, we need to explore the notion of im-
plicit expressions. With respect to the vehicle schema of
Figure 1, the following are answers t,hat, imply inst,nnces
but contain both classes anti irrstalrccs; instances arc
represented by their object ids.

Example 1 Find all water-vehicles that were man-
ufactured before Year 1989. For this query, exam-
ples of implicit expressions are:

l.water-vehicle - #tanker1
2,ocean-vessel + sail-boat + speed-boat -

#tanker1
3.(water-vehicle - ocean-vessel) + liner + (tanker

- #tankerl)

Thus, an implicit expression consists of classes and in-
stances. However, the set of instances implied by these
expressions is often difficult to deduce and to comprr-
bend. Hence, we need a cllarac.t,crizat.ioll of implicit~
expressions that are clear to the user. In order to do
this, we need to define some terms and conrept.s.

Definition 1: The alphabet of an expression de-
fined over a taxonomy T is composed of the follow-
ing:

*Classes: Cr, Cs, . . .
Each class is a label of a node in T.

*Instances: D1, D?, . . .
Each instance is an element of the root class of
T.

*Empty: e
This denotes the empty expression.

*Signs: +, -.
The sign + denotes inclusion, while t,hc sign -
denotes set difference

*Parenthesis: (,).
They can be added for clarity.

Definition 2: An ezprekon over the taxonomy
T is defined inductively as follows:

*An entity (either an inst8ance or a class) is an
expression.

l c is an expression.
*If e is an expression so is (e).
*If er and es are expressions, so are ei + e?,
el - e2.

Definition 3: The naea~ii,/~g of an expression OVPI
a taxonomy T is the set of instances (zero or nlorc)

that are represented by the expression. The mean-
ing of an expression is evaluated from left to right
and is not associative. We assign it as meaning(
exp). Two expressions el, e2 are equivalent if
meazning(el) = nieaning(ez).

Definition 4: A path in the taxonomy is a list of
successive nodes starting with the root and ending
with a leaf. A subezpression of an expression e over
a path P in the taxonomy is an expression formed
by removing from e all those entities that are not
in P

Definition 5: The length of an expression is the
number of entities that appear in it. The size of an
expression is the number of instances it implies.

3.2 Towards a coherent expression:
Definitions and examples

In this section, we will define certain constraints on im-
plicit expression so that they are easy to comprehend.
Such expressions are called coherent expressions. We
will construct the coherent expression in two stages.
First, a notion of simple expression is introduced and
then coherent expression is defined by specifying the
desired characteristics. Both expressions are implicit
expressions with certain constraints. They both consist
of two types of terms:

Definition 6: A term is a sequence of entities
with one of two possibilities:

a. (Ci - Dil-. . . - Dir) Dij E Ci and 1 2 0. This
term is named a conceptual term Cte,.,,,

b. Dk, this is the individual term Ite,.,,,, or an in-
stance

Definition 7: A simple expression is an implicit
expression consisting of the union of conceptual
terms and individual terms with the following con-
ditions:

a. No entity appears more than once in the ex-
pression

b. For every path P, the subexpression over P
includes at most one class

c. For any Item and Cte,-,,,, Itenn E Ctennr if
Itefin E expression 3 Cterm f$ expression.

d. Entities appear in left to right order of the tax-
onomy (for uniqueness).

Example 2 Consider the query to find all ocean-
vessels that were manufactured between the years
1971 and 1975. Equivalent simple expressions for
this query are:

1. #liner2 + #liner3 + #liner4 + #tanker2 +
#tanker3 + #tanker4

2. (ocean-vessel - #liner1 - #tankerI)

3. (liner - #linerl) + (tanker - #tankerl)

Barcelona, September, 1991
Proceedings of the 17th International
Conference on Very Large Data Bases

18

Definition 8: A coherent ezpression is a simple 2. #liner3 + #liner4 + (tanker - #tankerl)
expression with the following constraints: l-coherent expression

a. does not contain classes C1, C’s, . . . , Ckq b > I,
s.t. meaning(C1 f C? + . . . + Ck) =
meaning(Cj) for ~0111~ C, ~1~s b~lollgs to T

b. no conceptual term contains Ci such that there
exists Cj with equivalent meaning, and Cj is
an ancestor of Ci in T

c. does not contain Cter,” such that there is an
equivalent sequence of instances that is not
longer than it

3.3 Features of the i-coherent expression

In this section, we will prove that i-coherent expres-
sions are unique, i.e., if er and es are i-coherent and
meaning(ei) and meaning(e2) are equivalent, then er =
e2. Further, given a taxonomy, it is shown that i-
coherent expressions can be obtained top down in poly-
nomial time. Notice that there can be an i-coherent
expression and a j-coherent expression for i # j that
are equivalent.

Theorem 1: An i-coherent expression is unique.

PTOOf:

d. does not contain a sequence of instances when
there is an equivalent Cler,n that is shorter
than the sequence

Example 3 Example of coherent expressions

l.(ocean-vessel - #liner3) + (speedboat) -t(sail-
boat) is not a coherent expression because of
(4

To aid in the proof, we define a new term called I,,,,,,
term. This term is formed by grouping the maximum
number of adjacent I+.,,,s in the i-coherent expression
such that Imaz term has a class in the taxonomy that
includes all the grouped elements but includes no other
entity from the i-coherent expression.

2.(water-vehicle - #liner3) is a coherent expres-
sion

S.(road-vehicle - #bike2) is not a coherent ex-
pression because of (b)

4.(land-vehicle - #bike2) is a coherent expression
5.(tanker - #tanker3 - #tanker4) is not a coher-

ent expression because of (c)
6.#tankerl + #tanker2 is a coherent expression
7.#tankerl + #tanker2 + #tanker3 is not a co-

herent expression because of (cl)
8.(tanker - #tanker4) is a coherent expression

Conceptual terms with a large number of ncgativc in-
stances tends to make an implicit expression incoherent.
However, there is a trade-off between the length of the
conceptual terms and the total length of the expression.
We allow the user to decide the maximum number of
negative instances in Cter,n.

Definition 9: An i-coherent expressl:on is a coher-
ent expression that does not, contain a Ctelrrl with
more than i negative instances, but contains at least
one Ctenn with i negative instances.

Notice that the definition of the i-coherent expression
makes the characteristics (a) and (d) of a cohcrcnt, cx-
pression valid only if the corresponding CtcrnL dots not
contain more than i negative instances.

Example 4 Consider the query to find all occan-
vessels that were manufactured between the years
1972 and 1975. Examples of equivalent i-coherent
expressions for this query are:

1. (ocean-vessel - #lincrl - #liuor2 - #t,aukcrl)
3-coherent expression

Assume two i-coherent expressions, er and e2, that
differ at least in one term. Without loss of generality,
assume that these expressions differ in their left most
term. We will call them term1 and lermz.

Notice that two terms derived from the same target
class can either subsume the meaning of the other, or
be equivalent in meaning. They can not be overlapping
because of the tree structure of the taxonomy.

1. meaning(termr) subsumes meaning(term2):
- if they are both conceptual terms, then term2
is not the highest class that is possible, and thus
violates (b)
- if term1 is a Cterm and term2 is an I,,, term,
then meaning of term1 subsumes the meaning of
at least one more conceptual term of ez and thus
e2 violates (b)
- if term1 is an I,,, term, part of it is equivalent
to a conceptual term in ez; this can not be the case
(see next part of the proof).

2. meaning(termi) and meaning(termz) are equiva-
lent in their meaning:
- if both are Germs then it is the case where a class
in the taxonomy has only one child. The term with
a lower class violates (b).
- If term1 is an I,,, term and term2 is a et,,.,,,,
If term? is not shorter than terml, e2 violates (c)
else cl violates (d).
- if both are I,,,, terms, they must be identical,
else their meanings are not equivalent. 0

For a given query, an i-coherent expression is obtained
in two phases. In the first phase, for each class, the num-
ber of positive instances and the number of negative in-
stances for the query is found. This is done by a depth
first search on the taxonomy starting from the root and

Proceedings of the 17th International
Conference on Very Large Data Bases

19
Barcelona, September, 1991

determining which instance satisfies the query. The scc-
ond phase is described in the following algorithm. At
each node of the tree, the algorithm either returns a
term (conceptual or individual) or proceeds recursively.
The final answer is the concatenation of these terms
and is the maximum possible j-coherent expression for
j 5 i.

0. current-node +- the root.

1. if current-node is a leaf (an instance)
return instance if it satisfies the query,
else return 6.

2. if current-node has only one child
current-node’s children +. granclchildrcn

3. if all the instances under current-node do not sat-
isfy the query

return e.

4. assume p instances under current-node satisfy the
query and n instances under current-node do not
satisfy the query.
if n 5 i (i-conceptual term or less) and

p > (n + 1) (The conceptual term is shorter
than the equivalent sequence of instances)

return (current-node - Dj I- Djz . . . - Djn)

5. If n > i or p 5 (n + 1)
apply the algorithm to all the children
of the current-node.

Now, we will give a proof of correctness for the above
algorithm.

Theorem 2: An i-coherent expression can be ob-
tained in two phases. The first phase in time O(d
+ c), d is the number of instances and c is the num-
ber of classes in the schema ant1 the ~econtl phase in
time O(hA), where h is the height, of the tnxouollly
and A is the size of the answer set.

Proof of Theorem 2:

The proof lies in correctness of the algorithm and its
complexity.
Correctness: Note that each term in the i-coherent
expression is formed tither in step 1 or st,ep 4.

a. The expression obtained by the algorithm is simple:
By step 4, while returning a term at node C, the
algorithm will not proceed to Cj’s children.

b. No Ctem has more than i negative instances. A
conceptual term cannot have more than i negative
instances due to step 4.

c. Condition (a) of coherent expression. The proof is
contained in the following lemma.

Lemma 1
If the processing continues at a current-node’s sons
because p < (n + 1) (while 71 < i) than in the
final answer there is no set of classes Cl. C?, . . (Cl,

Proceedings of the 17th International
Conference on Very Large Data Bases

20

I > 1, that meaning(C1 + Cz + . . . + Cl) is equal to
meaning(current-node).
Proof: Assume current-node has t sons and t > 1
(because if there is only one child, then step 2 will
be executed).

node
/ I \

Sl s2 . . . St

1. If some of Sk’s are instances then there does
not exist a set of classes in the expression such
that the sum of their meaning is equivalent to
that of the current-node.

2. If Sk, 1 < k 5 t, are classes, the following
lemma gives a proof:
Lemma 2
If the processing continues at the current-
node’s children while p < (n + l), n 5 i, and
Sk are all classes then not all of them will ap-
pear in the final answer.
Proof: Assume that all the Sks appear in the
final answer. This implies that:

pl > nl + 1
p2 > n2 + 1

which gives p>n+t>n+l(ast>l),
contradicting the assumption p 5 (n + 1). o

Lemma 2 implies that there are Sk’e that do not
appear in the final answer. In these nodes p <
n +l. Applying Lemma 2 to these nodes (Sk’s)
implies that instances should be reached, else the
tree has an infinite number of levels, contradictory
to the definition of a taxonomy as a finite tree. 0

d. Condition (b) of coherent expression. The concep-
tual terms include the highest possible classes as
the algorithm traverses the classes top-down.

e. Condition (c) of coherent expression. In step 5, the
algorithm is applied to the children if n > i or
p<(n+l); hence instances are preferred over con-
ceptual terms that are not shorter than the equiv-
alent sequence of instances.

f. Condition (d) of coherent expression. Assume that
the the final expression contains a sequence of in-
stances D1 + D? + . . . $ Dk and 3j (j 5 i and
j < 6) such that meaning(C, - D,,,l - . . . - Dij)
= meaning(D1 + . . . + Dk). Since the algorithm
executes top down, it has processed the node
C”, and has checked the possibility of the term
(Cm-Dml-..a- Dij). The only reason for not

Barcelona, September. 1991

choosing a conceptual term with C,, is (j > i or
j > k). Thus contradicting t,he assluilption.

Complexity: First phase of tile i\lg()rit.lllll t,akcs O(tl
ic). In the second phase, the algorithm scans only t,llc
entities in the paths of those that, appear in t,he answer;
hence, the complexity of the second phase is O(h*A)
where h is T’s height and A is the number of instances
implied by the answer.

4 Query Algebra

Query evaluation in object-orientM dat.abases requires
operators to efhcicntly access complex struct,ines of
data. Query algebras proposed in [KP90, DeuSO, SZ89]
provide special operators to handle nested sets and
other concepts of object orientation. Since coherent cx-
pressions can be obtained front a hierarchy in a t,op
down manner, it is possible to int,egratc the l)ro(‘ess
of finding coherent expressions with convcnt~ional qllery
processing.

The algorithm described in Section 3.3 was applied t,o
the root class. However, it can be applied to any other
class as well. The set of instances implied hy a class, i.e.,
its leaves, is called a target set. A target, set can be given
as either a name of a class or iniplicitly as a roliercnt.
expression. Notice that a class uame is just a special
case of a coherent expression. Thus, we define our query
operators on coherent expressions rather than on a set
of instances. We will define a basic set of operations:
select, two types of project, and two types of join.

4.1 The select operator

The selccf. operation is dcfiuc:(l 011 eit,hcr A twrp~t,-st~t,
or a coherent expression. The ac:lM returns a scxt. of
instances that satisfy the select,ion predicate I’. In our
case, the select would provide an i-coherent answer.

1. select that is defined on a target-set, Relect(S. P),
is calculated by the i-coherent, algorithni.

2. select that is defined on a coherent expression. e,
select.(e, P) is calculated as follows:
e = term1 + te7mz + . 9 +te7ml,

terlni E {Itern~, Cte~tj

select(e, P) = Uf=, .Yelect(terlni),ter?ni E f?

l If GYmi is Iter,,,:
the answer is either the instance itself. if it,
satisfies P, else e.

l IftermiisCt,,,=(C-D1-...-Dk)
the answer is derived by regarding the in-
stances of C as members of a smaller target,
set, S(C), and assuming that the “negative in-
stances” of Ct, r,,, are nrgxt.ivr exaniples to t,lle
predicate P.

Example 5

1. select(vehicle, year < 1987) = land-vehicle+
(mter-vehicle -#tankerl)

2. select(land-vehicle
+(water-vehicle-#tankerl),insured= Y) =
land-vehiclefspeedboat + sailboat

4.2 The project operator

The project operation returns values of a subset of the
attributes for each instance being queried. This sub-
set is specified in the project operation. The project
operation defined on an i-coherent expression, has
the form: project(e, Al, At,. . . , Ak). The attributes,
AI,&,..., Ak, are a subset of the attributes of the
target-set S from which e is derived. We define two
types of project. In s-project, the answer is a set of tu-
pies, each tuple matches the queried attributes of one
of the instances of e. Thus s-project is the standard
project. In t-project, the answer is a tuple, where each
tuple element consists of all possible values of the at-
tribute in the instances implied by e. This definition
of t-project can exploit the presence of a taxonomy if
constraints on the values of the attributes are specified
in the classes.

4.2.1 t-project

In the project operator,
t-project (e, < Al, AZ,. . ., Ak >) =< al, a?, . . . , uk >,
each oi is a set of all the possible values of Ai in the
expression e.
t-project is evaluated as follows:
f: =terml + tcrm~ +...+term~

t-pr,oject(e, < AI, A?, . . . , Al. >) =
&=,(t-project(te~mi, < Al, AZ,. . . , Ak >)

where l+J;=,(< al,a2,a3 >, < bl, b2, b3 >) =
< {al, bl}, (~2, b2}, (a3, b3) >

If termi = It,,,, (an instance D):
t-project(e, < Al, AZ, . . . , Al, >) =

< DAI,DAZ,...,DA~ >,

where DAi is the value of the attribute Ai of the
instance D.

If h?TT?li is Ct,,,,,, (C - Dl - . . . - D,): we can not
substitute it with either t-project(C) or
t-project(C)- t-project(Dl + 02 +. . .-t- D,,,). Con-
sider the following example:

/ /I: \\
instances : Di D2 D3 D4 D5
color: Y = r g g

t-project((C - D1 - D~),co~oT) =< {red,green} >
t-project(C, color) =< {yellow, red, green} >
t-project(C, color)- t-project(D1 + D?, color) =

< green >
Hence, we have to process t-project recursively:

Proceedings of the 17th International
Conference on Very Large Data Bases

21
Barcelona, September, 1991

C

/ I \
Li L2 . . . Lb

In the above figure, each Li could be either a class
or an instance.
t-projecl((C-D1 , . U-D,,,), < Al, Al,. . ,q Ak >) =

I+JJp=1(LpTojeci(Ei, < Al, A?, . . . , Ak >)
where Ei is the expression L,\ {Dl+D?+. .+D,,, },
and Li is a child of C.

3. If ter??Xi is a Class C:
The attributes Al,. . . , Ak are subset of the at-
tributes of the instances of the target-set S. How-
ever, the class C may have constraint,s on t,hc values
for only a subset of thcsr at,t,riblltos. Wr c,xiunilic,
each attribute separately and insrrt, t,his valll(l iu a
tuple.
&projecl(C, < Al, A?, . . . q Al, >) =
OF=, i-projecl(C,Ai) (forms a tuple out of the b
values)
&project(C, Al) = C.A1

if Al hn a const~raint, at, C
uf=, 6p7qjec2(L,, Al) otherwise

Example 6
Let e = (water-vehicle -#f~nker2), then
t-project (e, < color, insu7*erl >) =

O(red, U[&pTojecl ((ocean-ue,usel-~f((7LkeT:!i.

<iii3lrcd >).
2-project (speedboul. < insuwtl >)
&project (sailbouf, < insured >)] 1 =

O(red, U[t-pTojeci(lineT, < inPuTed >)

l-projec.l((t,anker - #innker2),
< insured >)

Y
Y]) =< Td. {Y, N} >

4.2.2 s-project

The definition of this operation is the same as the
standard definition of project.
s-projecl(e, < Al, A?, . . . , AL >) =

{< n],n?....,trk >}
Each tuple consists of the values of the attributes
AI, A??. . . , Ak for the instances of e.

4.3 The join operator

The join operator is used to create relationships be-
tween two groups A and B of instances; these instances
are implied by i-c.oherent expressions. The join opcra-
tion returns a list of new instanrf5 t,llat. is tllc c;Lrt,c5iilll
product of A and B. We dcfinct two t,ypcs of join: Join
between two target sets A and B that, have cliff(~rcllt, at,-
tributes at the leaf level, called d-jok. The other join is
the special case where all the instances have attributes
defined from the same attribute set, called s-joi,n.

Proceedings of the 17th Intematlonal
Conference on Very Large Data Bases

22

The join operation of two coherent expressions is op-
erated by adding the results of the join of the different
terms, that it,
el = terml,l + teT7nl,z + . . . + termI,,

e2 = term?,1 + terrnz?:! + . . . + term2,m,
teTms E {Germ, Lm}

join(e1, e2) = (Jyzl Uy!=, join (teTml,i, ikTVL2,j)

The concept of join on different terms depends upon
the type of join.

4.3.1 s-join

The s-join is an intersection between two groups of
instances, each implied by a coherent expression.

1. If one of the terms is an instance:
a-join(X, 02) = Dz, if(X = Dz)or(Dz E X)

6, otherwise

2. If both terms are classes:
s-join(Cl, C2) = Cl, ifC1 C C2

Cl, ifC2 C Cl
6, otherwise

3. If both are conceptual terms (and not both classes):
s-join((C1 - Dl,l - 01,~. . . - Dl,k), (C2 - D?,l -
D 2,2 . . . - &,h)) =
s-join(C1,G) - [DI,I + 01,~. . . + Dl,k +Dz,I +
D2,2.. . + D2,h 11 s-join(Cl, C2) I

where ‘11’ represents the “restricted to” opera-
tion, i.e., only the set of instances implied by s-
join(C1, C?). At this point the resulting expression
may be %-coherent. However, as the expression
was obtained from two coherent expressions, it can
be modified to an i-coherent by using the algorithm
for obtaining i-coherent expression on each term
that has more than i negative instances.

Example 7
el = car + (tanker - #tankeYl)
e2 = (water-veliicle-#tanker4)
s-join(e1, e2) = s-join(car,w&er-vehicle) -
(#tanker41) s-join(car,waler-vehicle))t
s-join(tanter,waier-l,ehicle) - (#tanker1 +
#tanker411 s-join (tanker,water-vehicle)) =
#tanker2 $ #tanker3

4.3.2 d-join

d-jotn is conceptually similar to a n&ml join. The
groups of instances A and B implied by the coherent
expressions are derived from target-sets having different
attributes. Figure 2 is a taxonomy with the animal class
as the root. D1 is an instance that belongs to class
anilnal and Dz, Da are instances of the vehicle target
class.

1. If both terms are instances:
d-join is the same as a regular join.
for example:
D1 =<Tail: 8in, Color: white, Friendly: N >

Barcelona, Septemk 1991

brown or white

> 5 in
white

color N

friendly (Y or N)

Figure 2: Animal Schema

Dz =<Year: 1988, Insured: Y, Color: white,
Owner: john>

DS =<Year: 1990, Insured: Y, Color: yellow.
Owner: john>

d-join(D1, D2) =
<Tail: 8in, Color: white, Friendly: N,

Year:1988, Insured: Y, Owner: john >
d-join(Dl,Ds) = e

2. If one of the terms is an instance:
we can decompose it as:
d-jo,in((Cl - Dl,l - D1,?, . . - Dl,k)$ Dz) =
d-join(C1, Da) - [d-join(D1,l, Dz) + . . .

+d-join(Dl,:!, D2)...-t-d-join(D1,I;, Da)]

3. If both terms are classes with default values:
treat the terms as instaiiccs.

4. If both terms are conceptual terms:
d-join((C1 - Dl,l - Dl,?. . . - Dl,k), (C2 - Da,l -
02,~. . . - &,/a)) =

d- join(Cl, CZ) -
d-join(Cl, Dz,~) . . . +d-join(C1, DzTh))-
d-join(C?, Dl,l). . . +d-join(C2, DI,~))

Note that the expression obtained from a d-joist is
not i-coherent.

Example 8
el = (road-vehicle-#bibe3) target-set is vehicle
e2 = (pets-#mnrti) target-set is animal
d-join(e1, e2) = d-join(mad-chicle. pc+x)-
d-jo%n(#biLe3, pets)-
d-jo%71(roa.d- vehicle, #mart i) =
< inswed : Y, tail : 3in, colo,r : { b7’0~um. white} >
- < insllred : Y, tail : 3in, color : b7’own, Yeur :
80, oulneT : Hildu >
- < ,inswed : Y, tuil : 5in. ~0107' : ,white, f~imdly :
N>

5 Conclusions and Future Work

In this paper, we explored the problem of providing im-
plicit answers to queries in object-oriented databases.
A new definition of implicit expression called a coher-
ent expression was introduced. Coherent expressions
are abstract responses that are easy to comprehend. A
top down algorit,hm to obtain such coherent expressions
was also described. Since coherent expressions are ob-
tained top down, it was possible to integrate this pro-
cess with query processing capabilities. To this end,
we provided a basic set of operators that returns ab-
stract responses. The capability of obtaining abstract
responses from object-oriented databases is a useful tool
not only for reasoning about complex information but
also for presenting complex information in multi-media
databases.

We considered a simple object-oriented model. The
concepts and ideas explored in this paper can be ap-
plied to a more general object-oriented data model. One
such extension is to apply the concept of i-coherent ex-
pressions to complex objects, i.e., where the attributes
are not atomic but may be classes or target sets. We
are currently exploring the issues of providing abstract
responses in such object-oriented databases. Another
related open problem is to find the characteristics of
expressions that can be obtained as part of the query
processing in polynomial time (e.g. the coherent expres-
sion). We must also investigate other ways of expressing
abstract responses; possibly a family of expressions that
have some special structure or features that make them
amenable to better comprehension.
Acknowledgments We would like to thank the rcfcr-
ees for their comments and suggestions.

References

[ASLSO] Alashgar, A. M., Su, S. Y. W., and Lam
H. OQL: A query language for manipulat-
ing object-oriented databases. In Proceedings
of the 15th international conference on VLDB,
pages 433-442, Amsterdam, August 1990.

[Bee891 Beeri, C. Formal models for Object Oriented
databases. In First International Conference
on Ded,uctive and object-on’ented databases,
pages 370-395, December 1989.

[BKK88] Banerjee, J., Kim, W., and Kim, K. Queries
in Object-oriented databases. In Fourth IEEE
Conference on Data Engineering, pages 31--38.
February 1988.

[BROO] Badrinath, B. R. and Ramamritham, K. Pcr-
formance evaluation of semantics-b&sad mul-
tilevel concurrency control protocols. In Pro-
ceedings of the ACM SIGMOD international
conference on management of data, pages 163-
172, May 1990.

Proceedings of the 17th International
Conference on Very Large Data Bases

23
Barcelona, September, 1991

[Cor85] Corella, F. Semantic retrieval and levels of
abstraction. In L. Kerschberg, editor, Ezpert
Database Systems. Benjamin Cummings, 1985.

[DeuSO] Deux, 0. et al. The story of 02. IEEE IPrans-
actions on Knowledge and Dota. Engineering,
2(1):91-108, March 1990.

IKim Kim, W. Object-Oriented databases: Dcfi-
nition and research directions. IEEE Trans-
actions on Knowledge and Data Engineering,
2(3):327-341, September 1990.

[KL90] Kim, W. and Lochovosky, F. H. Object-
oriented concepts, databases, and applications.
ACM Press, 1990.

[KM901 Kemper, A. and Moerkotte, G. Advanced
query processing in object bases using access
support relations. In Proceedings of the 15th
international conference on VLDB, pages 200-
301, Amsterdam, August) 1990.

[KP90] Korth, H. and Peltier, X. Query algebra for
Object-Oriented databases. In Proceedings of
the Schlumberger software conference, 1990.

[Mai89] Maier, D. et al. The gemstone data manage-
ment system. In Won Kim and Frederick H.
Lochovsky, editors, Object-Oriented Concepts,
Databases, and Applica.tion,s, pages 283--308.
ACM Press, 1989.

[MGG86] Moss, J. E. B., Griffeth, N., and Graham, M.
-Abstraction in recovery management. In Pro-
ceedings of the ACM SIGMOD international
conference on management of data, pages 72-
83, May 1986.

[SM88]

[SZ89]

[SZ90]

[ZM90]

Shum, C. and Muntz. R.. Implicit rcpresen-
tation for extensional answers. In P~~oceedings
of the Second International Conference on EL-
pert Database Systems, pages 257-273, Wash-
ington, D.C, 1988.

Shaw, G. M. and Zdonik, S. Object-Oriented
queries: Equivalence and optimizatioii. In
First Internationa.1 Conference on Dedurtirle
a.nd object-oriented data,ba.ses, pages 264-278,
December 1989.

Shaw, G. M. and Zdonik, S. A Query alge-
bra for object-oriented databases. In Sixth
IEEE Conference on Data Engineering, Febru-
ary 1990.

Zdonik, S. B. and Maier. D. Recldlnys ,i71

Object-Oriented databa..se system. Morgan
Kaufmann, 1990.

Proceedings of the 17th International
Conference on Very Large Data Bases

24
Barcelona, September, 1991

