Tiziana Catarci (1), Giovanna D’Angiolini (), Maurizio Lenzerini (1)

(1) Dipartimento di Informatica e Sistemistica,
Universita degli Studi di Roma "La Sapienza"
Via Buonarroti 12, 00185 Roma, Italia
() Istituto Nazionale di Statistica ISTAT)
via C. Balbo 16, 00185 Roma, Italia

Abstract

In this paper we describe a new language for
statistical data modelling, which offers a general
framework for the representation of elementary and
summary data. There are three main characteristics of the
language: 1) the types of modeling primitives of the
language are particularly suited for representing objects
from a statistical point of view; 2) the language includes
a rich set of structuring mechanisms for both elementary
and summary data, which are given a formal semantics by
means of logic; 3) the language is equipped with
specialized inference procedures, allowing for performing
different kinds of checks on the representation.

1 Introduction

In the recent years, several approaches have been
proposed for modelling large amounts of data from a
statistical point of view [BD88,SW85,Su83,Gh86,008S5,
OOMB87].

A common characteristic of such approaches is to
model elementary data by usual data models, then to
define particular representation structures for summary
data (i.e. data obtained by grouping elementary data, and
by applying statistical operators -- such as total, average,
percentage -- to such groupings). It follows that an
integrated language for defining both elementary and
summary data in a suitable way for statistical applications
does not exist. Moreover, the proposed data models are
often lacking in formalization, and do not provide the
designer with powerful deductive capabilites.

Permission 1o copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage. the VLDB copynght notice and
the title of the publication and its date appear. and notice is given
that copying is by permission of the Very Large Data Basce
Endowment. To copy otherwise. or 1o republish. requires a fec
and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

722

It is our opinion that statisticians would benefit
from a design language offering both rich structuring
mechanisms and inference procedures. In fact, in order to
perform statistical analysis, the statistician gets the data
of interest either by an ad hoc survey, or by manipulating
pre-collected data, often extracted from very large data
bases. In both cases, the design activity may require
organizing a large collection of data, and checking if a
certain amount of information is derived from the
collected statistical data.

In this paper we present a new language for statistical
data modelling, aiming to overcome the above mentioned
drawbacks of existing proposals, and to offer a general
framework for the representation of élementary and
summary data. There are three main characteristics of our
proposal: 1) the types of modeling primitives of the
language are particularly suited for representing objects
from a statistical point of view; 2) the language includes a
rich set of structuring mechanisms for both elementary
and summary data, which are given a formal semantics by
means of logic; 3) the language is equipped with
specialized inference procedures, allowing for performing
different kinds of checks on the representation.

We believe that the above characteristics makes the
language an extremely useful tool during the phase of data
modeling. In particular, by implementing the deductive
machinery associated with the language, the designer may
not only model the real world of interest by means of a
rich set of linguistic primitives, but also ask the system
to perform several checks which can be effectively used
for controlling the design process.

In the tradition of the object-centered languages for
knowledge representation (see [BS8S5, NS89]), our
language allows both concepts and relationships to be
described. A concept is an abstraction of a set of real
world entities, whereas a relationship is an association
between two concepts. Both concepts and relationships
can be described by means of a rich set of constructors,

Work partially supported by Progetto Finalizzato Sistemi
Informatici e Calcolo Parallelo of CNR, Tema INFOKIT.

starting from a set of primitive concepts (i.e. concepts
which are described simply by a name). Due to this
property, languages of this kind have been called concept
description languages. Concept description languages
originated with Brachman's KL-ONE [BS85], and grew
out of research in semantic networks and frame-based
systems. One of the main concerns of the work on such
languages, has been to define suitable inference procedures
for reasoning about concept descriptions. Recent works
present a detailed analysis of the computational
complexity of such reasoning procedures, depending upon
the constructs used in the language [DH90]. We will
mention in Section 4 that we can take advantage of such
an analysis for characterizing the complexity of our
language.

Using the constructors of the language, the
statistician can define a basic collection of concepts,
together with derived concepts, which are described by
posing some restriction condition on the data in the
schema. For instance, in a schema describing persons and
their properties (age, sex, name, efc.), a new class may be
defined based on a suitable restriction on the property
"age", namely the class of persons with age < 14, Such a
feature is particularly suitable for denoting subsets to be
used as input for statistical analysis (see for example
SAS procedures [Br81]).

The language is also equipped with suitable
constructs for the definition of summary data, which are
not present in the usual concept description languages.
For instance, in the above schema, we may define the
summary data "Average on age of persons partitioned by
sex”.

The paper is organized as follows. The basic notions
related to statistical data modelling are presented in
Section 2. In Section 3, we define the syntax and the
semantics of the language. In Section 4, we deal with the
basic deduction mechanisms. Finally, in Section 5 we
show an example of statistical survey modeled using our
language.

2 Basic Notions of Statistical Data
Modeling

We are interested in statistical activities studying
phenomena concerning finite populations (e.g.
households, persons, enterprises, etc.).

The mean for observing a phenomenon on a finite
population is the statistical survey. In a statistical survey,
the populations of interest are defined, and the
phenomenon is characterized by the values of a set of
variables observed on each element of the populations.
For instance, if the population is Person, the variables
Labour Force Status, Professional Status, Occupation ,
Wage etc., may be chosen to characterize the phenomenon
Employment.

723

We use the word statistical unit to mean an
abstraction of a set of real world objects, called its
instances, which form an enumerable class. The basic
property of a statistical unit is the possibility of
enumerating its instances and calculating totals on it,
obtaining summary data.

In a statistical survey, populations are always
described as statistical units. For example, Person is a
statistical unit, on which one could be interested in
calculating the summary data Total of Wages of Persons
by Professional Status and Number of Persons by Group
of Wage.

Besides populations, statistical units are also used to
represent some kind of phenomenon, provided that the
phenomenon can be described in terms of an enumerable
class. For instance, the phenomenon Vacation of Persons
can be described as a statistical unit, since we may
calculate, for example, the Total Expenditure of Persons
for Vacations and the Number of Vacations by Vacation-
Site. On the contrary, the phenomenon Employment
cannot be considered as a statistical unit.

The properties of an enumerable class represented by
a statistical unit are modeled by means of variables.
Example of variables describing properties of Person are:
Age, Sex, Personal-income, Address, Occupation, etc. We
distinguish between qualitative and quantitative variables.
The domain of a qualitative variable is a set of states,
which can be associated with the -elements of the
enumerable class. The domain of a quantitative variable is
a set of numerical values, representing the observed
measures of a measurable characteristic. It is worth noting
that also the domain of a qualitative variable may be a set
of numbers (e.g. ATECO-Code for Economic-Activities),
but such numbers are not measures. It follows that only
quantitative variables may be used as summary variables.
A summary variable is such that it makes sense to
summarize it with respect to a statistical unit. Examples
of summary variables are Personal-Income, Expenditure
for Vacations, etc, whereas Sex, Occupation,
Professional-Status, etc. are examples of non-summary
variables.

Since variables describe properties, they are defined as
functions linking a statistical unit to a given doamin. For
example Sex links Person to {Male, Female). Statistical
units are linked each other by functions or relations
(notice that not every function is a variable). For
instance, the statistical units Person and Vacation are
linked to each other by the relation Enjoy. Links
between codomains are realized by 1:n functions. For
example, the codomain of District is linked to the one of
City, where each city may be intended as a grouping of
several districts.

In a statistical survey, it may be interesting to single
out subsets of statistical units, called statistical sub-units.
A statistical sub-unit S is described starting from a
statistical unit U, and specifying the condition that the
instances of U must satisfy in order to be instances of S.

The condition may be defined either on variables of U, or
on statistical units which are linked to U by functions or
relations. For example, Person with age<14 is obtained
from the statistical unit Person using its variable Age;
Household with unemployed head of household is
obtained from Household using the variable Labour-
Force-Status and the statistical unit Person. Statistical
sub-units may also be obtained by set operations on other
sub-units.

The ultimate goal of a statistical survey is to
compute summary data concerning the phenomenon of
interest. The summary data of a statistical survey are
specified by means of statistical goals. A statistical goal
is the specification of how to compute a value using
statistical operators. Two main kinds of goals may be
singled out, depending upon the type of the statistical
operator.

The first kind of goals refers to either totals
computed with respect to summary variables, or count of
elements of a statistical unit. These are defined by using
statistical units partitioned according to the values of
some variables. For example, referring to the statistical
unit Person and the variables Sex, Age, and Personal-
income, we may calculate the goal Personal-income by
Sex and Age, where Personal-income is the summary
variable and Person is partitioned using the values of the
cartesian product of the codomains of Sex and Age.
Moreover, if Vacation is a statistical unit with variable
Expenditure, we may calculate the goal Total
Expenditure for Vacations of Persons by Sex and Age,
where Expenditure is the summary variable and Vacation
is partitioned using the variables Sex and Age linked to it
indirectly by the statistical unit Person. The result of
such computations is an ordered set of numerical values,
each one corresponding to an instance of the cartesian
product of the codomains of the specified variables.

It is worth noting that goals of this kind may be
derived from each other, under particular conditions on
their partitioning variables. For example, Number of
Persons by Sex is derivable from Number of Persons by
Sex and Age.

The second kind of goals refers to computations
obtained by using statistical operators such as average,
percentage, square mean error, codeviance, etc. Due to the
semantics of such operators, the goals of this kind can
only defined on previously defined goals. For example,
starting from the goals Personal-income by Sex and Age
and Number of Persons by Sex and Age, we may define
Average on Personal-income by Sex and Age.

3 The Language

In this section we describe the syntax and the
semantics of a concept description language for the
specification of statistical surveys. The language provides

suitable constructors for describing statistical units,
variables, statistical sub-units, aggregates and goals. The
presentation is organized as follows. In the first
subsection, we describe the basic mechanisms for building
concept and relationship descriptions. In the second
subsection we deal with the description of both aggregates
and statistical goals. Finally, in the third subsection we
show how to specify all the knowledge about a statistical
survey by means of the language.

3.1 Concept formation

We assume the existence of two countably infinite
sets P, R of concept and relationship symbols,
respectively. The set R is partitioned into two subsets,
one containing binary relation symbols, called roles, and
one containing function symbols. The symbols in P and
R describe primitive concepts and relationships, i.e.
elementary concepts and relationships which are simply
described by means of a name. We assume that P
contains two distinguished concept symbols, namely
Empty and T, denoting the empty and the universal
concept respectively, together with suitable concept
symbols denoting the usual domains of values used in
programming languages, such as INTEGER, REAL,
BOOLEAN, etc..

Concept and relationship descriptions are built out of
concept and relationship symbols in P and R according to
the following syntax (P denotes a primitive concept
symbol, Q a primitive relationship symbol,
C,D,C1....,.Cn concept descriptions, R,S,T relationship
descriptions, Fi,...,Fm function symbols, vi,...,vq
values and n an integer):

CcD > Pl notPiCandD| CorD |
some R.C | allR.C |atleast nR |
atmost n.R | F.C | setof C |
[F1: C1,...Fm: Cm] 1 (V1....,vn)

ST -> QISoTIS-11scC

724

The set of all the concept descriptions built up from
P and R will be denoted by L(P,R). Notice that, in the
above syntax, v1,...,vn denote values. In fact, we assume
that a symbol is available for each value (of type integer,
boolean', real, etc.) of interest. As a notational
convenience, we also assume that sets of values which are
intervals of an ordered domain can be written in the form:
vi..vp.

The intuitive meaning of the operators not, and and
or is simply set complement, set intersection and set
union, respectively. Notice that not can only be applied to
primitive concepts. The operators setof is used to describe
the set of all the collections of instances of a given
concept. The concept [F1: Ci,....Fm: Cm] denotes the set
of all the (labeled) tuples where each component is labeled

by the funct cxrmbal I and hoo an inctannas ~F £ aa
vy uiv 1u NC By HUUL "] alia il all 1y ILC UL \/l ad>
value. T pe ome and all are used to describe
concente an tha han- nf thair I' Lino tn ralac: intiitivaly

vuuyvyw Vil uWiwv U(Mlo WA WAAVAL 11 Nlls w I\IIVD lnu.uuvvn],
some R.C denotes the set of ob]ects which are linked by
the role R to at least one instance of the concept C,
whereas all R.C denotes the set of objects which are
linked by R to objects that are instances of C
(analogously for F.C, when dealing with functions). The
operators atleast and atmost are used to constrain the
number of links of type R.

With regard to relationships, the symbol "o" denotes

composition, the symbol -1 js used to denote the inverse
of a relationship, and the symbol ":" denotes the
restriction of a relationship to those pairs whose second
component is an instance of the concept C.

Morae farmally tha camantine af tha lanouace t to
AVIVIC 1ULLIIGAL Y, WIV DSUILIGHIULS UL uiv 1Qilg ua BY W

that each concept description in L(P,R) is mterpreted asa
subset of a universe U, accordmg to suitable rules
defining the meaning of the operators. The universe U is a
set of structured objects, built up from a basic domain D
of elementary objects, containing all the values of
interest, and defined as the smallest set containing D and

such that, if uy,...,up are in U, and F},...,Fp are function
symbols of L(P,R), then both <Fj:uj,....Fp:up> (labeled
tuple) and {uy,...,un) are in U.

Let I(:) be a function mapping each concept to a
subset of U, and each relationship to a subset of UXU. I
is called an interpretation for L(P,R) if the conditions
specified in Table 1 hold.

As an example of concept description, consider the
concept E defined as Employee with at least 2 houses and
all of whose children are students. Such a concept can be
described in our language as

Employee and (atleast 2.PossessHouse) and

(all Child.Student)
where Employee and Student are concepts, and
PossessHouse, Child are roles.

Now let us consider the interpretation I with basic
domain D={a,b,c.d,ef,g,h,m,p} assigning {a,b} to
Employee, {c,d,e.f} to Student, {<a,c>, <a,d>) to Child,
and {<a,g>,<ah>, <a,m>, <b,p>} to Possess-of-House.
It is easy to verify that I assigns {a} to the above concept
E.

3.2 Aggregates and statistical goals

An aggregate is a specification of how to classify all
the instances of a given concept, called the target concept
of the aggregate, according to their values with respect to
a collection of properties. For example, an aggregate can
be defined classifying Persons according to their sex and
age.

Aggregates are classified into simple and complex. A
simple aggregate has the form

f $15e..,8n 1}

I(Empty) =0

I(T) =D

Inot P) =D-IP)

I(C and D) = I(C) n IKO)

I(C or D) = KO) u I(D)

I(some R.C) = {xe€ Ul there exists <x,y> €
I(R) such thaty € I(C) }

I(all R.C) = [x e Ulforeach <x,y> € IR) it
holds that y € I(C) }

I(atleastnR) = (xe Ul thereexistatleastny

such that <x,y> € I(R) }
{xe Ul there exist at mostny
such that <x,y> € IR) }

I{atmost n.R)

IFC) =(xeUl<xy>elF)andye I(C))

I({F1: C1,...Fm: Cml) = { <F1: v1,....Fm: vim> €
U lvje I(Cy), i=l,...m }

I(setof C) = { {v1,..,vk} € Ulvje I(C), i=l..m }

I((v1,.svn)) = {V1,eesvn }

I(S-T) = { <x,y> € UXU | there exists
z € U such that <x,z> € I(S)
and <z,y> € I(T) }

(S 1) = {<xy>e UXU I<yx> € I(S) }

I(S:C) = {<x,y> € UXU l<xy> € I(S) and

yel0)]

725

Table 1: Definition of interpretation

where s1.,...,Sp are sets of values, often described as
intervals, of the same domain N. In this case N is called
the target of the aggregate. A complex aggregate has the
form:

agg C » S1.B1 *..» Sp.Bp
where C is a concept, §1,...,Sp are relationships, and
B1i,....Bp are simple aggregates whose target are
codomains of variables. In this case, C is the target of the
aggregate.

From a semantical viewpoint, a simple aggregate is a

set of sets, whereas a complex aggregate of the form

agg C « S1.B1 *..» Sp.Bp
is defined as a set of labeled tuples. Each tuple
corresponds to a combination of values for the specified
properties, plus the set of all the instances of the target
concept having such values of properties. More formally,
given an interpretation I, the semantics of an aggregate is
as follows (Target is a distinguished function symbol):

I({ls1,-..,sniD) = { I{s1),I(sn) }

I(agg C * S1.B1 *..* Sp.Bp) =

{<S1:v1,....5n:vp. Target:s>l viel(By),....vn€ I(Bn),
s is the set of all the elements E of I(C)
such that I(S1).E€ v1,...,J(Sp).E€ vy }

We assume that when in S;.Bj the specification of Bj
is omitted, then the simple aggregate denoted by Bj is
[l (v1)....(vn) 11, where v1,...,v are all the values of the

codomain of Sj. For example, the aggregate classifying
persons with respect to Sex (whose codomain is
{male,female}) and Age (partitioned into intervals
1..50,51..80), can be defined as follows:
(agg Person = Sex = Age.[11..50,51..801])
Suppose that I is the interpretation defined as
follows:

I(Person) = {a,b,c.d}

I(Sex) = {<a,male>, <b,male>, <c,female>,
<d,female> }

I(Age) = {<a,20>, <b,30>, <c,20>, <d,61> }

Then, I((agg Person * Sex * Age.[11..50,51..1001])) =
{<Sex:{male},Age:{1..50},Target:{a,b}>,
<Sex:{male)},Age:{51..100},Target:{ }>,
<Sex:{female},Age: {1..50},Target:{e}>,
<Sex: (female},Age: {51..100},Target: {d}>})

A goal is a specification of a meaningful
computation to be performed in the context of a statistical
survey. In the definition of goals we make use of a set of
operators which are usually considered in statistical data
bases, such as COUNT, AVERAGE, etc.. Each operator
has a set as argument and returns values of a distinguished
type.

Goals are classified into simple and composite. A
simple goal has the form:

(goal OP on R of AGG)

where OP in an operator, R is a summary variable, and
AGG is an aggregate. Intuitively, the above goal is a
specification of a collection of values, each one relative to
the target component M={cl,...,cp} of an instance of
AGG; each value is obtained by applying the operator OP
to the set of values corresponding to the property R of
C1,....Cp- As a notational convenience, the specification
of R can be omitted, in which case, the operator is
intended to be applied directly to the set c1,....Cp.

More formally, given an interpretation I, the
semantics of a simple goal is as follows (Result is a
distinguished function symbol):

I((goal OP on R of AGG)) = { [ITarget: ¢, Result: xi]
| there is <S1:v1,...,9n:vn, Target:c> in I{AGG),
and x is the result of applying OP to the set of
values corresponding to IR.c))

I((goal OP on AGG)) = { [|Target: ¢, Result: xI] |
there is <$1:v1,...,5n:vn, Target:c>in I(AGG), and
x is the result of applying OP to the set of values
corresponding to I(c) }

For example, referring to the interpretation I in the
previous example, the semantics of the goal (goal
COUNT on (agg Person » Sex » Age.[11..50,51..1001]))

180

{ <Target:{a,b}, Result:2>, <Target:{}, Result: 0>,

726

<Target:{c]}, Result: 1>, <Target:{d}, Result: 1> }

A composite goal is simply an application of an
operator to a collection of arguments which are goals
themselves. The form of a composite goal is

(goal OP on G1 ... Gp).
and its semantics is easily obtained from the semantics of
both the operator OP and the arguments G1,...,Gp.

3.3 Specification

A specification is a collection of statements
describing all the relevant knowledge about a statistical
survey. It is constituted by three parts: in the first part,
names are assigned to the various objects involved in the
survey. Moreover, concepts are classified into statistical
units and statistical sub-units, whereas relationships are
classified into variables, roles and functions. In the
second part, constraints are declared describing the
definition of statistical sub-units, the conditions that units
must satisfy, and the domain and codomain of variables,
roles and functions. Finally, the third part is devoted to
the definition of both aggregates and statistical goals. The
syntax of a specification is shown in Table 2.

StatisticalSurvey N;

Units unit-name,...,unit-name
Sub-units sub-unit-name,...,sub-unit-
name
Variables var-name,...,var-name
Roles role-name,...,role-name
Functions fun-name,....fun-name
Constraints
Y1 Yn
Aggregates
al] .. Op
Goals
T1 Tn

Table 2: Symax of a specification

The constraint part is constituted by a set of
constraint assertions, each one specifying a semantic
condition on concepts or roles. There are three kinds of
constraint assertions:

1) A constraint can be used for fixing the domain and
the codomain of a relationship. In this case, the statement
has the form:

R: D1 X Dy

where D] and D7 are concept descriptions. Notice that
this mechanim allows for the specification of the domain
and the codomain of each variable.

2) A constraint can be used to state necessary
conditions that a unit must satisfy. In this case the

statement has the form:

' Pisa o

where P is the name of a unit, and a a concept
description. For example, the assertion (Person isa
Age.(1..100)), states that every instance of Person must
possess an age, whose value is in the range 1..100. Due
to the expressive power of the concept description
language, the above is a quite powerful tool for specifying
constraints.

3) A constraint can be used to define sub-units. In
this case the statement has the form:

P def a
where P is the name of a sub-unit, and o a concept
description. For example, the assertion (Young_father def
(Person and (some Child.T) and Age.(1..24))) defines the
sub-unit Young_father in terms of the role Child and the
function Age.

The semantics of the constraint part is simply given
by specifying the conditions under which an interpretation
1 satisfies a constraint. I satisfies a constraint of the form

R:D; X D2
if IRR) is a subset of I(D1 X D3). I satisfies a constraint
of the form

Pisa a
if I(P) is a subset of I(ar). Finally, I satisfies a constraint
of the form

P def o
if I(P)=I(cr). 1 is said to be a model of the specification ¢
if I satisfies all the constraints of ©.

In the aggregate part (resp. goal part) every «; (resp.
7i) refers to an aggregate (resp. goal) definition, which
has the form:

o def &
where o is the name of the aggregate or the goal being
defined, and § is the corresponding description, formed
according to the syntactic rules given in Subsection 3.1.

4 Reasoning about a Specification

The language described in the previous section allows
for expressing the knowledge about a statistical survey.
Based on the formal definition of the semantics of the
language, we can devise specialized techniques for
reasoning about a specification. We will show in this
section that such techniques constitute a valuable support
to the designer of statistical data schemas.

Notice, first of all, that a specification may suffer
from a number of anomalies, due to a wrong usage of the
constructs of the language. For example, if both the
constraint assertions

Male isa not Female
Joung_Person def Female and Male and Age.1..20
are in a specification o, then in all the models of o, the
set of instances of Joung_Person is empty. Obviously, in

727

this trivial example, the problem can be easily singled
out, but it is quite clear that in more complex situation, it
may not be evident that a concept is invariably empty in
all the models of the specification.

In order to formalize the above considerations, we
now introduce the notions of consistency and
inconsistency of concepts and specifications. A concept C
is said to be inconsistent (consistent otherwise) in a
specification o, if for each model M of o, it holds that
M(C)=@. A specification ¢ is said to be consistent
(inconsistent otherwise) if no concept of o is
inconsistent. - Also, we say that the concept C is
subsumed by the concept D in a specification o, if for
each model M of o, M(C) is a subset of M(D).

Consistency can be thought of as the basic property
to be checked about a specification. More generally, the
designer may want to verify whether a certain property
holds in all the models of a specification o. This can be
done by providing the designer with a deductive method
that, given a specification ¢ and an assertion o of one of
the forms described for constraints, checks whether

ol=aq,

i.e. whether a is satisfied by every model of ©.
Notice that, for example, the consistency of the concept C
may be checked by testing whether (¢ i= C isa Empty),
and subsumption can be checked by testing whether (o I=
Cisa D).

For the sake of brevity, we do not delve into the
details of such a method for our language. The interested
reader is referred to {CDL90], where we describe a sound
and complete algorithm for performing the above
mentioned deductions on a specification. The algorithm is
based on a general technique developed in the context of
concept description languages (see [$S90]). By using
complexity results concerning such languages (see [SS90,
DLMO90]), in [CDL90] we characterize the computational
complexity of the deduction method for our language,
which is exponential in general, and single out syntactic
restrictions of the language in order to get tractability.

Other reasoning facilities are provided in our
language, concerning aggregates and goals.

An aggregate A is said to be derivable from an
aggregate B in a specification g, if there exists a total one-
to-many correspondence R from the instances of A and B
such that, for each model M of o, for each x in M(A),
x=y1®...®Dyp, where R(x)={y1,....yn}, and & denotes an
operator between tuples, defined as follows:
<F1:v1,....Fnivn, Target:c> @

<F1:w1,....Fn:wp, Target:d> =

Fi:viuwi,...Fnivpuwy, Target:cud>.

In [CDL90], we describe sufficient conditions for
derivability of aggregates. These may be used for
verifying what we call consistency of aggregates: an
aggregate A is said to be inconsistent in a specification G,
if for each model M of o, for each tuple x in M(A), the
Target component of x is empty. Notice that A=(agg C *

S1.B1 *...* Sp.By) is inconsistent in o, if and only if
(agg Empty * S1.B] *...* Sp.By,) is derivable from A.
Therefore, we can use derivability for checking the
consistency of aggregates,

An analogous notion of derivability can be defined
for goals, as described in [CDL90].

S. An Example of Statistical Survey

We describe an example of statis gal su;,g
concerning the employment condmon of a sample
persons in Italy. We want to study the phenomenon
Employment by means of the observation of several
related factors. In particular, we consider the Household
to which a person belongs, the Habitation in which one
lives, together with information related to each person,

A,
such as Sex, Age, Marz.'a!—S.'a.'ua,uauegree eic.

The aim of such a survey is to obtain a set of
summary data, namely: Number of Employed Persons
with Age <30 by Sex, Activity-Field, and Region;
Number of Unemployed Persons by Age-Group,
NoDegree, and Income-Group of the Household;, Average
on Income of the Households with at least one
unemployed member by Region, where a region is a
geographical area having local administration, and
partitioned into so-called provinces.

The statistical survey Employment is described in
our language as follows.

Statistical Survey Employment;
Units

Person, Household, Habitation;

Sub-Units
PersonWithAge>14, EmployadPerson,
UnemployedPerson,

Unemployed-previously-employed;
)

Sex, Age, Marital-status, Labour-Force-Status,
NoDegree, Income, Rooms, Street, Number, City,
Habitation-kind, Province, Region, Activity-field,

Previous-employment;
Roles

Possess;
Functions

Member-of
Constraints

Sex: Person X (M,F);

Age: Person X (0..120);

Marital-Status: Person X (Married, Widow,
Divorced, Single);

NoDegree: Person X (HighSchoolDegree,
MasterDegree, PHDdegree);

728

Income: Household X Integer;

Rooms: Habitation X Integer;

Street: Habitation X String;

Number: Habitation X Integer;

City: Habitation X NameofCity;

Habitation-kind: Habitation X (primary,
secondary);

Province: NameofCity X NameofProvince;

Region: NameofProvince X NameofRegion;

Actwnv-f‘ eld: (anlnvedperenn or Unpmnlmmr!_

ALY 22828l ARS Y SAes RA SV

previously-employed) X (Industry,
Agriculture, Services);

Labour-Force-Status: PersonWithAge>14 X
(employed, unemployed);

Previous-employment: UnemployedPerson X
Boolean;

Possess: Household X Habitation;

Members-of: Household X Person;
Person isa Sex.T;
Person isa Age.T;
Person isa Marital-status.T;
Habitation isa Rooms.T;
Household isa Income.T;
Habitation isa Street.T;
Habitation isa Number.T;
Habitation isa City.T;
Habitaion isa Habitation-kind.T;
Household isa Member-of.T;
Person isa Member-ot‘l.T;
PersonWithAge>14 def Person and Age.(14..99);
EmployedPerson def PersonWithAge>14 and
Labour-Force-Status.(employed);
UnemployedPerson def PersonWithAge>14 and
Labour-Force-Status.(unemployed);
Unemployed-previously-employed def
UnemployedPerson and Previously-
employment.(true);

Aggl def (agg (EmployedPerson and
Age.(14..29)) = Sex * Activity-field *
Member-of © Possess: (Habitation and
Habitation-kind.(primary)) ° City °
Provincee Region);

Agg?2 def (agg (UnemployedPerson *
Age.[114..29,30..50,51..70,71..991] *
NoDegree * Member-of ¢ Income.[l1..10,
11..50,51..100,101..500,501..Maxl});

Agg3 def (agg (Household and (some
Mcmber—of‘l.UnemployedPerson) *
Possess: (Habitation and Habitation-
kind.(primary)) ¢ City ¢ Province °©
Region);

Goals
Goall def (goal COUNT on Aggl);
Goal2 def (goal COUNT on Agg2);
Goal3 def (goal COUNT on Agg3);
Goal4 def (goal SUM on Income of Agg3);
GoalS def (goal QUOTIENT on (Goal4, Goal3));

It is worth noting that, in the above schema, the
goals Goal3 and Goal4 are not explicitly requested in the
survey; they are defined as intermediate goals, in order to
properly define Goal5. In this case, the derivability
relation between goals is evident from the definition. As
claimed in Section 2, other derivability relations between
goals can be inferred by reasoning on their definitions.

Notice that meaningful aggregates are not necessarily
given a name. For example, Age-Group is implicitly
defined in Agg2 as [114..29,30..50,51..70,71..991]
(analogously for Income-Group).

After the description of the statistical survey, an
analysis phase may take place, in order to check some
meaningful properties of the specification. For example,
the designer may want to check, first of all, whether the
specification is consistent. The concepts involved in the
specification are, therefore, checked one by one for
consistency. The result, in this case, is that the
specification is consistent. It is easy to verify that the
same holds for all the aggregates defined in the survey.

Moreover, the designer may want to check whether
other goals can be derivable. For example, suppose that
we become, later on, interested in the goal Number of
Unemployed-previously-employed by Age-Group, and
Income-Group of the Household. This can be done by
specifying the goal:

(goal COUNT on (agg (Unemployed-
previously-employed * Age.[114..50,51..991] »
Member-of ¢ Income.[l1..10,
11..50,51..100,101..500,501..Max|])

Now, by using the facilities briefly described in
Section 4, the designer may be acquainted with the fact
that the aggregate specified in the above goal is derivable
from the Agg2. Therefore, she/he can conclude that such a
goal is derivable from Goal2.

6 Conclusions

We have described a new approach to statistical data
modelling, based on a concept description language,
which is formally defined in terms of logic, and is
equipped with specialized inference procedures.

Such inference procedures provides the designer with
an extremely useful tool during the phase of data
modeling. The designer may not only model the real
world of interest by means of a rich set of linguistic

729

primitives, but also ask the system to perform several
checks which can be effectively used for controlling the
design process.

We have used the language in some applications
concerning the Italian Census, and, based on the
encouraging results, we are now implementing a
complete system based on the language.

References

[Br81] Bragg A.W., "Data Manipulation Languages
for Statistical Databases - The Statistical Analysis
System (SAS)", Proc. of the First LBL Workshop on
SDB Management: 147-150, 1981.

[BD88] Batini C., Di Battista G., "Design of
Statistical Databases: A Methodology for the Conceptual
Step", Information System, 13(4): 407-422,1988.

[BS85] Brachman R.J., Schmolze J.G., "An
Overview of the KL-ONE Knowledge Representation
System", Cognitive Science, 9(2): 171-216, 1985.

[CDL90] Catarci T., D'Angiolini G., Lenzerini M.,
"Concept Description Language for Statistical Data
Modelling", Technical Report, Dipartimento di
Informatica e Sistemistica, Universith di Roma "La
Sapienza", Italia, 1990.

[DH90] Donini F., Lenzerini- M.,, Nardi D.,
Hollunder B., Nutt W., "The Complexity of Concept
Description Languages”, Technical Report, Universitat
Kaiserslautern, West Germany, 1990.

[Gh86] Ghosh S.P., "Statistical Relational Tables
for Statistical Database Management", IEEE Transactions
on Software Engineering, SE-12(12): 1106-1116, 1986.

[NS89] Nebel B., Smolka G., "Representation and
Reasoning with Attributive Descriptions”, IWBS Report
81, IBM Deutschland, Stuttgart, West Germany, 1989.

[0O085] Ozsoyoglu G:, Ozsoyoglu Z.M.,
"Statistical DatabaseQuery Languages", /EEE
Transactions on Software Engineering, SE-11(10): 1071-
1081, 1985.

[OOM87] Ozsoyoglu G., Ozsoyoglu Z.M., Matos
V., ing Relational Algebra and Relational Calculus with
Set-Valued Attributes and Aggregate Functions”, ACM
Transactions on Database Systems, 12(4): 566-592,
1987.

[SW85] Shoshani A., Wong H.K.T., "Statistical
and Scientific Database Issues”, IEEE Transactions on
Software Engineering, 11(10), 1985.

[SS90] Schmidt-Schaufy M., Smolka G., "Attributive
Concept Descriptions with Complements”, To appear in
Artificial Intelligence, 1990.

[Su83] Su S.Y.W., "SAM*. A Semantic
Association Model for Corporate and Scientific Statistical
Database", Information Science, 29: 151-199, 1983.

