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Abstract 

The requirements for a main memory data storage model 
are both compactness and efficient processing for all 
database operations. The DBGraph storage model, 
proposed in this paper, achieves these goals. By 
representing the entire database in a unique graph-based 
data structure, called DBGraph, it fully exploits the direct- 
access capability of main memory systems. For 
example, Selection, Join and Transitive closure 
operations over base or temporary relations are performed 
by a DBGraph traversal without tuple comparison and 
move. Furthermore, it is decomposable so that only the 
useful subset of the database can be loaded from disk 
without format conversion. Complex database queries can 
be processed by either set-oriented or pipelined mode 
depending on the way the graph is traversed. Analysis 
shows good storage occupancy and excellent performance 
for both update and retrieval operations. 

1. INTRODUCTION 
The rapidly decreasing cost of RAM makes main memory 
database systems (MMDBS) a cost-effective solution to 
high-performance data management [Eich89]. Disk-based 
database systems have their performance limited by the 
I/O bottleneck [Cope86]. In a MMDBS, the useful subset 
of the database, called the active database, may be entirely 
contained in main memory, thereby eliminating the I/G 
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bottleneck. Furthermore, by allowing transactions to 
commit in safe (battery-backed-up) RAM [Cope89], the 
complexity and overhead of recovery management are 
significantly reduced. However, designing a MMDBS 
requires addressing two main issues: efficient space 
utilization and efficient processing of all database 
operations. For practical reasons, these issues have been 
typically addressed separately. 

Efficient space utilization is necessary to hold the active 
database entirely in main memory. Towards this goal, 
compact data structures such as T-trees [Lehm86a] or 
array structures [Amma85] have been proposed to 
organize permanent data efficiently in main memory. To 
some extent, some work has also considered the 
minimization of space occupancy for temporary data 
[Bitt86, Lehm86bl. 

Efficient data processing requires exploiting the direct 
(pointer-based) data access capability of main memory 
[DeWi84]. Indices are typically logical pointer-based data 
structures optimizing certain database operations. For 
example, inverted indices [Card75], join indices [Vald87] 
and transitive relationship indices [Agra89] optimize 
respectively select, join and transitive closure operations. 
These indices “precompile” the operation into a dynamic 
data structure. Because they have been designed for disk- 
based systems, they are separate from the base data. In a 
main memory context, they may well introduce a 
significant storage and update overhead. Futhermore, 
temporary data are managed differently from base data, 
thereby making difficult indexing of temporary data. 

In this paper, we address these issues together and 
propose an integrated main memory storage model. 
Unlike integrated disk-based storage models [Cope85, 
Vald86a] or models for dedicated hardware [Miss82, 
Miss831 which optimize some operation at the expense of 
some others, it provides efficient support for all database 
operations with good space occupancy. This model is 
based on a graph structure, called DBGruph, to represent 
the entire database. The DBGraph storage model (DBG) is 
intended to support various higher-level models and 
associated languages. However, for simplicity, we will 
illustrate its use with relational algebra extended with the 
transitive closure operator. The latter operator is of 
utmost importance for supporting queries on recursively 
defined relations [Vald86b]. An earlier vertion of the 
DBGraph storage model, proposed in lPuch89a1, focused 
on transitive closure operation. In this paper, the model 
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has been refined and we concentrate on all database 
operations. 

A DBGraph is a bipartite graph composed of a set of 
tuple-vertices, a set of value-vertices and a set of edges 
connecting these two sets. Compactness is obtained by 
storing each attribute value only once and using the same 
edges to precompile all database operations. A DBGraph 
can be naturally partitioned into subgraphs that can be 
clustered on disk. Therefore, loading a subpart of the 
DBGraph into main memory can be done efficiently 
without format conversion. Temporary tuples can be 
mapped onto the DBGraph using temporary edges so that 
either permanent or temporary data can be treated the same 
way. Arguments for managing all data uniformly are 
provided in [Cope90]. Non-recursive retrieval, such as 
select and join, can be efficiently processed by a single 
traversal of the graph. Update operations can also be 
processed with minimal overhead. Furthermore, complex 
queries can be efficiently processed in either set-oriented 
or pipelined mode depending on the graph traversal 
(breadth-fist versus depth-first), the latter eliminating the 
need to store intermediate results. 

The paper is organized as follows. Section 2 provides a 
formal definition of DBG in terms of graph structure and 
primitive operations. In Section 3, we define retrieval and 
update operator algorithms based on these primitive 
operations. In Section 4. we discuss set-oriented versus 
pipelined query processing on a DBGraph. Section 5 
argues for a specific implementation of the DBGraph. 
Based on such implementation, the storage occupancy and 
performance of Join and update operations are analyzed. 
Section 6 gives our conclusions. 

2. DBGRAPH STORAGE MODEL 

In this section, we give a formal description of the 
DBGraph storage model (DBG) including its primitive 
operations. This provides a sound basis to express any 
kind of retrieval and update operation independent of any 
conceptual data model or lower-level implementation 
choice. 

2.1. DBGraph definition 

We fist introduce a few notations. We consider a 
database DB composed of a set of relations. In most of 
our examples we will use only two relations named R and 
S. These relations are defined over a number of domains, 
each domain j being denoted by Dj. A relation schema is 
an aggregation of attributes, each of a given domain of 
values. We denote by R.k the km attribute of relation R 
and tR.k the value of attribute k for tuple t. Finally, we 
denote by T the set of all the tuples of a database DB and 
V the set of all the domain values of DB. 

We can define an isomorphism between a database DB 
and a graph, called DBGraph, as follows (see Figure 1 for 
an example). A DBGraph is a bipartite graph containing 

a set of tuple-vertices holding all the tuples of T, a set of 
value-vertices holding all the domain values of V, and 
valued-edges connecting these two sets. Each edge (t, v, 
R.k) of the DBGraph is an indirected valued edge 
connecting a tuple-vertex t with a value-vertex v. The 
valuation R.k indicates that t belongs to relation R and 
that v is the value of its kth attribute. Thus, a tuple- 
vertex is linked by one edge to each of its attribute 
values. Conversely a value-vertex is linked by an edge to 
each tuple that references it for one of its attributes. The 
DBGraph concept can be formally defined as follows: 

Definition : DBGraph 

The DBGraph of a database DB is a valued bipartite 
graph G(X, A) where X=(T,V) is the set of vertices 
of G, A is the set of edges of G and the edge 
(t, v, R.k) E A iff t E T, v E V and tR.k = v. 

A DBGraph is bipartite since T and V constitute a 
partition of X and there is no edge connecting two 
vertices of T or two vertices of V. Thus, a DBGraph 
traversal involves an alternance of tuples and values. 
Each couple of tuples having the same value for one of 
their attributes are connected by a path of length two. 
Finally, tuple vertices (resp.value vertices) may be 
grouped on a relation basis (resp.domain basis) since the 
relations form a partition of T (resp. V). 

R.1, R.2 . . . . S.I...... S.Z... 

Figure 1: analogy between a database and its DBGraph 

2.2. Primitive Operations 

We now define primitive operations to traverse and 
update a DBGraph. Complex database operations can be 
expressed in a simple and uniform fashion by 
composition of these operations, independent of the 
physical DBGraph implementation. This provides a 
high-level description of all algorithms which should 
result in higher modularity. 

l the succ-val operation delivers the subset AR of tuple 
vertices corresponding to all the tuples of relation R 
whose kth attribute value is equal to a given value v. It 
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is an application from V to T that determines the subset 
of T vertices connected to the vertex v by edges valued 
by R.k. 

AR = succ-val(v, R.k) 
where AR = {t E Tlv E V and (t,v,R.k)k)E A} 

the succ-tup operation is an application from T to V 
that determines the V vertex connected to a given T 
vertex by an edge valued by R.k. 

v = succ-tup(t, R.k) where v E V and (1, v, R.k) E A 

These two operations may be combined since their 
result and input arguments are compatible. Thus, any 
DBGraph traversal can be expressed by a combination of 
them. Similarly, any database update can be expressed by 

combination of the following operations. 

the insert-tup operation performs all the DBGraph 
updates caused by the addition of a new tuple 
t(q, .--, vn) in a given relation R. Tuple t is inserted 
in T and each of its attribute values is inserted in V if 
and only if this value does not already exist. Thus, the 
uniqueness of values in V is ensured. Finally, the edges 
connecting this tuple and its attribute values are added 
to A. 

G’(X’JI’) = insert-tup ( t(v1, . . . . vn), R, G(X,A) ) 
where X’ =( T’,V’) with T = T v t, 

V’= VU{Vl, . ..) vn}. 
and A’= A u i ft,vlP.l),..., ft,v,P.n) I 

the delete-tup operation performs all the DBGraph 
updates caused by the deletion of a tuple t(v 1, . . . , vn). 
Tuple t is deleted from T. Each of its attribute values 
is deleted from V if and only if no other tuple references 
the same value. The edges connecting this tuple to its 
attribute values are removed. 

G’(X’,A’) = delete-tup ( t(v1, . . . . v,), R, G(X,A) ) 
where X’ = (T’,V’) with T = T - t, 

V’ = V - { v 1 Q (t’,v,S.k) E A, t’=t J, 
and A’ = A - { (t,vlR.l), . . . . (t,v,R.n) } 

the modify-tup operation performs all the DBGraph 
updates caused by the modification of one attribute of a 
tuple t. The old attribute value is deleted from V if it is 
no longer referenced and the new one is inserted in V if 
it does not already exist. Finally, tuple t is disconnected 
from its old attribute value and connected to the new 
one. 

G’(X’,A’) = modify tup ( t( .,., vi = v’i ,... ), R, G(XA) ) 
where X’ = (T’,V’) withT = T, 

V’ = (V U V’i ) 

- {vi if V (t’,vi,S.k) E A, t’=t and S.k=R.i}, 
and A’ = (A - (t,vi,R.i) ) u (t,v’i,R.i) 

3. DATABASE OPERATIONS 

DBG is intended to support set-oriented database 
languages based on different data models. In this section, 
we use relational algebra extended with transitive closure 
as a paradigm to validate DBG. We show how relational 
operators can be composed easily using the DBGraph 
primitive operations. 

3.1. Select 

The select operator, denoted by OQ, applied to relation 
R, determines the subset R. of T veruces corresponding t, 
all the tuples of relation R which satisfy the qualification 
Q. For simplicity, we assume that Q is a simple 
comparison predicate (R.k 8 c) where c is a constant and 8 
is a comparator. Thus, R, contains all the tuple vertices 
connected to a value satisfying Q, by an edge valued by 
R.k. The select operator is then expressed as: 

RF CTQ(R) where R ~{tET/(vOc)istrue 
and 3 (1, v. R.k) E A} 

The execution of the select operation is similar to that 
using inverted indices. The set of values satisfying the 
selection criteria is first determined. Then the matching 
tuples are obtained by applying the succ-val primitive to 
this set of values. 

Function 0~ (R) : R, 
begin 

R @ 
Ae :*zSeiect (V) . 
for each v & AV’do 

AR := succ-vu@, R.k); 
Rcr := R, u AR 

end for 
end 

SelectQ(V) builts the set AV = (v E V / (v 8 c) is true). 
This function can be optimized using indices on V (see 
details in Section 5). The generalization of Q to handle 
conjunctions or disjunctions of predicates requires unions 
or intersections of the R, sets corresponding to each 
predicate. 

3.2. Join 

The join operator, denoted by @M, applied to R and S 
determines the set RSa of couples of T vertices 
corresponding to the matching tuples. We consider a join 
predicate M of the form (R.k = S.1) where R.k and S.l 
take values on the same domain Dj. The DBGraph 
definition insists that the matching tuples are connected 
by a path of length two, as shown below. 

RSa= @M(R, S) 
where RSa = {(tl s2) I tlE T, t2E T, 

3 (tl, v, R.k) E A, 3 (t2. v, S.1) E A} 

An obvious way to perform the join is to first scan Dj. 
Then, for each value of this domain, two successive 
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applications of the succ-val primitive deliver the subsets 
AR and AS where AR (resp. AS) contains the tuples of R 
(resp. S) connected to this value by an edge valued by the 
join attribute. Finally, the Cartesian product of AR and 
AS gives the join result since each tuple of AR match 
with each tuple of AS. 

Function JoinlM(R,S) : RS@ 
begin 

RSa := @; 
for each vEDj do 

R:= succ-val(v, R.k); 
AS:= succ val(v, S.1); 
RS 

end or B 
:= R&g u (AR X AS) 

end 

As domains are shared among relations, Card(Dj) can be 
high compared to Card(R) or Card(S) (Card denotes the 
cardinality of a set). Another join method, based on a 
different traversal of the DBGraph, outperforms the 
previous one in this case. It consists of first scanning the 
smallest operand relation. Then, the join attribute value 
of each tuple of this relation is retrieved through the 
succ-tup primitive. Finally, the application of the 
succ-val primitive gives access to the subset of tuples of 
the other operand relation having the same value of join 
attribute. 

Function Join2 (R,S): RS@ 
I* We assume P ard(R) < Card(S) < Card(Dj} *I 
begin 

RS@ := 0; 
for each tER do 

v := succ-tup(t, R.k); 
AS:= succ val(v, S.1); 
RS 

P 
:= Rsa u (t XAS) 

end or 
end 

In both algorithms, the union RSa u ( AR X AS) 
(resp RSa u (t X AS)) can be profitably replaced by a 
concatenation because the generation of duplicates in 
RS@ is impossible. Union, intersection and difference 
operations can all be supported by a customized version 
of the join operator, as suggested in IBrat84, Thev891. 

3.3. Other retrieval and update operators 

The project operator nP(R) consists of applying the 
primitive operation v:=succ-tup(t, R.k) for each tuple 
tE R, to successively retrieve the value of each 
attribute k specified in the project list P. Because of its 
simplicity, the project algorithm need not be discussed. 

Updating a relation involves the insert-tup, delete-tup 
and modify-tup primitives. Each of these primitives 
performs the DBGraph updates induced respectively by an 
insertion, a deletion or a modification of a tuple. Thus, a 
set-oriented update operation is simply a loop with call 
to these primitive operations. Integrity constraint 

checking for update operations will be discussed in 
Section 5. 

3.4. TRANSITIVE CLOSURE 

Transitive closure is a basic operator for efficiently 
computing queries against recursively defined relations 
[Banc86, Vald86bl. Building the transitive closure of 
relation R on attributes R.k and R.l consists in 
computing the least fixpoint of the following equation: 

R+ = R U Zp ( @M (R+,R) ) with p = (R+.k,R.l) 

andM = (R+.l = R.k) 

An efficient algorithm, called Semi-Naive [Banc85], 
consists of a loop of relational operators. The algorithm 
incorporating selection can be expressed as follows : 

Function TC (R): R+ 
s /* compute t e TC of R according to the initial 

query selection Q *I 
begin 

/* OQ is applied to the basic relation *I 
AR := Q 
R+ := 

(R); 
Al@ I+ before processing recursion *I 

while AR’ # @ do 
AR := c3 (ARR); 
AR := Ai@- R+. 
R+ :=R+ vdk; 

end while 
end 

The difference AR := AR - R+ guarantees the 
algorithm’s termination in the case of cyclic data. 

The DBGraph can be exploited to perform transitive 
closure more naturally and more efficiently. The idea is to 
perform a recursive traversal on the sub-part of DBGraph 
corresponding to relation R. To make recursion easier to 
express, we introduce the notion of Relation-Closure- 
Graph (RCGraph). The RCGraph of R on the attributes 
R.k and R.l is a graph in which all vertices represent 
tuples of R (see Figure 2). Two vertices tl and t2 are 
connected by an edge if the corresponding tuples match 
according to the join predicate (R.k=R.l). In fact, each 
edge connecting two tuples in the RCGraph corresponds 
to a path of length two in the DBGraph. Two vertices ti 
and tj are transitively connected if there exists a path 
(Ii<->tk, tk<-->tl, . . . . tn<->tj) in the RCGraph. 
Thus, there is a direct mapping between the transitive 
closure of R and the transitive closure of its RCGraph. 

686 



DBQRAPH 
T V 

tuple-vertices value-vertices 

RCGRAPH JOhO 

1 r. “... . . . . . . . . . . . . . . . 
I IX A . ..<.. ,, 

f.ikffl 

AVd 

JW 
Jack 

R.l - R.2 __..- 

For simplicity, only the edges involved in the 
RCGraph are shown in the DBGraph. 

Figure 2: Mapping between RCGraph and DBGraph 

A select on R determines a set AR of entry vertices in 
the RCGraph. Then, the transitive closure of the 
RCGraph consists of, for each t of AR, finding all the 
vertices (called the descendants oft) reachable from t by a 
path. Similar to many graph traversal algorithms, a 
visited vertex is marked to avoid passing twice through 
the same path. Such marking eliminates the difference 
operation of the previous algorithm. The result of each 
RCGraph traversal is a spanning tree of root t over the 
descendants of t. Actually, the RCGraph is virtual and all 
RCGraph traversals are translated into DBGraph 
traversals. 

For performance reasons, we slightly modify the 
succ-val operation to incorporate marking at traversal 
time. The resulting operation, called SIKC val*(v,R.k), 
delivers and marks all non marked tuple ve&es connected 
to the value v by one edge valued by R.k. The use of the 
succ-tup and succ-val* primitives defines a traversal of 
the DBGraph following a breadth-first search (EFS) 
strategy [Sedg84], as follows : 

Function BFS(t): D 
I* D is the set of descendants oft *I 
begin 

AD := t; 

while dD #(?J do 
AD’ := 0; 
for each t'E dD do 

v’ := succ tup (t: R.k);, 
ALI’ := L1LT’ u succ-val (v’, R.1); 

end for 
AD := AD’; 
D:=DuAD; 

end while 
end 

The transitive closure operation is performed by simply 
traversing links, Furthermore testing the termination 
condition is greatly simplified by marking. The unions 
D:=DuAD and AD’:=AD’usucc~val*(v’, R.1) can be 
efficiently implemented by a concatenation since marking 
the tuples avoid duplicate generation. Using weighted 
graphs [Gard88], this algorithm can be extended to 

support shortest path problems, path enumeration and 
more generally all computations that can be expressed as 
traversal recursion iRose.863. 

4. QUERY PROCESSING 

For clarity of exposition, the database operations 
introduced in Section 3 have been described in a set- 
oriented way, independent of their integration in a query 
execution plan. A combination of these operators induces 
a breadth-first search traversal of the DBGraph. Each 
operation produces a temporary result which must be 
materialized and consumed by the next operation. 
However, a pipelined execution of a query can be obtained 
by a depth-first search traversal of the DBGraph. A depth- 
first search strategy has two major advantages. First 
temporary results need not be generated, thereby saving 
space for permanent data. Second, tuples already produced 
can be displayed while the query processing is still in 
progress. The pipelined evaluation mode is restricted to 
the subpart of a query involving selection, join and 
projection operators since difference, intersection, 
aggregate and sort operators are purely set-oriented. 

4.1. Set-oriented processing 

Set-oriented processing requires the management of 
temporary results. In most data storage models, it is often 
impossible to speed up operations on’temporary results 
using indices. As join operations are frequently preceded 
by selections, this limitation is severe. However it is 
possible to maintain the join indices validity after 
selection [Vald87]. Typically, a selection delivers a list 
of OID’s referencing the relevant tuples that is then semi- 
joined with the join index in order to produce a new valid 
join index on the temporary relations. 

In the DBGraph model, temporary results are 
materialized by temporary vertices connected through 
temporary links with the tuples of the basic relations 
from which they are extracted, as shown in Figure 3. The 
degree (number of edges) of a temporary vertex is equal to 
the number of basic tuples involved in the temporary 
result. The main advantage is that temporary results 
preserve the links to basic tuples. Consequently, 
operations on temporary relations are speed up by a 
DBGraph traversal in a way similar to operations on basic 
relations. For example, consider the query @M(oQ(R),S) 
with Q=(RZ=“mouse”) and M=(R.2=S.l), illustrated in 
Figure 3. Scanning the temporary result OQ(R) 

determines a set of entry vertices in the DBGraph that can 
be directly exploited by the join operator, using the Join2 
algorithm introduced in Section 3.2. 
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. 
tuple-vertices value-vertices 

M : R.2 = S.1 s.1 . . . . . . . . . . . . ..I...... s.2, * . . . . 

Figure 3: DBGraph extended to temporary results 

This temporary result representation has two other. 
advantages. First, it is quite compact since it does not 
contain any value. Thus, it enforces the hypothesis that 
the active database fit in main memory. Second, the 
project operations are posponed until the end of the query 
evaluation. This simplifies query optimization 
[Amma85]. 

4.2. Pipelined processing 

Let us consider a generic query QR of the form (CJQR~ 
A Rl@R2 A R@R3 A . . . A Rn-l@Rn). The number of 
joins in QR determines the length of a pertinent-path 
connecting a tuple of R 1 to a tuple of Rn where the edges 
valuations are determined by the join predicates. A 
pertinent-path covers all the vertices from which a result 
tuple is produced. The selection on Rl in QR 
determines a set of entry value-vertices in the DBGraph. 
Each of these values is the root of one or more paths in 
the DBGraph. These paths are explored one after the 
other and a result tuple is produced each time the 
extremity of a pertinent-path is reached. Backtracking is 
applied at the extremity of each pertinent path or when a 
path fails. This execution mode can be directly translated 
in the program shown in Figure 4. 

AV = SelectQ(V) 
AR1 = succ-val (v. R1.i) 
for each tl E AR1 do 

/* join Rl@R2 
vl = succ-tup (11, RI .j) 
AR2 = succ-val (vi, R2.k) 
for each (2 E AR2 do 

I* join R2@0R3 
v2 = succ-tup ((2, R2.1) 
AR3 = succ-val (~2, R3.m) 

. 

fo; each t E AR do 
/* generason of anresult tuple 
produce-tup ((1, (2,. . ., t,,) 

Figure 4: Execution plan for QR 

In the general case, the relation-connection-graph of a 
query [Ullm80] may contain chains, loops, cycles and 
forks, where loops stand for selections and the other arcs 
stand for joins (see Figure 5). 

U U R U 

chain loop cycle fork 
Figure 5 : relation connection graph structure 

The query used above involves a chain with one loop 
on the first relation of this chain. Loops on other 
relations can be handled in two ways. One solution is to 
apply these selections first to mark the selected tuple 
vertices and then to explore the pertinent-paths without 
considering unmarked vertices. The second solution 
consists in checking the selection criteria for each tuple 
vertex reached during the pertinent-paths exploration. A 
cycle is handled as a chain whose last operation is an 
inter-attribute selection between attributes of two 
relations already joined. A fork is a special case of a 
chain where two joins are handled in the same loop. The 
corresponding sequences of instructions are given in 
Figure 6. They may constitute part of more complex 
execution plans [Thev89]. 

CYCLE 
for each (1 ER do 

vl = succ-tup ((1, R.i) 
AS = succ-vu1 (vi, S.j) 
for each 12~ AS do 

v-2 = succ~tup ((2, S.k) 
AU = succ-val (~2, U.1) 
for each (3 E AU do 

v3 = succ-tup ((3, U.m) 
v4 = succ-tup ((1, R.n) 
if v3 = v4 then 

produce -tup 01, (2, (3) 

FORK 
for each 11 ES do 

vl = succ-tup ((1, S.i) 
AR = succ-val (VI. R.j) 
v 
Lib 

= succ-tup ((1, S.k) 
= succ-val (9, U.1) 

for each t2~ LIR do 
for each t3 E AU do 

produce -tup 01, (2, (3) 

Figure 6: cycle and fork execution plans 

The temporal complexity of a depth-first search is 
O(max(Card(X),Card(A))) while that of a breadth-first 
search is O(Card(A)) [Gibb85]. Thus pipelined and set- 
oriented strategies have similar complexity on a 
DBGraph. 
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5. IMPLEMENTATION AND PERFORMANCE 

5.1. DBGraph Implementation 

There are many ways to implement a graph. We detail 
below a particular DBGraph implementation which 
achieves both data compactness and efficient processing of 
database operations in an MMDBS context. This 
DBGraph implementation is shown in Figure 7. 

Domain values are stored only once to preserve 
compactness. Since the domains form a partition of the 
set of values V, all the values varying over the same 
domain can be clustered in a separate segment. Taking 
advantage of vertical partitionning, the values of one 
domain can be loaded independent of the others. 
Similarly, since the relations form a partition of the set 
of tuples T, the tuples of one relation can be stored in 
one segment. Each object stored in a segment has a 
unique and invariant identifier (OID). Thus, tuples and 
values can be referenced by OID’s. 

In the formal definition of a DBGraph, edges of A are 
not oriented and may be traversed in both directions. In 
the implementation, an edge (t. v, R.k) is split in two 
arcs (t->v) and (v->t) by means of OID’s. A tuple is 
implemented as an array of OID’s referencing each of its 
attributes values. The valuation R.k of an arc (t->v) 
is implicit since tuple t belongs to the segment 
containing relation R and the OID corresponding to this 
arc is stored in place of the kth attribute of tuple t. An 
arc (v-X) is implemented by an OID stored in an 
inverted list attached to the value v. The valuation R.k of 
this arc is represented by the fact that inverted lists are 
divided in as many sublists as there are attributes sharing 
this value. Thus, all arc valuations are determined by the 
relations and domains schema. They remain implicit at 
the instance level and do not compromise the DBGraph 
compactness. 

The simplest way to store the inverted sublists is to 
have them one after the other behind their corresponding 
value. However this solution precludes fetching in 
memory the inverted sublists corresponding to one 
attribute R.k independent of the others. Instead, 
following the vertical partitionning strategy adopted for 
domain values, all the inverted sublists corresponding to 
one attribute R.k are grouped in one segment. With each 
domain value is associated a sublist array containing the 
OID’s referencing all the sublists attached to this value. 
It contains one entry per attribute R.k varying on that 
domain and is indexed by R.k. Inverted lists 
corresponding to key attributes contain only one OID. In 
this case, much space is saved by storing the OID directly 
in the sublist array. 

The temporary relation results horn a join between R and S. 
The attribute S.4 is assumed to be a key attribute. 

Figure 7: A possible DBGraph implementation 

Indices may be added on domain values to speed up 
selections on all attributes varying on the same domain. 
The index structure can be any one recommanded for 
MMDBS lLehm86bl. We choose indices containing only 
OID’s referencing the key values in order to reduce the 
storage cost for variable length keys [Amma85]. 

When processing a query in a set-oriented way, a 
temporary link is always traversed along the same 
direction. Thus, it can be implemented by an arc instead 
of an edge to reduce the cost of building the temporary 
result. Each temporary vertex t’ resulting from a 
selection on a base relation R is connected to a single 
tuple t of R. It can be implemented by either keeping the 
OID oft (this allows to reach t from t’) or marking t in a 
bit string of length Card(R) (this allows to reach t’ 
from t). The only way to implement a temporary vertex 
resulting from a join is as a tuple of OID’s representing 
arcs from the temporary vertex to tuples of T. Thus, the 
temporary links issued from selection can be implemented 
in both directions while those issued from join are 
implemented in a single way. Consequently, the join 
operations have to be ordered properly to avoid joins of 
join results. For instance, a sequence of joins 
(RBS)@(UBV) will be reordered in (((R@S)@U)@V) 
before execution lPuch89bl. 

5.2. Storage cost evaluation 

In this section, DBG is compared with the classical Flat 
File organization (FF) in terms of storage cost. FF is 
chosen for it is well known and provides good storage 
performance. For both organizations, we consider the 
storage cost of n attributes varying on the same domain 
Dj and coming from one or several relations. 

The DBG storage cost evaluation incorporates the 
values stored in the domain Dj, their attached sublist array 
and inverted sublists, the domain index and the OID’s 
stored in place of the n attributes in the relations. For 
simplicity, we assume that the domain index is stored as 
an array of OID’s sorted on the referenced domain values 
[Amm85]. 
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The FF storage cost evaluation incorporates the values 
of the n attributes stored in the relations, k selection 
indices with k>O and j join indices with j20. The 
selection indices are supposed to be stored as arrays of 
couples (value, OID) sorted on the values, where the OID 
references the inverted sublist attached to the value. To 
simplify evaluation of join index size, we consider joins 
on key attributes. In this frequent case, each tuple of one 
relation matches with at most one tuple of the other 
relation. 

5.2.1. Evaluation parameters 

We introduce the following parameters : 

1 average length of the Dj values 
a size of an OID (address) 
Curd(R), Card(S) cardinality of relation R (resp. S); 
SR, SS selectivity factor of one attribute of R &sp Sk 

SR = Card(Xi(R))lCard(R), whereq denotes 
project on attribute i; 

s *vg average attribute selectivity factor for the 
attributes varying over domain Dj; 

L overlaping factor expressing the intersection 
between the values taken by the n attributes 
varying over domain Dj (I/n IL II); L=lln 
when each domain value is shared by the n 
attributes and L=l when the n attributes do not 
share any value. 

when needed, we use 
simplify the formulas; 

Xard(Rel) 7 g Card(Reli) to 

The cardinality of domain Dj can be approximated by 
L wlvg Card(Re1)). In the same way, the average 
cardinality of a selection index can be expressed 
‘wW,vg Card(Rel))ln and the one of a join index by 
Z(Card(Rel))ln, where CCard(Rel)ln is the average 
cardinality of a relation. 

5.3.2. DBGraph versus Flat File storage 
model 

The storage cost incurred by DBG yields: 

Cost (DBG) = 
/* size of the domain values and their sublist array 

L zs*vg Card(Rel)) (1 + n a) 
/* size of all inverted sublists 

+ a CCard(Rel) 
/* size of the OID columns in the relations 

+ a CCard(Re1) 
P size of the domain index 

+ L ~&lvg Card(Re1)) a 

= CCard(Rel) ( 2a + L S ,vgfl+*fn+l)) 

For FF using k selection indices and j join indices, the 
storage cost is : 

cost (FFk. ) = 
I* size of the attribute values and their sublist array 

1 CCard(Re1) 
I* size of k selection indices 

+ k fSQVg CC*WW fl + a) + uZ%ard(R4 
n ) 

n 
I* size of j join indices 

+ j CCard@el) 2a 
n 

= CCard(Re1) ( I+ i (Savg (I+ a) + a) + i 2a) 

The cost equality between the two storage models is 
expressed by the following equation: 

COSt (FFkj) = COSt (DBG) 

S 
n 1 + a (k + 2j -2n) 

avg = 
n L ( 1 + a (n+l) ) - k (I+ a) 

Comparisons between FF without index and DBG are 
shown in Figure 8. The plotted curves indicate the most 
compact organization according to different values of the 
Savg and 1 parameters, where 1 is expressed in units of a. 

s 

DBGraph mmcmnpaa 

’ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 , 

vahls of the fixed panlnx&Y :n=Z, L=l (DBGl) 
n=2, M.75 @BG2) 
n=2, LO.5 (DBG3) 

Figure 8: Compactness of DBG versus FF 
without index 

Each curve divides the plan into a gain area for FF and a 
gain area for DBG. Curve DBGl shows that, when L=l, 
DBG is in general more space consuming than FF 
without index. This is because there is no shared values 
between the attributes varying on the same domain. The 
lower L is, the more compact DBG is. Low Savg and 
high 1 (e.g., enumerated type attribute) favor DBG while 
high s,vg and low 1 (e.g., short key attribute) favor FF. 
DBG’s higher storage cost on several attributes must be 
compared with the large gains obtained on a few 
enumerated type domains. For example, DBG and FF 
yield almost the same cost to store the relations of the 
Wisconsin benchmark [Bitt83]. 

Figure 9 compares DBG versus FF using j join indices 
(with j=O or 1) and k selection indices (with k=O, 1 or 2). 
The parameter L is set to I, which is the worst case for 
DBG. 
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s avg t FF~J FRO 
5.3.2. Join of two base relations 

Join2 scans the smallest relation (assumed to be R) and 
for each tuple checks whether there is an inverted list 
associated with the join attribute of the second relation 
(S). If there is one, a Cartesian product between the 
current tuple of R and the inverted list is performed, 
yielding : 

11. 
1 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 , 

Value of the fmd paamam : r&=2, L=l . 
FFm comsponds to k=2, j=O and FF 0 caresponds to k=l, j=O. 
FFol wmqcmds to k=O, J=l and 

% FFm is then equivalatt to LWVCDBG 
corresponds to k=O, j=O,. 

of the figure 8. 

Figure 9: DBGraph versus Flat file organization with 
idiCeS 

DBG becomes rapidly best as indices are added to FF. 
Since the number of indices determines the performance 
of query execution in a main memory context, the 
superiority of DBG is obvious. Note that DBG provides 
the same indexation level as one selection index per 
attribute and one join index per possible join in FF. The 
overhead involved by a selection index is strongly 
dependent of the value lenght 1. Curves FFol and F’Flo 
show that selection indices are much more space 
consuming than join indices. This is mainly due to the 
fact that join indices contains only OID’s instead of 
values. 

5.3. Join evaluation 

We compare algorithm Join2 (described in Section 3.2) 
with two algorithms : the well-known join algorithm 
using inverted indices (II) and the join index based 
algorithm (JI) [Vald87]. Both algorithms use an efficient 
data structure to speed up join processing. They are 
compared in the case of permanent and temporary operand 
relations. Algorithm Join1 is not considered since it does 
not handle temporary relations well. Detailed comparisons 
between Join1 and Join2 can be found in lFuch89bl. 

5.3.1. Evaluation parameters 

We use the following parameters in addition to those 
introduced in Section 5.2.1. The semi-join selectivity 
factor JR 5 of relation R, is defined by : 
JRS = Card(Semi-join(R,S))ICard(R). The average 
cardinality of the inverted lists attached to the join 
attribute values of relation S is defined by IISS. The 
cardinality of the R@ S result is thus : 
Card(R@S) = JRSCard(R)lSS. The join algorithm 
execution times are evaluated in terms of memory access 
unit (denoted by u). The other system parameters are : 

d: time for decoding an OID, assumed to be 3u , 
0 : time for comparing two OID, assumed to be 2u, 
v: time for comparing two values, assumed to be 2~1 

where 1 is the average size of a value 
w: time for writing a word in memory, %axr&obeu. 

time(Join2) = 
/* scan the smallest relation 

Card(R) 
P call succ-tup to get the join attribute value 

ffu + 4 
P check the existence of an inverted sublist for 
the join attribute of S 

+ 0) 
P number of R tuples matching with an S tuple 

+ JRS Card(R) 
P access to the inverted sublist for the S join 
attribute 

fd 
P Cartesian product dm inverted list and ancID 

+ (u + (u + 2W)lSS)) 

= Card(R) (6 + JRS (4 + 31s~)) u 

The join algorithm using an inverted index scans the 
smallest relation (assumed to be R) and for each tuple 
searches the join attribute value in the index of the second 
relation (S). Then a Cartesian product is performed 
between the current tuple of R and the inverted list found 
in the index of S. This gives: 

time(II) = 
/* scan the smallest relation 

Card(R) 
/* access the join attribute value 

(u 
p searches the join attribute value in heindex of S 

+ v logz(SSCard(S))) 
p number of R tuples matching with an S tuple 

+ JRS Card(R) 
/* access to the inverted sublist for the join 
attribute of S 

(d 
P Cartesian product of an inverted list and an OID 

+ (u + (u + 2W)iSS) 

= Card(R) (1 + 21 log2(SSCard(S)) + JRS (4 + 3lSS)) u 

The join index algorithm needs only to copy the join 
index, which gives : 

time(JI) = 
/* join index cardinality (in the general case) 

JRS Card(R)lSS 
P copy an OID couple 

2 (u + w) 

= Card(R) (4JRS ISS) u 

691 



To reduce the significant number of parameters in the 
evaluation, the algorithms comparaisons are expressed in 
ratio form : 

time(II) = 
time(Join2) 

1 + 21 log2 (SSCard(S)) + JRS (4 + 3lSS) - 
6 + JRS (4 + 3lSS) 

time(Join2) 
= 6 + JRS (4 + 3tSS) 

time(JI) 4JRS’sS 

The first ratio depends on the parameters JRS, SS and 
Card(S) and the second one depends only of JRS and Ss. 
They are plotted in Figures 10 and 11. 

4 II/Join2 
c-4 

bound of the ratio 
when Card(S) = 10 000 

1 y 

Ratio3 

Ratio2 

Ratio 1 

Equality 
I , , , . , , , , . , 

0.1 
b 

0.5 1 
sS 

Value of the fixed parameter: I= 1. 
Ratio1 corresponds to Card(S)=1000 and JRS =l. 
Ratio2 corresponds to Card(.S)=lOOOO and JRS =l. 
Ratio3 corresponds to Card(S)=10000 and JRS ->O. 

Figure 10: II versus Join2 

A Join2lJI 
5- 

4- 

3- 

2- 

11 

Ratio2 

Ratio1 

c 

0:1. = . r . ’ ’ ’ . ) 0.5 1- 

Ratio1 corresponds to JRS =l. 
Ratio2 corresponds to JRS =0.5. 

Figure 11: Join2 versus JI 

The form of the curves in Figure 10 denotes the 
importance of the logarithmic index search time in 
algorithm II and demonstrates the superiority of Join2. 
Moreover, the time for comparing two values has been 
minimized by setting 1 to 1. The slope of the curves 

Ratio1 and Ratio2 in Figure 11 depends on JRS. The 
superiority of JI over Join2 is quite natural since JI 
constitutes a minimal bound for a join between two 
permanent relations (a simple copy of the result need be 
done). Low values of JRS favor IJ because Join2 
accesses many irelevant tuples. Note that this drawback 
is avoided by Joinl. Curve Ratiol, corresponding to 
J RS =l, defines the lowest bound for the ratio 
time(Join2)ltime(JI). In summary, the curves analysis 
shows that : time(JI) < time(Join2) < time(II) for all 
joins involving two permanent relations. High values for 
JRS minimizes these differences by increasing the time to 
produce the join result common to all algorithms. 

5.3.3. Join involving temporary relations 

Algorithms Join2 and JI are now compared for the join 
AR@S, where AR is a temporary relation (based on R) 
and S is a base relation. Relation AR is materialized by a 
list of OIDs referencing tuples of R. Algorithms Join2 
and JI, renamed Join2Tp and JITp, have to be slightly 
modified to work on temporary results. Algorithm II has 
the same behaviour as Join2 when dealing with temporary 
operands, thus the difference between the two algorithms 
should remain constant for both permanent and temporary 
relations. Therefore we concentrate on the comparison 
between Join2 and JI. 

Algorithm Join2Tp scans AR and decodes each OID to 
access the corresponding tuple of R. The join of this 
tuple of R with relation S is performed like in Join2, 
which gives : 

time(Join2Tp) = 
/* scan the temporary relation AR 

Card(AU) 
PreadanddecodeanOiDE AR 

ffu + 4 
P apply SUCCJI~ to get the join attribute value 

+ (u + d) 
P check the existence of an inverted sublist for 
the join attribute of S 

+ 0) 
/* number of AR tuples matching with an S tuple 

+ JRS Card(AR) 
P access to the inverted sublist for the join 
attribute of S 

fd 
/* Cartesian product of an inverted list and an OID 

+ (u + (u + 2w)lSs )) 

= Card(AR) (10 + JRS (4 + 3iSS)) u 

Algorithm JIT~ performs a semi-join between the join- 
index and AR in order to select in the join index the 
couples of OID’s such that the R-OID belongs to AR. 
This operation can be optimized using two versions of 
the join index, each one sorted on the OID’s of one 
relation [Vald87]. Thus, checking whether the OID 

692 



belongs to AR can be done by a dichotomic search, 
yielding : 

time(JITp) = 
/* scan of the temporary relation AR 

Card(AR) 
/*readanODE AR 

fu 
/* dichotomic search of this OID in the join-index 

+ o logz(JRS Card(R)tSS)) 
/* copy the couples of the join-index matching for 

the semi-join 
+ 2(u + w) JRS Card(AR)lSS 

= Card(AR) (1+2 log2JRS Card(R)lSS) + 4JRStSS) u 

The ratio between time(JITp) and time(Join2Tp), 
shown in Figure 12, is given by the formula: 

time(JITp) = 
time(Join2Tp) 

1 + 2 logz(JRS Card(R)lSS) + 4JRSiSS 

10 + JRS (4 + 3lSS) 

t 
JITp IJoin2Tp 

1 , , , , , , , , , ,) 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 s, 

Ratio1 corresponds to JRS =l. Card(R)=lOOO. 
Ratio2 corresponds to J~s=0.1, Cord(R)=lOOOO. 
Ratio3 corresponds to JRS =l, Card(R)=lOOOO. 

Figure 12: J1~p versus Join2Tp 

For JR s varying from 0.1 to 1, the ratio 
time(JITp)ltime(Join2Tp) is between 1.5 and 2.5. The 
superiority of Join2 over Join-Index is mainly due to the 
logarithmic search time in the join index. The difference 
between the two algorithms increases with Card(R) (see 
Ratio3 compared to Ratiol), since Card(R) determines the 
size of the join-index. This logarithmic search time is 
predominant when JRS is low. However, when JRS is 
high, the time to produce the result common to both 
algorithms becomes significant. This explains the 
logarithmic shape of the curves. The curves shape is 
amplified by SS (see Ratio2 compared to Ratio3) 
because the effects of Ss and JRS are combined through 

the factor JRSISS. In summary, Join2 outperforms JI for 
joins involving at least one temporary relation, which is 
the general case. 

5.4. Update performance 

Updating the attribute R.k of a tuple t in a DBGraph 
consists of deleting an existing link with value vl and 
creating a new link with value v2. This incures an OID 
update in tuple t and the update of the inverted sublists 
associated with values vl and v2. If value v2 (resp. VI) 
is not shared, it is also necessary to insert v2 (resp. 
suppress vl) in the domain, update the domain index and 
create (resp. delete) the corresponding inverted sublist 
attached to that value. The resulting update cost is 
roughly equivalent to the cost of updating an indexed 
attribute in FF. Creating (resp deleting) a tuple t consists 
of creating (resp. deleting) links with each of its attribute 
values. 

Generally integrity constraints must be checked for 
update operations. A large class of integrity constraints 
can be efficiently checked on the fly during the DBGraph 
domain updates without incuring any additional cost. 
This powerful mechanism is illustrated below on two 
widely used integrity constraints. 

l unique key constraints.- at tuple insertion time, if an 
OID already exists in the inverted sublist associated 
with the domain value corresponding to the key 
attribute, then the constraint is violated and the 
insertion fails. 

l referential constraints: if an attribute S.j references a 
key attribute R.k, each tuple t inserted in S must 
Satisfy the predicate @t’E R/ tS.j'f'R.k)e Conversely, 
each tuple t deleted from R must satisfy the predicate 
(t/k s/ t’R.k# tS.j)m hmt.hg a tuple t in s requires to 
update the inverted sublist associated with the domain 
value corresponding to attribute t.j. If the inverted 
sublist of attribute R.k attached to the same domain 
value is empty, then the referential constraint is 
violated and the insertion fails. Similarly, when 
deleting a tuple t from R, the inverted sublist of 
attribute S.j attached to the value of attribute R.k must 
be empty in order to satisfy the referential constraint. 

6. CONCLUSIONS 

In this paper, we proposed the DBGraph storage model 
(DBG) for efficient main memory data management. This 
model achieves both compactness and efficient processing 
for all database operations. Although it is intented for 
various higher level data models, we stayed in the 
relational realm for simplicity. 

The definition of DBG was given independent of any 
implementation detail in terms of graph structure and 
primitive operations on that structure. This facilitated the 
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description of complex operation algorithms in an 
abstract form. By storing tuples and values separately and 
linking them through OID’s, a DBGraph precompiles 
select, join and transitive closure over the entire database. 
We proposed an efficient implementation of the DBGraph 
in terms of objects (tuples, values, indices) clustered into 
segments. 

DBG exhibits four important properties. First, a 
DBGraph can be partitioned so that the active database can 
be entirely maintained in main memory. Taking 
advantage of the DBGraph’s vertical partitioning, the 
proposed implementation allows clustering of partitions 
into disk segments and efficient loading in main memory 
without format conversion. Second, all database 
operations can be performed by a DBGraph traversal 
without tuple comparison and move. Third, the temporary 
tuples are integrated in the DBGraph and thus can be 
processed as efficiently as permanent tuples. Fourth, 
pipelined (resp. set-oriented) query processing can be 
obtained by depth-first (resp. breadth-first) traversal of the 
DBGraph. Although more difficult to implement, 
pipelined processing should be preferred since it 
minimizes space occupancy for temporary results. 

Our analysis showed that DBG provides good storage 
occupancy. Compared to the flat file organization (FF) 
without index (the simplest compact way of storing data), 
DBG is less efficient for short attribute values with high 
domain selectivity (i.e., many different values). As 
indices are added to FF, DBG rapidly becomes best in all 
cases. 

Our performance analysis has concentrated mainly on 
join for it is the most critical performance-related 
operation in relational systems. Join on a DBGraph takes 
advantage of pointer-based data access as in [Shek90]. We 
first compared the DBG algorithm Join2 versus the join 
algorithm using inverted indices (II) and the join 
algorithm using join indices (JI) when the operand 
relations are both permanent. The results indicate that 
Join2 always outperforms II but, for good join 
selectivity, JI outperforms Join2. However, in the more 
likely case that one relation is temporary (e.g., after a 
select), Join2 generally outperforms JI. The update 
performance of DBG is roughly equivalent to that of FF 
with inverted indices. In addition, DBG has the ability of 
checking important integrity constraints (unique key, 
referential) with no overhead during updates. 

Performance advantages of DBG for other operations 
(select, transitive closure, etc.) are reported in [Puch89bl . 
Its excellent performance for graph traversal operations 
such as transitive closure should be compared to that of 
more specialized data structures [Agra89] which also 
represent relationships between tuples directly. 
Implementation of DBG is on-going on top of a UNIX- 
based object manager. It will enable us to validate the 
analytical results with performance measurements. 

Furthermore, it will give us a basis to extend DBG for 
complex object support. 
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