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Abstract 

In applications such as vision and molecular biology, a 
common problem is to find the similar objects to a given 
target (according to some distance measure) in a large 
database. This paper presents a scheme for query pro- 
cessing in such situations. The basic strategy is to (par- 
tially) precompute inter-object distances, and by using 
the distance information and the triangle inequality, we 
eliminate the need to calculate certain object distances 
while evaluating queries. We propose several heuristics 
that may speed up query evaluation. A series of experi- 
ments are then performed to evaluate the effectiveness of 
our scheme and the relative performance of the heuristics 
for different queries. Finally we investigate the possibil- 
ity of parallelizing our scheme through simulation. Our 
results show that parallelism is best applied in the later 
stages in evaluating a query. 

1 Introduction 

Recently, a significant body of research has been per- 
formed for query optimization in object-oriented database 
systems. Most of the research has been concentrating on 
retrieving multidimensional [15, 22, 23, 271 or complex 
objects [4, 10, 14, 25, 31, 32, 341 often arising in spatial 
and VLSI/CAD applications. Here, we study a different 
class of queries, namely, to find the similar or dissimilar 
objects to a given target from a database. The similarity 
of two objects is defined in terms of a distance measure. 
Vision and molecular biology have many such applications 
where the objects are patterns [17], strings [IS], trees [26], 
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graphs [5, 81 and so forth. 
Many distance measures are used in these applications. 

For our purposes, we assume that we have a true distance 
metric, that is, a function d that takes pairs of objects 
into nonnegative numbers, satisfying the following three 
properties: for any objects Or, 02, 03, d(Oi, Or) > 0, 
and d(Oi, 02) = 0 iff Or = 02 (non-negative definiteness); 
d(01, 02) = d(O2, 01) (symmetry); d(01, 02) I d(01, 
0s) + d(Oa, 02) (triangle inequality). 

The queries we are concerned with are categorized as 
follows: Given a target T and a database V of objects, 

(Type 1 query) find the k objects, for some k, in 2, 
that are closest to T; 

(Type 2 query) find the closest (i.e. most similar) 
object of T in DD;’ 

(Type 3 query) find the objects in 2) that are suffi- 
ciently similar to T, i.e. those that are within some 
distance, say c, of T; 

(Type 4 query) find the L objects in 2) that are far- 
thest from T; 

(Type 5 query) find the farthest (i.e. most dissimilar) 
object of T in 2); 

(Type 6 query) find the objects in 2) that are suf- 
ficiently dissimilar to T, i.e. those that are beyond 
distance c of T. 

To answer these queries, a query system could compute 
the distance between each object of the database and the 
target, and then search for the desired objects. The major 
problem with this approach is its computational expense, 
particularly when there are many targets to be identified 
and the distance computation is costly.’ It is our goal to 
minimize such computation in response to queries of the 
above categories. (Our objective in this aspect is similar 
to [15, 22, 271, where efforts were devoted to saving the 
overlapping computation of spatial objects.) 

‘This query is a special case for the type 1 query where k 
= 1. The latter retrieves not only the closest object, but the 
ith, i = 2,..., k, closest object of T in ‘D. 

2Throughout, we shall assume that distance computation is 
the dominant cost for query processing. As evidence to support 
this assumption, we note that it can take several seconds, on 
the average, to compare even one string against another on a 
VAX system [18]. 
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Numerous techniques have been proposed for handling 
such queries in the past. Investigators in artificial intelli- 
gence have formulated strategies for the type 1 query [13, 
171, though they are mainly interested in specific distance 
metrics, usually Euclidean, and make stronger assump- 
tions such as that similar objects can be grouped into a 
cluster. The type 2 query, also known as the best-match 
retrieval, was first discussed by Minsky and Papert [21], 
and has been studied extensively in many areas including 
information retrieval [6, 11, 291, molecular biology [18, 201 
and computational geometry [19]. See [30] for a survey 
on the methods appeared previously. The type 3 query, 
also known as the good-match retrieval, was discussed 
by Ito and Kizawa [16], where they organized a database 
into a hierarchical structure and used both best-match 
and good-match processes to retrieve similar strings for 
spelling correction applications. This type of query is 
particularly important when objects are likely to be cor- 
rupted (e.g. images in a noisy environment) [9, 281. The 
queries falling in the last three categories, in particular 
the type 5 query (worst-match retrieval) and the type 6 
query (bad-match retrieval), appear to be less common. 
We suspect their use will appear with the advent of new 
technology and new applications. 

We present in this paper a scheme to answering all six 
types of queries. The work is an extension of [30], where 
we focused on the best-match retrieval. Our overall strat- 
egy is to (partially) precompute inter-object distances, 
and by using the preprocessed information and the trian- 
gle inequality, we eliminate certain irrelevant distance cal- 
culations while evaluating the queries. Our approach dif- 
fers from previously published techniques, many of which 
rely on organizing files into some structure, in’that we 
allow the optimum use of any given set of precomputed 
information. The motivation for considering starting with 
arbitrarily preprocessed information is that at times oue 
may be given a set of distances which have been calcu- 
lated, but one was not able to choose which distances. 
In Section 2, we use a Floyd-Warshall [12, 331 style algo- 
rithm to approximate those absent distances and develop 
our scheme, using the type 1 query as the running exam- 
ple. In Section 3 all the other queries are studied. Section 
4 shows extensions to various important join operations. 
Experimental results are reported in Section 5. We make 
concluding remarks in Section 6. 

2 The Scheme 
Let 2) be a database composed of n objects.3 For conve- 
nience, we assume these objects are numbered from 1 to n 
and refer to the object numbered i simply as Oi. Consider 
the situation where we are given a set of distances that 
were calculated beforehand. We proceed in two phases 
when evaluating a query: 

l First, estimate those absent distances and store the 
distance values (including estimated ones and exact 

3The objects we consider are rather general and could be 
any ones on which distance functions can be defined. 

ones) in an approximate distance map (ADM). 

l Then process the query based on the ADM, filter- 
ing out as many objects as possible that could not 
possibly satisfy the query. 

If all the inter-object distances are precomputed, phase 
1 is omitted. In Section 2.1, we discuss how to obtain an 
ADM. Section 2.2 shows how it can be used to process 
queries, and outlines a number of heuristics for expediting 
the process. The type 1 query is used as the running 
example. Extensions to the other queries will be discussed 
in Section 3. 

2.1 Approximate Distance Map 

To compute the ADM, we start by constructing a 
weighted undirected graph on D, such that there is 
an edge between Oi and 0, iff d(Oi, 0,) has been 
computed. If there is such an edge e, its weight, 
denoted W(e), is the computed distance. We de- 
fine a path from Oi = Oi, to 0, = O,, as a se- 
quence of distinct objects Oi,, Oiz, . . . , Oi, such that 
{Oil,Oiz}, {Oi:,,Oi~}, . . . , {Oi,,-l, Ot,) are edges in the 
graph and the weight of the path is the sum of weights of 
its constituent edges. 

Lemma 1. (Generalized Triangle Inequality) Suppose 
there is a path P from Oi to 0,. Let 8’ be the edge of 
maximum weight in P. Then 

d(Oi,Oj) 2 w(a) - C w(e). 
&P-{i) 

Proof: By induction on the number of objects in P and 
repeated application of the triangle inequality. 13 

Lemma 1 states that one can obtain a lower bound for 
d(Oi, Oj) by applying the triangle inequality to a path 
from Oi to Oj. Of course, such a bound is useless if the 
term on the right hand side of the inequality is less than or 
equal to 0. Generally, we want this bound to be as high 
as possible. Let P(i, j) be the set containing all paths 
from Oi to Oj. We define ADM[i, j] to be the maximum 
bound obtained from all paths in P(i, j). By the triangle 
inequality, ADM[i,j] = d(Oi, 0,) if edge {Oi, 0,) E 
PC6 d. 

It is impractical, in general, to enumerate all paths in 
P(i, j) to get ADM[i, j], b ecause there may be an expo- 
nential number of them. Instead, we use a dynamic pro- 
gramming technique similar to the transitive closure algo- 
rithm [33] to compute the ADM. To facilitate the com- 
putation, we also maintain an additional matrix MIN, 
where MIN[i, j] is the minimum weight of any path from 
Oi to 0,. Thus, MIN[i, j] gives the least upper bound 
of the distance between Oi and 0,. Clearly, MIN[i, j] = 
d(O,, 0,) when the value is computed. 

Following [3], let ADMk[i, j] (resp. MINk[i, j]), 0 5 
t 5 n, be the greatest lower bound (resp. least upper 
bound) of any path from Oi to 0, that does not pass 

603 



through an object numbered higher than k. 

Lemma 2. LetSk(i,j), 1 5 & < 71, denote the set ofpaths 
going from Oi to Ok and then from Ok to O,, without 
passing through an object numbered higher than k. Sup- 
pose Sk(i,j) # 0. Let Bk(i, j) be the greatest lower bound 
obtained by applying the generalized triangle inequality to 
all the paths in Sk(i, j). Then 

for 1 Sk 578 

Proof: Let P E Sk (i, j) be a path yielding Bk(i, j). Let 
PI be the segment of P between 0; and Ok, and f’2 be 

the segment of P between Ok and 0,. Suppose first that 
the edge 6 of maximum weight is in 9. 
By Lemma 1, we get 

Bk(i, j) = w(a) - c w(e) - c w(e). 

eat-{Cl eEZP2 

Claim that 

ADi&..~[i, k] = W(a) - c W(e). 
ea%-Iel 

By induction, 

ADi&-l[i, k] 1 W(k) - c W(e), 

eei-{e) 

and if inequality held, we could construct a path I” 
in sk(i, j) by concatenating a path I’:, which yields 
ADMk--l[i, k], and P2. The bound achieved by P’ would 
be greater than Bk(i, j), contradicting the definition of 
Bk(i, j). By an analogous argument, 

MINk-l[k,j] = c w(e). 
eEP2 

Thus, Bk(i, j) = ADhfk--I[i, kl - hfINk-l[k,j]. 

If 6 is in p2, symmetric arguments yield &(i, j) = 
AD!&& k] - itfINk--1[k, i]. 0 

From the above lemma, we have, for each k, 

ADh’fk--I [;, j] 
ADMk[i, j] = max ADMk--I [i, k] - ItfINk- [k, j] 

ADML-l[j, k] - MINk-l[k, i] 

Moreover [3], 

hfINk[i,j] = min 
ft!fINk-I[;, j] 

MINk--I [i, k] + hLfINk--1 ik9j] 

These formulae give rise to a Floyd-Warshall style algo- 
rithm for computing the appro,ximate distance map. The 
procedure is given in Figure 1. 

for i := 1 to n do 
for j := 1 to i - 1 do 

if d(Oi, 0,) is known then begin 
ADM[i, j] := d(Oi, 0,); MIN[i, j] := d(Oi, 0,) 

end 
else begin 

ADM[i, j] := 0; MIN[i, j] := 00 
end; 

for k := 1 to n do 
for i := 2 to n do 

for j := 1 to i - 1 do begin 
ADM[i,j] := max (ADM[i,j], 

ADM[i, k] - MIN[k, j], 
ADM[k,j] - MIN[i, k]); 

MIN[i, j] := min (MIN[i, j], 
MIN[i, k] + MIN[k, j]); 

end; 

Figure 1: Algorithm APPROXIMATE. 

Notice that due to the symmetry, we only compute the 
lower triangular part of the matrices. Also, in the algo- 
rithm, 

ADM[i, k] = 
ADM[i, k] if i.> k 
ADM[k, i] otherwise 

This holds for MIIV as well. 
Using induction on k, we obtain 

Theorem 1. Algorithm APPROXIMATE correctly com- 
putes matrices ADM and MIN; that is, it achieves the op- 
timal distance approximation in the sense that the lower 
(resp. upper) bound of any path going from 0; to 0, is less 
(resp. greater) than or equal to ADM[i, j] (resp. MIN[i, 
j]), given the distances that have been computed. 

2.2 Processing Queries Using An 
ADM 

While evaluating a query, we augment the ADM with an 
additional row, row n + 1, for the target T (i.e. treating 
T as Or+), with entry ADM[n + 1, i] being the current 
greatest lower bound for d(T, Oi).’ We proceed in stages 
to seek the answer for the qu.ery. At each stage an object 
0 is chosen and its distance from T is calculated. Each 
stage eliminates objects whose lower bounds are greater 
than the distance from T to its current kth closest object. 

Following [29, 301, define t = the distance from T to 
its current kth closest object, B = the set of the current 
k closest objects, I = the set of candidates (i.e. objects 
that haven’t been eliminated, nor been computed), and 
the function update (B, 0), which tests whether d(T, 0) 

4 We shall discuss how to update such an augmented ADM 
in Section 2.3. For now let us assume that this map can some- 
how be maintained. 
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< .$ and, if so, updates B and e, discarding the object 
from B that becomes now the k + lth closest object to T. 
Figure 2 gives the algorithm.5 

1. 

2. 

3. 
4. 
5. 
6. 

( := 00; B := 0; I := rD; 
initialize ADM and MIN as done in Figure 1; 
augment ADM and MIN with an additional row 
for object T; 

/* Choose the first Ic closest objects */ 
Arbitrarily select k objects from I, calculating their 
distances from T; delete them from I; put them in 
B; update the augmented ADM and MIN; set [ to 
the maximum of these distances; 
while I # 0 

pick an object 0 in I; 
update (B, 0); 
update the augmented ADM and MIN; 
I := (0; ( (d(T, Oi) is not computed) 

A (ADM[n + 1, i] < I)}; 
end; 

Figure 2: Algorithm 1. 

We have developed four heuristics for picking candi- 
dates (i.e. objects that are still in I) at each stage (step 
3, Figure 2). They use different criterion in picking ob- 
jects. 

Pick least lower bound 
Choose an object Oi such that the lower bound of the 
distance between Oi and the given target T is minimized 
based on all previous candidates (i.e. ADM[n + l,i] 5 
ADM[n + l,i], VOj E I). Intuitively this heuristic uses 
the lower bound to estimate the exact distance. Thus 
the object having the least lower bound is expected to be 
(potentially) the closest object to T. If several candidates 
have the same lower bound, the heuristic selects one that 
has the least upper bound (i.e. the one with the smallest 
MIN value). The reason for doing so is that we expect 
the smaller the difference between the lower and upper 
bounds, the more precise the estimated distance is. Ties 
on the difference are resolved arbitrarily. 

Pick greatest lower bound 
This heuristic is similar to pick least lower bound except 
that the candidate with the greatest lower bound is se- 
lected. 

Pick least upper bound 
Choose a candidate with the smallest MIN value. If ties 

5To keep the presentation concise, we assume that objects 
have distinct distances from T. Relaxing this assumption, nev- 
ertheless, only requires a slight modification of the presented 
algorithm. 

occur, choose the one with the greatest lower bound. 

Pick greatest upper bound 
This heuristic is similar to pick least upper bound ex- 
cept that the candidate with the greatest upper bound 
is selected. We expect the heuristic performs well when 
searching for dissimilar objects, but poorly when search- 
ing for similar objects to T. 

In certain applications one may consider incorporating 
other factors related to objects into the heuristics pre- 
sented above. For example, a hybrid heuristic for strings 
that takes into account the length of strings may yield es- 
timators that help achieve better performance. But since 
not all distance metrics have such information associated 
with them, we don’t pursue the topic of estimators. 

In Section 5 we perform experiments to evaluate the rel- 
ative performance of these heuristics for different queries. 
Our results confirm the expectation that pick greatest up- 
per boundis generally better for finding dissimilar objects, 
but pick least lower bound is best for finding similar ob- 
jects. It should be noted that starting with an optimal 
approximate distance map (Theorem l), the algorithm 
developed here is the best possible for evaluating the con- 
cerned queries in the sense that given an object at stage 
i, it throws out all the objects that can be inferred to be 
irrelevant to the answers at that stage. What may in- 
fluence the performance of the algorithm is the heuristic 
utilized in selecting objects at each stage - the better the 
heuristic (or the better our luck), the better performance 
the algorithm achieves. 

2.3 Updating Augmented ADM and 
MIN 

Each computation of the distance between T and some 
object Ok may lead to modifications of the augmented 
ADM and MIN. Observe that the value of d(T,Ok) 
affects only the paths going through {T, Ok}. Let L (resp. 
U) be the new lower (resp. upper) bound of the paths 
from Oi to Oj via {T, Ok}; similarly to Lemma 2, we 
obtain 

1 

d(T, Ok) - MIN[i, n + l] - MIN[k,j] 
d(T,,ok) - MIN[i, k] - MINlj,n + l] 

L=max 
ADM[i,n + l] - d(T, Ok) - MIN[k,j] 
ADM[i, k] - d(T, Ok) - MIN[n + l,i] 
ADMlj, k] - d(T, Ok) - MIN[i, n + l] 
ADM[n + l,j] - d(T, Ok) - MIN[i, k] 

and 

U = min 
{ 

MIN[i, n + l] + d(T, ok) + MIN[k,j] 
MIA+, k] + d(T, ok) + MIN[n + 1, j] 

Thus, after computing d(T, Ok), to find the new (tighter) 
bounds for the distances between objects Oi, 0, E {T} 
U ‘D, it suffices to compare ADM[i,j] (MIN[i,j]) with L 
(U) (recall that ADM[n + l,;] always gives the current 
greatest lower bound for d(T, 0;)). 
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Note that we update only the pairs whose distances 
are still unknown. For those pairs of objects whose dis- 
tances have been calculated, the distance values already 
represent both the best lower bounds and upper bounds, 
and hence they need not be modified. Calculating L and 
U takes only constant time. Thus the overhead incurred 
by updating a map is negligible when most inter-object 
distances are present. 

If, however, there exist a large portion of object pairs 
whose distances are absent, the recomputation would be 
quite expensive. In such a situation, we could update the 
bounds for pairs (T, Oi), Oi E V, while keeping the initial 
bounds for (Oi, 0,), Oi, 0, E D (this strategy is similar 
to the one suggested in [I] for maintaining shortest paths 
in a sizable graph), or could only update the bounds for 
pairs (T, 0), where 0 is still a candidate. In [30], both the 
updating policies have been shown empirically to be very 
competitive to the one that globally updates the bounds 
for all object pairs (including the target), yet saving a 
significant amount of computation time. 

3 Extensions to Other Queries 

We can apply Algorithm 1 to all the other queries by 
slightly modifying some definitions and steps in it. The 
modifications for each type of query are listed below. 
(Note: In the following, step i refers to that in Figure 

2.1 
Type 3 query (best-match) 

t = the current minimum distance to T; 
B = the set of the current closest object; 
update(B, 0): tests whether d(T, 0) < C and, if so, 
updates B and t; 

Step 2: Arbitrarily choose an object and compute its 
distance from T; delete it from I; put it in B; set ( to 
the distance; 

Type 3 query (good-match) 

B = the set of objects that are within distance e of T; 
update(B, 0): tests whether d(T,O) < c and, if so, 
inserts 0 to B; 

Step 6: I := (0; ] (d(T,Oi) is not computed) A 
(ADM[n + 1, ij < 6)) 

Note that for this query, it becomes pointless to maintain 
t, the distance from T to its current kth closest object; 
step 2 is deleted. 

Type 4 query (k-farthest match) 

[ = the distance from T to its current kth farthest 
object; 
B = the set of the current I; farthest objects; 
update(B, 0): tests whether d(T, 0) > C and, if so, 
updates B and [, discarding the object from B that 
becomes now the k + lth farthest object from T; 

Step 2: set [ to the minimum distance of the first li 
computed objects; 
Step 6: I := (0; ] (d(T, Oi) is not computed) A 
(MIA+ + 1, i] > 6)); 

For this query, rather than consider lower bounds, we 
eliminate objects whose upper bounds are less than or 
equal to [ at each stage. 

Type 5 query (worst-match) 

6 = the current maximum distance to T; 
B = the set of the current farthest object; 
update(B, 0): tests whether d(T, 0) > E and, if so, 
updates B and <; 

Step 2: Arbitrarily select an object from I, calculating 
its distance from T; delete it from I; put it in B; set t 
to the distance; 
Step 6: I := (0; ] (d(T, Oi) is not computed) A 
(MIA+ + 1, i] > 55)); 

As in the previous case, objects whose upper bounds are 
less than or equal to [ are eliminated at each stage. 

Type 6 query (bad-match) 

B = the set of objects that are beyond distance c of 
T; 
update(B, 0): tests whether d(T, 0) > c and, if so, 
inserts 0 into B; 

Step 6: 1 := {Oi ] (d(T, Oi) is not computed) A 
(MIN[n + 1, i] > e)}; 

As in the good-match retrieval, step 2 is deleted and we 
do not maintain the current maximum distance to T. 

4 Join Operations 
We may be given two sets of objects and want to find 
the most similar (or most dissimilar) objects between the 
two sets. This is a generalization of the relational join 
operations. In this section, we introduce two such kinds 
of operations. Some easy variants are also listed, with 
their algorithms being omitted. 
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4.1 Clustering Join 

Given two sets of objects, R and S, the operator clustering 
join finds the pair (7, s) such that r is a member of R, s is 
a member of S, and r and s are closest. (The best-match 
retrieval is a special case in which one of the sets contains 
a single object.) 

. 

It is not difficult to extend our approach to support 
clustering join. To begin with, let us denote the ADM 
for R (S) as ADMR (ADMs), and MIN for R (S) as 
MINR (MINs). We combine ADMR and ADMs to form 
a matrix ADM, initializing all entries that are neither 
in ADMR nor in ADMs to 0. Construct and initialize 
the matrix MIN similarly. We then proceed in a way 
analogous to Algorithm 1; the code is given below. (The 
set B now contains the closest pair (7, s), P E R, s E S.) 

1. ( := co; B := 0; 
for each object T in the smaller set, say R, do 
begin 

2. I := (0 1 (0 E S) A (ADM[T,O] < 0); 
while I # 0 

3. pick an object 0 in I; 
4. update (B, 0); 
5. update ADM and MIN globally (or partially, 

as suggested in Section 2.3); 
6. I := (0 1 (0 E S) A (d(T, 0) is not computed) 

A WWT,Ol < 01 
end; 

end; 

Figure 3: Algorithm Clustering Join. 

Step 3 picks an object according to the heuristics devel- 
oped in Section 2.2, namely picks those with the extreme 
ADM (or MIN) value. 

Variants: 

s For each object in R, find its t-closest (farthest) ob- 
jects in S. 

l For each object in R, find its best (worst) matching 
object in S. 

4.2 Radik Join 

This operator is much like clustering join except that pairs 
of objects from R and S which are within distance E are 
chosen. One can implement the operator by slightly mod- 
ifying the algorithm for clustering join, replacing [ by c. 

Variants: 

l Find pairs of objects from R and S that are beyond 
distance E. 

s For each object in R, find its good (bad) matching 
objects in S. 

5 Performance Analysis 

A series of experiments were performed to evaluate the ef- 
fectiveness of our scheme, its behavior when executed in a 
multiprocessor environment, and the relative performance 
of the proposed heuristics for different queries. Table 1 
shows the basic parameters used in the experiments. 

Parameter Meaning Value 
NumPE # of processors employed 1 
Size # of objects in the file 150 
Density Portion of known distances 

in the map 1 
MinDistance Minimum distance between 

objects 0 
MazDistance Maximum distance between 

objects 10.000 

Table 1: Experimental Parameters. 

[MinDistance, MaxDistance] specifies the range over 
which distances between objects are distributed. The 
Density parameter represents the portion of known dis- 
tances in a map, and is computed by dividing the number 
of object pairs with known distances by the total number 
of object pairs in the corresponding database. The metric 
that we used in comparing different heuristics was 

PERFO = NumComputed x 100% 
Size 

where NumComputed is the number of objects actually 
computed. PERFO stands for PERcentage of brute 
Force cost (i.e. the cost of computing all objects in the 
database). One would like this percentage to be as low as 
possible. 

The sample maps used in the experiments were syn- 
thesized as follows. We used a random-number generator 
to produce inter-object distance values for each pair of 
objects, where the values were distributed uniformly over 
some positive interval. Each such value was inserted into 
a (Size + 1) x (Size + 1) auxiliary map provided that it 
didn’t violate the triangle inequality. After generating the 
map, we randomly selected Density x Size x (Size - 1) 
entries and used them as precomputed inter-object dis- 
tances. Entries on the outermost row (column) of the 
auxiliary map represented distances between the target 
and objects in the database. In each experiment 30 maps 
were tested and the average was computed. 

For many of the experiments the base values for pa- 
rameters were as shown in Table 1. The distance range 
was arbitrarily chosen, since empirically it was found to 
have little effect on the performance of our scheme. To 
keep the analysis tractable, Size was set to 150. Never- 
theless our experimental results showed that the larger a 
database, the more effective our scheme became. 

Table 2 summarizes the four heuristics proposed in Sec- 
tion 2, and provides their abbreviations which we will 
use when referring to them. For comparison purposes, 
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the heuristic which picks an object randomly was also in- 
cluded. We present the results for the queries only, omit- 
ting those for join operations, since they essentially lead 
to similar conclusions. 

Abbreviation 1 Heuristic 
LLB 1 Pick least lower bound 

Table 2: Summary of Heuristics. 

5.1 Results for Generated Data 

In this experiment we examined the relative performance 
of the five heuristics for different queries. For types 1 and 
4 queries, k was set to 3; for types 3 and 6 queries, c was 
set to 1,000. The results are shown in Figures 4(a) - 4(f). 

Examining these graphs, we see that LLB performs 
best for types 1 and 2 and GUB behaves poorly for these 
queries (Figures 4(a) and 4(b)); however the opposite is 
true for types 4 and 5 queries (Figures 4(d) and 4(e)). 
These results are consistent with our intuition: the heuris- 
tic using the least lower bound (greatest upper bound) to 
estimate exact distances catches closest (farthest) objects 
sooner; as a result the process can be completed sooner. 
Interestingly, PR seems to be the second best for all these 
queries. 

From Figures 4(c) and 4(f), it can be seen that, for 
types 3 and 6 queries, all the heuristics have almost identi- 
cal performance. This happens because for these queries, 
the number of calculations eliminated depends mainly 
on c, not on how one picks an object. Notice also that 
PERFO is very high for the bad-match retrieval. This is 
due to the fact that the chosen e is rather small, as com- 
pared to the entire distance range, and hence few objects 
are beyond this distance from T. 

Figure 5 graphs the number of remaining candidates 
against stages elapsed for various queries, showing how 
objects are eliminated when our scheme proceeds. LLB 
was used for retrieving similar objects and GUB used for 
retrieving dissimilar objects. The parameters had the val- 
ues shown in Table 1. 

We see from the figure that except for the bad-match 
retrieval, the curves drop sharply in the first ten stages, 
becoming smoother afterwards. One expects this because 
as time goes on, most objects whose lower (upper) bounds 
are greater (less) than [ have been eliminated earlier; con- 
sequently fewer objects are actually discarded in the later 
stages. The curve for the bad-match retrieval is nearly a 
straight line. This is understandable, given the previous 
analysis that almost no objects, on the average, can be 
eliminated for this query. 

5.2 Results for Proteins 

In real applications we would not expect distances be- 
tween objects to distribute as uniformly as those stud- 

ied in the previous section. To understand how effective 
our scheme is when applied to actual database systems, 
we have run it on a set of proteins. 151 proteins were 
randomly selected from the sequence database of Think- 
ing Machines. Each protein has between 4 and 20 amino 

acids. (An amino acid is represented by a numerical or 
alphabetical character.) The inter-protein distances were 
computed based on the dayboflscore metric [18].6 

With different heuristics, we ran our scheme on these 
proteins thirty times, each time using a randomly selected 
(distinct) protein as the target. The results for k-closest 
match and best-match queries are shown in Figures 6(a) 
and 6(b), where k was set to 3. 

Comparing Figures 4 and 6, the vahes of PERFO ob- 
tained from the proteins are in general higher (i.e. worse) 
than those from artificial data. Second, it can be seen 
that LUB becomes superior to PR and is very compet- 
itive to LLB. A close look at the data reveals why this 
happens. In this sample database, there are lots of small 
clusters, proteins in which are close to one another. All 
the other proteins are (roughly) equally distinct from each 
other (and from those in the clusters). Thus, when tar- 
gets are members of clusters, LLB (LUB) can quickly lo- 
cate the desired proteins, yielding a fairly low PERFO, 
whereas a non-member target results in many proteins be- 
ing computed.7 This result indicates that in cases where 
there exist objects extremely close to a given target, pick- 
ing a candidate with the least bound, whether based on 
ADM or MIN, is always better than arbitrarily picking 
one. 

One interesting finding is that for the type 1 query, un- 
like uniformly distributed data, the performance of the 
heuristics is rather sensitive to the value of k. For exam- 
ple, when k is 6, few proteins can be eliminated, regardless 
of which heuristic is employed. This happens because all 
clusters contain less than 6 proteins; thus in order to get 
the 6th closest protein, one needs to compute almost all 
proteins in the database. 

The values of PERFOR for the k-farthest match and 
the worst-match are also much higher than those from 
generated data, being over 97% for all heuristics even 
when the entire map is precomputed. This is understand- 
able, given the observation that most proteins are equally 
distant from the target, forcing our scheme to compute 
all of them in order to get the farthest ones. 

The results for the good-match and bad-match queries 

6The dayhoff score metric differs from, albeit is isomorphic 
to, a distance metric in the sense that the higher the score be- 
tween two proteins, the closer they are. We used the following 
formula to compute the distance between two proteins based 
on their scores: d(pl, pz) = c - s(pr , pz), where c is an empirical 
constant assuring that the difference satisfies the conditions of 
distance metrics, and s(p1 ,pz) is the score between proteins pr 

md~2. 
7For the clustered proteins, our scheme for processing the 

type 1 query might be improved by first picking centers of 
k clusters and then using LLB (LUB), where the cenler of a 
cluster C is the protein p of minimum eccenlricity, and the 
eccentricity of p is the distance between p and a protein in C 
that is farthest from p. 
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are quite similar to those obtained from uniformly dis- 
tributed data, namely the performance of all heuristics is 
close and dependent heavily on the value of E. 

5.3 Issues in Parallelizing Our 
Scheme 

A set of programs were written to simulate the execution 
of the scheme using multiprocessors for both uniformly 
distributed data and proteins. The simulation study used 
the following strategy: When p processors are used in 
evaluating a query, at each stage these processors take 
the top p choices according to its best heuristic, compute 
all of them, update the augmented ADM and MIN, and 
then eliminate objects (if any) simultaneously. The other 
parameters had the values shown in Table 1. 

Due to space limitations we cannot present all our re- 
sults but have selected two graphs for the type 1 query 
to illustrate our findings. Figure i’(a) shows the time our 
scheme requires for various number of processors, where 
each distance computation is assumed to take one time 
unit. Figure 7(b) plots the total work, defined as NumPE 
x the number of objects each processor computed, against 
the number of processors. Recalling that the size of can- 
didate sets decreases fast in the first ten stages and then 
slowly as time goes on (cf. Figure 5), one may be in- 
terested in knowing whether parallel work would not be 
much greater than sequential work if one introduces more 
processors only after these stages. Both figures also an- 
swer this question. 

First, we observe that using more processors is not as 
efficient as one might hope. For example, when using 10 
processors for uniformly distributed data, one might hope 
the query evaluation can be completed in 44/10 = 4.4 time 
units; yet empirically nearly 6 time units are needed (Fig- 
ure 7(a)). The reason is that processors do useless work: 
one may compute an object which could be discarded if 
the scheme were executed serially. Second, it can be seen 
from Figure 7(b) that for uniformly distributed data, in- 
troducing more processors after 10 stages requires much 
less work than starting all of the processors from the be- 
ginning (the difference is less impressive when the num- 
ber of processors is small). Taking an extreme example, if 
there are 150 processors available, using them altogether 
yields work = 150; in contrast, since 80 objects on the av- 
erage can be eliminated in the first 10 stages (cf. Figure 
5), using all the processors after these stages yields the to- 
tal work = 10 + (150 - 80) = 80 only. Thus to effectively 
use processors, it is advisable to delay multiprocessing to 
later stages. 

The results for proteins support this contention, where 
the parallel work for delaying 10 stages is exactly the same 
as sequential work. The explanation is somewhat differ- 
ent, however. Here, when a target protein belongs to a 
cluster, the process can be completed quickly, requiring 
less than 10 stages; on the other hand, a non-member tar- 
get causes all the proteins to be computed. Thus neither 
case yields extra work if our scheme is parallelized after 10 
stages. We feel that one would need to test larger files for 

various densities before drawing more precise conclusions 
about the exact number of stages one should wait and 
the work difference between whether to wait. One thing 
is clear, however, if there are a large number of processors 
available, more benefit can be obtained if one starts using 
them in the later stages in evaluating a query. 

6 Conclusions 

In this paper we have presented a scheme to answering a 
class of queries for retrieving similar or dissimilar objects 
to a given target from a database. Unlike previously pub- 
lished algorithms, the scheme allows the optimum use of 
any given precomputed information. We proposed four 
heuristics for expediting query processing. Our simu- 
lation results showed that of these heuristics, pick least 
ioruer bound (LLB) is best when searching for similar ob- 
jects, while pick greatest upper bound (GUB) is best when 
searching for dissimilar objects. Our results also showed 
that when the scheme is executed in a multiprocessor en- 
vironment, parallelism is best applied in the later stages 
in evaluating a query. 

We have not discussed how to maintain an approxi- 
mate distance map (ADM) when objects are inserted or 
deleted from a database, or when objects are updated in 
such a way that distances change. To maintain an ADM, 
one could periodically calculate those absent inter-object 
distances, or could incrementally update the distance in- 
formation using the techniques described in [2, 7, 241. 

Our algorithm for approximating a distance map re- 
quires O(n3) time, where n is the size of the database. 
This may make it infeasible to perform the complete com- 
putation in a single run when the database is very large. 
For this case, a “divide and conquer” approach can be 
useful and we suggest two such strategies to cope with a 
sizable file. One is simply to divide the whole database 
into several subdatabases, apply our scheme to each to 
find the desired objects, and then compare them to get 
the final result. The other is to preprocess and maintain 
an ADM (MIN) by decomposing the entire map into 
m blocks, each being an n/m112 x n/m112 matrix, and 
get the best approximation for each block. Then incre- 
mentally add the distances between objects that straddle 
different blocks and update the bounds for all object pairs 
using the algorithm presented in Section 2.3. When eval- 
uating queries, the ADM map is obtained by coupling 
these blocks and available interblock distance bounds. We 
plan to study these alternatives and evaluate their perfor- 
mance in the future. 
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