
Query Processing for Distance Metrics*

Tsong-Li Wang, wang@cs.nyu.edu
Dennis Shasha, shasha@cs.nyu.edu

Courant Institute of Mathematical Sciences, New York University

Abstract

In applications such as vision and molecular biology, a
common problem is to find the similar objects to a given
target (according to some distance measure) in a large
database. This paper presents a scheme for query pro-
cessing in such situations. The basic strategy is to (par-
tially) precompute inter-object distances, and by using
the distance information and the triangle inequality, we
eliminate the need to calculate certain object distances
while evaluating queries. We propose several heuristics
that may speed up query evaluation. A series of experi-
ments are then performed to evaluate the effectiveness of
our scheme and the relative performance of the heuristics
for different queries. Finally we investigate the possibil-
ity of parallelizing our scheme through simulation. Our
results show that parallelism is best applied in the later
stages in evaluating a query.

1 Introduction

Recently, a significant body of research has been per-
formed for query optimization in object-oriented database
systems. Most of the research has been concentrating on
retrieving multidimensional [15, 22, 23, 271 or complex
objects [4, 10, 14, 25, 31, 32, 341 often arising in spatial
and VLSI/CAD applications. Here, we study a different
class of queries, namely, to find the similar or dissimilar
objects to a given target from a database. The similarity
of two objects is defined in terms of a distance measure.
Vision and molecular biology have many such applications
where the objects are patterns [17], strings [IS], trees [26],

*Work supported in part by NSF grant RI-8901699 and by
ONR contract N00014-85-K-0046.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage. the VLDB copyright notice and

the title of the publication and its date appear. and notice is given

that copying is by permission of the Very Large Data Base

Endowment. To copy otherwise. or to republish. requires a fee

and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane. Australia 1990

graphs [5, 81 and so forth.
Many distance measures are used in these applications.

For our purposes, we assume that we have a true distance
metric, that is, a function d that takes pairs of objects
into nonnegative numbers, satisfying the following three
properties: for any objects Or, 02, 03, d(Oi, Or) > 0,
and d(Oi, 02) = 0 iff Or = 02 (non-negative definiteness);
d(01, 02) = d(O2, 01) (symmetry); d(01, 02) I d(01,
0s) + d(Oa, 02) (triangle inequality).

The queries we are concerned with are categorized as
follows: Given a target T and a database V of objects,

(Type 1 query) find the k objects, for some k, in 2,
that are closest to T;

(Type 2 query) find the closest (i.e. most similar)
object of T in DD;’

(Type 3 query) find the objects in 2) that are suffi-
ciently similar to T, i.e. those that are within some
distance, say c, of T;

(Type 4 query) find the L objects in 2) that are far-
thest from T;

(Type 5 query) find the farthest (i.e. most dissimilar)
object of T in 2);

(Type 6 query) find the objects in 2) that are suf-
ficiently dissimilar to T, i.e. those that are beyond
distance c of T.

To answer these queries, a query system could compute
the distance between each object of the database and the
target, and then search for the desired objects. The major
problem with this approach is its computational expense,
particularly when there are many targets to be identified
and the distance computation is costly.’ It is our goal to
minimize such computation in response to queries of the
above categories. (Our objective in this aspect is similar
to [15, 22, 271, where efforts were devoted to saving the
overlapping computation of spatial objects.)

‘This query is a special case for the type 1 query where k
= 1. The latter retrieves not only the closest object, but the
ith, i = 2,..., k, closest object of T in ‘D.

2Throughout, we shall assume that distance computation is
the dominant cost for query processing. As evidence to support
this assumption, we note that it can take several seconds, on
the average, to compare even one string against another on a
VAX system [18].

602

Numerous techniques have been proposed for handling
such queries in the past. Investigators in artificial intelli-
gence have formulated strategies for the type 1 query [13,
171, though they are mainly interested in specific distance
metrics, usually Euclidean, and make stronger assump-
tions such as that similar objects can be grouped into a
cluster. The type 2 query, also known as the best-match
retrieval, was first discussed by Minsky and Papert [21],
and has been studied extensively in many areas including
information retrieval [6, 11, 291, molecular biology [18, 201
and computational geometry [19]. See [30] for a survey
on the methods appeared previously. The type 3 query,
also known as the good-match retrieval, was discussed
by Ito and Kizawa [16], where they organized a database
into a hierarchical structure and used both best-match
and good-match processes to retrieve similar strings for
spelling correction applications. This type of query is
particularly important when objects are likely to be cor-
rupted (e.g. images in a noisy environment) [9, 281. The
queries falling in the last three categories, in particular
the type 5 query (worst-match retrieval) and the type 6
query (bad-match retrieval), appear to be less common.
We suspect their use will appear with the advent of new
technology and new applications.

We present in this paper a scheme to answering all six
types of queries. The work is an extension of [30], where
we focused on the best-match retrieval. Our overall strat-
egy is to (partially) precompute inter-object distances,
and by using the preprocessed information and the trian-
gle inequality, we eliminate certain irrelevant distance cal-
culations while evaluating the queries. Our approach dif-
fers from previously published techniques, many of which
rely on organizing files into some structure, in’that we
allow the optimum use of any given set of precomputed
information. The motivation for considering starting with
arbitrarily preprocessed information is that at times oue
may be given a set of distances which have been calcu-
lated, but one was not able to choose which distances.
In Section 2, we use a Floyd-Warshall [12, 331 style algo-
rithm to approximate those absent distances and develop
our scheme, using the type 1 query as the running exam-
ple. In Section 3 all the other queries are studied. Section
4 shows extensions to various important join operations.
Experimental results are reported in Section 5. We make
concluding remarks in Section 6.

2 The Scheme
Let 2) be a database composed of n objects.3 For conve-
nience, we assume these objects are numbered from 1 to n
and refer to the object numbered i simply as Oi. Consider
the situation where we are given a set of distances that
were calculated beforehand. We proceed in two phases
when evaluating a query:

l First, estimate those absent distances and store the
distance values (including estimated ones and exact

3The objects we consider are rather general and could be
any ones on which distance functions can be defined.

ones) in an approximate distance map (ADM).

l Then process the query based on the ADM, filter-
ing out as many objects as possible that could not
possibly satisfy the query.

If all the inter-object distances are precomputed, phase
1 is omitted. In Section 2.1, we discuss how to obtain an
ADM. Section 2.2 shows how it can be used to process
queries, and outlines a number of heuristics for expediting
the process. The type 1 query is used as the running
example. Extensions to the other queries will be discussed
in Section 3.

2.1 Approximate Distance Map

To compute the ADM, we start by constructing a
weighted undirected graph on D, such that there is
an edge between Oi and 0, iff d(Oi, 0,) has been
computed. If there is such an edge e, its weight,
denoted W(e), is the computed distance. We de-
fine a path from Oi = Oi, to 0, = O,, as a se-
quence of distinct objects Oi,, Oiz, . . . , Oi, such that
{Oil,Oiz}, {Oi:,,Oi~}, . . . , {Oi,,-l, Ot,) are edges in the
graph and the weight of the path is the sum of weights of
its constituent edges.

Lemma 1. (Generalized Triangle Inequality) Suppose
there is a path P from Oi to 0,. Let 8’ be the edge of
maximum weight in P. Then

d(Oi,Oj) 2 w(a) - C w(e).
&P-{i)

Proof: By induction on the number of objects in P and
repeated application of the triangle inequality. 13

Lemma 1 states that one can obtain a lower bound for
d(Oi, Oj) by applying the triangle inequality to a path
from Oi to Oj. Of course, such a bound is useless if the
term on the right hand side of the inequality is less than or
equal to 0. Generally, we want this bound to be as high
as possible. Let P(i, j) be the set containing all paths
from Oi to Oj. We define ADM[i, j] to be the maximum
bound obtained from all paths in P(i, j). By the triangle
inequality, ADM[i,j] = d(Oi, 0,) if edge {Oi, 0,) E
PC6 d.

It is impractical, in general, to enumerate all paths in
P(i, j) to get ADM[i, j], b ecause there may be an expo-
nential number of them. Instead, we use a dynamic pro-
gramming technique similar to the transitive closure algo-
rithm [33] to compute the ADM. To facilitate the com-
putation, we also maintain an additional matrix MIN,
where MIN[i, j] is the minimum weight of any path from
Oi to 0,. Thus, MIN[i, j] gives the least upper bound
of the distance between Oi and 0,. Clearly, MIN[i, j] =
d(O,, 0,) when the value is computed.

Following [3], let ADMk[i, j] (resp. MINk[i, j]), 0 5
t 5 n, be the greatest lower bound (resp. least upper
bound) of any path from Oi to 0, that does not pass

603

through an object numbered higher than k.

Lemma 2. LetSk(i,j), 1 5 & < 71, denote the set ofpaths
going from Oi to Ok and then from Ok to O,, without
passing through an object numbered higher than k. Sup-
pose Sk(i,j) # 0. Let Bk(i, j) be the greatest lower bound
obtained by applying the generalized triangle inequality to
all the paths in Sk(i, j). Then

for 1 Sk 578

Proof: Let P E Sk (i, j) be a path yielding Bk(i, j). Let
PI be the segment of P between 0; and Ok, and f’2 be

the segment of P between Ok and 0,. Suppose first that
the edge 6 of maximum weight is in 9.
By Lemma 1, we get

Bk(i, j) = w(a) - c w(e) - c w(e).

eat-{Cl eEZP2

Claim that

ADi&..~[i, k] = W(a) - c W(e).
ea%-Iel

By induction,

ADi&-l[i, k] 1 W(k) - c W(e),

eei-{e)

and if inequality held, we could construct a path I”
in sk(i, j) by concatenating a path I’:, which yields
ADMk--l[i, k], and P2. The bound achieved by P’ would
be greater than Bk(i, j), contradicting the definition of
Bk(i, j). By an analogous argument,

MINk-l[k,j] = c w(e).
eEP2

Thus, Bk(i, j) = ADhfk--I[i, kl - hfINk-l[k,j].

If 6 is in p2, symmetric arguments yield &(i, j) =
AD!&& k] - itfINk--1[k, i]. 0

From the above lemma, we have, for each k,

ADh’fk--I [;, j]
ADMk[i, j] = max ADMk--I [i, k] - ItfINk- [k, j]

ADML-l[j, k] - MINk-l[k, i]

Moreover [3],

hfINk[i,j] = min
ft!fINk-I[;, j]

MINk--I [i, k] + hLfINk--1 ik9j]

These formulae give rise to a Floyd-Warshall style algo-
rithm for computing the appro,ximate distance map. The
procedure is given in Figure 1.

for i := 1 to n do
for j := 1 to i - 1 do

if d(Oi, 0,) is known then begin
ADM[i, j] := d(Oi, 0,); MIN[i, j] := d(Oi, 0,)

end
else begin

ADM[i, j] := 0; MIN[i, j] := 00
end;

for k := 1 to n do
for i := 2 to n do

for j := 1 to i - 1 do begin
ADM[i,j] := max (ADM[i,j],

ADM[i, k] - MIN[k, j],
ADM[k,j] - MIN[i, k]);

MIN[i, j] := min (MIN[i, j],
MIN[i, k] + MIN[k, j]);

end;

Figure 1: Algorithm APPROXIMATE.

Notice that due to the symmetry, we only compute the
lower triangular part of the matrices. Also, in the algo-
rithm,

ADM[i, k] =
ADM[i, k] if i.> k
ADM[k, i] otherwise

This holds for MIIV as well.
Using induction on k, we obtain

Theorem 1. Algorithm APPROXIMATE correctly com-
putes matrices ADM and MIN; that is, it achieves the op-
timal distance approximation in the sense that the lower
(resp. upper) bound of any path going from 0; to 0, is less
(resp. greater) than or equal to ADM[i, j] (resp. MIN[i,
j]), given the distances that have been computed.

2.2 Processing Queries Using An
ADM

While evaluating a query, we augment the ADM with an
additional row, row n + 1, for the target T (i.e. treating
T as Or+), with entry ADM[n + 1, i] being the current
greatest lower bound for d(T, Oi).’ We proceed in stages
to seek the answer for the qu.ery. At each stage an object
0 is chosen and its distance from T is calculated. Each
stage eliminates objects whose lower bounds are greater
than the distance from T to its current kth closest object.

Following [29, 301, define t = the distance from T to
its current kth closest object, B = the set of the current
k closest objects, I = the set of candidates (i.e. objects
that haven’t been eliminated, nor been computed), and
the function update (B, 0), which tests whether d(T, 0)

4 We shall discuss how to update such an augmented ADM
in Section 2.3. For now let us assume that this map can some-
how be maintained.

604

< .$ and, if so, updates B and e, discarding the object
from B that becomes now the k + lth closest object to T.
Figure 2 gives the algorithm.5

1.

2.

3.
4.
5.
6.

(:= 00; B := 0; I := rD;
initialize ADM and MIN as done in Figure 1;
augment ADM and MIN with an additional row
for object T;

/* Choose the first Ic closest objects */
Arbitrarily select k objects from I, calculating their
distances from T; delete them from I; put them in
B; update the augmented ADM and MIN; set [to
the maximum of these distances;
while I # 0

pick an object 0 in I;
update (B, 0);
update the augmented ADM and MIN;
I := (0; ((d(T, Oi) is not computed)

A (ADM[n + 1, i] < I)};
end;

Figure 2: Algorithm 1.

We have developed four heuristics for picking candi-
dates (i.e. objects that are still in I) at each stage (step
3, Figure 2). They use different criterion in picking ob-
jects.

Pick least lower bound
Choose an object Oi such that the lower bound of the
distance between Oi and the given target T is minimized
based on all previous candidates (i.e. ADM[n + l,i] 5
ADM[n + l,i], VOj E I). Intuitively this heuristic uses
the lower bound to estimate the exact distance. Thus
the object having the least lower bound is expected to be
(potentially) the closest object to T. If several candidates
have the same lower bound, the heuristic selects one that
has the least upper bound (i.e. the one with the smallest
MIN value). The reason for doing so is that we expect
the smaller the difference between the lower and upper
bounds, the more precise the estimated distance is. Ties
on the difference are resolved arbitrarily.

Pick greatest lower bound
This heuristic is similar to pick least lower bound except
that the candidate with the greatest lower bound is se-
lected.

Pick least upper bound
Choose a candidate with the smallest MIN value. If ties

5To keep the presentation concise, we assume that objects
have distinct distances from T. Relaxing this assumption, nev-
ertheless, only requires a slight modification of the presented
algorithm.

occur, choose the one with the greatest lower bound.

Pick greatest upper bound
This heuristic is similar to pick least upper bound ex-
cept that the candidate with the greatest upper bound
is selected. We expect the heuristic performs well when
searching for dissimilar objects, but poorly when search-
ing for similar objects to T.

In certain applications one may consider incorporating
other factors related to objects into the heuristics pre-
sented above. For example, a hybrid heuristic for strings
that takes into account the length of strings may yield es-
timators that help achieve better performance. But since
not all distance metrics have such information associated
with them, we don’t pursue the topic of estimators.

In Section 5 we perform experiments to evaluate the rel-
ative performance of these heuristics for different queries.
Our results confirm the expectation that pick greatest up-
per boundis generally better for finding dissimilar objects,
but pick least lower bound is best for finding similar ob-
jects. It should be noted that starting with an optimal
approximate distance map (Theorem l), the algorithm
developed here is the best possible for evaluating the con-
cerned queries in the sense that given an object at stage
i, it throws out all the objects that can be inferred to be
irrelevant to the answers at that stage. What may in-
fluence the performance of the algorithm is the heuristic
utilized in selecting objects at each stage - the better the
heuristic (or the better our luck), the better performance
the algorithm achieves.

2.3 Updating Augmented ADM and
MIN

Each computation of the distance between T and some
object Ok may lead to modifications of the augmented
ADM and MIN. Observe that the value of d(T,Ok)
affects only the paths going through {T, Ok}. Let L (resp.
U) be the new lower (resp. upper) bound of the paths
from Oi to Oj via {T, Ok}; similarly to Lemma 2, we
obtain

1

d(T, Ok) - MIN[i, n + l] - MIN[k,j]
d(T,,ok) - MIN[i, k] - MINlj,n + l]

L=max
ADM[i,n + l] - d(T, Ok) - MIN[k,j]
ADM[i, k] - d(T, Ok) - MIN[n + l,i]
ADMlj, k] - d(T, Ok) - MIN[i, n + l]
ADM[n + l,j] - d(T, Ok) - MIN[i, k]

and

U = min
{

MIN[i, n + l] + d(T, ok) + MIN[k,j]
MIA+, k] + d(T, ok) + MIN[n + 1, j]

Thus, after computing d(T, Ok), to find the new (tighter)
bounds for the distances between objects Oi, 0, E {T}
U ‘D, it suffices to compare ADM[i,j] (MIN[i,j]) with L
(U) (recall that ADM[n + l,;] always gives the current
greatest lower bound for d(T, 0;)).

605

Note that we update only the pairs whose distances
are still unknown. For those pairs of objects whose dis-
tances have been calculated, the distance values already
represent both the best lower bounds and upper bounds,
and hence they need not be modified. Calculating L and
U takes only constant time. Thus the overhead incurred
by updating a map is negligible when most inter-object
distances are present.

If, however, there exist a large portion of object pairs
whose distances are absent, the recomputation would be
quite expensive. In such a situation, we could update the
bounds for pairs (T, Oi), Oi E V, while keeping the initial
bounds for (Oi, 0,), Oi, 0, E D (this strategy is similar
to the one suggested in [I] for maintaining shortest paths
in a sizable graph), or could only update the bounds for
pairs (T, 0), where 0 is still a candidate. In [30], both the
updating policies have been shown empirically to be very
competitive to the one that globally updates the bounds
for all object pairs (including the target), yet saving a
significant amount of computation time.

3 Extensions to Other Queries

We can apply Algorithm 1 to all the other queries by
slightly modifying some definitions and steps in it. The
modifications for each type of query are listed below.
(Note: In the following, step i refers to that in Figure

2.1
Type 3 query (best-match)

t = the current minimum distance to T;
B = the set of the current closest object;
update(B, 0): tests whether d(T, 0) < C and, if so,
updates B and t;

Step 2: Arbitrarily choose an object and compute its
distance from T; delete it from I; put it in B; set (to
the distance;

Type 3 query (good-match)

B = the set of objects that are within distance e of T;
update(B, 0): tests whether d(T,O) < c and, if so,
inserts 0 to B;

Step 6: I := (0;] (d(T,Oi) is not computed) A
(ADM[n + 1, ij < 6))

Note that for this query, it becomes pointless to maintain
t, the distance from T to its current kth closest object;
step 2 is deleted.

Type 4 query (k-farthest match)

[= the distance from T to its current kth farthest
object;
B = the set of the current I; farthest objects;
update(B, 0): tests whether d(T, 0) > C and, if so,
updates B and [, discarding the object from B that
becomes now the k + lth farthest object from T;

Step 2: set [to the minimum distance of the first li
computed objects;
Step 6: I := (0;] (d(T, Oi) is not computed) A
(MIA+ + 1, i] > 6));

For this query, rather than consider lower bounds, we
eliminate objects whose upper bounds are less than or
equal to [at each stage.

Type 5 query (worst-match)

6 = the current maximum distance to T;
B = the set of the current farthest object;
update(B, 0): tests whether d(T, 0) > E and, if so,
updates B and <;

Step 2: Arbitrarily select an object from I, calculating
its distance from T; delete it from I; put it in B; set t
to the distance;
Step 6: I := (0;] (d(T, Oi) is not computed) A
(MIA+ + 1, i] > 55));

As in the previous case, objects whose upper bounds are
less than or equal to [are eliminated at each stage.

Type 6 query (bad-match)

B = the set of objects that are beyond distance c of
T;
update(B, 0): tests whether d(T, 0) > c and, if so,
inserts 0 into B;

Step 6: 1 := {Oi] (d(T, Oi) is not computed) A
(MIN[n + 1, i] > e)};

As in the good-match retrieval, step 2 is deleted and we
do not maintain the current maximum distance to T.

4 Join Operations
We may be given two sets of objects and want to find
the most similar (or most dissimilar) objects between the
two sets. This is a generalization of the relational join
operations. In this section, we introduce two such kinds
of operations. Some easy variants are also listed, with
their algorithms being omitted.

606

4.1 Clustering Join

Given two sets of objects, R and S, the operator clustering
join finds the pair (7, s) such that r is a member of R, s is
a member of S, and r and s are closest. (The best-match
retrieval is a special case in which one of the sets contains
a single object.)

.

It is not difficult to extend our approach to support
clustering join. To begin with, let us denote the ADM
for R (S) as ADMR (ADMs), and MIN for R (S) as
MINR (MINs). We combine ADMR and ADMs to form
a matrix ADM, initializing all entries that are neither
in ADMR nor in ADMs to 0. Construct and initialize
the matrix MIN similarly. We then proceed in a way
analogous to Algorithm 1; the code is given below. (The
set B now contains the closest pair (7, s), P E R, s E S.)

1. (:= co; B := 0;
for each object T in the smaller set, say R, do
begin

2. I := (0 1 (0 E S) A (ADM[T,O] < 0);
while I # 0

3. pick an object 0 in I;
4. update (B, 0);
5. update ADM and MIN globally (or partially,

as suggested in Section 2.3);
6. I := (0 1 (0 E S) A (d(T, 0) is not computed)

A WWT,Ol < 01
end;

end;

Figure 3: Algorithm Clustering Join.

Step 3 picks an object according to the heuristics devel-
oped in Section 2.2, namely picks those with the extreme
ADM (or MIN) value.

Variants:

s For each object in R, find its t-closest (farthest) ob-
jects in S.

l For each object in R, find its best (worst) matching
object in S.

4.2 Radik Join

This operator is much like clustering join except that pairs
of objects from R and S which are within distance E are
chosen. One can implement the operator by slightly mod-
ifying the algorithm for clustering join, replacing [by c.

Variants:

l Find pairs of objects from R and S that are beyond
distance E.

s For each object in R, find its good (bad) matching
objects in S.

5 Performance Analysis

A series of experiments were performed to evaluate the ef-
fectiveness of our scheme, its behavior when executed in a
multiprocessor environment, and the relative performance
of the proposed heuristics for different queries. Table 1
shows the basic parameters used in the experiments.

Parameter Meaning Value
NumPE # of processors employed 1
Size # of objects in the file 150
Density Portion of known distances

in the map 1
MinDistance Minimum distance between

objects 0
MazDistance Maximum distance between

objects 10.000

Table 1: Experimental Parameters.

[MinDistance, MaxDistance] specifies the range over
which distances between objects are distributed. The
Density parameter represents the portion of known dis-
tances in a map, and is computed by dividing the number
of object pairs with known distances by the total number
of object pairs in the corresponding database. The metric
that we used in comparing different heuristics was

PERFO = NumComputed x 100%
Size

where NumComputed is the number of objects actually
computed. PERFO stands for PERcentage of brute
Force cost (i.e. the cost of computing all objects in the
database). One would like this percentage to be as low as
possible.

The sample maps used in the experiments were syn-
thesized as follows. We used a random-number generator
to produce inter-object distance values for each pair of
objects, where the values were distributed uniformly over
some positive interval. Each such value was inserted into
a (Size + 1) x (Size + 1) auxiliary map provided that it
didn’t violate the triangle inequality. After generating the
map, we randomly selected Density x Size x (Size - 1)
entries and used them as precomputed inter-object dis-
tances. Entries on the outermost row (column) of the
auxiliary map represented distances between the target
and objects in the database. In each experiment 30 maps
were tested and the average was computed.

For many of the experiments the base values for pa-
rameters were as shown in Table 1. The distance range
was arbitrarily chosen, since empirically it was found to
have little effect on the performance of our scheme. To
keep the analysis tractable, Size was set to 150. Never-
theless our experimental results showed that the larger a
database, the more effective our scheme became.

Table 2 summarizes the four heuristics proposed in Sec-
tion 2, and provides their abbreviations which we will
use when referring to them. For comparison purposes,

607

the heuristic which picks an object randomly was also in-
cluded. We present the results for the queries only, omit-
ting those for join operations, since they essentially lead
to similar conclusions.

Abbreviation 1 Heuristic
LLB 1 Pick least lower bound

Table 2: Summary of Heuristics.

5.1 Results for Generated Data

In this experiment we examined the relative performance
of the five heuristics for different queries. For types 1 and
4 queries, k was set to 3; for types 3 and 6 queries, c was
set to 1,000. The results are shown in Figures 4(a) - 4(f).

Examining these graphs, we see that LLB performs
best for types 1 and 2 and GUB behaves poorly for these
queries (Figures 4(a) and 4(b)); however the opposite is
true for types 4 and 5 queries (Figures 4(d) and 4(e)).
These results are consistent with our intuition: the heuris-
tic using the least lower bound (greatest upper bound) to
estimate exact distances catches closest (farthest) objects
sooner; as a result the process can be completed sooner.
Interestingly, PR seems to be the second best for all these
queries.

From Figures 4(c) and 4(f), it can be seen that, for
types 3 and 6 queries, all the heuristics have almost identi-
cal performance. This happens because for these queries,
the number of calculations eliminated depends mainly
on c, not on how one picks an object. Notice also that
PERFO is very high for the bad-match retrieval. This is
due to the fact that the chosen e is rather small, as com-
pared to the entire distance range, and hence few objects
are beyond this distance from T.

Figure 5 graphs the number of remaining candidates
against stages elapsed for various queries, showing how
objects are eliminated when our scheme proceeds. LLB
was used for retrieving similar objects and GUB used for
retrieving dissimilar objects. The parameters had the val-
ues shown in Table 1.

We see from the figure that except for the bad-match
retrieval, the curves drop sharply in the first ten stages,
becoming smoother afterwards. One expects this because
as time goes on, most objects whose lower (upper) bounds
are greater (less) than [have been eliminated earlier; con-
sequently fewer objects are actually discarded in the later
stages. The curve for the bad-match retrieval is nearly a
straight line. This is understandable, given the previous
analysis that almost no objects, on the average, can be
eliminated for this query.

5.2 Results for Proteins

In real applications we would not expect distances be-
tween objects to distribute as uniformly as those stud-

ied in the previous section. To understand how effective
our scheme is when applied to actual database systems,
we have run it on a set of proteins. 151 proteins were
randomly selected from the sequence database of Think-
ing Machines. Each protein has between 4 and 20 amino

acids. (An amino acid is represented by a numerical or
alphabetical character.) The inter-protein distances were
computed based on the dayboflscore metric [18].6

With different heuristics, we ran our scheme on these
proteins thirty times, each time using a randomly selected
(distinct) protein as the target. The results for k-closest
match and best-match queries are shown in Figures 6(a)
and 6(b), where k was set to 3.

Comparing Figures 4 and 6, the vahes of PERFO ob-
tained from the proteins are in general higher (i.e. worse)
than those from artificial data. Second, it can be seen
that LUB becomes superior to PR and is very compet-
itive to LLB. A close look at the data reveals why this
happens. In this sample database, there are lots of small
clusters, proteins in which are close to one another. All
the other proteins are (roughly) equally distinct from each
other (and from those in the clusters). Thus, when tar-
gets are members of clusters, LLB (LUB) can quickly lo-
cate the desired proteins, yielding a fairly low PERFO,
whereas a non-member target results in many proteins be-
ing computed.7 This result indicates that in cases where
there exist objects extremely close to a given target, pick-
ing a candidate with the least bound, whether based on
ADM or MIN, is always better than arbitrarily picking
one.

One interesting finding is that for the type 1 query, un-
like uniformly distributed data, the performance of the
heuristics is rather sensitive to the value of k. For exam-
ple, when k is 6, few proteins can be eliminated, regardless
of which heuristic is employed. This happens because all
clusters contain less than 6 proteins; thus in order to get
the 6th closest protein, one needs to compute almost all
proteins in the database.

The values of PERFOR for the k-farthest match and
the worst-match are also much higher than those from
generated data, being over 97% for all heuristics even
when the entire map is precomputed. This is understand-
able, given the observation that most proteins are equally
distant from the target, forcing our scheme to compute
all of them in order to get the farthest ones.

The results for the good-match and bad-match queries

6The dayhoff score metric differs from, albeit is isomorphic
to, a distance metric in the sense that the higher the score be-
tween two proteins, the closer they are. We used the following
formula to compute the distance between two proteins based
on their scores: d(pl, pz) = c - s(pr , pz), where c is an empirical
constant assuring that the difference satisfies the conditions of
distance metrics, and s(p1 ,pz) is the score between proteins pr

md~2.
7For the clustered proteins, our scheme for processing the

type 1 query might be improved by first picking centers of
k clusters and then using LLB (LUB), where the cenler of a
cluster C is the protein p of minimum eccenlricity, and the
eccentricity of p is the distance between p and a protein in C
that is farthest from p.

608

P

E

R

F

0

P

E

R

F

0

-1
0.01 0.1 0.3 0.5 0.7 1

Density
Figure 4(a): k-closest match.

100 1

40-

0.01 0.1 0.3 0.5 0.7 1

Density
Figure 4(d): k-farthest match.

Number of

remaining candidates

90

P 8o

E
60

R

F 40

0

20

80 1
P 7o

E
50

R

F 30

0

10

0.01 011 013 0.5 017 i

Density
Figure 4(b): best-match.

0

Density
Figure 4(c): good-match.

30-L-----
0.01 0.1 0.3 0.5 0.7 1

Density
Figure 4(e): worst-match.

100 “‘=*.-- "':1':':"':_ _.._
P

-z--L --0

E

R
90

F r
0

I
SO-
0.01 0.1 0.3 0.5 0.7 1

Density
Figure 4(f): bad-match.

_____ JJ,B - GLB p--e LUB - GUB PR

Figure 4: Comparison of Heuristics for Various Queries (Artificial Data).

-0

0 10 20 30 40 50 60

Stages elapsed

Type 1, k-closest

- Type 2, best
__-___ Type 3, good
. Type 4, k-farthest

0 0 Type 5, worst
o---a Type 6, bad

Figure 5: Candidate Set Size vs. Stages Elapsed.

609

0.01 011 0.3 015 0.7 i

- 0

R h::- ‘...

70- -:::y.: .

F
‘D:=.-_;.

--::,*

0 6o
-0

0.61 0:1 013 0:5 ~0:7 -;

Density Density
Figure 6(a): k-closest match. Figure 6(b): best-match.

-__-. LLB - GLB *--+ LUB O---a GUB PR

Figure 6: Comparison of Heuristics for Types 1 and.2 Queries (Proteins).

I I I I I I L 1

1 2 4 6 8 10 12 14 16 18

Number of processors
Figure 7(a): Time vs. Number of Processors.

1 2 4 6 8 10 12 14 16 18

Number of processors
Figure 7(b): Work vs. Number of Processors.

proteins, parallelizing without waiting
proteins, parallelizing after 10 stages

artificial data, parallelizing after 10 stages

Figure 7: Parallel Evaluation of Type 1 Query; k = 3.

610

are quite similar to those obtained from uniformly dis-
tributed data, namely the performance of all heuristics is
close and dependent heavily on the value of E.

5.3 Issues in Parallelizing Our
Scheme

A set of programs were written to simulate the execution
of the scheme using multiprocessors for both uniformly
distributed data and proteins. The simulation study used
the following strategy: When p processors are used in
evaluating a query, at each stage these processors take
the top p choices according to its best heuristic, compute
all of them, update the augmented ADM and MIN, and
then eliminate objects (if any) simultaneously. The other
parameters had the values shown in Table 1.

Due to space limitations we cannot present all our re-
sults but have selected two graphs for the type 1 query
to illustrate our findings. Figure i’(a) shows the time our
scheme requires for various number of processors, where
each distance computation is assumed to take one time
unit. Figure 7(b) plots the total work, defined as NumPE
x the number of objects each processor computed, against
the number of processors. Recalling that the size of can-
didate sets decreases fast in the first ten stages and then
slowly as time goes on (cf. Figure 5), one may be in-
terested in knowing whether parallel work would not be
much greater than sequential work if one introduces more
processors only after these stages. Both figures also an-
swer this question.

First, we observe that using more processors is not as
efficient as one might hope. For example, when using 10
processors for uniformly distributed data, one might hope
the query evaluation can be completed in 44/10 = 4.4 time
units; yet empirically nearly 6 time units are needed (Fig-
ure 7(a)). The reason is that processors do useless work:
one may compute an object which could be discarded if
the scheme were executed serially. Second, it can be seen
from Figure 7(b) that for uniformly distributed data, in-
troducing more processors after 10 stages requires much
less work than starting all of the processors from the be-
ginning (the difference is less impressive when the num-
ber of processors is small). Taking an extreme example, if
there are 150 processors available, using them altogether
yields work = 150; in contrast, since 80 objects on the av-
erage can be eliminated in the first 10 stages (cf. Figure
5), using all the processors after these stages yields the to-
tal work = 10 + (150 - 80) = 80 only. Thus to effectively
use processors, it is advisable to delay multiprocessing to
later stages.

The results for proteins support this contention, where
the parallel work for delaying 10 stages is exactly the same
as sequential work. The explanation is somewhat differ-
ent, however. Here, when a target protein belongs to a
cluster, the process can be completed quickly, requiring
less than 10 stages; on the other hand, a non-member tar-
get causes all the proteins to be computed. Thus neither
case yields extra work if our scheme is parallelized after 10
stages. We feel that one would need to test larger files for

various densities before drawing more precise conclusions
about the exact number of stages one should wait and
the work difference between whether to wait. One thing
is clear, however, if there are a large number of processors
available, more benefit can be obtained if one starts using
them in the later stages in evaluating a query.

6 Conclusions

In this paper we have presented a scheme to answering a
class of queries for retrieving similar or dissimilar objects
to a given target from a database. Unlike previously pub-
lished algorithms, the scheme allows the optimum use of
any given precomputed information. We proposed four
heuristics for expediting query processing. Our simu-
lation results showed that of these heuristics, pick least
ioruer bound (LLB) is best when searching for similar ob-
jects, while pick greatest upper bound (GUB) is best when
searching for dissimilar objects. Our results also showed
that when the scheme is executed in a multiprocessor en-
vironment, parallelism is best applied in the later stages
in evaluating a query.

We have not discussed how to maintain an approxi-
mate distance map (ADM) when objects are inserted or
deleted from a database, or when objects are updated in
such a way that distances change. To maintain an ADM,
one could periodically calculate those absent inter-object
distances, or could incrementally update the distance in-
formation using the techniques described in [2, 7, 241.

Our algorithm for approximating a distance map re-
quires O(n3) time, where n is the size of the database.
This may make it infeasible to perform the complete com-
putation in a single run when the database is very large.
For this case, a “divide and conquer” approach can be
useful and we suggest two such strategies to cope with a
sizable file. One is simply to divide the whole database
into several subdatabases, apply our scheme to each to
find the desired objects, and then compare them to get
the final result. The other is to preprocess and maintain
an ADM (MIN) by decomposing the entire map into
m blocks, each being an n/m112 x n/m112 matrix, and
get the best approximation for each block. Then incre-
mentally add the distances between objects that straddle
different blocks and update the bounds for all object pairs
using the algorithm presented in Section 2.3. When eval-
uating queries, the ADM map is obtained by coupling
these blocks and available interblock distance bounds. We
plan to study these alternatives and evaluate their perfor-
mance in the future.

7 Acknowledgements

We are indebted to Jill Mesirov of Thinking Machines for
providing proteins and their pairwise distances used in
Sections 5.2 and 5.3. Kaizhong Zhang made many use-
ful comments on the preliminary drafts of this paper and
is gratefully acknowledged. Thanks are also to Richard

611

Cole, Rakesh AgrawaI, Mitra Basu, and Deepak Sherlekar
for their help in doing this work, and to the anonymous
referees for their constructive suggestions.

References

PI

PI

I31

[41

PI

PI

PI

181

PI

PO1

WI

ml

1131

1141

R. Agrawal and H. V. Jagadish, “Efficient Search
in Very Large Databases”, Proc. 14th Int? Conf.
on Very Large Data Bases, 1988, 407-418.

R. AgrawaI and H. V. Jagadish, “Materialization
and Incremental Update of Path Information”,
Proc. IEEE 5th Int’l Conf. Data Engineering, Los
Angeles, Ca., Feb. 1989, 374-383.

A. V. Aho, J. E. Hopcroft and J. D. Ullman, Data
Structures and Algorithms, Addison-Wesley Pub-
lishing Company, Reading, Mass., 1983.

E. Bertino and W. Kim, “Indexing Techniques
for Queries on Nested Objects”, MCC TR. ACT-
OODS-132-89, March 1989.

J. M. Brayer and K. S. Fu, “The Derivation Dia-
gram of a Web Grammar and Its Application to
Scene Analysis”, 1976 Joint Workshop on Pattern
Recognition and Artificial Intelligence (Hyannis,
Mass., June l-3, 1976), IEEE Publ. 76CH1169-2C,
1976.

W. A. Burkhard and R. M. Keller, “Some Ap
proaches to Best-Match File Searching”, Comm.
ACM 16,4 (Apr. 1973), 230-236.

G. Cheston, “Incremental Algorithms in Graph
Theory”, Tech. Rep. TR 91, Dept. of Comp. Sci.,
Univ. of Toronto, Canada, 1976.

V. Claus, M. Ehrig and G. Rozenberg, Eds.,
Graph- Grammars and Their Application to Com-
puter Science and Biology, Springer-Verlag, 1979.

L. S. Davis and N. Roussopoulos, “Approximate
Pattern Matching in a Pattern Database System”,
Information Systems 5, (1980), 107-119.

U. Dayal, et al., “Simplifying Complex Objects:
The PROBE Approach to Modeling and Query-
ing Them”, Proc. German Database Conf., Darm-
stadt, Apr. 1987.

C. M. Eastman and S. F. Weiss, “Tree Structures
for High Dimensionabty Nearest Neighbor Search-
ing”, Information Systems 7, 2 (1982), 115-122.

R. W. Floyd, “Algorithm 97: Shortest Path”,
Comm. ACM 5, 6 (1962), 345.

K. Fukunaga and P. M. Narendra, “A Branch and
Bound Algorithm for Computing k-Nearest Neigh-
hors”, IEEE Trans. on Computers 24, 7 (July
1975), 750-753.

T. Haerder, H. Schoning and A. Sikeler, “Paral-
lelism in Processing Queries on Complex Objects”,
Proc. Int? Symp. on Databases in Parallel and
Distributed Systems, Austin, TX, Dec. 1988.

[151

P61

[171

I181

WI

PO1

WI

P21

[231

[24l

[251

[261

1271

@I

P91

A. Henrich, H.-W. Six and P. Widmayer, UThe
LSD Tree: Spatial Access to Multidimensional
Point and Non-Point Objects”, Proc. 15th Int’l
Conf. on Very Large Data Bases, 1989, 45-53.

T. Ito and M. Kizawa, “Hierarchical File Organiza-
tion and Its Application to Similar-String Match-
ing”, ACM Trans. on Database Systems 8, 3 (Sep.
1983), 410-433.

B. Kamgar-Parsi and L. N. KanaI, “An Improved
Branch and Bound Algorithm for Computing k-
Nearest Neighbors”, Pattern Recognition Letters
3, 1 (1985), 7-12.

E. Lander, J. P. Mesirov and T. Washington,
“Protein Sequence Comparison on a Data Parallel
Compute?, Proc. Int’l Conf. on Parallel Process-
ing, 1988.

D. T. Lee and F. P. Preparata, “Computational
Geometry - A Survey”, IEEE Trans. on Comput-
ers 93, 12 (Dec. 1984), 1072-1101.

D. J. Lipman and W. R. Pearson, “Rapid and Sen-
sitive Protein Similarity Searches”, Science 227,
(1985), 1435-1441.

.M. Minsky and S. Papert, Perceptrons: An Intro-
duction to Computational Geometry, M.I.T. Press,
Cambridge, Mass., 1969.

J. Orenstein, “Spatial Query Processing in an
Object-Oriented Database System”, Proc. ACM
SIGMOD Int? Conf. on Management of Data,
Washington D.C., May 1986, 326-336.

J. Orenstein, “Redundancy in Spatial Databases”,
Proc. ACM SIGMOD Int’l Conf. on Management
of Data, 1989, 294-305.

S. R. Pawagi, Incremental Graph Algorithms for
Parallel Random Access Machines, Ph.D thesis,
Dept. Comput. Sci., Univ. of Maryland, 1986.

G. Saake, V. Linnemann, P. Pistor and L. Weg-
ner, “Sorting, Grouping and Duplicate Elimina-
tion in the Advanced Information Management
Prototype”, Proc. 15th Int’l Conf. on Very Large
Data Bases, 1989.

H. Samet, “Distance Transform for Images Rep-
resented by ‘Quadtrees”, IEEE Trans. on Pat-
tern Analysis and Machine Intelligence 4, 3 (May
1982), 298-303.

T. Sellis, N. Roussopoulos and C. FaIoutsos, “The
Rt-Tree: A Dynamic Index for Multi-Dimensional
Objects”, Proc. 13th Int’l Conf, on Very Large
Data Bases, 1987.

L. G. Shapiro and R. M. Haralick, “Structural De-
scriptions and Inexact Matching”, IEEE Trans.
Pattern Anal. Mach. Intell. 3 (Sept. 1981), 504-
519.

M. Shapiro, “The Choice of Reference Points in
Best-Match File Searching”, Comm. ACM 20, 5
(May 1977), 339-343.

612

1301 D. Shasha and T. L. Wang, “Optimal Best-Match
Retrieval”, submitted for publication, also avail-
able as NYU Computer Science Tech. Report, TR.
480, Dec. 1989.

[31] M. Stonebraker, B. Rubenstein and A. Guttman,
“Application of Abstract Data Types and Abstract
Indices to CAD Databases”, Proc. Database Week:
Engineering Design Applications, IEEE Computer
Society, 1983.

[321 P. Valduriez, S. Khoshafian and G. Copeland, “Im-
plementation Techniques of Complex Objects”,
Proc. 12th Int? Conf. on Very Large Data Bases,
1986.

1331 S. Warshall, “A Theorem on Boolean Matrices”,
.7. ACM 9, 1 (1962), 11-12.

[341 C. Zaniolo, “The Representation and Deductive
Retrieval of Complex Objects”, Proc. 11th Int?
Conf. on Very Large Data Bases, 1985.

613

