
AN ADAPTIVE DATA PLACEMENT SCHEME FOR PARALLEL
DATABASE COMPUTER SYSTEMS

Ki en

IBM

ABSTRACT

A. Hua’ and Chiang Lee

Mid-Hudson Laboratories
Kingston, NY 12401

The capacity and performance of database man-
agement system (DBMS) using a conventional (von
Newmann-type) computer are limited by the total
I/O channel bandwidth, the aggregate processing
power, and the amount of main memory. With the
advent of micro-processor, memory, and communi-
cation technology, it is econominally feasible to
develop a parallel database computer system. The
parallel processing techniques are employed to utilize
the available resources in a coordinated fashion to
solve the DBMS capacity and performance prob-
lems. Relations in such an environment are declus-
tered into fragments and spreaded across computers.
To achieve the optimal performance in data proc-
essing, it is essential for each computer to have a
perfectly balanced load (i.e., identical amount of
data). However, fragment sizes may vary due to
insertions to and deletions from a relation. To retain
good performance, the system needs to periodically
rebalance data loads among the computers.

In this paper, we present an adaptive data place-
ment scheme which balances computer work loads
during query processing. The entire scheme is built
on top of the popular grid file structure (but not
limited to grid file). The adaptivity of the scheme
and its relevant features are discussed. The cost of
load rebalancing is estimated. The result shows that
under our assumptions, it is always beneficial to
perform load rebalancing before performing a join
on skewed data.

Permission to copy without fee all OI- part of this material i5

granted provided that the topics are not made or Ji~trihutd fog

direct commercial advantage. the VLDB copyright notice and

the title of the publication and it\ date appear. and notice i\ gi\cn

that copying is hy permission of the Vq Large Data B;IW

Endowment. To copy othcrwisc. or to rcpuhlish. rquircs ;I fee

and/or specinl permission from the Endonmcnt.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

1. INTRODUCTIOW

In a database processing environment, the fact
that disk I/O is the main bottleneck has been a con-
sensus according to researches in the past. As the
speed of microprocessors improves rapidly with the
development of RISC technology, the problem
becomes even more serious. It is more than likely
that in the foreseeable future, this situation will not
change. This problem is usually addressed today by
data declustering in which each relation is partitioned
into fragments and spread equally among all disk
drives in the system. For instance, a hashed strategy
is employed in the Teradata DBC/1012]T’er88]. A
randomizing function is applied to the key attribute
of each tuple to select a storage unit A similar
approach is used by the Grace database machine
[Kit84]. This storage structure is very ellicient for
relational operations such as JOIN. However, it
supports some of the other operations, such as
Range-SELECT, very poorly. Gamma [Dew861
offers more flexibility by allowing a relation to be
partitioned in any of three ways: round-robin distrib-
ution, hashed or range partitioned. As implied by its
name, round-robin distributes the tuplcs among all
storage units in a round-robin fashion. The hashed
strategy is similar to that used in the Teradata
DBC/1012. In the range partitioned strategy, each
computing unit is assigned a range of key values in
such a way that the partition of the relation based on
the key attribute will result in a balanced data load at
each computing unit.

The data placement strategies discussed so far are
built around the ideas of hashing and sorting of
relations so that relational operations applied on the
partitioning attribute can be performed very effi-
ciently. These storage structures, however, would

l Author’s current address: University of Central
Florida, Department of Computer Science, Orlando,
Florida 3281 64362.

493

SPJ (supplier-number, part-number,
project-number, quantity)

S (supplier-number, supplier-name, S-city, status)

P (part-number, part_name, color, weight, P-city)

J (project-number, project-name, J-city)

Let’s consider the following queries:

Ql: Find names and cities of those suppliers who
supply parts with quantity 2 50 in any
project.

Q2: Find names, colors and weights of those parts
that are supplied by a supplier located in New
York City.

not be able to support effectively queries that involve
non-partitioning attributes. For instance, for the fol-
lowing database:

To perform Q 1, two relations, S and SPJ need to be
joined over supplier number. To perform 42, S
and P need to be joined with SPJ over attributes
supplier-number and part-number. If the relations
SPJ and S were partitioned into data fragments by
hashing on the common attribute supplier-number,
then Ql will perform very efficiently. On the other
hand, since part-number is not the partitioning attri-
bute of SPY, performing Q2 will require :I re-hash on
part-number and data redistribution, assuming hash-
join is used. This process is typically very expensive.
Similarly, there are queries that need to join P and
SPJ, to join J and SPJ, and to join S, P, J and
SPJ, etc. Therefore, not only the partitioning attri-
bute supplier-number, but also the other attributes
part-number, and project number of relation SPJ
are used frequently in the Fin queries. Another dis-
advantage is that retrieving tuples using a non-
clustering index may involve excessive disk I/O’s. In
the worst case, the retrieval operation can result in k
pages read, where k is the number of qualified tuples.
These drawbacks of the horizontal partitioning
schemes have placed a limit on the performance
improvement of existing parallel database computers.

In this paper, we will present a data placement
scheme in which a relation is declustered into data
fragments and distributed across multiple processing
nodes using multiple attributes of the relation. The
technique used to manage the partitioning informa-
tion is based on the grid file structure originally pro-
posed in [Nie84]. This file structure has the
following key advantages over conventional file
structures:

Since the data partitioning is based on mul-
tiple attributes, relational operations that
involve any of the partitioning attributes can
perform very efftciently.

Since the tuples are clustered on multiple
indices, the number of I/O’s is small even for
secondary key accesses.

We extended this file concept to control data place-
ment in a multiprocessor environment.

Since effective data placement is an important
lever for load balancing, it is normally the deter-
mining factor for the performance of a multi-
processor system. In our design, an initial
distribution algorithm is used to distribute the parti-
tioned data fragments to the storage units. The
primary objective of this distribution algorithm is to
provide a balanced data load for each computing
unit in the system. As time goes on, the initially
balanced load may become disrupted due to data
insertions and deletions. We provide a data redis-
tribution algorithm for the data reorganization in
order to correct this data skew problem. Data reor-
ganization is typically very expensive. Eue to its
high cost, it may be even more desirable to operate
the system in the data skew conditi.on than to
perform the data rebalancing. In Bubba [CopM],
the system estimates the data reorganization cost and
decides whether to tolerate the skewed data or to
perform the data redistribution. In this paper, we
will present a data reorganization technique that
minimizes the redistribution cost so that the system
can rebalance its data load more frequently to avoid
serious data skew. In addition, a split algorithm was
designed, and can be used should the data reorgan-
ization algorithm fail to rebalance the data load due
to an extremely nonuniform distribution of data in
the data space. A merge algorithm is also provided
to combine “adjacent” data fragments whose sizes
drop below a certain threshold due to data deletions.
In the following sections, we will discuss the algo-
rithms in details.

This paper is organized as follows. The design
environment and assumptions are described in
Section 2. The load balancing scheme, including the
initial distribution algorithm and the data reorganiza-
tion algorithm, is introduced in Section 3. The split
and merge algorithms that make our load balancing
more adaptive to a changing environment are pre-
sented in Section 4. In Section 5, we report on an
estimation of savings on redistribution of data for

494

load balancing. Finally, in Section 6, we summarixe
this research and briefly discuss some future work.

2. EWVIROWMEWT AND ASSUMPTIONS

There are basically three different architectures
for multiprocessor database machines: Shared Every-
thing (SE), Shared Disk (SD), and Shared Nothing
(SN) [Bhi88]. In SE architecture, all disks and
memory modules are shared by processors. Data are
equally accessible from all processors. In SD archi-
tecture, each processor can directly access any disk,
but each processor has its own private memory. In
SN architecture, each processor has its own private
memory and dedicated disk devices. There has been
debate about which architecture is superior to the
others, although people generally agree that SN
architecture is more scalable to achieve high system
throughput. For ease of illustration, in this paper we
assume that SN arcbitedure is used as the system
architecture. However, one should note that the
load balancing scheme and its adaptivity are not
limited to the type of architecture being used.

We will call each processor with its associated
private memory and disk system a processing node
(PN). A pool of these PNs are interconnected
through an interconnection network. A relation is
partitioned based on the grid fde concept and distrib-
uted into the PNs. As proposed in [Nie84], a grid
file mainly contains two parts: a number of linear
scales and a multi-dimensional directory. In this
paper, this file structure is used to hold the parti-
tioning information for a SN multiprocessor system.
The linear scales are used to specify the key ranges in
each of the dimensions (keys). The directory con-
tains a number of cells that are formed by parti-
tioning the data space based on the
multi-dimensional key ranges. Each cell thus repres-
ents a cluster of tuples based on the multi-key data
partitioning strategy. Our management scheme is
different from the original grid file [Nie84] in that the
cell entries contain information about a data frag-
ment (e.g., a file) and its host PN instead of the
address of a disk allocate unit (e.g., a page). Each
cell in our directory therefore has two entries:

Cell Size: A number that indicates the number
of tuples being assigned to the cell as
a result of the data partitioning.

ID: The Identification of a PN which cur-
rently has the tuples being assigned to

I

Figure 1. A 2-key partitioning directory

the cell. We will use PNi to denote
the PN whose ID is i.

For instance, a two-key (i.e., only two of the attri-
butes are critical to the application) partitioning
directory is given in Figure 1. In this example, the
directory indicates that there are 4,464 tuples that
satisfies the partitioning predicate:

and these tuples are currently residing in PNM. For
convenience, we will use a large (small) cell to mean
a directory cell with a large (small) number of tuples
assigned to it, and a large (small) PN to signify a PN
that has many (few) tuples assigned to it. Note that
the linear scales are not necessarily divided into equal
intervals.

In this paper, we focus on the data partitioning
problem in a multiprocessor system. Once a relation
has been declustered into partitions, how each parti-
tion is structured locally in a storage system of a PN
is beyond the scope of this paper and will not be dis-
cussed. In general, any uniprocessor file structure
(e.g., conventional indices, grid files) can be used in
conjunction with the proposed partitioning scheme
to implement a complete file system for a multi-
processor database computer.

In the subsequent sections, we will discuss the
management of the partitioning directory and its use
for load balancing in a multiprocessor system. For

495

conciseness in presentation, we assume that each
tuple of a relation is equally likely to be accessed by
a transaction or a query. However, one should note
that the presented algorithms can easily be mod&d
for the case of access skew, a situation in which
some of the tuples are being accessed more fre-
quently than other tuples.

3. THE LOAD BALANCING SCHEME

These notations will be used in the following
sections:

np:

d:

lW’;ll :

&:

Number of processing nodes in the
system.

Number of dimensions in the direc-
tory.

Number of tuples that have been
allocated to PNi.

Number of intervals in the ith dimen-
sion.

IlCi, . , idI1 : Number of tuples in cell c;,, . . , id,
where 1 I 4 I Zj.

IlC’ijll : Number of tuples in the jth largest
cell in PNiv,.

3.1 The Initial Distribution Algorithm

A simple initial distribution scheme is to divide
the linear scales into evenly spaced intervals, and to
assign each cell to a distinct PN. This simple
scheme has a serious problem. If the data are not
uniformly distributed in the data space as in the case
shown in Figure 2, some PNs will have more data
than the other PNs (i.e., data skew). One solution
may be to adjust the partition intervals on the linear
scales so that the cell sixes are about the same. The
complexity of this approach, however, explodes
exponentially as the number of dimensions and the
number of intervals increase.

Alternatively, one can partition the relation into
a much higher number of cells. These cells then can
be assigned to the PNs so as to balance the data load
for each PN. A greedy algorithm to achieve this
goal is given in the box titled “Initial Distribution
Algorithm”.

Conceptually, The allocation algorithm is exe-
cuted by first sorting in descending order the cell
sixes in the incomplete directory (i.e., the ID entries

I--
6

72 162

3 4
6s 63

4

Figure 2. A partitioning example using a simple algo-
rithm

- Initial Distribution Algorithm

1. For each dimension, partition the linear scale
into np equally spaced intervals;

2. Compute llG ,,... id 11 for 1 I 4 I Zi and 1 rj I d;

3. Sort the list of IIGl,...i, 11, where 1 < ii 1~ Ij and
1 <j < d, into descending order. Let LC be
the sorted list.

4. LA IlNPill = 0, 1 I is np;

5. Repeat-Until LC is empty

a. Find a PNi where llNP,j = l~@v (I1NPjll);
/* If there are more than-one PNs that
satisfy this condition, select one arbitrarily.
*‘I

b. Assign the fust (i.e., largest) cell, c ,,..., iA
from LC, to the PNi ;

C* LC= LC\ (C,.....id}; I+ b-nave Gl.....,,,

from LC +I

d* IlNPill = IlNf’ill + llG,, ._., idI ;
End-Repeat;

are yet missing). The cells are then assigned to the
PNs in the sorted order. The assignment is done by
allocating the currently largest cell in the sorted list
to the currently smallest PN. The cell is then
removed from the list. This process is repeated until
the sorted list becomes empty.

An application of this algorithm is illustrated in
Figure 3. In this example, we again assume that the
dimension of the directory is two for clarity. Step 1
of the algorithm divides the directory into 16 cells.
There are four PNs in this example. Note that the
directories shown in Figure 2 and Figure 3 are
assumed to be for the same relation (i.e., same data
distribution in the data space). After sorting the cell
sixes into descending order as stated in steps 2 and 3
in the algorithm, the process of assigning the cells to
PNs as described in step 4 of the algorithm is illus-

496

72 162
4

Result
: Allocate the commpor

data fragmrnt to thr

Figure 3. An example of the initial distribution algorithm

trated in Figure 3. The largest cell (i.e., cell size =
74) is first assigned to PN,; the second, third, and
fourth largest cell are then assigned to PN2, PN3 and
PN, respectively. In this example, PN* now becomes
the smallest PN, and therefore the next (i.e., fifth)
largest cell (i.e., cell siie = 32) is allocated to it.
This process is continued until the smallest cell (i.e.,
cell size = 3) is assigned to PN2.

We see that the proposed algorithm balances the
data load very well for this particular example. In
general, we expect this algorithm to perfi>rm very
well when the number of cells in the diiectory is rel-
atively larger than the number of PNs. In Section 4,
we will present adaptive algorithms (i.e., Split/Merge
algorithms) that decide how many intervals each
dimension should have. These algorithms will also
remove the restriction that the lineCar SC&S are parti-
tioned into evenly spaced intervals. Permitting dif-
ferent interval sizes on linear scales allows us to
handle the non-uniformity in the distribution of data
in the data space.

3.2 The Data Rebalancing Algorithm

As insertions and deletions occur to the local
data in each PN, the size of local files may change so
that gradually, a tortured distribution of file sizes will
appear. This causes unbalanced disk load (i.e., data
skew) to the PNs and degrades overall system per-
formance. In this situation, a redistribution of data
is necessary to resume good system performance.
However, the cost of rebalancing may even be higher
than the cost of processing data in a skewed circum-
stance. For example in Bubba’s design, a simple
data redistribution (was called reorgan&tion in the
original paper) algorithm was proposed. In their
algorithm, the cost of redistribution is estimated
before data in PNs are redistributed. If it is higher
than the cost of processing data under skewed situ-
ation, the redistribution will not be performed. In
other words, the system will tolerate a possibly high
cost on processing skewed data simply because redis-
tribution of the entire relation would cost higher. In
their design, however, the redistribution process did
not take advantage of the already balanced part of
the data within PNs but reshuflle data fragments
entirely. In the proposed algorithm, we minimize
the cost of redistribution so that the system can re-
balance its PN load before data are seriously skewed.
The algorithm is given in the box titled “Data Redis-
tribution Algorithm”.

The main objective of this algorithm is to rebal-
ance the PN loads at as little cost as possible. Bas-
ically, the algorithm fust sorts the cell sizes in each
PN into sorted lists. The second step is an iteration
process. In each iteration, the largest PN (i.e., has
the most data) is determined, and its size (i.e., the
count of retained data records) is used as the basis
for the other PNs to add some more of t,heir own
cells to the respective retaining lists in order 1.0
balance their loads with the largest PN. The priority
for adding cells to a retaining list is to select the
larger cells first. This iteration process continues
unt.il some PN runs out of cells. The remaining cells
are then merged into a single sorted list and they are
allocated to the PNs using the initial distribution
algorithm. We see that this algorithm tries lo leave
as many larger cells at their current host PN as pos-
sible. Only those smaller cells arc moved between
PNs. The attempt to retain the larger cells to their
host PNs provides us a low cost data rebalancing
algorithm. This issue will be treated in more detail
in Section 5.

497

- Data Rebalancing Algorithm -_____

Phase I:

1. Each PN sorts their cell sizes into descending
order. Let Li be the sorted list generated by
PNi: L = {IIC’i,~llv .-., IlCi,kll}.

2. V’i, PNj sends L to a designated coordinator.

Phase II (performed by the coordinator):

1. LetL’i=4andsumi=OforlIiInp

2. Repeat-Until 3, 1 I i I np, 3 I, = 4

Pind j such that sum, = lyj;z(sumJ

/* If there are more then one j that
satisfy this condition, select one arbi-
trarily. *I

For i= 1 toj- 1 and j+ 1 to np do

Repeat-Until (sumi 2 sumi) or
(3, 1 I i I np, 3 l+ = 4)

SUmi = SUtTli + IlC’i,lll;

L’i = L’i IJ {Cj,,>;

L = L \ {C’i,l}; /* Remove C’i,r
from L +/

For each llC’i,~ll E L, rename it to
/c'i.(k - t)l\;

End-Repeat;

End-For;

End-Repeat;

Phase III (performed by the coordinator except
Step 3):

1. Merge L, 1 ZG i < np into a single sorted list
LC;

2. IlNPill = sumi for 1 5 i I np;

3. Apply step 5 of the initial distribution algo-
rithm to l,c;

We give an example to illustrate how the algo-
rithm works. Shown in Figure 4 is still a two-
dimensional directory with 16 cells. Let us assume
that it represents the same fde as in Figure 3 after
some number of insertions and deletions to that file.
For example, the upper-left cell originally contained
18 records. It now contains 7 records. This figure
shows a data skew example in which llNPzll4 IINPdI
(8 1 tuples V.S. 134 tuples respectively).

In Figure 5, we show the rebalancing process and
the fmal result:

I-

Figure 4. A data skew example

Phase lz Each PNi sorts its cell sizes to generate
the sorted lists: I,, = (S8! 46, 13)
LQ = {37,28, 133) LJ = {79,31, 13,7,4}
4 = {64,32, 11,8}. Each PNi then sends its
list Li to a designated coordinator, say PNi.

Phase II:

Iteration 1: After deciding to keep the largest
cell (i.e., 79) in its host PN (i.e., PN3), other
PNs add their larger cells to their retaining
list in such a way as to balance with the
number of tuples in PN3.

Iteration 2: After Iteration 1, PN, becomes the
largest PN (it has 58 + 46 = 104 tuples).
Other PNs then continue to add to their
retaining lists the remaining larger cells with
the attempt to balance their sizes with the
current maximum (i.e., TI = 104). At the
end of this iteration, Phase II is terminated
because PN2 runs out of cells to continue
this phase.

Phase III: We apply the initial distribution algo-
rithm to the leftover cells..

Result:

l PN, has 3 cells and 112 tuples.

l PN2 has 7 cells and 114 tuples.

l PN3 has 2 cells and 110 tuples.

l PN4 has 4 cells and 111 tuples.

Note that the communication required during
the entire redistribution process is only the transfer
of sorted lists of numbers (i.e., cell sizes, not real
tuples) to the designated coordinator and of some
smaller data buckets (containing real tuplcs) among

498

Phow II Phom III

: Allowto ttw cornaponding dda fmgment to
the PN.

Figure 5. A data rebalancing example

PNs. As shown in Figure 5, the smaller data
buckets transferred include two 13-tuple buckets
transferred from PN, and PN, to PN,, one 8-tuple
bucket from PN4 to PN,, one 7-tuple bucket from
PN, to PN,, and one 4-tuple bucket from PN, to
PNI. Larger data buckets are retained to their host
PNs.

Also note that there are a few adjustments that
can be made to further reduce the redistribution cost.
For instance, the coordinator for computing the
redistribution process can be assigned to a PN which
has the most number of cells (not necccssarily the
largest PN). In this strategy, since we avoid
transfering the largest sorted list (of cell size), a small
performance improvement is achieved.

4. ENVIRONMENT ADAPTATION ALGORITHMS

Data distribution changes in real-world applica-
tions. There is a possible situation, although it does
not occur frequently, that the data rebalancing algo-
rithm could fail to restore the system to a load-
balanced state. This would be the case when we
encounter extremely nonuniform data distribution.

For instance, if the largest cell as shown in Figure 4
was 279 instead of 79, it would be imposible to
rebalance the load by simply transfering data frag-
ments among PNs, since 279 is much larger than any
other cells in the directory. In this situation, a
split(s) on the largest cell(s) is necessary before the
data rebalancing algorithm can produce a satisfactory
environment for parallel processing. Unlike the ori-
ginal grid file (Nie84) in which a split is triggered by
the overflow of a data bucket, in our environment a
split is primarily a preprocessing procedure that com-
plements the data rebalancing algorithm in the case
of extremely nonuniform data distribution.

As the data distribution changes, an earlier dense
area in the data space may become sparse later. For
efficiency, the intervals (i.e., cross sections) split
when an area is dense need to be merged when it

becomes sparse. A merge algorithm is designed
accordingly. Interestingly, the split and the merge
algorithms can accomadate the grid partition to the
environment. In the next two sections, we will
present the algorithms. The following additional
notations will be used in the presentation:

RIfi : The Relative Importance Factor of the attri-
bute corresponding to the dimension i. For
instance, RIF, could be determined based on
the frequency of reference. 1 RI&= 1.

l_<i<d

llC,,,,,Jl : The size of the largest cell Cmu in the direc-
tory.

R m.” : The set of cells that lie in the hyper-rectangle
that contains a set of cells located in the nth
interval of the mth dimension. Rm, =
(Cl, id 1 i,,, = n and 1 I b < Zk for k # m}.

iR,,J : The total number of tuples in the hyper-
rectangle, R,,,,.

P. t*. id * The identification of the PN currently -

assigned the cell CiI....,i,. Note that
1 I Pi,. .,_, id I v-

Also, the following binary expression will be used in
the algorithms:

Equal (Pi,. i,+ f’jl, jd) = 0, if Pi*,....i,g = Pjl.....jd

1, otherwise

4.1 The Split Algorithm

A split strategy for grid partitioning was dis-
cussed in [Nie84] which favors some presumably
more important attribute(s) by splitting the corre-
sponding dimension(s) more often than others. Our

499

- Split Algorithm --

1. Find i such that

2. If i is umque

then select the ith dimension as the split
dimension

else the split dimension is selected as the
one with highest RIF among the
dimensions found in Step 1;

3. Find the largest cell C,,,,, in the directory;

4. In the split dimension, determine the split
interval as the one in which C,,, is located;

5. Within the split interval, choose the split
point so as to split C,., into two cells of
equal size;

6. In the directory, split at the split point all the
cells that lie in the split interval.

1

split policy is a little more sophisticated. The pro-
posed algorithm takes into consideration the current
number of intervals (i.e., Ii) on each dimension in
addition to the relative importance factors (i.e.,
RZFs) of the attributes. The split dimension i is
determined. as:

RIfi
-7= max I<j<d

llisd

This expression states that the split dimension
should be chosen as the one that has relatively the
least number of intervals for its relative importance.
The complete algorithm is given in the box titled
“Split Algorithm”.

The computation of the split algorithm can be
performed by a single PN (i.e., the coordinator).
The split point information can then be broadcast to
all the PNs which in turn can update their local
directories (if the directory is replicated on all PNs),
and split the data fragments accordingly. Ntema-
tively, the algorithm can be executed on all PNs to
avoid the communication overhead. This approach,
however, ties up the PNs, impeding other useful
work.

In practice, the split process should be needed
rarely. The majority of nonuniform data distribution
cases would involve many cells and the data place-
ment strategy as described in Section 3 should be
adequate for most situations.

4.2 The Merge Algorithm

Before we present the algorithm, the merge cri-
teria need to be clarified. First, in order to find out
which intervals on what dimension should be
merged, we define

RIF, RIFZ RIFd
-c--x . . . = -

11 12 Id
(1)

This expression states that the number of intervals
on a dimension should be proportional to the RlF
of the corresponding attribute. We define that:

1 <i<d

where llcll is the ideal number of records each cell
should have. For instance, llcll can be selected as:

IICII =
disk I/O unit

tuple size

for efficient I/O performance. Expression (2) speci-
fies that we would like the size of each cell to be
roughly IlCll. Solving expressions ‘(1) and (2), we
obtain that:

IIRII

This is the number of intervals we would like to
have for dimension i given the relation size IlRll and
the RIFs of the partition attributes.

In order to determine if two adjacent intervals
need to be merged, we need to develop a threshold
for the capacity of each interval in the dimension:

The term llRll/li represents an average number of
records that locate in each interval of the ith dimen-
sion. q is a coefficient. In a growing database, it is
unwarranted to merge adjacent int.ervals as soon as
possible. q should be chosen so as to allow a tem-
porarily shrinking interval to grow back to a satisfa?-
tory size. In the related paper [Nie84], the respective
9 was selected to be 70%. This same number would
be appropriate for our purpose. By substituting (3)
into (4), we obtain:

500

- Merge Algorithm

Form= 1 to d Do

Repeat-~t~~ Irma I II&Al + IL+ III < &I = 4
For-n= I to (Zm- I) Do

c,,= $. . .
&l--l ‘In+1

1 C
il = 1 im-l=l (,+]=I

..a f$ (Equal(Pi, ,..., ,,,,-1.~~,+l,... ,ldsf’il,..., ~,-l,n+l.~,+1,..., iJ
z=A(llc II ,..., ,,-~,n,~,+~.....idl,Il~*,....i,-1..+1.i~+*.....idl) 1;

Find min such that Cmin = I,“$- jG);
Fornfmin and l<nsdand~si,sI,Do

VfllG, ,..., im-~,min,i,+~ ,..., idI 5 IlC, q ,..., im-l,min+i,i,+~ ,..., J
then Assiw ceu Gl...., fnr-],min,i,,,+1,.... fd to pil ,..., I,-l.min+l.t,,,+l ,..., id

else Assign Cd G,, im - 1, min + 1. i,,, + ,. id to f’. r*, in - 1, min. im + 1. id 9

Fornfmin and Isnsdand lsbsf,Do

IlC, ,..., i,-l,min,i,+l,..., Jl = IlG, ,..., im-~,min.l,+~ ,..., tdl + IIG, ,..., ~m-~,min+I.i,+~ ,_.., i dl* 9

For k = min + 1 to (I,,, - 1) Do Rename R,,,,k to R,,,,k _ l;

I, = Z” -1;

End-Repeat;

End-For;

1

llR,l(’ -+ > l llcll l n
d

RI5

f3f=tf-
1 ljrd >

RI&
.-.-- (5)

In the merge algorithm, we merge t.wo adjacent cross
sections R, and Rig+, if the sum of their number of
tuples is less then Oi (i.e., llRi,pJl + IlR,, + 111 <Z h’i).

The main idea of the algorithm is to find a pair
of adjacent intervals that satisfy the merge condition,
and whose cost to merge is the least among all merge
candidates. In each iteration, a pair of such intervals
is found and merged. The cost of merging two inter-
vals is determined by the amount of data to be trans-
ferred. Therefore, for a pair of adjacent cells, if their
data are currently located in the same PN, the cost
will be minimum (i.e., 0). The iteration process pro-
ceeds until none of the adjacent intervals satisfy the
merge condition. In the merge algorithm, although a
cell may get reassigned several times to different PNs
during the computation, the reassignments merely
represent the states of the computation. The actual
data transfer needs to be performed only once, after
the merge algorithm has completed and, preferably, a
data rebalancing process has been done In other
words, by comparing the images of the directory

before and after the application of the merge and
data rebalancing algorithms, one can determine the
final destination of the data fragments. In this
fashion, the partition can be refmed with minimal
data transfer cost.

5. AN ESTIMATIOW OF SAVINGS ON LOAD
BALANCE .

In this section, we estimate the savings of using
our algorithm to rebalance the skewed data in PNs
before a join operation. The estimate is obtained by
calculating the load rebalance cost and subtracting it
from the difference of costs of performing join on
skewed data and performing join on non-skewed
(uniformly distributed) data. We compute the
savings for a wide range of skew degrees, and the
results are compared against two simple algorithms.
It is interesting that the cost of our proposed load
rebalancing algorithm is so low that it can be consid-
ered as a pre-processing phase in performing a join
operation, if data skew has appeared. fu the fol-
lowing, we first present an evaluation mc&l. Algo-
rithms and derivation of cost functions are illustrated
next. Finally, the results of comparisons and expla-
nations are described.

501

5.1 Evaluation Model System Parameters

In the evaluation, we compute the cost of joining
two relations, R, and R,. For simplicity, we assume
both of the relations are partitioned on a two-
dimensional 16* 16 grid. Also, for ease of illustration
and simplicity in computation, we assume the cells
in column i are assigned to PN,. Join is performed
on the attribute on the horizontal axis. The parti-
tion intervals in this dimension for both R, and R,
are exactly the same. According to this assumption,
there will be no need to exchange tuples between
PNs during the execution of join. Each PN will
only process its private data. Note that use of any
other way to assign cells to PNs could not only
complicate the estimation task but also cause extra
communication cost for exchanging data. This
simply increases the join cost which in turn enlarges
the savings of rebalancing the load before performing
join operations. Therefore, these assumptions do
not prejudice our case.

P:

Oj$

The CPU processing rate in bfIPS.

The I/O bandwidth between processor
and secondary storage.

~COPlZl4 The communication channel bandwidth
between PNs.

I C-NJ: The CPU pathlength for processing a
tuple in any step of query processing.

Measurement Parameters

The time cost in seconds for disk
accesses.

T COPt4 The time cost in seconds for t.ransferring
data between PNs.

T CPU: The CPU cost in seconds for processing
tuples.

C(Lc): The total cost of the L,C algorithm
(given later).

C(RR): The total cost of the RR algorithm
(given later).

In the join operation, we further assume that the
partitions of R, have data skew, but not those of R,.
Tuples of R2 are uniformly distributed among the
cells. Distribution of R, tuples is a step function, in
which the first column (i.e., data stored in PNI) of
the grid has data skew with a degree of cr x 100X,
where u (0 I 0 I 1) is called the degree of skew. In
other words, the fast column of the cells contains
0 x 100% more tuples than each of the other
columns has. Tuples within each cohlmn are still
uniformly distributed.

C(RH): The total cost of the Rfl algorithm
(given later).

G,,(Jw: The total cost of join execution on
skewed data.

C&JI\?: The total cost of join execution on
uniformly distributed data.

A set of parameters is designed for cost evaluation.
The parameters are similar to those used in [L&38]

Parameters

l Workload Parameters

The relation size is assumed to be 1 million
tuples for each relation. The size of each tuple is
200 bytes. CPU MIPS of each PN is 20. The
bandwidth of disk I/O is 5 MBytes/set and that of
each communication channel among PNs is 10
MBytes/set. The CPU pathlength for processing a
tuple in any step costs 500 instructions.

Finally, note that in the cost computation, the
split and merge costs will not be considered in any
algorithms because they are not expected to be per-
formed frequently in a real-world application.

IlRll:

r:

IICM

IIWI:

6:

The relation size in tuples of both
relation R, and Rz.

The size of a tuple in bytes.

The size of each cell in tuples of the
skewed (first) column in the directory of
RI*
The size of each cell in tuples of the
unskewed columns in the directory of
RI-
The decree of data skew. which is

llal - IlCl”ll ’ defined as 0 = -
IICLII -

5.2 Derivation of Cost Functisns

In this subsection, we derive cost functions of
several data rebalancing algorithms. Since the cost
of our proposed algorithm has been demonstrated to
be low, it is abbreviated as I,C (Low Cost) algorithm
hereafter for the sake of convenience. We also give
two other algorithms, range readjust (RR) and
rehash (RH) algorithms, and derive their cost func-
tions. The join costs with and without data skew

502

are also computed. These costs are t.hcn used to
compute the savings on performing rebalancing on
skewed data.

(1) cost of LC Algorithm.
Recall the LC algorithm presented in Section 3.2

that at the end of phase II, each PN will retain as
much private data as possible and the leftover data
will be distributed evenly to all the PNs. Under the
skew assumption in Section 5.1, all Cl, cells are
retained in their current host PNs. Let xl be the
number of Cl, cells remaining unassigned at the end
of phase II of the algoirthm. We then have

During phase III, these cells are assigned to the
appropriate PNs according to step 5 of the initial
distribution algorithm. Let x2 be the number of Cl,
cells that are kept in PN, by phase III. We then
have

Assuming the cost of computing the LC algorithm is
regligeable comparing to the disk I/O’s and data
transfer cost, we can derive the rebalance cost as

C(LC) = max t
(16 - (x, + ~2)) x IlCl,ll x r -- Wi” ,

’ (16 - (xl + x2jj x pxli x r -____-
Wcomm

>

The first term is the cost to load the tuples to he
transferred, and the second term is the communi-
cation cost for transferring those tuples. Since these
two operations can be performed in parallel, the
maximum of them is counted. Note that the cost to
store tuples back to disks in the receiving PNs is not
in the expression because it is identical to the cost of
loading them in the sending PN, and these two
actions are performed in parallel.

(2) Cost of RR algorithm.
The range readjust algorithm is less intelligent

than the L,C rebalancing algorithm. In this algo-
rithm, the rebalance is accomplished by shifting the
boundaries of the ranges so that data located in each
partition interval are of equal size. Since we have
assumed in this particular example that data of each
column in the directory are mapped to one PN, PN
load will be balanced when the data sizes of the
directory cohunns are equal. This algorithm

- Range Readjust Algorithm ~.------

1. Each PN builds in parallel a local tuple dis-
tribution table which describes the number
of tuples located within each small pre-
determined range;

2. Each PN sends its tuple distribution table to
a designated coordinator;

3. After receiving the local tables from all PNs,
the coordinator finds the new ranges of
tuples that each PN should contain;

4. These new ranges are broadcast to all PNs;
5. Using the newly defined range information,

each PN checks in parallel if any tuples need
to be transferred to other PNs. If so, transfer
them to appropriate PNs.

achieves that by surveying the current, unbalanced
tuple distribution in each PN and readjusting the
range of each PN properly. Tuples not belonging to
the newly defined range need to be transferrecl to the
proper destinating PNs. They determine the com-
munication cost required in this RR algorithm.
Note that the main difference between this algorithm
and the L,C algorithm is that repartitioning of tuples
based on new ranges is required. This is in general
an expensive step. For ease of understanding, a
more detailed English-like description of the algo-
rithm is provided in the box titled “Range Readjust
Algorithm”.

There are two main tasks in the algorithm. The
first task is to load tuples from disk to build a dis-
tribution table in each PN. The second task is to
load the tuples that need to be transferred and send
these tuples to the proper PNs. We have

C(RR) =
16 x IlCldl x r

Wia t

(

16 x (IlClsII - Ilcll) x I
max _. . . _ __ _

Wio ,

16 x #XII - II@ x r
Wcomm

The first term represents the cost for loading tuples
from disk to build the dist.ribution table; the second
term is the cost of loading the affected luples and
sending them to the proper PNs. The G!‘U time is
ignored in this expression. The communication time
for transferring the distribution table and broad-
casting the new range information is also assumed to

503

be negligible. The derivation of the expression is
based on the fact that C(RR) is dictated by the bot-
tleneck PN,, which has skewed data.

(3) Cost of RI1 algorithm.
This algorithm solves the data skew problem by

rehashing tuples in each PN using a new hash func-
tion. More specifically, when a rebalance of load
needs to be performed, each PN will load its data
and hash them into buckets using a pre-determined
hash function. The number of buckets is identical to
the number of PNs in the system. We assume that
the hashing is perfect so that bucket sizes are equal
within each PN. After the hashing stage, buckets are
transferred to their corresponding PNs and the load
of each PN is in perfect balance. Since hashing tech-
niques are often seen in the literature, we presume
that readers can figure out the necessary processes
without a detailed algorithm being provided.

The cost of this algorithm is derived as follows.

(4) Cost of Join under Data Skew.
Since a general hash algorithm is faatcr than the

other (e.g., sort-merge join and nested-block join)
algorithms for join operation under most conditions
[DewX4], we will simply use hash-join as the algo-
rithm in our performance study. Note that use of
any slower algorithm will enlarge the savings, which
is in favor of us as will be seen later, for doing load
rebalancing.

As in other papers [Dew86], we separate a join
operation into two phases: a hash phase and a probe
phase. In the hash phase, tuples of one relation are
hashed and a hash table is built. In the probe phase,
tuples of another relation are used to probe the hash
table. Satisfied tuples will be selected as result.
These two phases are performed sequentially. All
PNs, however, perform each of these two phases in
parallel. The bottleneck PN is still the one having
data skew. Since hash-join algorithms are well-
known, a detailed description is omitted here. The
join cost is computed below.

C(RZ-I) = max(Tj,,Tc~~,Tcomm)

T 16 x IlCLll x lcpu
CPU =

P

T 15 IIRllxr
C”rnrn = -jg- x -

Wcomm

Similar to the previous algorithms, these
equations are obtained by assuming all PNs perform
hash in parallel. Thus, the PN that has data skew
(PN,) causes the bottleneck and dominates the cost
of the algorithm. In the equations, Ti” is the time
cost to load tuples from disk for hashing. We have
assumed that hashed data are stored in a set of com-
munication blocks, each corresponding to a PN.
During the hash process, once a communication
block is full, it is immediately transferred to t.he cor-
responding PN, not written back to the disk. TQ” is
the cost of building hash table in memory. T,,, is
the cost to transfer buckets. Since we have assumed
that this hash is a perfect randomization process,
every tuple will have l/l6 possibility to be kept in
the original PN; or, 1 S/ 16 possibility to be hashed to
those buckets that will be transferred to other PNs.
In total, therefore, there are (15/16)x]]A]] tuples
transferred from their original PN to other PNs.

7’horh = maX(Thorh_io.Tho,hmcpu)

T hash_io = 2 X
16 x]]Cl,]] x f

Wio

,- 16 :~ ll(~4l x r ~.
(I'i.

T 16 x IICLII x ICPU + 16 x]]C2,,]] x zcpu
hash_cpu =

-_-___
P

T proba = maX(Tprak.io.Tprona_=pu)

T
16 x]]Clr]] x r

probbr_io =
Wio

+ 16 x IlCLll y r
Wio

T
16 x]]Cl~]] x ZCFU + 16 x]]CrrU]] x ZCPU

probc_cpu =
--~-

F

(5) Cost of Join Without Data Skew.
In this case, since the size of each cell in the

directory is equal to]]C2,]] for both relations, the cost
of join can be obtained by replacing]]Cl,]] of
C&,#(ZN) with]]C2.]]. The result is as follows.

where “unit’ stands for uniform distribution.

504

Tmecpu = 16 x Ilc2yll x ICPO + 16 x ll~ull x ICPU -----
P

T
16 x IlCLII x r

probe-h =
16 x IICUI x r : --

mie Rio

T
16 x IlnUll x bw + 16 x IlCZtII x ICPU

probe-cpu =

P

5.3 Comparisons And Explanation

Figure 6 shows the cost (in seconds) of per-
forming various rebalancing algorithms versus the
degree of data skew cr. The result shows that the LC
algorithm is consistently the one of least cost among
various algorithms. The RI-1 curve shows a constant
cost within a wide range of u, because T,,, term
dominates C(R7I) for medium and small o’s, and
T wmm does not vary with u. Only when the degree of
skew is extremely large will the T, be petformed
mostly in one PN so as to dominate C(RH). The
RR algorithm performs better than RIJ when Q is
not too high. This is because both the 7’i, and T,,,
in C(M) are low for small 0. When cr is high, the
cost for building the distribution table in the data
skew PN swamps the algorithm’s performance.

Another curve shown in Figure 6 is the effect of
skew, which is defined as Crt&hr) - Cu.&./N). This

is the extra cost in the execution of join under data
skew. Savings can be accordingly defmed a:; follows:

savings = (C,,.,(JiV) - C&JN)) - C(mhalunce)

where C(rebalunce) is the cost of rebalance. There
will be positive savings if a curve of rebalancing cost
is under the curve of skew effect. As shown in
Figure 6, the proposed LC algorithm will always
provide some savings for a join operation. RR
cannot provide any savings until 0 is larger than
0.55. Similarly, RH can provide saving:; only if u is
greater than 0.76. Note that because LC algorithm
consistently provides savings, it can be used as a pre-
processing step before a join on skewed data.

0.1 03 OJ 0.4 0.6 0.0 0.7 0.0 OJ 1.0
Degree of doto skew

mi RR lc -- skmv>

igure 6. Cost comparison of various rebalancing strate
gies and skew effect on JOIN

6. COWCLUSION AND EXTERSIOH OF THIS WORK

In this paper, we present a data-to-processor
mapping and an adaptive load-balancing scheme
within a multi-processor environment. Details of the
algorithms are presented. Our scheme adopts the
well-known grid file concept. However, we have
extended the concept to the allocation of data on
processors, in addition to the originally proposed
idea for data partitioning. We also propose an adap-
tive threshold and a way to measure the proper
number of intervals in each grid dimension, under a
changing environment, for grid split and merge proc-
esses. More importantly, application of our scheme
is not limited to the original grid file only. We
choose the traditional grid fde simply for the ease of
presenting our idea. Any similar grid file structures,
such as [Kit89. Kri88] can be used to implement the
proposed scheme.

We have also evaluated the load-rebalance costs
of the proposed scheme and two other less intelligent
schemes. The result shows that the proposed
scheme can always provide some savings for join
under any degree of data skew. This suggests that
the algorithm can be used as a pre-processing phase
in performing a join operation. For the other
schemes, rebalancing is worth being perlormed only
under medium or high degree of skew.

Currently, we are working on some extensions of
this research. First, a more complex evaluation

505

model for performance comparison needs to be
designed to provide more accurate estimation of the
savings of the rebalancing process. Secondly, WC
have assumed in this research that for each tuple, the
probability of being accessed by queries,/transactions
is identical. This probability can be obt:lirled by col-
lecting statistical information from query/transaction
processing. IIowever, it may be more practical to
collect statistics for each block of data (,or a cell of
tuples in our case) rather than for each tuple. An
open issue is whether to dynamically balance PN
load during run time by giving the access probability
for each cell and the cell sizes. The issue can be
further generalized to consider the multiple join cast,
in which rebalancing the load for each join operation
may not give a better performance than only rebal-
ancing the load for some joins (a typical local
optimum vs. global optimum issue). This is due to
the fact that the accumulated overhead for rebal-
ancing processes can be high. Also, the problem can
be more complex if the number of PNs a.vaiiable for
each join is different.

REFERENCES

[Ben791

[BhisSj

lcowl

[Dew841

[Dew861

Bentley, J. L.,“Multidimensional Binary
Search Trees in Database Applications”,
IEEE Transactions on Software Engi-
neering, Vol. SE-5, No. 4, July 1979,
pp.333-340.

Bhide, A.,“An Analysis of Three Trans-
action Processing Architectures,” Pro-
ceedings of the VLDB Conference, Los
Angeles, Calif., 1988, pp.339-350.

Copeland, G., Alexander, W., Boughter E.,
and Keller, T.,“Data Placement in Bubba”,
Proceedings of the ACM SIGMOD Con-
ference, Chicago, Illinois, June 1988,
pp.99- 108.

Dewitt, D. J., Katz, R. H., Olken, F.,
Shapiro, L. D., Stonebraker, M. R., and
Wood, D.,“Implementation Techniques for
Main Memory Database Systems,” Pro-
ceedings of ACM SIGMOD Conference,
1984, pp.l-8.

Dewitt, D. J. et al,“GAMMA: A Perform-
ance Dataflow Database Machi:le,” Pro-
ceedings of the International Conference on
VLDB, August 1986, pp.228-237.

Kitsuregawa, M., Tanaka, II., and
Moto-oka, T.,“Architecture and perform-
ance of Relational Algebra Machine
GRACE,” Proceedings of the International
Conference on Parallel Processing, Chicago,
Illinois, August, 1984.

Kitsuregawa, M., IIarada, L., and Takagi,
M.,“Join Strategies on KD-Tree Indexed
Relations”, Proceedings of the International
Conference on Data Engineering, 1.0s
Angeles, Calif., Feb. 1989, pp.8593.

Kriegel, I-I. P. and Seeger,
B.,“PLOP-Hashing: A CJrid File without
Directory”, Proceedings of the International
Conference on Data Engineering, 1988,
pp.369-376.

Lakshmi, M. S. and Yu, P. S.,“Effect of
Skew on Join Performance in Parallel
Architectures,” Proceedings of the Intema-
tional Symposium on Databases in Parallel
and Distributed Systems, Austin, Texas,
1988.

Nievergelt, J., Hinterberger, II., and Sevcik,
K. C.,‘The Grid File: An Adaptable Sym-
metric Multikey File Structure”, ACM
Transactions on Database Systems, Vol. 9,
No. 1, March 1984, pp.38-71.

Oskarahan, E. A. and Bozsahin, C.
II.,“Join Strategies Using Data Space Parti-
tioning”, New Generation Computing, Vol.
6, No. 1, 1988, pp.19-39.

Sockut, G. H. and Goldberg, R.
P.,“Database Reorganization - Principles
and Practices,” ACM Compul.ing Surveys,
Vol. 11, No. 4, Dec. 1979.

Su, S. Y. W.,“A Microcomputer Network
System for Distributed Relational Data-
bases: Design, Implementation, and Anal-
ysis,” Journal of Telecommunication
Networks, Vol. 2, No. 3, 1983, pp.307-334.

Teradata Corporation,“DBC/1012 Data
Base Computer Concepts and Facilities,”
Teradata Document CO2-000 l-05, Los
Angeles, Calif., 1988.

506

