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ABSTRACT - In this paper we examine the problem of pro- 
cessing multi-way join queries (on the order of 10 joins) through 
hash-based join methods in a shared-nothing database machine. 
We first discuss how the choice of a format for a complex query 
can significantly affect performance in a multiprocessor database 
machine. Several query processing algorithms are then proposed 
and experimental results obtained from a simulation study are 
presented to demonstrate the tradeoffs of left-deep and right-deep 
scheduling strategies for complex join query evaluation. These 
results demonstrate that right-deep scheduling strategies can pro- 
vi& significant performance advantages in large multiprocessor 
database machines under many circumstances, even when 
memory is limited. 

1. Introduction 
Several important trends have occurred in the last ten years 

which have combined to change the traditional view of database 
technology. Fit, microprocessors have become much faster 
while simultaneously becoming much cheaper. Next, memory 
capacities have risen while the cost of memory has declined. 
Finally. high-speed communication networks have enabled the 
efficient interconnection of multiple processors. All these tech- 
nological changes have combined to make feasible the construc- 
tion of high performance multiprocessor database machines. 

Of course, as with any new technology, there are many open 
questions regarding the best ways to exploit the capabilities of 
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these multiprocessor database machines in order to achieve the 
highest possible performance. Because the join operator is criti- 
cal to the operation of any relational DBMS, a number of papers 
have addressed parallel implementations of the join operation 
including [BARU87, BRAT87. DEWI85. DEW188, KlTS88, 
LU85, SCHN89al. However, these papers have not addressed 
the processing of queries with more than one or two joins. Also, 
the performance impact of alternative formats for representing 
multi-way join queries has received little attention in the context 
of this new environment. The related work that has been done is 
discussed in Section 2. 

In this paper we examine the tradeoffs imposed by left-deep, 
right-deep and bushy query trees in a multiprocessor environ- 
ment when queries contain on the order of ten joins. We focus 
on hash-based join methods because their performance has been 
demonstrated bo be superior in systems with large memories 
[BRAT87. DEW&t. SCHN89a, SHAP86], although we include 
a brief discussion of the sort-merge join algorithm. The tradeoffs 
we consider include the potential for exploiting intra-query paral- 
lelism (and its corresponding effect on performance), resource 
consumption (primarily memory), support for dataflow process- 
ing, and the cost of optimization. The examination of these 
tradeoffs demonstrated the feasibility of the right-deep represen- 
tation strategy and resulted in several new algorithms for pro- 
cessing query trees in this format. As well as providing superior 
opportunities for exploiting parallelism within a query tree, a 
right-deep representation strategy can also reduce the importance 
of correctly estimating join selectivities. This analysis of the 
tradeoffs of the alternative query tree representation strategies 
and a description of several new algorithms for processing right- 
deep query trees is presented in Section 3. 

Because left-deep and right-deep representation strategies 
present the extreme cases among the alternative query represen- 
tation strategies, we were interested in quantitatively examining 
the performance tradeoffs between these two strategies. To per- 
form this analysis, we constructed a multiprocessor database 
machine simulator and implemented scheduling algorithms for 
both of these tree formats. The description of the simulation 
model, its validation, and the experimental results obtained are 
contained in Section 4. Results from this experimental analysis 
confirm the more qualitative results which indicate that right- 
deep trees can indeed provide substantial performance improve- 
ments under many different experimental conditions but that this 
strategy is not optimal under all circumstances. Our conclusions 
and plans for future work are presented in Section 5. 
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Degrees of Parallelism 
There are three possible ways of utilizing parallelism in a 

multiprocessor database machine. Firs4 parallelism can be 
applied to each operator within a query. For example, ten pro- 
cessors can work in parallel to compute a single join or select 
operation. This form of parallelism is termed intra-operator 
parallelism and has been studied extensively by previous 
researchers. Second, inter-operator parallelism can be 
employed to execute several operators within the same query 
concurrently. Finally, inter-query parallelism refers to execut- 
ing several queries simultaneously. In this paper, we specifically 
address only those issues involved with exploiting inter-operator 
parallelism for queries composed of many joins. We defer issues 
of inter-query parallelism to future work. 

Query Tree Representations 
Instrumental to understanding how to process complex 

queries is understanding how query plans are generated A query 
is compiled into a tree of operators and several different formats 
exist for structuring this tree of operators. As will be shown, the 
different formats offer different tradeoffs, both during query 
optimization and query execution. 
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The different formats that exist for query tree construction 
range from simple to complex. A “simple” query tree format is 
one in which the format of the tree is restricted in some manner. 
There are several reasons for wanting to restrict the design of a 
query tree. For example, during optimization, the space of alter- 
native query plans is searched in order to find the “optimal” 
query plan. If the format of a query plan is restricted in some 
manner, this search space will be reduced and optimization will 
be less expensive. Of course, there is the danger that a restricted 
query plan will not be capable of representing the optimal query 
plan. 

Query tree formats also offer tradeoffs at runtime. For 
instance, some tree formats facilitate the use of dataflow schedul- 
ing techniques. This improves performance by simplifying 
scheduling and eliminating the need to store temporary results. 
Also, different formats dictate different maximum memory 
requirements. This is important because the performance of 
hash-based join algorithms depends heavily on the amount of 
available memory [DEW&& SCHN89a, SHAP86]. Finally, the 
format of the query plan is one determinant of the amount of 
parallelism that can be applied to the query. 

Left-deep trees and right-deep trees represent the two extreme 
options of restricted format query trees. Bushy trees, on the 
other hand, have no restrictions placed on their construction. 
Since they comprise the design space between left-deep and 
right-deep query trees, they have some of the benefits and draw- 
backs of both strategies. They do have their own problems, 
though. For instance, it is likely to be harder to synchronize the 
activity of join operators within an arbitrarily complex bushy 
tree. We will examine the tradeoffs associated with each of these 
query tree formats more closely in the following sections. Refer 
to Figures 1. 2 and 3 for examples of left-deep, right-deep, and 
bushy query trees, respectively, for the query A join B join C join 
D. (Note that the character * is used to denote the relational join 
operator.) 

2. Survey of Related Work 
[GERB86] describes many of the issues involved in process- 

ing hash-based join operations in multiprocessor database 
machines. Both inter-operator and intra-operator concurrency 
issues are discussed. In the discussion of inter-operator parallel- 
ism, the tradeoffs of left-deep.. right-deep. and bushy query tree 
representations with regard to parallelism, pipelined data flow, 
and resource utilization (primarily memory) are addressed. 
However, while [GERB86] discusses the basic issues involved in 
processing complex queries in a multiprocessor environmenf it 
does not explore the tradeoffs between the alternative query tree 
representation strategies in great depth. [GRAE90] also supports 
the three alternative query tree formats in the shared-memory 
database machine Volcano, but the tradeoffs are not discussed in 
detail. [GRAE87] considers some of the tradeoffs between left- 
deep and bushy query trees in a single processor environment. 
Analytic cost functions for hash-join. index join, nested loops 
join, and sort-merge join are developed and used to compare the 
average plan execution costs for the different query tree formats. 
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[STON89] describes how the XPRS project plans on utilizing 
parallelism in a shared-memory database machine. Optimization 
during query compilr tion assumes the entire buffer pool is avail- 
able, but in or&r to aid optimization at nmtime, the query tree is 
divided into fragments. At runtime. the desired amount of paral- 
lelism for each fragment is weighed against the amount of avail- 
able memory. If insufficient memory is available, three tech- 
niques are described that can be used to reduce memory require- 
ments. First, a fragment can be decomposed into sequential frag- 
ments. This requires the spooling of data to temporary files. If 
further decomposition is not possible, the number of batches used 
for the Hybrid join algorithm [DEWI can be increased. 
Finally, the level of parallelism applied to the fragment can be 
reduced. 

3. Tradeoffs of Alternative Query Tree Representa- 
tiOIlS 

In this section we discuss how each of the alternative query 
tree formats affects memory consumption, dataflow scheduling, 
and the ability to exploit parallelism in a multi-way join query. 
The discussion includes processing queries in the best case 
(unlimited resources) to more realistic situations where memory 
is limited. 

A good way of comparing the tradeoffs between the alterna- 
tive query tree representations is through the construction of 
operator dependency graphs for each representation strategy. 
In the dependency graph for a particular query tree, a subgraph of 
nodes enclosed by a dashed line represent operators that should 
be scheduled together for efficient pipelining. The directed lines 
within these subgraphs indicate the producer/consumer relation- 
ship between the operators. The bold directed arcs between sub- 
graphs show which sets of operators must be executed before 
other sets of operators are executed, thereby determining the 
maximum level of parallelism and resource requirements (e.g. 
memory) for the query. Either not scheduling the set of operators 
enclosed in the subgraphs together or failing to schedule sets of 
operators according to the dependencies will result in having to 
spool tuples from the intermediate relations to disk. 

The operator dependency graphs presented in this section are 
based on the use of a hash-join algorithm as the join method. In 
this paper, we consider two different hash-join methods, Simple 
hash-join and Hybrid hash-join [DEWI84]. It is assumed that the 
reader is familiar with these join methods although a brief 
description of them is included here. For this description, con- 
sider the join of relations R and S, where R is the smaller joining 
relation. 

The Simple hash-join method is an optimistic algorithm that 

assumes that all the tuples from the smaller’ joining relation R 

’ The smaller relation is always used as the building or inner rela- 
tion in a hash join algorithm in order to minim& the number of times the 
cuter relation must be read from disk. Also by using the smaller relation 
as the inner or building relation, one maximizes the probability that the 
cuter relation will only have M be read once. 

(termed the Building relation) can be staged into a main memory 
hash table. If this assumption fails, overflowing tuples from R 
are dynamically staged to a temporary file on disk. Once all the 
tuples from R have been processed, the tuples from the larger 
relation S (the Probing relation) are processed. As each tuple 
from S is read from disk, the tuple is either used to probe the 
hash table onuainmg mples from R or is written back to disk, if 
hash-table overtlow occurred while building the hash table with 
R (see [SCHN89a] for more details). If hash-table overflow has 
occurred, the overflow partitions of R and S are recursively 
joined using this same procedure. 

The Hybrid hash-join algorithm was developed in order to 
prevent the overflow processing discussed above while utilizing 
as much memory as is available. The key idea is to recognize a 
priori that the join will exceed the memory capacity and partition 
each joining relation into enough disjoint buckets such that each 
bucket will fit into the available memory. As an enhancement, a 
portion of the join result is computed while the two joining rela- 
tions are being partitioned into buckets. 

With hash-join algorithms, the computation of the join opera- 
tion can be viewed as consisting of two phases. First. a hash 
table is constructed from tuples produced from the left input 
stream (relation R. in the above examples). In the second phase, 
tuples from the right input stream (relation S) are used to probe 
the hash table for matches in or&r to compute the join. Since the 
first operation must completely precede the second, the join 
operator can be viewed as consisting of two separate operators, a 
build operator and a probe operator. The dependency graphs 
model this two phase computation for hash-joins by representing 
Joini as consisting of the operators Bi and Pi. The base relations 
to be joined are represented in the operator dependency graphs as 
Si’ signifying the scan of relation i. 

The reader should keep in mind that intra-operator parallelism 
issues are being ignored in this paper. That is, when we discuss 
executing two operators concurrently, we have assumed impli- 
citly that each operator will be computed using multiple proces- 
sors as described in [SCHN89a]. 

3.1. Left-Deep Query Trees 
Figure 4 shows a generic N-join query represented as a left- 

deep query tree and its associated operator dependency graph. 
From the dependency graph it is obvious that no scan operators 
can be executed concurrently. It also follows that the dependen- 
cies force the following unique query execution plan: 

1) Scan Sl - Build Jl 
2) Scan S2 - Probe Jl - Build J2 
3) Scan S3 - Probe J2 - Build J3 
. 

$)S can SN - Probe JN-1 - Build JN 
N+l) Scan SN+l - Probe JN 

The above schedule demonstrates that at most one scan and 
two join operators can be active at any point in time. Consider 
Step N in the above schedule. Prior to the initiation of Scan SN, 
a hash table was constructed from the output of Join N-l. When 
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Left-Deep Query Tree and Dependency Graph 
Figure 4 

the Scan SN is initiated, tuples produced from the scan will 
immediately probe this hash table to produce join output tuples 
for Join N. These output tuples will be immediately streamed 
into a hash table constructed for Join N. The hash table space for 
Join N-l can only be reclaimed after all the tuples from scan SN 
have probed the hash table, computed Join N, and stored the join 
computation in a new hash table. Thus, the maximum memory 
requirements of the query at any point in its execution consist of 
the space needed for the hash tables of any two adjacent join 
operators. 

Limited Memory 
Although left-deep query trees require that only the hash 

tables corresponding to two adjacent join operators be memory 
resident at any point during the execution of any complex query, 
the relations staged into the hash tables are the result of inter- 
mediate join computations, and hence it is likely to be difficult to 
predict their size. Furthermore, even if the size of the intermedi- 
ate relations can be accurately predicted, in a multi-user environ- 
ment it can not be expected that the optimizer will know the 
exact amount of memory that will be available when the query is 
executed. If memory is extremely scarce, sufficient memory may 
not exist to hold even one of these hash tables. Thus, even 
though only two join operators are active at any point in time, 
many issues must be addressed in or&r to achieve optimal per- 
fomMnce. 

[GRAE89] proposes a solution to this general problem by 
having the optimizer generate multiple query plans and then hav- 
ing the runtime system choose the plan most appropriate to the 
current system environment. A similar mechanism was proposed 
for Starburst [HAAS89]. One problem with this strategy is that 
the number of feasible plans may be quite large for the complex 

join queries we envision. Besides having to generate plans 
which incorporate the memory requirements of each individual 
join operator, an optimizer must recognize the consequences of 
intra-query parallelism. For example, if a join operator is optim- 
ized to use most of the memory in the system, the next higher 
join operator in the query tree will be starved for memory. If it is 
not possible to modify the query plan at runtime, performance 
will suffer. 

A simpler strategy may be to have the runtirne query 
scheduler adjust the number of buckets for the Hybrid join algo- 
rithm in or&r to react to changes in the amount of memory avail- 
able. An enhancement to this strategy would be to keep statistics 
on the size of the intermediate join computations stored in the 
hash tables and use this information to adjust the number of 
buckets for join operators higher in the query tree. 

3.2. Right-Deep Query Trees 

Right-Deep Query Tree and Dependency Graph 
Figure 5 

Figure 5 shows a generic rightdeep query tree for an N-join 
query and its associated dependency graph. From the depen- 
dency graph it can easily be determined which operators can be 
executed concurrently and the following execution plan can be 
devised to exploit the highest possible levels of concurrency: 

1) Scan SZ-Build Jl, Scan S3-Build J2, . . ..Scan Sn+l-Build Jn 
2) Scan Sl-Probe Jl-hobe R-...-Probe Jn 

From this schedule it is obvious that all the scan operators but 
Sl, and all the build operators can be processed in parallel. After 
this phase has been completed, the scan Sl is initiated and the 
resulting tuples will probe the first hash table. All output tuples 
will then percolate up the tree. As demonstrated, very high lev- 
els of parallelism are possible with this strategy (especially since 
every operator will also generally have intra-operator parallelism 
applied to it). However, the query will require enough memory 
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to hold the hash tables of all N join operators throughout the 
duration of the query. 

A question arises as to the performance implications of 
dkM.irtg scans S2 through SN+l concurrently. If these opera- 
tors access relations which are declustered over the same set of 
storage sites, initiating all the scans concurrently may be detri- 
mental because of the increased contention at each disk 
[GHAN89]. However, in a large database machine, it is not 
likely that relations will be declustered over all available storage 
sites. Further declustering eventually becomes detrimental to 
performance because the costs of controlling the execution of a 
query eventualIy outweigh the benefits of adding additional disk 
resources [GERB87. COPE88, DEWI88]. In Section 4 we 
present experimental results which illustrate the performance 
implications of the data declustering strategy. 

Limited Memory 
Dealing with limited memory is expected to be a bigger prob- 

lem with right-deep trees than with left-deep trees because more 
hash tables must be co-resident in memory. Also, there is little 
opportunity for runtime query modifications since once the scan 
on Sl is initiated the data flows through the query tree to comple- 
tion. However, it is expected that more accurate estimates of 
memory requirements will be available for a right-deep query 
tree since the left children (the buildiig relations) will always be 
base relations (or the result of applying selection predicates to a 
base relation), while with a left-deep tree the building input to 
each join is always the result of the preceding join operations. 

Several alternative techniques exist for exploiting the poten- 
tial performance advantages of right-deep query trees when 
memory is limited. One strategy (similar to that proposed in 
[STONE89]) involves having the optimizer or runtime scheduler 
break the query tree into disjoint pieces such that the sum of the 
hash tables for all the joins within each piece are expected to fit 
into memory. This splitting of the query tree will, of course, 
require that temporary results be spooled to disk. When the join 
has been computed up to the boundary between the two pieces, 
the hash table space currently in use can be reclaimed. The 
query can then continue execution, this time taking its right-chid 
input from the temporary relation. This scheduling strategy is 
termed static right-deep scheduling. 

A more dynamic strategy, called dynamic bottom-up 
scheduling, schedules the scans S2 to SN+l (Figure 5) in a strict 
bottom-up manner. The scan S2 is first initiated and the resulting 
tuples are used to construct a hash table for the join operator Jl. 
After this scan completes the memory manager is queried to 
check if enough memory exists to stage the tuples expected as a 
result of the scan S3. If sufficient space exists, scan S3 is ini- 
tiated. This same procedure is followed for all scans in the query 
tree until memory is exhausted. If all the scans have been pro- 
cessed, all that remains is for the scan Sl to be initiated to start 
the process of probing the hash tables. However, in the case that 
only the scans through Si can be processed in this first pass, the 
scan Sl is initiated but now the results of the join computation 
through join Ji-1 are stored into a temporary file Sl’. Further 
processing of the query tree proceeds in an identical manner only 

the 8rst scan to be scheduled is Si+l. Also, the scan to start the 
generation of the probing tuples 1s mitiated from the temporary 
file S 1’. Although this strategy sacrifices parallelism in scanning 
the “building” relations, it has some interesting properties when 
certain filtering techniques are applied [GERBgO]. This tradeoff 
will be analyzed in future work. 

Both of these strategies share a common feature of dealing 
with limited memory by ‘breaking” the query tree at one or more 
points. Breaking the query tree has a significant impact on per- 
formance because the benefits of data flow processing are lost 
when the results of the temporary join computation must be 
spooled to disk. Although, we have assumed that enough 
memory is available to hold at least each relation individually 
and, hopefully, several relations simultaneously, this may not 
always be the case. An alternative approach is to preprocess the 
input relations in order to reduce memory requirements. This is 
what the Hybrid join algorithm attempts to do. Below, we dis- 
cuss the use of the Hybrid join algorithm for processing complex 
query trees represented as right-deep query trees. We refer to the 
resulting algorithm as Right-Deep Hybrid Scheduling. 

Result Result 
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Left-Deep Query Tree Right-Deep Query Tree 
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Consider the right-deep join query in Figure 6 and assume 
that each join will be broken into two buckets, with the first 
being staged immediately into memory. The first bucket of A 
(denoted Abl) will join with the first bucket of B to compute the 
tirst half of A*B. Since this is a right-deep tree the first inclina- 
tion would be to probe the hash table for C (actually $1) with 
all these output tuples. However, this cannot be done Immedi- 
ately because the join attribute may be different between C and 
B, in which case the output tuples corresponding to A*B (II) 
must be rehashed before they can join with the first bucket of C. 
Since 11 must use the same hash function as C, 11 must be com- 
posed of two buckets (one of which will directly map to memory 
as a probing segment). Thus, the tuples corresponding to 
Bbl*Abl will be rehashed to Ilbl and Ilb 

Yi 
, with the tuples 

correspondmg to the frrst bucket (about hal the A*B tuples 
assuming uniformity) immediately probing the hash table built 
from Cbl. Again, the output tuples of this first portion of 
A*B*C will be written to the buckets I$.,1 and 12b2. Output 
tuples will thus keep percolating up the tree, but then number 
will be reduced at each succeeding level based on the number of 
buckets used by the respective building relation. Query execu- 
tion will then continue with the join Bb2*Ab2. After all the 
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respective buckets for A*B have been joined, the remaining 
buckets for C*Il will be joined. Processing of the entire query 
tree will proceed in this manner. 

With Right-Deep Hybrid Scheduling (RDHS), some tuples 
will be delivered to the host as a result of joining the first buckets 
of the two relations at the lowest level of the query tree. This is 
not possible with an analogous left-deep or bushy query tree. If a 
user is submitting the query, the quicker feedback will result in a 
faster response time (even though the time to compute the entire 
result may be identical). And, in the case of an application pro- 
gram submitting the query, it may be very beneficial to provide 
the result data sooner and in a more “even” stream as opposed to 
producing the entire result in one step because the computation 
of the application can be overlapped with the processing of the 
join. 

Several questions arise as how to best allocate memory for 
right-deep query trees with the RDHS join algorithm. For 
correctness it is necessary that the fist bucket of EACH of the 
building relations be resident in memory. However, it is NOT a 
requirement that all relations be distributed into the same number 
of buckets. For example, if relation B and D are very large but 
relation C is small, it would be possible to use only one bucket 
for relation C while using additional buckets for relations B and 
D. Hence, the intermediate relation 11 would never be staged to 
disk in any form, rather it would exist solely as a stream of tuples 
to the next level in the query tree. 

As can be seen, RDHS provides an alternative to the static 
and dynamic bottom-up scheduling algorithms described above. 
Whereas these algorithms assumed that enough memory was 
available to hold at least each relation individually and hopefully 
several relations simultaneously, the use of the RDHS algorithm 
potentially reduces the memory requirements while still retaining 
some datafiow throughout the entire query tree. If RDHS can 
use a single bucket for every relation, it becomes equivalent to 
the static right-deep scheduling algorithm. It remains an open 
question as to when one scheduling strategy will outperform the 
other. 

The Case for Right-Deep Query Trees 
(1) Right-deep query trees provide the best potential for exploit- 
ing parallelism. 

(2) In the best case, intermediate join results exist only as a 
stream of tuples flowing through the query tree. 

(3) The size of the ‘building” relations can be more accurately 
predicted since the czudinality estimates are based on predicates 
applied to a base relation as opposed to estimates of the size of 
intermediate join computations. 

(4) Even though bushy trees can potentially re-arrange joins to 
minimize the size of intermediate relations, a best-case right- 
deep tree will never store its larger intermediate relations on 
disk. 

(5) Several strategies exist to deal with limited memory situa- 
tions. “Breaking” the query tree represents a static approach 
while the dynamic bottom-up scheduling algorithm reacts better 

to the amount of memory available at run-time. The RDHS 
strategy can deliver tuples sooner and in a more constant stream 
to the user/application than a similar left-deep query tree can. 

(6) Right-deep trees are generally assumed to be the most 
memory intensive query tree format but this is not always the 
case. Consider the join of relations A, B, C, and D as shown in 
Figure 6 for both a left-deep and a right-deep query tree format. 
Assume the size of all the relations is 10 pages. Furthermore, 
assume that the size of A*B is 20 pages and the size of A*B*C 
is 40 pages. At some point during the execution of the left-deep 
query tree, the results of A*B and A*B*C will simultaneously 
reside in memory. Thus, 60 pages of memory will be required 
in order to execute this query. With a right-deep query tree, 
however, relations B, C and D must reside in memory, but these 
relations will only consume 30 pages of memory. 

(7) The size of intermediate relations may grow with left-deep 
trees in the case where attributes are added as the result of each 
additional join. Since the intermediates are stored in memory 
hash tables, memory requirements will increase. Note that 
although the width of tuples in the intermediate relations will 
also increase with right-deep trees, these tuples are only used to 
probe the hash tables and hence they don’t consume memory for 
the duration of the join. 

3.3. Bushy Query Trees 

Bushy Query Tree 
Figure 7 

Dependency Graph for a Bushy Query Tree 
Figure 8 
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With more complex query tree representations such as the 
bushy query tree for the eight-way join shown in Figure 7, 
several different schedules can be devised to execute the query. 
A useful way of clarifying the possibilities is again through the 
construction of an operator dependency graph. Figure 8 contains 
the dependency graph corresponding to the join query shown in 
Figure 7. By following the directed arcs it can be shown that the 
longest path through the graph is comprised of the subgraphs 
containing the scan operators Sl, S2, S4 and S8. Since the sub- 
graphs containing these operators must be executed serially in 
order to maximize dataflow processing (i.e., to prevent writing 
tuples to temporary storage), it follows that every execution plan 
must consist of at least four steps. One possible schedule is: 

1) Scan Sl-Build Jl, Scan S3-Build J2, Scan SS-Build J3, 
Scan S7-Build J4. 

2) Scan S2-Probe Jl-Build J5, Scan S6-Probe J3-Build J6. 
3) Scan S4Probe J2-Probe R-Build J7. 
4) Scan S8-Probe J4-Probe J6-Probe 17. 

However, notice that non-critical-path operations like Scan 
S7 and Build J4 could be delayed until Step 3 without violating 
the dependency requirements. The fact that scheduling options 
such as the above exist, demonstrates that runtime scheduling is 
more complicated for bushy trees than for the other two tree for- 
mats. As was the case with the other query tree designs, if the 
order in which operators are scheduled does not obey the depen- 
dency constraints, tuples from intermediate relations must be 
spooled to disk and re-read at the appropriate time. 

Limited Memory 
By intelligently scheduling operators it is possible to reduce 

the memory demands of a query represented as a bushy tree. 
Consider again the previous schedule for executing the’7 join 
query. After the execution of Step 1, four hash tables will be 
resident in memory. After Step 2 completes, memory can be 
reclaimed from the hash tables corresponding to join operators Jl 
and J3 but new hash tables for join operators J5 and J6 will have 
been constructed. Only after the execution of Step 3 can the 
memory requirements be reduced to three hash tables (J7, J6, and 
J4). However, it may be possible to reduce the memory con- 
sumption of the query by constructing a different schedule. Con- 
sider the following execution schedule in which we have noted 
when hash table space can be reclaimed: 

1) Scan Sl-Build Jl. 
2) Scan S2-Probe Jl-Build JS-Release Jl, Scan S3-Build J2. 
3) Scan S4-Probe JZProbe JS-Build J7-Release J2 and J5. 
4) Scan SS-Build J3. 
5) Scan S6-Probe J3-Build J6-Release J3, Scan S7-Build J4. 
6) Scan S8-Probe J4Probe J6-Probe J7-Release J4, J6 and J7. 

Although this execution plan requires six steps instead of four, 
the maximum memory requirements have been reduced 
throughout the execution of the query from a maximum of 4 hash 
tables to a maximum of 3 hash tables. If these types of execution 
plan modifications are insufficient in reducing memory demands, 
the techniques described in the last two subsections for left-deep 
and right-deep query trees can also be employed. 

3.4. Issues When Using the Sort-Merge Join Algo- 
rithm 

The use of hash-join methods affects the preceding discussion 
on the achievable levels of parallelism associated with the alter- 
native query tree designs. For example, reconsider the left-deep 
query tree and its associated operator dependency graph in Fig- 
ure 4. With the sort-merge algorithm as the join method, the 
scan Sl does not necessarily have to precede the scan S2. For 
example, the scan and sort of Sl could be scheduled in parallel 
with the scan and sort of S2. The final merge phase of the join 
can proceed only when the slower of these two operations is 
completed. This is in contrast to the strictly serial execution of 
the two scans in order for a hash join algorithm to work properly. 

The modifications to the operator dependency graphs required 
to support the sort-merge join method can be found in 
[SCHN89b]. These modifications are very simple but are not 
presented here due to space limitations. One interesting point to 
note about using the sort-merge join algorithm is that the left- 
deep and right-deep query tree representations become 
equivalent because all the base relations (Sl through SN+l) can 
be scanned/sorted concurrently in either strategy, whereas with 
the hash-join algorithm there is an ordering dependency which 
specifies that the left-child input must be completely consumed 
before the right-child input can be initiated. 

4. An Initial Performance Evaluation of Left-Deep vs. 
Right-Deep Query Trees 

The preceding discussion indicated that a multi-way join 
query represented in a right-deep query tree can potentially offer 
significant performance advantages over the same query 
represented in a left-deep tree. In this section we focus on quan- 
titatively measuring the extent of this performance advantage. 
The reader should note that the goal of the performance evalua- 
tion is to determine the range of possible performance tradeoffs 
between left-deep and right-deep query trees and does not pur- 
port to encompass all possible situations. Rather, the analysis 
will serve to show the feasibility of the strategies proposed for 
processing multi-way join queries. 

As the experimental vehicle for our analysis we chose the 
shared-nothing database machine Gamma [DEWI86, DEWI90]. 
Gamma currently runs on a 32 processor iPSC/2 Intel hypercube 
[INTE88] with one 330 megabyte MAXTOR 4380 (5 l/4”) disk 
directly attached to each Intel 80386 processor. One deficiency 
of the iPSC/2’s I/O system is that it does not provide DMA sup- 
port for disk transfers. Rather, disk blocks are instead transferred 
by the disk controller into a FIFO buffer, from which the CPU 

must copy the block into memory.* A high-speed hypercube con- 
nected network topology using specially designed hardware 
routers is used for communication between processors. 

%ttel was forced to use such a design because the I/O system was 
added after the system had been completed and the only way of doing I/O 
was by using an empty socket on the board which did not have DMA ac- 
cess to memory. 
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Instead of implementing the scheduling algorithms directly 
on Gamma and measuring their performance, we chose to build a 
simulation model of Gamma. There were two reasons for this 
decision. First, we felt it would be simpler and faster to construct 
new scheduling algorithms in a simulator than in the actual sys- 
tem. Second, a simulation model allows us to study the different 
algorithms in hardware configurations much larger than Gamma 
currently provides. 

4.1. Simulation Model 

The simulation model of Gamma is constructed as follows. 
Each node in the multiprocessor system consists of a Disk 
module, a CPU module, a Query Scheduler module, and multiple 
instances of an Gperator module. Additionally, three stand-alone 
modules are provided: a Network module, a File Manager 
module, and a Terminal module. The DeNet simulation 
language [LIVN88] was used to construct the simulator. 

The Disk module schedules disk requests according to an 
elevator algorithm. In order to accurately reflect the hardware 
currently being used by Gamma, the disk module interrupts the 
CPU when there are bytes to be tmnsfened from the I/O 
channel’s FIFO buffer to memory or vice versa. The CPU 
module enforces a FCFS non-preemptive scheduling paradigm 
on all requests, with the exception of these byte transfers to/from 
the disk’s FIFO buffer. Gperator modules are responsible for 
modeling the relational operators select and join. These modules 
repeatedly make requests to the CPU, Disk and Network modules 
in order to perform their particular operation. The Query 
Scheduler module implements the algorithms to process left-deep 
and right-deep query trees. The Network module currently 
models a fully connected network and the Terminal module pro- 
vides the entry point of new queries. Finally, the File manager 
keeps track of how many files are defined, what disks each file is 
&clustered over, and the number of pages of each file on each 
disk. An assignment of each page in a file to a physical disk 
address is maintained. This physical assignment of file pages 
allows for more accurate modeling of sequential as well as ran- 
dom disk accesses. 

4.2. Simulation Model Validation 

In order to provide more faith in the results from the mul- 
tiprocessor database machine simulator, we validated the simula- 
tor against results produced by Gamma. For the validation pro- 
cedure, the system was configured to use 18 KByte disk pages 
and 8 KByte network pages. Costs associated with basic opera- 
tions on this machine and relevant system parameters are sum- 
marized in Table 1. 

To validate the simulation model we present the performance 
of both a 10% selection query and a join query in a system with 
5-30 processors with disks. Expanded versions of the Wisconsin 
Benchmark relations [sI‘IT83] serve as the test database. The 
selection query retrieves 100,000 tuples from a l,OOO.OOO tuple 
relation and stores the resulting tuples back into the database. As 
shown in Figure 9, the simulation model matches with observed 
Gamma performance very closely for this query. However, the 

Disk Parameters 
Average Seek Time 16msec 
Average Settle Time 2msec 
Average Latency O-16.67 msec (Unit) 
Transfer Rate 1.8 MBytes/set 
Disk Page Size 18 KBytes 
Xfer Diik Page from SCSI to mem 9000 instructions 

Network Parameters 
Maximum Packet Size 8 KBytes 
Send 100 bytes 0.6 msec 
Send 8 192 bytes 5.6 msec 

Cpu Parameters 
Instructions/Second 4,000,000 
Read 18K Disk Page 32,800 instructions 
Write 18K Disk Page 61,500 instructions 

Miscellaneous 
Tuples/Network Packet 36 
Tuples/Disk Page 82 
Number of Sites 5-30 

Simulation Parameters for Model Validation 
Table 1 

actual error is greater than implied because Gamma uses a one 
page readahead mechanism when reading pages horn a file 
sequentially. The performance implications of this mechanism 
are discussed in more detail below. 

In order to validate join performance in the model, we joined 
a l,OOO,fKlO tuple relation (200 megabytes) with a 100,000 tuple 
relation (20 megabytes) to produce a 100,000 tuple result relation 
(40 megabytes). As illustrated by Figure 9, the simulation model 
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overestimates the response time for this query by a constant fac- 
tor of 20% over the range of 5 to 30 processors with disk. We 
attribute much of this modeling inaccuracy to be related to 
Gamma’s use of a one page readahead mechanism when scan- 
ning a file sequentially. Since join queries are very CPU inten- 
sive operations, Gamma can effectively overlap most of the CPU 
costs of constructing and probing the hash table with the disk I/O 
necessary for reading the joining relations. This should not 
imply, though, that the model is overpredicting performance by 
20% for the selection query presented in Figure 9. The CPU 
requirements of this query are much lower and thus the extent of 
the overlap of CPU and disk processing is much more limited. 
This claim is further supported by the fact that the simulation 
model accurately predicts execution times for selection queries 
which use a non-clustered B-tree access. These queries generate 
a series of random disk requests and hence readahead is not 
employed. 

4.3. Experimental Design 

As stated in the beginning of the section, the experiments 
were designed to present the range of performance differences 
between left-deep and right-deep query trees. For the experi- 
ments conducted, the query suite consisted of join queries com- 
posed of 1, 2. 4, and 8 joins. In order to simplify the analysis, 
though, the queries were highly constrained. For example, the 
queries were designed such that the size of the result relation is 
constant regardless of the number of joins in the query or the 
query tree representation. This was accomplished by making all 
relations the same size and by setting the join “probe-ability” fac- 
tor to 1 for every join in the query tree. That is, each probing 
tuple joins with exactly one building tuple. Constraining queries 
in this manner allowed for a direct comparison between a query 
represented as a left-deep tree and its analogous right-deep tree. 
Comparing randomly generated queries could be misleading 
because an optimizer would most certainly produce different 
plans for the same query given the different query tree formats. 

The database was composed of nine l,OOO,OOO tuple relations 
and each relation has a selection predicate applied to it which 
reduces the output cardinality to 500,000 tuples. Since input 
tuples are 208 bytes wide and attributes are not added with each 
successive join, the result cardinality of ALL the joins was 
500,000 tuples, each 208 bytes wide. All result relations were 
written back into the database. A parallel version of the Simple 
hash-join algorithm [DEWI84, SCHN89a] was used as the join 
method and, unless otherwise stated, enough main memory 
existed to guarantee that hash table overflow would never occur, 
regardless of the number of concurrent join operations. In order 
to more accurately predict performance for “typical” database 
machines, a 25% buffer pool hit ratio was specified in order to 
model a disk prefetch mechanism. Response time for the queries 
is measured from the time the query plan is submitted to the data- 
base machine until the query is fully computed. 

Four major experiments are reported here. The first experi- 
ment considers performance differences in an environment where 
the declustering of the joining relations forces a high level of 
resource contention. In the second experiment, the environment 

is changed to ensure a low level of resource contention. In the 
third and fourth experiments, the first two experiments are 
repeated in an environment where memory for joining is limited. 

4.3.1. High Resource Contention Environment 

In a database machine with a relatively small number of pro- 
cessors, it is likely that large relations will be declustered over all 
the available nodes. Thus, executing multiple scan and join 
operators concurrently will result in a high degree of resource 
contention. For these experiments, the system was configured 
such that each relation was declustered over 50 nodes. Each join 
in the query tree was also processed on all 50 nodes. 
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The results of these full declustering experiments are shown 
in Figure 10. For each join query, the performance of the right- 
deep query tree is approximately 15.20% faster than for its 
analogous left-deep query tree (left-deep and right-deep query 
trees are identical for single join queries). This performance 
improvement occurs because the disks are not fully utilized, and 
thus executing the scans in parallel for the right-deep trees pro- 
vides a performance advantage. Note, that the maximal memory 
requirements for left-deep and right-deep query trees is identical 
for 1 and 2 join queries, but is twice as high for right-deep 
queries with 4 joins and four times as high with 8 joins. Thus, 
when all the relations to be joined are declustered over the same 
set of nodes, the benefits provided by using right-deep query 
trees cannot be maintained relative to the amount of memory 
consumed as the number of joins in the query increases. 

4.3.2. Low Resource Contention Environment 

In this next set of experiments we repeated the previous 
experiments in a machine with more processors and where rela- 
tions are declustered over a subset of nodes and hence, resource 
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contention is reduced when executing several operators con- 
currently. The system was configured as follows. Each of the 
nine l,OOO,OOO tuple relations was declustered over 10 distinct, 
non-overlapping nodes. Each join was also processed on the 10 
processors on which its “building” relation was declustered. 
Given these conditions, the number of processors actively part- 
cipating in each query during the scanning of relations and the 
building/probing of hash tables increased as the number of joins 
in the query increased. For example, in the 2-join query 30 
nodes were used, and in the S-join query 90 nodes were used. 
Regardless of the number of joins in the query, each result rela- 
tion was declustered over all 90 nodes. 

As illustrated by Figure 11, left-deep query trees are unable to 
take advantage of the hardware resources that become available 
as additional joins are added to the query. This is to be expected 
because relations must be scanned one at a time when a left-deep 
query tree is employed. However, for right-deep query trees, a 
nearly constant response time is maintained as the number of 
joins is increased from one to eight. This may appear startling 
but can be easily explained given the experimental parameters. 
Consider the first step in executing the query - scanning the 
“building” relations and constructing the corresponding hash 
tables. Since all relations are the same size and have the same 
selectivity factor applied, and since all the relations are 
declustered o&r distinct nodes and the join nodes correspond to 
the base relation declustering nodes, each scan can be executed 
completely in parallel and without interference. Thus, the cost of 
this operation is constant regardless of the number of joins (disre- 
garding the small overhead necessary for initiating the opera- 
tors). 
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The second phase (the “probing” phase) can scale with the 
number of joins due to the effect of pipelining. As tuples are 
produced from a lower join they are immediately sent across the 
network to participate in the next level of the join. Thus, pro- 
cessing of tuples in different levels of the tree are overlapped. 
Viewed another way, the throughput of the pipeline is constant 
regardless of the depth of the join tree and the difference in 
response time as the number of join levels increases is due to the 
increased latency to initiate and terminate the pipeline. 

The results contained in Figure 11 represent the best-case per- 
formance improvements of rightdeep query trees. All experi- 
mental parameters were set to allow the parallelism potential of 
the right-deep strategy to be exploited to its fullest. Under more 
realistic conditions, the performance improvements of right-deep 
query trees will fall between the extremes presented in Figures 
10 and 11. However, it should be noted that the right-deep query 
with eight joins required four times more memory than any of the 
left-deep join queries. The results do demonstrate, though, the 
extreme performance benefits that can be obtained with a right- 
deep strategy. 

4.3.3. Limited Memory Experiments 
In this set of experiments we relaxed the assumption that an 

unlimited amount of memory exists. All query and model 
parameteis are identical to those reported in the previous section 
with the exception that we only considered the query with 8 
joins. High resource and low resource contkntion (full decluster- 
ing and disjoint declustering) experiments were again conducted. 
The static right-deep scheduling strategy (see Section 3.2) was 
used for processing right-deep query trees. 

In order to model a limited memory environment, we 
modified the aggregate amount of memory available for joining 
relative to the memory required to stage all eight “building” rela- 
tions into memory simultaneously. Response time was plotted 
for left-deep and right-deep strategies for x-axis values ranging 
from a value of 0.25, where only 2 of the 8 building relations 
could co-reside in memory, to a value of 1.00. where all 8 build- 
ing relations can fit in memory simultaneously. X-axis values 
less than 0.25 would have required resolution of memory 
overflow for left-deep query trees and are not reported. For the 
static right-deep strategy it was assumed that the optimizer could 
perfectly predict scan selectivities and thus could always choose 
the optimal places to “break” the query tree. 

4.3.3.1. Limited Memory - High Resource Contention 
In Figure 12, the performance of the left-deep and static 

right-deep scheduling algorithms are shown as the amount of 
available memory is varied in an environment where all base 
relations are declustered across all 50 sites. Three observations 
should be noted from this figure. First, it is obvious that the left- 
deep scheduling algorithm is not able to take advantage of 
memory as it is added. In contrast, the static right-deep schedul- 
ing algorithm demonstrates significant performance improve- 
ments with additional memory. Next, the cross-over point in the 
graphs demonstrates the fact that “breaking” the query tree into 
too many pieces can be detrimental to the performance of right- 
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deep scheduling algorithms. For example, at the x-axis value 
0.25, the tree had to be broken into three pieces to ensure that the 
right-deep strategy did not experience memory overflow (requir- 
ing the writing and subsequent reading of temporary join compu- 
tations to and from the disk at three points during query execu- 
tion). The last point to note is the flatness of the right-deep 
scheduling graph from 0.5 to just before 1.0. Over this range, the 
query tree had to be broken into only two pieces. Since the 
queries produced intermediate relations of a constant size regard- 
less of the number of joins in the query, the placement of the 
“break” has no effect on performance because the same number 
of tuples are temporarily staged to disk. Under more likely con- 
ditions of growing or diminishmg temporary join size results, the 
selection of the break points for a query will almost certainly 
have some effect on the execution time of the query. This will be 
explored in a future performance analysis. 

4.3.3.2. Limited Memory - Low Resource Contention 
In Figure 13, we present the execution time of the left-deep 

and right-deep scheduling strategies for the 8-join query when 
the relations to be joined are declustered over mutually disjoint 
processors with disks. The simulation parameters are identical to 
those reported in Section 4.3.2. 

The results are very similar to those shown in Figure 12, i.e., 
the shape of the curves is identical. It is obvious though, that the 
partial declustering environment offers additional performance 
advantages for right-deep scheduling strategies even when 
memory is not unlimited. This is very encouraging because, as 
stated earlier, it is likely that relations will be partially 
declustered in database machines with large numbers of 
processors/disks. 

480- 

420 - 

360. 

BI 

Left Deep 

5. Conclusions 
In this paper, we haveGlescribed many of the problems and 

tradeoffs associated with the task of processing queries com- 
posed of many joins in a multiprocessor database machine. In 
particular, we focused on how the strategy chosen to represent a 
query tree affects the degree to which parallelism can be applied 
within a query and the corresponding effects on performance, the 
resource consumption of the query, and the extent that dataflow 
processing techniques can be applied. Hash based join methods 
were assumed for much of this analysis although the sort-merge 
join method was discussed briefly. 

Results obtained from this analysis indicate that the right- 
deep query representation strategy is well suited to exploit the 
parallelism inherent in large multiprocessor database machines. 
As an added benefit, the importance of accurately estimating join 
selectivities is potentially reduced when using right-deep query 
trees. These results encouraged us to develop several algorithms 
for processing queries represented in this query tree format. 

In order to quantitatively measure the performance benefits 
that right-deep query trees can provide over their corresponding 
left-deep query trees, we constructed a simulation model of a 
parallel database machine and implemented scheduling algo- 
rithms for processing queries represented in these formats. 
Experimental results from the analysis of these algorithms 
confirmed that right-deep query trees can offer very significant 
performance advantages in large database machines. However, 
the extent of the performance improvement is strongly dictated 
by the physical placement of the base relations and comes at the 
cost of increased resource consumption. Furthermore, when 
memory is limited the performance difference between the 
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scheduling algorithms diminishes. 

Our future work includes extending the current study to 
include a much richer mix of queries, selectivity factors, and base 
relation cardinalities. ‘We are also interested in studying the per- 
formance of the alternative query processing algorithms under 
multiuser workloads and with skewed data distributions. 
Although multiuser performance comparisons were beyond the 
scope of this paper, the memory requirements of a query will 
serve as a good indicator of potential throughput because 
memory is so crucial to high performance query processing, 
especially with the hash-join algorithms. We hope to apply the 
technique of Adaptive Sampling [LIPT90a, LIPT90b] to help 
tackle the problem of skew. 
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