
Tradeoffs in Processing Complex Join Queries
via Hashing in Multiprocessor Database Machines

Donovan A. Schneider
David J. Dewitt

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT - In this paper we examine the problem of pro-
cessing multi-way join queries (on the order of 10 joins) through
hash-based join methods in a shared-nothing database machine.
We first discuss how the choice of a format for a complex query
can significantly affect performance in a multiprocessor database
machine. Several query processing algorithms are then proposed
and experimental results obtained from a simulation study are
presented to demonstrate the tradeoffs of left-deep and right-deep
scheduling strategies for complex join query evaluation. These
results demonstrate that right-deep scheduling strategies can pro-
vi& significant performance advantages in large multiprocessor
database machines under many circumstances, even when
memory is limited.

1. Introduction
Several important trends have occurred in the last ten years

which have combined to change the traditional view of database
technology. Fit, microprocessors have become much faster
while simultaneously becoming much cheaper. Next, memory
capacities have risen while the cost of memory has declined.
Finally. high-speed communication networks have enabled the
efficient interconnection of multiple processors. All these tech-
nological changes have combined to make feasible the construc-
tion of high performance multiprocessor database machines.

Of course, as with any new technology, there are many open
questions regarding the best ways to exploit the capabilities of

This research was partially supported by the Defense Advanced
Research Projects Agency under contract NOW39-86-C-0578. by the Na-
tional Science Foundation under grant DCR-8512862. by a Digital Equip-
ment Corporation External Research Grant, and by a research grant from
the Tandem Computer Corporation. Funding was also provided by a
DARPA/NASA sponsored Graduate Research Assistantship in Parallel
Processing.

Permission to copy without fee all or part of thii material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base En-
dowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 16th VLDB Conference
Brisbane, Australia 1990

these multiprocessor database machines in order to achieve the
highest possible performance. Because the join operator is criti-
cal to the operation of any relational DBMS, a number of papers
have addressed parallel implementations of the join operation
including [BARU87, BRAT87. DEWI85. DEW188, KlTS88,
LU85, SCHN89al. However, these papers have not addressed
the processing of queries with more than one or two joins. Also,
the performance impact of alternative formats for representing
multi-way join queries has received little attention in the context
of this new environment. The related work that has been done is
discussed in Section 2.

In this paper we examine the tradeoffs imposed by left-deep,
right-deep and bushy query trees in a multiprocessor environ-
ment when queries contain on the order of ten joins. We focus
on hash-based join methods because their performance has been
demonstrated bo be superior in systems with large memories
[BRAT87. DEW&t. SCHN89a, SHAP86], although we include
a brief discussion of the sort-merge join algorithm. The tradeoffs
we consider include the potential for exploiting intra-query paral-
lelism (and its corresponding effect on performance), resource
consumption (primarily memory), support for dataflow process-
ing, and the cost of optimization. The examination of these
tradeoffs demonstrated the feasibility of the right-deep represen-
tation strategy and resulted in several new algorithms for pro-
cessing query trees in this format. As well as providing superior
opportunities for exploiting parallelism within a query tree, a
right-deep representation strategy can also reduce the importance
of correctly estimating join selectivities. This analysis of the
tradeoffs of the alternative query tree representation strategies
and a description of several new algorithms for processing right-
deep query trees is presented in Section 3.

Because left-deep and right-deep representation strategies
present the extreme cases among the alternative query represen-
tation strategies, we were interested in quantitatively examining
the performance tradeoffs between these two strategies. To per-
form this analysis, we constructed a multiprocessor database
machine simulator and implemented scheduling algorithms for
both of these tree formats. The description of the simulation
model, its validation, and the experimental results obtained are
contained in Section 4. Results from this experimental analysis
confirm the more qualitative results which indicate that right-
deep trees can indeed provide substantial performance improve-
ments under many different experimental conditions but that this
strategy is not optimal under all circumstances. Our conclusions
and plans for future work are presented in Section 5.

469

Degrees of Parallelism
There are three possible ways of utilizing parallelism in a

multiprocessor database machine. Firs4 parallelism can be
applied to each operator within a query. For example, ten pro-
cessors can work in parallel to compute a single join or select
operation. This form of parallelism is termed intra-operator
parallelism and has been studied extensively by previous
researchers. Second, inter-operator parallelism can be
employed to execute several operators within the same query
concurrently. Finally, inter-query parallelism refers to execut-
ing several queries simultaneously. In this paper, we specifically
address only those issues involved with exploiting inter-operator
parallelism for queries composed of many joins. We defer issues
of inter-query parallelism to future work.

Query Tree Representations
Instrumental to understanding how to process complex

queries is understanding how query plans are generated A query
is compiled into a tree of operators and several different formats
exist for structuring this tree of operators. As will be shown, the
different formats offer different tradeoffs, both during query
optimization and query execution.

Result Result

/
Join Join

I2
?I r2

12

Join D A Join

(((A * B) * Cl * D) (A * @ * (C * D)))
Left-Deep Query Tree Right-Deep Query Tree

Figure 1 Figure 2
Result

t
.’ .
iom

((A * B) * (C * W

Bushy Query Tree
Figure 3

The different formats that exist for query tree construction
range from simple to complex. A “simple” query tree format is
one in which the format of the tree is restricted in some manner.
There are several reasons for wanting to restrict the design of a
query tree. For example, during optimization, the space of alter-
native query plans is searched in order to find the “optimal”
query plan. If the format of a query plan is restricted in some
manner, this search space will be reduced and optimization will
be less expensive. Of course, there is the danger that a restricted
query plan will not be capable of representing the optimal query
plan.

Query tree formats also offer tradeoffs at runtime. For
instance, some tree formats facilitate the use of dataflow schedul-
ing techniques. This improves performance by simplifying
scheduling and eliminating the need to store temporary results.
Also, different formats dictate different maximum memory
requirements. This is important because the performance of
hash-based join algorithms depends heavily on the amount of
available memory [DEW&& SCHN89a, SHAP86]. Finally, the
format of the query plan is one determinant of the amount of
parallelism that can be applied to the query.

Left-deep trees and right-deep trees represent the two extreme
options of restricted format query trees. Bushy trees, on the
other hand, have no restrictions placed on their construction.
Since they comprise the design space between left-deep and
right-deep query trees, they have some of the benefits and draw-
backs of both strategies. They do have their own problems,
though. For instance, it is likely to be harder to synchronize the
activity of join operators within an arbitrarily complex bushy
tree. We will examine the tradeoffs associated with each of these
query tree formats more closely in the following sections. Refer
to Figures 1. 2 and 3 for examples of left-deep, right-deep, and
bushy query trees, respectively, for the query A join B join C join
D. (Note that the character * is used to denote the relational join
operator.)

2. Survey of Related Work
[GERB86] describes many of the issues involved in process-

ing hash-based join operations in multiprocessor database
machines. Both inter-operator and intra-operator concurrency
issues are discussed. In the discussion of inter-operator parallel-
ism, the tradeoffs of left-deep.. right-deep. and bushy query tree
representations with regard to parallelism, pipelined data flow,
and resource utilization (primarily memory) are addressed.
However, while [GERB86] discusses the basic issues involved in
processing complex queries in a multiprocessor environmenf it
does not explore the tradeoffs between the alternative query tree
representation strategies in great depth. [GRAE90] also supports
the three alternative query tree formats in the shared-memory
database machine Volcano, but the tradeoffs are not discussed in
detail. [GRAE87] considers some of the tradeoffs between left-
deep and bushy query trees in a single processor environment.
Analytic cost functions for hash-join. index join, nested loops
join, and sort-merge join are developed and used to compare the
average plan execution costs for the different query tree formats.

470

[STON89] describes how the XPRS project plans on utilizing
parallelism in a shared-memory database machine. Optimization
during query compilr tion assumes the entire buffer pool is avail-
able, but in or&r to aid optimization at nmtime, the query tree is
divided into fragments. At runtime. the desired amount of paral-
lelism for each fragment is weighed against the amount of avail-
able memory. If insufficient memory is available, three tech-
niques are described that can be used to reduce memory require-
ments. First, a fragment can be decomposed into sequential frag-
ments. This requires the spooling of data to temporary files. If
further decomposition is not possible, the number of batches used
for the Hybrid join algorithm [DEWI can be increased.
Finally, the level of parallelism applied to the fragment can be
reduced.

3. Tradeoffs of Alternative Query Tree Representa-
tiOIlS

In this section we discuss how each of the alternative query
tree formats affects memory consumption, dataflow scheduling,
and the ability to exploit parallelism in a multi-way join query.
The discussion includes processing queries in the best case
(unlimited resources) to more realistic situations where memory
is limited.

A good way of comparing the tradeoffs between the alterna-
tive query tree representations is through the construction of
operator dependency graphs for each representation strategy.
In the dependency graph for a particular query tree, a subgraph of
nodes enclosed by a dashed line represent operators that should
be scheduled together for efficient pipelining. The directed lines
within these subgraphs indicate the producer/consumer relation-
ship between the operators. The bold directed arcs between sub-
graphs show which sets of operators must be executed before
other sets of operators are executed, thereby determining the
maximum level of parallelism and resource requirements (e.g.
memory) for the query. Either not scheduling the set of operators
enclosed in the subgraphs together or failing to schedule sets of
operators according to the dependencies will result in having to
spool tuples from the intermediate relations to disk.

The operator dependency graphs presented in this section are
based on the use of a hash-join algorithm as the join method. In
this paper, we consider two different hash-join methods, Simple
hash-join and Hybrid hash-join [DEWI84]. It is assumed that the
reader is familiar with these join methods although a brief
description of them is included here. For this description, con-
sider the join of relations R and S, where R is the smaller joining
relation.

The Simple hash-join method is an optimistic algorithm that

assumes that all the tuples from the smaller’ joining relation R

’ The smaller relation is always used as the building or inner rela-
tion in a hash join algorithm in order to minim& the number of times the
cuter relation must be read from disk. Also by using the smaller relation
as the inner or building relation, one maximizes the probability that the
cuter relation will only have M be read once.

(termed the Building relation) can be staged into a main memory
hash table. If this assumption fails, overflowing tuples from R
are dynamically staged to a temporary file on disk. Once all the
tuples from R have been processed, the tuples from the larger
relation S (the Probing relation) are processed. As each tuple
from S is read from disk, the tuple is either used to probe the
hash table onuainmg mples from R or is written back to disk, if
hash-table overtlow occurred while building the hash table with
R (see [SCHN89a] for more details). If hash-table overflow has
occurred, the overflow partitions of R and S are recursively
joined using this same procedure.

The Hybrid hash-join algorithm was developed in order to
prevent the overflow processing discussed above while utilizing
as much memory as is available. The key idea is to recognize a
priori that the join will exceed the memory capacity and partition
each joining relation into enough disjoint buckets such that each
bucket will fit into the available memory. As an enhancement, a
portion of the join result is computed while the two joining rela-
tions are being partitioned into buckets.

With hash-join algorithms, the computation of the join opera-
tion can be viewed as consisting of two phases. First. a hash
table is constructed from tuples produced from the left input
stream (relation R. in the above examples). In the second phase,
tuples from the right input stream (relation S) are used to probe
the hash table for matches in or&r to compute the join. Since the
first operation must completely precede the second, the join
operator can be viewed as consisting of two separate operators, a
build operator and a probe operator. The dependency graphs
model this two phase computation for hash-joins by representing
Joini as consisting of the operators Bi and Pi. The base relations
to be joined are represented in the operator dependency graphs as
Si’ signifying the scan of relation i.

The reader should keep in mind that intra-operator parallelism
issues are being ignored in this paper. That is, when we discuss
executing two operators concurrently, we have assumed impli-
citly that each operator will be computed using multiple proces-
sors as described in [SCHN89a].

3.1. Left-Deep Query Trees
Figure 4 shows a generic N-join query represented as a left-

deep query tree and its associated operator dependency graph.
From the dependency graph it is obvious that no scan operators
can be executed concurrently. It also follows that the dependen-
cies force the following unique query execution plan:

1) Scan Sl - Build Jl
2) Scan S2 - Probe Jl - Build J2
3) Scan S3 - Probe J2 - Build J3
.

$)S can SN - Probe JN-1 - Build JN
N+l) Scan SN+l - Probe JN

The above schedule demonstrates that at most one scan and
two join operators can be active at any point in time. Consider
Step N in the above schedule. Prior to the initiation of Scan SN,
a hash table was constructed from the output of Join N-l. When

471

Left-Deep Query Tree and Dependency Graph
Figure 4

the Scan SN is initiated, tuples produced from the scan will
immediately probe this hash table to produce join output tuples
for Join N. These output tuples will be immediately streamed
into a hash table constructed for Join N. The hash table space for
Join N-l can only be reclaimed after all the tuples from scan SN
have probed the hash table, computed Join N, and stored the join
computation in a new hash table. Thus, the maximum memory
requirements of the query at any point in its execution consist of
the space needed for the hash tables of any two adjacent join
operators.

Limited Memory
Although left-deep query trees require that only the hash

tables corresponding to two adjacent join operators be memory
resident at any point during the execution of any complex query,
the relations staged into the hash tables are the result of inter-
mediate join computations, and hence it is likely to be difficult to
predict their size. Furthermore, even if the size of the intermedi-
ate relations can be accurately predicted, in a multi-user environ-
ment it can not be expected that the optimizer will know the
exact amount of memory that will be available when the query is
executed. If memory is extremely scarce, sufficient memory may
not exist to hold even one of these hash tables. Thus, even
though only two join operators are active at any point in time,
many issues must be addressed in or&r to achieve optimal per-
fomMnce.

[GRAE89] proposes a solution to this general problem by
having the optimizer generate multiple query plans and then hav-
ing the runtime system choose the plan most appropriate to the
current system environment. A similar mechanism was proposed
for Starburst [HAAS89]. One problem with this strategy is that
the number of feasible plans may be quite large for the complex

join queries we envision. Besides having to generate plans
which incorporate the memory requirements of each individual
join operator, an optimizer must recognize the consequences of
intra-query parallelism. For example, if a join operator is optim-
ized to use most of the memory in the system, the next higher
join operator in the query tree will be starved for memory. If it is
not possible to modify the query plan at runtime, performance
will suffer.

A simpler strategy may be to have the runtirne query
scheduler adjust the number of buckets for the Hybrid join algo-
rithm in or&r to react to changes in the amount of memory avail-
able. An enhancement to this strategy would be to keep statistics
on the size of the intermediate join computations stored in the
hash tables and use this information to adjust the number of
buckets for join operators higher in the query tree.

3.2. Right-Deep Query Trees

Right-Deep Query Tree and Dependency Graph
Figure 5

Figure 5 shows a generic rightdeep query tree for an N-join
query and its associated dependency graph. From the depen-
dency graph it can easily be determined which operators can be
executed concurrently and the following execution plan can be
devised to exploit the highest possible levels of concurrency:

1) Scan SZ-Build Jl, Scan S3-Build J2,Scan Sn+l-Build Jn
2) Scan Sl-Probe Jl-hobe R-...-Probe Jn

From this schedule it is obvious that all the scan operators but
Sl, and all the build operators can be processed in parallel. After
this phase has been completed, the scan Sl is initiated and the
resulting tuples will probe the first hash table. All output tuples
will then percolate up the tree. As demonstrated, very high lev-
els of parallelism are possible with this strategy (especially since
every operator will also generally have intra-operator parallelism
applied to it). However, the query will require enough memory

472

to hold the hash tables of all N join operators throughout the
duration of the query.

A question arises as to the performance implications of
dkM.irtg scans S2 through SN+l concurrently. If these opera-
tors access relations which are declustered over the same set of
storage sites, initiating all the scans concurrently may be detri-
mental because of the increased contention at each disk
[GHAN89]. However, in a large database machine, it is not
likely that relations will be declustered over all available storage
sites. Further declustering eventually becomes detrimental to
performance because the costs of controlling the execution of a
query eventualIy outweigh the benefits of adding additional disk
resources [GERB87. COPE88, DEWI88]. In Section 4 we
present experimental results which illustrate the performance
implications of the data declustering strategy.

Limited Memory
Dealing with limited memory is expected to be a bigger prob-

lem with right-deep trees than with left-deep trees because more
hash tables must be co-resident in memory. Also, there is little
opportunity for runtime query modifications since once the scan
on Sl is initiated the data flows through the query tree to comple-
tion. However, it is expected that more accurate estimates of
memory requirements will be available for a right-deep query
tree since the left children (the buildiig relations) will always be
base relations (or the result of applying selection predicates to a
base relation), while with a left-deep tree the building input to
each join is always the result of the preceding join operations.

Several alternative techniques exist for exploiting the poten-
tial performance advantages of right-deep query trees when
memory is limited. One strategy (similar to that proposed in
[STONE89]) involves having the optimizer or runtime scheduler
break the query tree into disjoint pieces such that the sum of the
hash tables for all the joins within each piece are expected to fit
into memory. This splitting of the query tree will, of course,
require that temporary results be spooled to disk. When the join
has been computed up to the boundary between the two pieces,
the hash table space currently in use can be reclaimed. The
query can then continue execution, this time taking its right-chid
input from the temporary relation. This scheduling strategy is
termed static right-deep scheduling.

A more dynamic strategy, called dynamic bottom-up
scheduling, schedules the scans S2 to SN+l (Figure 5) in a strict
bottom-up manner. The scan S2 is first initiated and the resulting
tuples are used to construct a hash table for the join operator Jl.
After this scan completes the memory manager is queried to
check if enough memory exists to stage the tuples expected as a
result of the scan S3. If sufficient space exists, scan S3 is ini-
tiated. This same procedure is followed for all scans in the query
tree until memory is exhausted. If all the scans have been pro-
cessed, all that remains is for the scan Sl to be initiated to start
the process of probing the hash tables. However, in the case that
only the scans through Si can be processed in this first pass, the
scan Sl is initiated but now the results of the join computation
through join Ji-1 are stored into a temporary file Sl’. Further
processing of the query tree proceeds in an identical manner only

the 8rst scan to be scheduled is Si+l. Also, the scan to start the
generation of the probing tuples 1s mitiated from the temporary
file S 1’. Although this strategy sacrifices parallelism in scanning
the “building” relations, it has some interesting properties when
certain filtering techniques are applied [GERBgO]. This tradeoff
will be analyzed in future work.

Both of these strategies share a common feature of dealing
with limited memory by ‘breaking” the query tree at one or more
points. Breaking the query tree has a significant impact on per-
formance because the benefits of data flow processing are lost
when the results of the temporary join computation must be
spooled to disk. Although, we have assumed that enough
memory is available to hold at least each relation individually
and, hopefully, several relations simultaneously, this may not
always be the case. An alternative approach is to preprocess the
input relations in order to reduce memory requirements. This is
what the Hybrid join algorithm attempts to do. Below, we dis-
cuss the use of the Hybrid join algorithm for processing complex
query trees represented as right-deep query trees. We refer to the
resulting algorithm as Right-Deep Hybrid Scheduling.

Result Result

/ 2
kin Join

I2 I2
Join D D Join

11
/1 11

11

Join ’ C Join

12
A B B A

Left-Deep Query Tree Right-Deep Query Tree
Figure 6

Consider the right-deep join query in Figure 6 and assume
that each join will be broken into two buckets, with the first
being staged immediately into memory. The first bucket of A
(denoted Abl) will join with the first bucket of B to compute the
tirst half of A*B. Since this is a right-deep tree the first inclina-
tion would be to probe the hash table for C (actually $1) with
all these output tuples. However, this cannot be done Immedi-
ately because the join attribute may be different between C and
B, in which case the output tuples corresponding to A*B (II)
must be rehashed before they can join with the first bucket of C.
Since 11 must use the same hash function as C, 11 must be com-
posed of two buckets (one of which will directly map to memory
as a probing segment). Thus, the tuples corresponding to
Bbl*Abl will be rehashed to Ilbl and Ilb

Yi
, with the tuples

correspondmg to the frrst bucket (about hal the A*B tuples
assuming uniformity) immediately probing the hash table built
from Cbl. Again, the output tuples of this first portion of
A*B*C will be written to the buckets I$.,1 and 12b2. Output
tuples will thus keep percolating up the tree, but then number
will be reduced at each succeeding level based on the number of
buckets used by the respective building relation. Query execu-
tion will then continue with the join Bb2*Ab2. After all the

473

respective buckets for A*B have been joined, the remaining
buckets for C*Il will be joined. Processing of the entire query
tree will proceed in this manner.

With Right-Deep Hybrid Scheduling (RDHS), some tuples
will be delivered to the host as a result of joining the first buckets
of the two relations at the lowest level of the query tree. This is
not possible with an analogous left-deep or bushy query tree. If a
user is submitting the query, the quicker feedback will result in a
faster response time (even though the time to compute the entire
result may be identical). And, in the case of an application pro-
gram submitting the query, it may be very beneficial to provide
the result data sooner and in a more “even” stream as opposed to
producing the entire result in one step because the computation
of the application can be overlapped with the processing of the
join.

Several questions arise as how to best allocate memory for
right-deep query trees with the RDHS join algorithm. For
correctness it is necessary that the fist bucket of EACH of the
building relations be resident in memory. However, it is NOT a
requirement that all relations be distributed into the same number
of buckets. For example, if relation B and D are very large but
relation C is small, it would be possible to use only one bucket
for relation C while using additional buckets for relations B and
D. Hence, the intermediate relation 11 would never be staged to
disk in any form, rather it would exist solely as a stream of tuples
to the next level in the query tree.

As can be seen, RDHS provides an alternative to the static
and dynamic bottom-up scheduling algorithms described above.
Whereas these algorithms assumed that enough memory was
available to hold at least each relation individually and hopefully
several relations simultaneously, the use of the RDHS algorithm
potentially reduces the memory requirements while still retaining
some datafiow throughout the entire query tree. If RDHS can
use a single bucket for every relation, it becomes equivalent to
the static right-deep scheduling algorithm. It remains an open
question as to when one scheduling strategy will outperform the
other.

The Case for Right-Deep Query Trees
(1) Right-deep query trees provide the best potential for exploit-
ing parallelism.

(2) In the best case, intermediate join results exist only as a
stream of tuples flowing through the query tree.

(3) The size of the ‘building” relations can be more accurately
predicted since the czudinality estimates are based on predicates
applied to a base relation as opposed to estimates of the size of
intermediate join computations.

(4) Even though bushy trees can potentially re-arrange joins to
minimize the size of intermediate relations, a best-case right-
deep tree will never store its larger intermediate relations on
disk.

(5) Several strategies exist to deal with limited memory situa-
tions. “Breaking” the query tree represents a static approach
while the dynamic bottom-up scheduling algorithm reacts better

to the amount of memory available at run-time. The RDHS
strategy can deliver tuples sooner and in a more constant stream
to the user/application than a similar left-deep query tree can.

(6) Right-deep trees are generally assumed to be the most
memory intensive query tree format but this is not always the
case. Consider the join of relations A, B, C, and D as shown in
Figure 6 for both a left-deep and a right-deep query tree format.
Assume the size of all the relations is 10 pages. Furthermore,
assume that the size of A*B is 20 pages and the size of A*B*C
is 40 pages. At some point during the execution of the left-deep
query tree, the results of A*B and A*B*C will simultaneously
reside in memory. Thus, 60 pages of memory will be required
in order to execute this query. With a right-deep query tree,
however, relations B, C and D must reside in memory, but these
relations will only consume 30 pages of memory.

(7) The size of intermediate relations may grow with left-deep
trees in the case where attributes are added as the result of each
additional join. Since the intermediates are stored in memory
hash tables, memory requirements will increase. Note that
although the width of tuples in the intermediate relations will
also increase with right-deep trees, these tuples are only used to
probe the hash tables and hence they don’t consume memory for
the duration of the join.

3.3. Bushy Query Trees

Bushy Query Tree
Figure 7

Dependency Graph for a Bushy Query Tree
Figure 8

474

With more complex query tree representations such as the
bushy query tree for the eight-way join shown in Figure 7,
several different schedules can be devised to execute the query.
A useful way of clarifying the possibilities is again through the
construction of an operator dependency graph. Figure 8 contains
the dependency graph corresponding to the join query shown in
Figure 7. By following the directed arcs it can be shown that the
longest path through the graph is comprised of the subgraphs
containing the scan operators Sl, S2, S4 and S8. Since the sub-
graphs containing these operators must be executed serially in
order to maximize dataflow processing (i.e., to prevent writing
tuples to temporary storage), it follows that every execution plan
must consist of at least four steps. One possible schedule is:

1) Scan Sl-Build Jl, Scan S3-Build J2, Scan SS-Build J3,
Scan S7-Build J4.

2) Scan S2-Probe Jl-Build J5, Scan S6-Probe J3-Build J6.
3) Scan S4Probe J2-Probe R-Build J7.
4) Scan S8-Probe J4-Probe J6-Probe 17.

However, notice that non-critical-path operations like Scan
S7 and Build J4 could be delayed until Step 3 without violating
the dependency requirements. The fact that scheduling options
such as the above exist, demonstrates that runtime scheduling is
more complicated for bushy trees than for the other two tree for-
mats. As was the case with the other query tree designs, if the
order in which operators are scheduled does not obey the depen-
dency constraints, tuples from intermediate relations must be
spooled to disk and re-read at the appropriate time.

Limited Memory
By intelligently scheduling operators it is possible to reduce

the memory demands of a query represented as a bushy tree.
Consider again the previous schedule for executing the’7 join
query. After the execution of Step 1, four hash tables will be
resident in memory. After Step 2 completes, memory can be
reclaimed from the hash tables corresponding to join operators Jl
and J3 but new hash tables for join operators J5 and J6 will have
been constructed. Only after the execution of Step 3 can the
memory requirements be reduced to three hash tables (J7, J6, and
J4). However, it may be possible to reduce the memory con-
sumption of the query by constructing a different schedule. Con-
sider the following execution schedule in which we have noted
when hash table space can be reclaimed:

1) Scan Sl-Build Jl.
2) Scan S2-Probe Jl-Build JS-Release Jl, Scan S3-Build J2.
3) Scan S4-Probe JZProbe JS-Build J7-Release J2 and J5.
4) Scan SS-Build J3.
5) Scan S6-Probe J3-Build J6-Release J3, Scan S7-Build J4.
6) Scan S8-Probe J4Probe J6-Probe J7-Release J4, J6 and J7.

Although this execution plan requires six steps instead of four,
the maximum memory requirements have been reduced
throughout the execution of the query from a maximum of 4 hash
tables to a maximum of 3 hash tables. If these types of execution
plan modifications are insufficient in reducing memory demands,
the techniques described in the last two subsections for left-deep
and right-deep query trees can also be employed.

3.4. Issues When Using the Sort-Merge Join Algo-
rithm

The use of hash-join methods affects the preceding discussion
on the achievable levels of parallelism associated with the alter-
native query tree designs. For example, reconsider the left-deep
query tree and its associated operator dependency graph in Fig-
ure 4. With the sort-merge algorithm as the join method, the
scan Sl does not necessarily have to precede the scan S2. For
example, the scan and sort of Sl could be scheduled in parallel
with the scan and sort of S2. The final merge phase of the join
can proceed only when the slower of these two operations is
completed. This is in contrast to the strictly serial execution of
the two scans in order for a hash join algorithm to work properly.

The modifications to the operator dependency graphs required
to support the sort-merge join method can be found in
[SCHN89b]. These modifications are very simple but are not
presented here due to space limitations. One interesting point to
note about using the sort-merge join algorithm is that the left-
deep and right-deep query tree representations become
equivalent because all the base relations (Sl through SN+l) can
be scanned/sorted concurrently in either strategy, whereas with
the hash-join algorithm there is an ordering dependency which
specifies that the left-child input must be completely consumed
before the right-child input can be initiated.

4. An Initial Performance Evaluation of Left-Deep vs.
Right-Deep Query Trees

The preceding discussion indicated that a multi-way join
query represented in a right-deep query tree can potentially offer
significant performance advantages over the same query
represented in a left-deep tree. In this section we focus on quan-
titatively measuring the extent of this performance advantage.
The reader should note that the goal of the performance evalua-
tion is to determine the range of possible performance tradeoffs
between left-deep and right-deep query trees and does not pur-
port to encompass all possible situations. Rather, the analysis
will serve to show the feasibility of the strategies proposed for
processing multi-way join queries.

As the experimental vehicle for our analysis we chose the
shared-nothing database machine Gamma [DEWI86, DEWI90].
Gamma currently runs on a 32 processor iPSC/2 Intel hypercube
[INTE88] with one 330 megabyte MAXTOR 4380 (5 l/4”) disk
directly attached to each Intel 80386 processor. One deficiency
of the iPSC/2’s I/O system is that it does not provide DMA sup-
port for disk transfers. Rather, disk blocks are instead transferred
by the disk controller into a FIFO buffer, from which the CPU

must copy the block into memory.* A high-speed hypercube con-
nected network topology using specially designed hardware
routers is used for communication between processors.

%ttel was forced to use such a design because the I/O system was
added after the system had been completed and the only way of doing I/O
was by using an empty socket on the board which did not have DMA ac-
cess to memory.

475

Instead of implementing the scheduling algorithms directly
on Gamma and measuring their performance, we chose to build a
simulation model of Gamma. There were two reasons for this
decision. First, we felt it would be simpler and faster to construct
new scheduling algorithms in a simulator than in the actual sys-
tem. Second, a simulation model allows us to study the different
algorithms in hardware configurations much larger than Gamma
currently provides.

4.1. Simulation Model

The simulation model of Gamma is constructed as follows.
Each node in the multiprocessor system consists of a Disk
module, a CPU module, a Query Scheduler module, and multiple
instances of an Gperator module. Additionally, three stand-alone
modules are provided: a Network module, a File Manager
module, and a Terminal module. The DeNet simulation
language [LIVN88] was used to construct the simulator.

The Disk module schedules disk requests according to an
elevator algorithm. In order to accurately reflect the hardware
currently being used by Gamma, the disk module interrupts the
CPU when there are bytes to be tmnsfened from the I/O
channel’s FIFO buffer to memory or vice versa. The CPU
module enforces a FCFS non-preemptive scheduling paradigm
on all requests, with the exception of these byte transfers to/from
the disk’s FIFO buffer. Gperator modules are responsible for
modeling the relational operators select and join. These modules
repeatedly make requests to the CPU, Disk and Network modules
in order to perform their particular operation. The Query
Scheduler module implements the algorithms to process left-deep
and right-deep query trees. The Network module currently
models a fully connected network and the Terminal module pro-
vides the entry point of new queries. Finally, the File manager
keeps track of how many files are defined, what disks each file is
&clustered over, and the number of pages of each file on each
disk. An assignment of each page in a file to a physical disk
address is maintained. This physical assignment of file pages
allows for more accurate modeling of sequential as well as ran-
dom disk accesses.

4.2. Simulation Model Validation

In order to provide more faith in the results from the mul-
tiprocessor database machine simulator, we validated the simula-
tor against results produced by Gamma. For the validation pro-
cedure, the system was configured to use 18 KByte disk pages
and 8 KByte network pages. Costs associated with basic opera-
tions on this machine and relevant system parameters are sum-
marized in Table 1.

To validate the simulation model we present the performance
of both a 10% selection query and a join query in a system with
5-30 processors with disks. Expanded versions of the Wisconsin
Benchmark relations [sI‘IT83] serve as the test database. The
selection query retrieves 100,000 tuples from a l,OOO.OOO tuple
relation and stores the resulting tuples back into the database. As
shown in Figure 9, the simulation model matches with observed
Gamma performance very closely for this query. However, the

Disk Parameters
Average Seek Time 16msec
Average Settle Time 2msec
Average Latency O-16.67 msec (Unit)
Transfer Rate 1.8 MBytes/set
Disk Page Size 18 KBytes
Xfer Diik Page from SCSI to mem 9000 instructions

Network Parameters
Maximum Packet Size 8 KBytes
Send 100 bytes 0.6 msec
Send 8 192 bytes 5.6 msec

Cpu Parameters
Instructions/Second 4,000,000
Read 18K Disk Page 32,800 instructions
Write 18K Disk Page 61,500 instructions

Miscellaneous
Tuples/Network Packet 36
Tuples/Disk Page 82
Number of Sites 5-30

Simulation Parameters for Model Validation
Table 1

actual error is greater than implied because Gamma uses a one
page readahead mechanism when reading pages horn a file
sequentially. The performance implications of this mechanism
are discussed in more detail below.

In order to validate join performance in the model, we joined
a l,OOO,fKlO tuple relation (200 megabytes) with a 100,000 tuple
relation (20 megabytes) to produce a 100,000 tuple result relation
(40 megabytes). As illustrated by Figure 9, the simulation model

RESPONSE TIME (SECS)
200

180

160

140

120

100

80

60

40

20

0

o Gamma: 10% selection
A Model: 10% selection
’ Gamma: Join ABprime
’ Model: Join ABprime

Validation of Selection and Join Performance
Figure 9

476

overestimates the response time for this query by a constant fac-
tor of 20% over the range of 5 to 30 processors with disk. We
attribute much of this modeling inaccuracy to be related to
Gamma’s use of a one page readahead mechanism when scan-
ning a file sequentially. Since join queries are very CPU inten-
sive operations, Gamma can effectively overlap most of the CPU
costs of constructing and probing the hash table with the disk I/O
necessary for reading the joining relations. This should not
imply, though, that the model is overpredicting performance by
20% for the selection query presented in Figure 9. The CPU
requirements of this query are much lower and thus the extent of
the overlap of CPU and disk processing is much more limited.
This claim is further supported by the fact that the simulation
model accurately predicts execution times for selection queries
which use a non-clustered B-tree access. These queries generate
a series of random disk requests and hence readahead is not
employed.

4.3. Experimental Design

As stated in the beginning of the section, the experiments
were designed to present the range of performance differences
between left-deep and right-deep query trees. For the experi-
ments conducted, the query suite consisted of join queries com-
posed of 1, 2. 4, and 8 joins. In order to simplify the analysis,
though, the queries were highly constrained. For example, the
queries were designed such that the size of the result relation is
constant regardless of the number of joins in the query or the
query tree representation. This was accomplished by making all
relations the same size and by setting the join “probe-ability” fac-
tor to 1 for every join in the query tree. That is, each probing
tuple joins with exactly one building tuple. Constraining queries
in this manner allowed for a direct comparison between a query
represented as a left-deep tree and its analogous right-deep tree.
Comparing randomly generated queries could be misleading
because an optimizer would most certainly produce different
plans for the same query given the different query tree formats.

The database was composed of nine l,OOO,OOO tuple relations
and each relation has a selection predicate applied to it which
reduces the output cardinality to 500,000 tuples. Since input
tuples are 208 bytes wide and attributes are not added with each
successive join, the result cardinality of ALL the joins was
500,000 tuples, each 208 bytes wide. All result relations were
written back into the database. A parallel version of the Simple
hash-join algorithm [DEWI84, SCHN89a] was used as the join
method and, unless otherwise stated, enough main memory
existed to guarantee that hash table overflow would never occur,
regardless of the number of concurrent join operations. In order
to more accurately predict performance for “typical” database
machines, a 25% buffer pool hit ratio was specified in order to
model a disk prefetch mechanism. Response time for the queries
is measured from the time the query plan is submitted to the data-
base machine until the query is fully computed.

Four major experiments are reported here. The first experi-
ment considers performance differences in an environment where
the declustering of the joining relations forces a high level of
resource contention. In the second experiment, the environment

is changed to ensure a low level of resource contention. In the
third and fourth experiments, the first two experiments are
repeated in an environment where memory for joining is limited.

4.3.1. High Resource Contention Environment

In a database machine with a relatively small number of pro-
cessors, it is likely that large relations will be declustered over all
the available nodes. Thus, executing multiple scan and join
operators concurrently will result in a high degree of resource
contention. For these experiments, the system was configured
such that each relation was declustered over 50 nodes. Each join
in the query tree was also processed on all 50 nodes.

RESPONSE TIME (SECS)
120

108

96.

84.

72.

60.

48.

36.

24.

‘L--. *
0 1 2 3 4 5 6 7 8

NUMBER OF JOINS

Full Declustering - 50 nodes
Figure 10

The results of these full declustering experiments are shown
in Figure 10. For each join query, the performance of the right-
deep query tree is approximately 15.20% faster than for its
analogous left-deep query tree (left-deep and right-deep query
trees are identical for single join queries). This performance
improvement occurs because the disks are not fully utilized, and
thus executing the scans in parallel for the right-deep trees pro-
vides a performance advantage. Note, that the maximal memory
requirements for left-deep and right-deep query trees is identical
for 1 and 2 join queries, but is twice as high for right-deep
queries with 4 joins and four times as high with 8 joins. Thus,
when all the relations to be joined are declustered over the same
set of nodes, the benefits provided by using right-deep query
trees cannot be maintained relative to the amount of memory
consumed as the number of joins in the query increases.

4.3.2. Low Resource Contention Environment

In this next set of experiments we repeated the previous
experiments in a machine with more processors and where rela-
tions are declustered over a subset of nodes and hence, resource

477

contention is reduced when executing several operators con-
currently. The system was configured as follows. Each of the
nine l,OOO,OOO tuple relations was declustered over 10 distinct,
non-overlapping nodes. Each join was also processed on the 10
processors on which its “building” relation was declustered.
Given these conditions, the number of processors actively part-
cipating in each query during the scanning of relations and the
building/probing of hash tables increased as the number of joins
in the query increased. For example, in the 2-join query 30
nodes were used, and in the S-join query 90 nodes were used.
Regardless of the number of joins in the query, each result rela-
tion was declustered over all 90 nodes.

As illustrated by Figure 11, left-deep query trees are unable to
take advantage of the hardware resources that become available
as additional joins are added to the query. This is to be expected
because relations must be scanned one at a time when a left-deep
query tree is employed. However, for right-deep query trees, a
nearly constant response time is maintained as the number of
joins is increased from one to eight. This may appear startling
but can be easily explained given the experimental parameters.
Consider the first step in executing the query - scanning the
“building” relations and constructing the corresponding hash
tables. Since all relations are the same size and have the same
selectivity factor applied, and since all the relations are
declustered o&r distinct nodes and the join nodes correspond to
the base relation declustering nodes, each scan can be executed
completely in parallel and without interference. Thus, the cost of
this operation is constant regardless of the number of joins (disre-
garding the small overhead necessary for initiating the opera-
tors).

RESPONSE TIME (SECS)
500 1

450.

400.

350 -

300.

50.

04 - - .
0 1 2 3 4 5 6 7 8

NUMBER OF JOINS

Partial Declustering - 90 nodes
Figure 11

The second phase (the “probing” phase) can scale with the
number of joins due to the effect of pipelining. As tuples are
produced from a lower join they are immediately sent across the
network to participate in the next level of the join. Thus, pro-
cessing of tuples in different levels of the tree are overlapped.
Viewed another way, the throughput of the pipeline is constant
regardless of the depth of the join tree and the difference in
response time as the number of join levels increases is due to the
increased latency to initiate and terminate the pipeline.

The results contained in Figure 11 represent the best-case per-
formance improvements of rightdeep query trees. All experi-
mental parameters were set to allow the parallelism potential of
the right-deep strategy to be exploited to its fullest. Under more
realistic conditions, the performance improvements of right-deep
query trees will fall between the extremes presented in Figures
10 and 11. However, it should be noted that the right-deep query
with eight joins required four times more memory than any of the
left-deep join queries. The results do demonstrate, though, the
extreme performance benefits that can be obtained with a right-
deep strategy.

4.3.3. Limited Memory Experiments
In this set of experiments we relaxed the assumption that an

unlimited amount of memory exists. All query and model
parameteis are identical to those reported in the previous section
with the exception that we only considered the query with 8
joins. High resource and low resource contkntion (full decluster-
ing and disjoint declustering) experiments were again conducted.
The static right-deep scheduling strategy (see Section 3.2) was
used for processing right-deep query trees.

In order to model a limited memory environment, we
modified the aggregate amount of memory available for joining
relative to the memory required to stage all eight “building” rela-
tions into memory simultaneously. Response time was plotted
for left-deep and right-deep strategies for x-axis values ranging
from a value of 0.25, where only 2 of the 8 building relations
could co-reside in memory, to a value of 1.00. where all 8 build-
ing relations can fit in memory simultaneously. X-axis values
less than 0.25 would have required resolution of memory
overflow for left-deep query trees and are not reported. For the
static right-deep strategy it was assumed that the optimizer could
perfectly predict scan selectivities and thus could always choose
the optimal places to “break” the query tree.

4.3.3.1. Limited Memory - High Resource Contention
In Figure 12, the performance of the left-deep and static

right-deep scheduling algorithms are shown as the amount of
available memory is varied in an environment where all base
relations are declustered across all 50 sites. Three observations
should be noted from this figure. First, it is obvious that the left-
deep scheduling algorithm is not able to take advantage of
memory as it is added. In contrast, the static right-deep schedul-
ing algorithm demonstrates significant performance improve-
ments with additional memory. Next, the cross-over point in the
graphs demonstrates the fact that “breaking” the query tree into
too many pieces can be detrimental to the performance of right-

478

RESPONSE TIME (SECS)
150 1

RESPONSE TIME (SECS)

6001

540
1

Static Right Deep

0.00 0.25 0.50 0.75 1.00
AVAIL MEM/MEM FOR ALL 8 JOINS

,
0.00 0.25 0.50 0.75 1 .oo

AVAIL MEM/MEM FOR ALL 8 JOINS

Limited Memory - Full Declustering Limited Memory - Partial Declustering
Figure 12 Figure 13

deep scheduling algorithms. For example, at the x-axis value
0.25, the tree had to be broken into three pieces to ensure that the
right-deep strategy did not experience memory overflow (requir-
ing the writing and subsequent reading of temporary join compu-
tations to and from the disk at three points during query execu-
tion). The last point to note is the flatness of the right-deep
scheduling graph from 0.5 to just before 1.0. Over this range, the
query tree had to be broken into only two pieces. Since the
queries produced intermediate relations of a constant size regard-
less of the number of joins in the query, the placement of the
“break” has no effect on performance because the same number
of tuples are temporarily staged to disk. Under more likely con-
ditions of growing or diminishmg temporary join size results, the
selection of the break points for a query will almost certainly
have some effect on the execution time of the query. This will be
explored in a future performance analysis.

4.3.3.2. Limited Memory - Low Resource Contention
In Figure 13, we present the execution time of the left-deep

and right-deep scheduling strategies for the 8-join query when
the relations to be joined are declustered over mutually disjoint
processors with disks. The simulation parameters are identical to
those reported in Section 4.3.2.

The results are very similar to those shown in Figure 12, i.e.,
the shape of the curves is identical. It is obvious though, that the
partial declustering environment offers additional performance
advantages for right-deep scheduling strategies even when
memory is not unlimited. This is very encouraging because, as
stated earlier, it is likely that relations will be partially
declustered in database machines with large numbers of
processors/disks.

480-

420 -

360.

BI

Left Deep

5. Conclusions
In this paper, we haveGlescribed many of the problems and

tradeoffs associated with the task of processing queries com-
posed of many joins in a multiprocessor database machine. In
particular, we focused on how the strategy chosen to represent a
query tree affects the degree to which parallelism can be applied
within a query and the corresponding effects on performance, the
resource consumption of the query, and the extent that dataflow
processing techniques can be applied. Hash based join methods
were assumed for much of this analysis although the sort-merge
join method was discussed briefly.

Results obtained from this analysis indicate that the right-
deep query representation strategy is well suited to exploit the
parallelism inherent in large multiprocessor database machines.
As an added benefit, the importance of accurately estimating join
selectivities is potentially reduced when using right-deep query
trees. These results encouraged us to develop several algorithms
for processing queries represented in this query tree format.

In order to quantitatively measure the performance benefits
that right-deep query trees can provide over their corresponding
left-deep query trees, we constructed a simulation model of a
parallel database machine and implemented scheduling algo-
rithms for processing queries represented in these formats.
Experimental results from the analysis of these algorithms
confirmed that right-deep query trees can offer very significant
performance advantages in large database machines. However,
the extent of the performance improvement is strongly dictated
by the physical placement of the base relations and comes at the
cost of increased resource consumption. Furthermore, when
memory is limited the performance difference between the

479

scheduling algorithms diminishes.

Our future work includes extending the current study to
include a much richer mix of queries, selectivity factors, and base
relation cardinalities. ‘We are also interested in studying the per-
formance of the alternative query processing algorithms under
multiuser workloads and with skewed data distributions.
Although multiuser performance comparisons were beyond the
scope of this paper, the memory requirements of a query will
serve as a good indicator of potential throughput because
memory is so crucial to high performance query processing,
especially with the hash-join algorithms. We hope to apply the
technique of Adaptive Sampling [LIPT90a, LIPT90b] to help
tackle the problem of skew.

Acknowledgments
We would like to thank Jeff Naughton for his many helpful

discussions concerning this work.

6. References

[BARU87] Baru, C., 0. Frieder, D. Kandlur, and M. Segal,
“Join on a Cube: Analysis, Simulation, and Implementa-
tion”, Database Machines and Knowledge Base
Machines, M. Kitsuregawa and H. Tanaka (eds). Kluwer
Academic Publishers, 1987.

[sl’lTS3] Bitton, D., D.J. Dewitt, and C. Turbyfill, “Bench-
marking Database Systems - A Systematic Approach,”
Proceedings of the 1983 VLDB Conference, Oct., 1983.

[BRAT871 Bratbergsengen, Kjell, “Algebra Operations on a
Parallel Computer - Performance Evaluation”, Database
Machines and Knowledge Base Machines, M. Kitsure-
gawa and H. Tanaka (eds), Kluwer Academic Publishers,
1987.

[COPE881 Copeland, G., W. Alexander, E. Boughter, and T.
Keller, “Data Placement in Bubba”, Proceedings of the 1988
SIGMOD Conference, June 1988.

[DEWI84] Dewitt, D. J., Katz, R., Olken, F., Shapiro, L., Stone-
braker, M. and D. Wood, “Implementation Techniques for
Main Memory Database Systems,” Proceedings of the 1984
SIGMOD Conference, June, 1984.

[DEWI85] Dewitt, D., and R. Gerber, “Multiprocessor Hash-
Based Join Algorithms,” Proceedings of the 1985 VLDB
Conference, Aug., 1985.

[DEWI86] Dewitt, D., Gerber, R., Graefe, G., Heytens, M.,
Kumar, K. and M. Muralikrishna, “GAMMA - A High Per-
formance Dataflow Database Machine,” Proceedings of the
1986 VLDB Conference, Aug., 1986.

[DEWI88] Dewitt, D., Ghandeharizadeh, S., and D. Schneider,
“A Performance Analysis of the Gamma Database
Machine”, Proceedings of the 1988 SIGMOD Conference,
June 1988.

[DEWI90] Dewitt, D., Ghandeharizadeh, S., Schneider, D.,
Bricker, A., Hsiao, H., and R. Rasmussen, “The Gamma
Database Machine Project”, IEEE Transactions on
Knowledge and Data Engineering, Vol. 2, No. 1, March,
1990.

[GERB86] Gerber, R., “Dataflow Query Processing using Mul-
tiprocessor Hash-Partitioned Algorithms,” PhD Thesis and

Computer Sciences Technical Report #672, University of
Wisconsin-Madison, Oct., 1986.

[GERB87] Gerber, R. and D. Dewitt, “The Impact of Hardware
and Software Alternatives on the Performance of the
Gamma Database Machine”, Computer Sciences Technical
Report #708, University of Wisconsin-Madison, July, 1987.

[GERB90] R. Gerber, Personal Communication, March 1990.

[GHAN901 Ghandeharizadeh, S., and D.J. Dewitt, “A Multiuser
Performance Analysis of Alternative Declustering Stra-
tegies”, Proceedings of the 6th International Conference on
Data Engineering, 1990.

[GRAE87] Graefe, G., “Rule-Based Query Optimization in
Extensible Database Systems”, Ph.D. Thesis and Computer
Sciences Technical Report #724. University of Wisconsin-
Madison, Nov., 1987.

[GRAE89] Graefe, G. and K. Ward, “Dynamic Query Evalua-
tion Plans”, Proceedings of the 1989 SIGMOD Conference,
May 1989.

[GRAE90] Graefe, G.. “Encapsulation of Parallelism in the Vol-
cano Query Processing System”, Proceedings of the 1990
SIGMOD Conference, May 1990.

[HAAS89] Haas, L., Freytag, J.C., Lohrnan, G.M., and H.
Piiahesh, “Extensible Query Processing in Starburst”,
Proceedings of the 1989 SIGMOD Conference, May 1989.

[INTE88], Intel Corporation, iPSC/2 User’s Guide, Intel Cor-
poration Order No. 311532-002, March, 1988.

[KITS88] Kitsuregawa, M., Nakano, M., and M. Takagi, “Query
Execution for Large Relations On Eunctional Disk Sys-
tem,” Proceedings of the 5th International Conference on
Data Engineering, 1989.

[LIPT9Oa] Lipton, R. and J. Naughton. “Query Size Estimation
by Adaptive Sampling”, Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, March 1990.

[LIPT9Ob] Lipton, R., J. Naughton, and D. Schneider, “Practical
Selectivity Estimation through Adaptive Sampling”,
Proceedings of the 1990 SIGMOD Conference, May, 1990.

[LIVN88] Livny, M., DeNet User’s Guide, Version 1.0, Com-
puter Sciences Department, University of Wisconsin,
Madison, WI, 1988.

[LU85] Lu, H. and M. Carey, “Some Experimental Results on
Distributed Join Algorithms in a Local Network”, Proceed-
ings of the 1985 VLDB Conference, Aug., 1985.

[SCHN89aJ Schneider, D. and D. Dewitt, “A Performance
Evaluation of Four Parallel Join Algorithms in a Shared-
Nothing Multiprocessor Environment”, Proceedings of the
1989 SIGMOD Conference, June 1989.

[SCHN89b] Schneider, D. and D. Dewitt, “Design Tradeoffs of
Alternative Query Tree Representations for Multiprocessor
Database Machines”, Computer Sciences Technical Report
#869, University of Wisconsin-Madison, August, 1989.

[SHAP86] Shapiro, L., “Join Processing in Database Systems
with Large Main Memories”, ACM Transactions on Data-
base Systems, Vol. 11, No. 3, Sept., 1986.

[STON89] Stonebraker, M., P. Aoki, and M. Seltzer, “Parallel-
ism in XPRS”, Memorandum No. UCB/ERL M89/16, Feb.
1, 1989.

480

